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Abstract: The accurate recognition of activities is fundamental for following up on the health progress
of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When
monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse
out the disease evolution, and consequently provide effective and timely assistance. However, this
task is affected by uncertainties derived from the differences in smart home configurations and the
way in which each person undertakes the ADLs. One adjacent pathway is to train a supervised
classification algorithm using large-sized datasets; nonetheless, obtaining real-world data is costly
and characterized by a challenging recruiting research process. The resulting activity data is then
small and may not capture each person’s intrinsic properties. Simulation approaches have risen as
an alternative efficient choice, but synthetic data can be significantly dissimilar compared to real
data. Hence, this paper proposes the application of Partial Least Squares Regression (PLSR) to
approximate the real activity duration of various ADLs based on synthetic observations. First, the
real activity duration of each ADL is initially contrasted with the one derived from an intelligent
environment simulator. Following this, different PLSR models were evaluated for estimating real
activity duration based on synthetic variables. A case study including eight ADLs was considered
to validate the proposed approach. The results revealed that simulated and real observations are
significantly different in some ADLs (p-value < 0.05), nevertheless synthetic variables can be further
modified to predict the real activity duration with high accuracy (R2 (pred) > 90%).

Keywords: activities of daily living (ADLs); activity recognition; activity duration; partial least
square regression (PLSR); people with dementia (PwD); simulated data; artificial intelligence; sensor
systems; smart homes

1. Introduction

Recent advances in medicine and healthcare have contributed to the increase in life
expectancy worldwide, which has also brought more incidence of neurodegenerative
conditions, such as dementia, in the elderly population. As reported by the World Health
Organisation (WHO) in 2022, there are more than 55 million people living with dementia
around the world, with an increase of nearly 10 million cases per year [1]. While the
COVID-19 pandemic brought wider public attention to the challenges that health systems
and carers (formal and informal) of people with dementia (PwD) face, these challenges
were already acknowledged before the pandemic [2]. Technological means in the form of
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mobile apps and sensors to monitor the activities of daily living (ADLs) of PwD detect
their behaviour patterns and emergency situations that require effective and timely human
interventions have been more widely used to support their carers with good results [3].

Sensor-based ADLs monitoring solutions typically perform well in controlled labo-
ratory conditions; however, in many cases, these solutions do not perform as expected
in real-world conditions, such as in care homes [4], mainly because of uncertainties de-
rived from smart home configurations and the different ways in which people perform
ADLs. In this sense, while collecting real-world data might allow the development of
more personalised approaches for each individual, this data collection is usually costly
and characterized by a challenging recruiting research process, in which PwD may not
be willing to adopt technological solutions [5]. In many sensor data collection instances
that are part of research projects, there is usually not sufficient data to be analysed in such
a way that has personalised benefits for the PwD involved. The use of synthetic data
generated through simulation has been more frequently used as an alternative efficient
choice to complement real datasets [6], overcoming the lack of sufficient real-world data
and providing the capability of producing as much synthetic data as required for machine
learning algorithms to generate personalised solutions. However, synthetic data can be
significantly dissimilar compared to real data in the sense that while the generated data
may be proportional and within acceptable ranges in general, they might not be an accurate
and realistic representation of the specific cases of the PwD aimed at. Hence, the synthetic
data would be an inaccurate alternative to data otherwise collected for each PwD and could
lead to misleading and erroneous conclusions about the types, frequency, and duration of
ADLs performed by PwD.

This paper proposes the application of Partial Least Squares Regression (PLSR) to
approximate the real activity duration of various ADLs based on synthetic observations.
The approach presented involves two phases: (i) comparing the duration of the ADLs that
were collected from PwD (real data) with data derived from an intelligent environment
simulator (synthetic data), and (ii) evaluating different PSLR models to estimate real activity
duration of synthetic data. The criteria considered to estimate the real activity duration
are: (i) number of events per activity (NEPA), (ii) number of events per sensor per activity
(NEPSA), and (iii) activity duration. A case study is presented to evaluate this and it
considers eight ADLs, which are deemed to be common activities performed by most
people: (i) stay in bed, (ii) use restroom, (iii) make breakfast, (iv) get out of home, (v) get
cold drink, (vi) stay in the office, (vii) get hot drink, and (viii) cook dinner. Note that while
for healthy people without disabilities performing the ADLs considered may be easier to
perform than for PwD, a machine learning personalised approach would be of benefit for
both types of people in the prediction of activity duration, which in many cases can be
related to health problems that could worsen if unattended, such as neurodegenerative
diseases or infections. For example, inaccurate synthetic data about the frequency and
duration of the “use of bathroom” ADL could present a higher frequency and a large
duration that could then result in the carer or nurse of the PwD increasing the use of a drug
for Urinary Tract Infection (UTI).

The main research question of our investigation is if statistical methods, such as PLSR,
can be used on synthetic data to reliably approximate and predict the duration of ADLs
performed by PwD. Therefore, the novelty of our approach is that it can use synthetically
generated data to provide accurate personalised predictions on ADLs performed by PwD,
significantly reducing the time in which a prediction model would be generated using just
real-world data. This is because in the case of real-world data, it typically takes longer
and involves more costs (staff salaries, participants’ recruitment, and use of equipment)
to perform the collection, pre-processing, and formatting of the data so it can be used by
statistical methods to then obtain predictions.

The research contributions of this paper are: (i) producing predictive models that
provide a more accurate transformation of simulated data to describe duration of real
activities, and (ii) identifying the main synthetic predictors for real activity duration in



Sensors 2022, 22, 5410 3 of 21

each ADL and its intrinsic properties, and how this metric varies amongst users. This
study aims to bridge gaps of previous research works in contrasting real and synthetic data,
for instance, the SynSys algorithm proposed by [7] does not take into account the nature
of each ADL, which our approach does. It is intended that the model will be improved
over time as more real-world data is collected for each PwD while providing a solution
based on synthetic data that can provide early benefits to PwD. In practice, our approach
would also reduce the costs involved in using ambient and wearable sensors for extended
periods of time to collect real-world data from PwD, as well as costs involved with sensor
maintenance, and data collection, pre-processing, and analysis.

The remainder of this paper is organised as follows: Section 2 presents the related
works on ADLs and the generation of synthetic data. Section 3 presents the materials and
methods used. The experiment definition is described in Section 4. Section 5 presents the
results obtained and the discussion. Finally, Section 6 presents the conclusions.

2. Related Works

The ability to accurately recognise activities is central to many intelligent systems
including smart home automation, ambient assisted living, assistive robotics and human
computer interaction. For people living with dementia, activity recognition (AR) techniques
have facilitated several use cases including detection of agitation [8], tracking cognitive
impairment [9], detecting anomalous activities [10], detecting urinary tract infections [11],
and mapping social interactions. This section provides a brief overview of the challenges
associated with activity recognition within smart environments before discussing the
potential of synthesised data to address this.

2.1. Synthesizing Data for Sensor Based Activity Recognition

AR research can be categorised into two main approaches; namely video or sensor-
based. Sensor-based AR lags similar fields largely due to a lack of large-scale, high-
quality, multi-modal, and labelled datasets. This has impeded progress in developing
robust and generalised Machine Learning (ML) approaches. The success of supervised
ML relies primarily on the availability of large datasets with high-quality annotations.
Collecting labelled data or employing experts to label large datasets are infeasible in
resource-constrained settings, such as healthcare. Indeed, the collection of human activity
and behaviour data is time consuming, costly, and often limited in terms of availability.

To further complicate this issue, owing to biological and environmental factors, the
same activity can be performed differently by different individuals. These differences are
further enhanced when considering the variation that occurs in those with movement
disorders (cerebral palsy, post-stroke) or cognitive impairment (dementia). Despite the
amount of research undertaken in the field, issues such as cross-subject variability are still
posing an obstacle to the deployment of solutions in large-scale and free-living settings.

To address these problems, researchers have been investigating the use of synthetic
data for training, testing, and validation of ML-based AR techniques [7]. Early research
in this area typically relied upon mathematical models such as Markov chains or Petri
networks [12]. This then progressed to investigate combinations of approaches to model
more complex activities. For example, Helal et al. [13] developed a solution using Markov
chains to model activity patterns and combined this technique with Poisson distribution to
generate realistic timestamps. This work later progressed to a software solution to allow
researchers to create synthetic datasets.

More recently, researchers have been investigating the use of Generative Adversarial
Networks (GANs) to generate synthetic sensor data. This approach utilises an adversarial
discriminative model to determine whether a generated synthetic sample follows the same
distribution as real data. The generative model continuously improves the quality of
the synthetic data until the adversary is unable to distinguish real from synthetic data.
Whenever large amounts of labelled data are unavailable, synthetic data can be generated
to augment the available labelled data to provide enough data for training and testing.
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Using GANs, Alharbi et al. [14] explored and constructed a model for generating several
types of human activity sensor data. They assessed the use of synthetic data to train
two commonly-used classifier models, Convolutional Neural Network (CNN) and Long
Short Term Memory (LSTM). In doing so, they demonstrated the efficacy of the proposed
method on two publicly available human activity datasets, the Sussex-Huawei Locomotion
(SHL) and Smoking Activity Dataset (SAD). The solution achieved improvements for
both SHL (0.85 to 0.95 F1-score), and for SAD (0.70 to 0.77 F1-score) when using a CNN
activity classifier.

2.2. Challenges with Existing Approaches for Data Synthesis

As summarised above, existing approaches for synthesising realistic data have shown
great promise in improving the accuracy of ML approaches for AR. An ongoing challenge,
however, in developing such solutions is the ability to generate simulated data that accu-
rately represents real data. A comparison between real data collected within the Gator Tech
Smart House and simulated data generated by Persim 3D [15] revealed average data simi-
larities of between 78% and 81%. Another study comparing real data with data generated
using the simulator MASSHA found the similarity to be between 88.10% and 93.52% in
terms of frequency, and 98.27% and 99.09% in terms of duration on datasets containing
single user activities [16].

Smart home data has a number of unique characteristics in comparison to most
sequence and time-series data. Sensor data for activity recognition are typically not in-
dependently and identically distributed and exhibit both high dimensionality and a high
level of complexity. Therefore, synthetic data must be generated that are consistent with
these characteristics. Firstly, within a smart home, data do not typically arrive at a constant
rate. Therefore, synthetic data must include realistic time stamps for each sensor reading.
Secondly, many smart home sensors do not produce continuous values. Therefore, when
synthesising data, a sensor name must be generated along with a corresponding value. For
light or temperature sensors, the corresponding value is numeric at a set sample rate. For
motion or door sensors, the corresponding value is binary (e.g., ON or OFF). Finally, sensor
readings are accompanied by corresponding activity labels. In real experiments, activity
labels are provided by external annotators. The label must therefore also be generated and
attributed to the correct set of sensors, activating in the correct sequence and over the right
time frame.

To address these complexities, Dahmen and Cook [7] developed SynSys. This solution
semi-supervised learning combined with synthetic data generation to generate synthetic
data could be used to improve the accuracy of ML approaches for AR. They showed
that the SynSys algorithm was able to successfully generate more realistic synthetic data
for a week of smart home data in comparison to random data, data from another home,
and synthesised data created using a single Hidden Markov Model (HMM) and Poisson
regression technique. Combining real data with synthetic data generated from SynSys
was shown to significantly improve the accuracy of activity recognition. The authors also
noted that as SynSys is based on generating nested sequences of data and sequences of
timestamps that capture duration, the method can be applied to more generalized data
beyond the smart home datasets we used in our experiments.

Based on the existing literature, it has been noted that research comparing real obser-
vations and simulated data is largely limited and poorly developed. Alshammari et al. [17]
reviewed 228 software tools for simulation and found that only a small number focused on
generating datasets with the majority being focused on visualisation and context-awareness
applications. Similarly, Bouchabou et al. [18] highlighted that whilst simulation tools
provide an excellent opportunity to quickly generate and visualise smart home date; in
particular, it is noted that synthetic datasets allow for quick evaluation of different sensor
configurations within the environment without the requirement of physical deployment
and volunteer subjects. Additionally, the annotation can be more precise compared to
real dataset methods. Nonetheless, synthetic data can be un-realistic in comparison to
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real-world datasets. Typically, activities provided within synthetic datasets are less real-
istic in terms of execution rhythm and variability. Furthermore, the design of the virtual
smart homes can be cumbersome for a non-expert designer. Bouchabou et al. [18] also
noted that there are currently no publicly available synthetic datasets, though a number of
open simulators, such as OpenSH, are available. In spite of the strong demand from ML
surprisingly little has been done about assessing the validity of simulation-based studies
and methodology for real data problems in image analysis and computer vision [19] and
in a more general perspective [20]. In fact, Kleijnen [21] argues that measurements for
verification and validation of simulation models are in need of development.

As reported in this section, several approaches (Markov chains, software solutions
like the PerSim3D and the MASSHA activity simulators, GANs, and SynSys) have ad-
dressed the generation of synthetic data with different levels of success in relation to how
close the synthetic data was with real data as measured using different metrics. While
the authors of the related works presented in this section highlight positive results, it is
necessary to have a more standardised way (benchmark datasets, use same metrics, etc.)
to determine their effectiveness and their limitations. This paper bridges this gap by (i)
evaluating the equivalence between real and synthetic activity duration, and (ii) imple-
menting PLSR to better approximate real activity duration based on simulated observations.

3. Materials and Methods

The data used in this study consists of actual observations of duration times for
different daily activities and synthetic data mimicking the probabilistic properties of the
real-world data. Please, refer to Section 4 for more information about the experiment setup
and data used for the study.

The traditional statistical tool for establishing dependence structure between random
variables in terms of their explicit (linear or non-linear) relationships is regression analysis,
commonly carried out having estimated the model parameters by means of ordinary least
squares regression (OLSR). However, in cases when the sample sizes are small, there are
missing data and/or in the presence of strongly correlated variables, a development of
the regression procedure is to base the analysis on Partial Least Squares (PLS). This initia-
tive was taken by Wold [22] more than half a century ago and has proven an interesting
idea [23–28] to come to terms with the numerous possible problems with regression based
on OLS. There has been much development, [29–34] to mention a few, but also critical
papers, e.g., [35–37]. There are also other approaches to cases with, e.g., imbalanced data.
For example, for the detection of voice disorders in an imbalanced dataset, General Ad-
versarial Network (GAN) and C-means clustering were used [38]. Nevertheless, the many
problems with GANs are a well documented fact (see, e.g., [39,40]) mainly related to poor
convergence of model parameters. Additionally, the cumbersome loss function implies that
the model is very hard to train [41]. Thus, GAN is considered to be less appropriate for
simulating activity data among people with dementia. Among Recurrent Neural Networks
(RNNs) [42] are models and techniques for including time dependent data. By utilizing
memory and so-called gates the Long-Short Term Memory Neural Network (LSTMNN) and
the Gated Recurrent Unit (GRU) are methods which can learn how to filter out irrelevant
data and remember the relevant. A problem here though is to optimally choose initial
values for the weights of the oblivion gate and for the memory gate. Another disadvantage
with these models is that the training needs very large amounts of data. PLS and its variants
are to be considered as fast solutions [43] for parameter estimation, here, for simulation
objectives. However, there are other methods of Machine Learning (ML) which can adapt to
the data and produce simulations which more accurately correspond to the real data from a
probabilistic point of view. Still, the price to pay is a higher computational complexity [44],
more time-consuming simulation procedure, and sometimes convergence issues. For exam-
ple, automatic pruning methods have been employed to reduce the complexity of AI models
with multiple layers and a high number of parameters which are very difficult to deploy on
resource-restricted platforms [45]. Similarly, the quantization approach has been proposed
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for shortening the number of trainable parameters and the associated computational effort
of the entire implementation [46]. As previously discussed, the aforementioned methods
are very useful for addressing overparametrized data structures. Nonetheless, in this case
study, we only consider three features and their combinations which may not represent a
high computational complexity. Indeed, PLSR is recognized by virtue of its computational
efficiency [47] with applications in remote sensing environments [48] as exposed in this
research. In ML, the complexity of methods is rarely below a polynomial time while in
PLSR the complexity of methods is typically below the polynomial time. With PLSR the
gain is a robust method with quick delivery. Below follows a very brief introduction of PLS,
but a more thorough presentation of the field can be found in, e.g., [26–28].

The notion of partial least squares regression (PLSR) includes multiple regression,
principal components analysis (PCA), and principal components regression (PCR) [28].
PCA allows pinpointing the smallest number of uncorrelated features, which reduces
the complexity of the prediction model. Linear PLSR without intercept may be formally
presented as follows. In Equation (1), the model is specified. For given n observations of
covariates, X, (m variables) and n corresponding observations of responses, Y, (which can
be k variables) the object is to minimize ‖ε‖ such that

Y = TBQT + ε (1)

where X = TPT + εT
1 , Y = UQT + εT

2 , X is an n×m matrix, Y is an n× k matrix, T is an
n× a matrix, P is an m× a matrix, U is an n× a matrix, Q is an m× a matrix, B (regression
coefficients), ε, ε1, ε2 (residuals) are n× 1 vectors, ‖ · ‖ is the Euclidean norm and ·T denotes
the matrix transpose. Determination of T, P, U and Q may be achieved by deploying the
Nonlinear Iterative Partial Least Squares (NIPALS) method. This is an iterative procedure
that converges to the optimal solutions for the least squares problem, which minimizes
‖ε‖ under the condition either of leaving out column vectors of T and U which do not
correspond to variables with small eigenvalues or by systematically, for each iteration
in the procedure, carry out an Analysis of Variance (ANOVA) based on resampling by
means of a bootstrap method, which determines whether all coefficients in the model are
significantly non-zero or not. Regarding the generalization ability, Hao and Chen [49] and
Zheng et al. [50] proposed an interesting use of transferable feature learning and instance-
level adaptation for visual recognition; in this case, the transferability of general features
is achieved by calculating the regression coefficients B of each ADL while replacing the
covariates X by the corresponding synthetic observations derived from the simulator when
interacting with the user.

Assessment of Model and Data

For ordinary least squares regression assumptions such as normality of residuals and
independence between covariates should be checked. Regarding corresponding assump-
tions for PLSR one should check independence and equal distribution of the residuals.
Independence is here examined with the Durbin–Watson test by rejecting for large values
of the statistic in Expression (2)

∑n
i=2(εi − εi−1)

2

∑n
i=1 ε2

i
(2)

according to the χ2-distribution with n − 1 degrees of freedom. The determination co-
efficient R2 is calculated for learning about how much of the variation in the response
that is explained by the model. Additionally, the Prediction Residuals Sum of Squares
(PRESS) [51] as presented in Expression (3)

diag
(
(Y− Ŷ)T(Y− Ŷ)

)
(3)

is calculated to give some idea about the predictive quality of the model where Y is the
observed response and Ŷ is the predicted response according to the model. This evaluation
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measure is a common indicator of the optimal number of covariates. However, it is
sometimes considered to be awkward due to the very large number of calculations required
to be determined [52,53].

Apart from modelling, there is also a need for methodology to distinguish potential
differences between real and synthetic data. To this end, a paired sample Wilcoxon test is
performed for each pair of real and synthetic activity variables [54]. For the variables X1
and X2, the hypothesis as in Expression (4){

H0 : p = 1
2

H1 : p 6= 1
2

(4)

is to be tested where p = P(X1,i + X1,j > X2,i + X2,j), X1,1, X1,2, . . . , X1,n are observations
of X1 and X2,1, X2,2, . . . , X2,n are observations of X2. Thus, the statistic

T+ = #{X1,i + X1,j > X2,i + X2,j : i, j = 1, . . . , n and i ≤ j} (5)

is calculated as given in Equation (5). This is rejected for values T+ = t such that FT+(t) >
1 − α

2 or FT+(t) < α
2 for a size α test. Here, FT+ denotes the approximate cumulative

distribution function (cdf) [55]

FT+(t) ≈ Φ(ω) +
(3n2 + 3n− 1)ω(ω2 − 3)

10n(n + 1)(2n + 1)
· dΦ(s)

ds

∣∣∣∣
s=ω

(6)

of T+ as given in Equation (6) where Equation (7) specifies the notation

ω =
4t + 2− n(n + 1)√

8
3 n(n + 1)(2n + 1)

(7)

and Φ(s) is the standard normal cdf. For further information about all these methods,
please consider standard texts such as [56,57].

4. Experiment Definition

The real environment is the Halmstad Intelligent Home (HINT) located in Halmstad,
Sweden [58,59], which is supplied with contact/touch sensors recognizing occupancy in
chairs and sofas. This apartment is also provided with Passive Infrared (PIR) sensors
located in different spaces, thereby facilitating the continuous monitoring of motion and
occupancy of subjects staying in their settings. Likewise, there are switches detecting the
opening/closing of different home appliances and furniture doors installed in this home.
The real architecture and floor plant layout of HINT are depicted in Figure 1. HINT is then
suitable for underpinning two main purposes: (i) parsing out the ADLs performed by PwD
over time and (ii) designing anticipated interventions for assisting PwD in case of severe
health decline.

(a) (b)

Figure 1. (a) The HINT layout. (b) The sensing capabilities of HINT.
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HINT was virtually modelled by IE Sim, a flexible interactive simulation software
developed by Synnott et al. [60] considering the current sensor network placement within
the home and the floor plan (Figure 1). The simulator also emulated the furniture items
available in the real environment to make the representation more realistic and then collect
activity duration data with better approximation to the real-world pattern.

Whilst a huge amount of research has been carried out in the area of sensor-based
human activity recognition, there is a lack of standardization in terms of methodology,
particularly around the types of activities investigated and how performance of models
is evaluated [61]. Currently, there is no recognised taxonomy of activities that should be
investigated [18]. However, many previous works have focused on ADLs as described by
Katz [62] to define a list of basic and necessary activities. Considering the lack of a standard
taxonomy for activities, the ADLs selected within this work have been broadly mapped
across these 6 activities including bathing, dressing, toileting, transferring, and feeding.
As part of the experiment, eleven subjects were requested to undertake 8 ADLs (Stay in
bed, Use restroom, Make breakfast, Get out of home, Get cold drink, Stay in the office,
Get hot drink, and Cook dinner) while staying at HINT (Figure 2). Additionally, the same
participants were asked to perform the ADLs using the IE Sim simulator. The following
list of instructions was provided to guide the user on the sequence of tasks during the
simulation:

Previous general commands

– Please carefully read the tasks to be carried out in each activity.
– Please feel free to re-read the instructions of each activity if necessary.
– Please press the Start/Stop switch when an activity is finished.
– Please lock the door upon crossing through.
– Please switch off each household appliance after use.

ADLs description
ADL 1: Stay in bed
You can remain in bed as long as you wish. The maximum time is 2 min. After this,
you have to get out of the bedroom, lock the door, and press the Start/Stop switch.
ADL 2: Use restroom
You can use the hand-washing sink and/or toilet if you need. After this, please get
out of the bathroom, lock the door, and press the Start/Stop switch.
ADL 3: Make breakfast
You have to cook something for breakfast. Besides, you can select between milk and
cereals or coffee. However, it is also possible to prepare both if you want. After this,
move the bowl up on the dining table, sit down, and press the Start/Stop switch.
ADL 4: Get out of home
You can decide to leave the house from the courtyard door or from the front door.
When you are in outdoors, please push the Start/Stop switch.
ADL 5: Get cold drink
You can take the drink from the refrigerator or serve plain water. After this, put the
poured glass on the kitchen table and press the Start/Stop button.
ADL 6: Stay in the office
Please proceed to the office and push the Start/Stop button.
ADL 7: Get hot drink
You can select between preparing coffee or tea. After this, put the poured cup on the
kitchen table and push the Start/Stop button.
ADL 8: Cook dinner
Please make soup. Put the served bowl on the kitchen desk and push the Start/Stop
button.
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(a) PHOTO: Halmstad University (b) PHOTO: Anders Andersson

Figure 2. (a) A participant undertaking some of the ADLs in the kitchen and bedroom. (b) Human
behaviour monitoring at HINT.

The results were two datasets (synthetic and real) containing a compilation of sensor
events per ADL with each related to a time mark, the activated sensors (e.g., contact/touch,
PIR, opening/closing), sensor identification code, and status (open or closed). Following
this, three indicators were estimated: ADL duration, number of events per ADL, and
number of events per sensor type per ADL. Previously, the datasets were cleaned by
removing outliers deriving from errors during the execution of the experiments, thereby
increasing the fit and predictive ability of PLSR models depicted in next section.

5. Results and Discussion

The ADLs performed by the subjects while staying at HINT are represented by more
than 900 real sensor activations (µ = 1.93; σ2 = 3.45 min per subject). On the other
hand, approximately 1100 synthetic sensor events were derived from interactions with
the virtual IE Sim environment (µ = 1.675; σ2 = 13.80 min per participant). Overall,
36 synthetic samples (10 activity durations, 10 events per activity, and 16 events per sensor
per activity) were generated per each ADL. This represents a total of 288 samples in the
whole experiment. Prior to undertaking the ADLs in IE Sim, the subjects first learned how
to handle the software to diminish bias and flatten the learning curve. In this case, all the
participants completed the ADLs satisfactorily in both real and synthetic homes. In fact, the
average time spent by each subject carrying out all the ADLs was 8.69 (σ2 = 4.21 min) and
13.93 (σ2 = 12.65 min) at HINT and IE Sim, respectively. When comparing these metrics, it
is evident that, in general, the time used by participants to complete all the ADLs in the
simulator is significantly higher than the one spent in the real apartment (T-value = 4.24;
p-value = 0.002; 95% CI for the difference: [2.49–7.99] min). The following sub-section
will elucidate if this difference is also detected in all the ADLs individually. PLSR models
will be applied to better approximate the simulated data to real activity durations in those
ADLs with significant differences.

5.1. Contrasting Real and Synthetic Activity Duration

A two-sample Wilcoxon test (α = 0.05) was applied to analyse the equivalence between
real and synthetic activity duration in each of the eight ADLs defined in the experiment
description. Thereby, it will be possible to detect those ADLs in which a statistical trans-
formation is needed to better approximate the synthetic activity duration to the one in the
real environment. Table 1 enlists the results of the comparison in terms of p-values, 95%
confidence interval (CI) for the median difference, and the conclusions. The results are
also graphed through individual value plots comparing the data distribution and medians
between the synthetic and real observations (Figure 3).
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Table 1. Two-sample Wilcoxon test results.

ADL p-Value 95% CI for the Difference (sec) Conclusion

Stay in bed 0.093 [−5; 100] Statistically similar
Use restroom 0.050 [−34; −1] Statistically different

Make breakfast 0.012 [−66; −22] Statistically different
Get out of home 0.889 [−12; 16] Statistically similar
Get cold drink 0.161 [−36; 7] Statistically similar

Stay in the office 0.012 [−104; 64] Statistically different
Get hot drink 0.018 [−236; −62] Statistically different
Cook dinner 0.012 [−159; −44] Statistically different

Figure 3. Differences between synthetic and real activity duration. The ADLs in the first row from
the left are: Stay in bed and Use restroom; second row: Make breakfast and Get out of home; third row: Get
cold drink and Stay in the office; and fourth row: Get hot drink and Cook dinner.
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The Wilcoxon test outcomes revealed significant differences (p value ≤ 0.05) between
the simulated and real-world data for the activity duration indicator in five ADLs: Use
restroom, Make breakfast, Stay in the office, Get hot drink, and, Cook dinner. It is then concluded
that the simulator does not accurately represent the real intrinsic properties of users when
performing these activities. This is also confirmed by the 95% confidence intervals (CI),
which do not include zero, but show lean to the left. Mostly, the gaps have been detected in
activities with a larger number of sensor events than those performed in the kitchen.

Looking into the results, it is evident that simulated activity duration data tend to
be meaningfully minor compared to those from the real smart home. In this regard, it is
important to identify the sensors triggering the gap as well as analysing the sequence of
events within each ADL. Likewise, intrinsic factors of users may influence the ADL duration.
For example, some subjects may need more training than others before performing the
simulations in a natural way. Additionally, the participants may prepare meals in multiple
manners and ADL durations could therefore evidence high variability. Likewise, external
aspects (i.e., the time of the day) may also contribute to this difference. In fact, some
simulators have been reported as incapable of capturing the natural variations of activity
durations in the presence of these elements [60]. Another factor potentially influencing these
outcomes is the dissimilarities between home layouts of real and simulated environments.
The distances travelled by users through the avatar are not equivalent to those covered at
the apartment, which may increase the deviations between the duration metrics.

On a different note, detailed and high-quality data is required for effectively training
AR models so that they can identify behavioural patterns in the daily routine of PwD. Given
the limitations of real data collection widely depicted in the introduction (see Section 1),
training datasets are expected to be formed by synthetic observations mimicking the
intrinsic properties of real data. In this regard, it is not advised to use data evidencing
significant deviations from the real world; therefore, these results reveal the need for
approximating these observations to those from the real smart homes to increase the
prediction accuracy and other performance indicators of AR models. The data analysts
are then recommended to use the PLSR equations to transform the data and then include
them in the training datasets. If this is not carried out, the AR model will evidence poor
performance in identifying significant changes in the duration of each ADL.

These results are comparable with those presented in Lee et al. [15]. Specifically,
the authors used a stochastic analysis to evaluate the similarity of the synthetic datasets
produced by Persim (3Da, 3Du, and 1.5) in contrast with those gathered from the real
environment. The analysis was focused on the occurrence probability and the number of
sensor events. In summary, the highest average similarity was found to be 81% (Persim 1.5).
Similarly, Dahmen and Cook [7] used significance comparative analysis, Euclidean distance,
and Dynamic Time Warping (DWT) to examine the realism of data derived from the SynSyn
simulator. However, both assessments were made in general and not targeted to each ADL
as our paper does. In fact, this study reveals great equivalence in Stay in bed, Get out of home,
and Get cold drink, but significant disparities in the remaining ADLs, which may be hidden
in a general analysis. Conversely, Alharbi et al. [14] employed the GAN-test method to
verify how well the simulated samples mimic the real data distributions. In this case, F1
scores revealed perfect equivalence in all datasets and classes considering run, still, walk,
bike, and bus activities. Nonetheless, our case study takes into account a larger number
of ADLs that are also more complex to analyse. ADLs like cook dinner, make breakfast, and
get hot drink are performed in several ways, which is proven by a variable number of
sensor events and a plurality of event sequences. Additionally, Kamara-Esteban et al. [16]
appraised the coherence of synthetic datasets with real measurements in both single-
user and multiple-user scenarios considering the frequency and activity duration of five
ADLs (Preparing breakfast, Washing dishes, Shower, Preparing dinner, and Do laundry).
The authors deployed probability distributions and confidence intervals to evaluate the
similarity. Nevertheless, a summary p-value statistic was not provided per each ADL so that
disparities can be further categorized as significant or non-significant, thereby supporting
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the use of models approximating the synthetic observations to a more realistic behaviour
as this study does. Other important related efforts described in Alshammari et al. [17],
Park et al. [63], Synnott et al. [64], Ariani et al. [65], and McGlinn et al. [66] did not present
any comparative analysis between synthetic and real data from ADLs in smart homes.

5.2. Transforming Synthetic Data to Predict Real Activity Duration

Simulated data are expected to emulate the real-world behaviour of PwD and then
be useful to train AR models capable of detecting deviations or change points explaining
the disease progress. Nonetheless, it is evident from Section 5.1 that some ADLs (Use
restroom, Make breakfast, Stay in the office, Get hot drink, and Cook dinner) are significantly
different in terms of activity duration when performed in both real and synthetic smart
environments. In similar contexts, while Kamara-Esteban et al. [16], Alharbi et al. [14], and
Lee et al. [15] did not use any method to transform the synthetic data before including them
in the training datasets, Dahmen and Cook [7] proposed the use of 12 state hidden Markov
models and probabilistic modelling techniques to transform the data; however, this study
did not evidence how the models may vary depending on the ADL nature. Being aware
of this, this Subsection presents PLSR models transforming the synthetic data to better
approximate the real-world activity durations corresponding to these ADLs. The usability
of each model was further assessed considering the assumptions explained in Section 3.
Valid models were then described in terms of predictive power and fit to then demonstrate
their capability for generating intricate real data that effectively complement the small-size
datasets (built from the subjects staying at HINT). All the models were run on a PC with a
2.90 GHz Intel(R) Core(TM) i5-9400 CPU processor.

5.2.1. Use Restroom

When modelling real activity duration, it is essential to identify synthetic factors highly
contributing to the response variable. Table 2 depicts the ANOVA test deployed to this
aim. It can be noted that Synthetic Activity Duration (SADUR ) (p-value = 0.021), Number
of Events per Pressure Sensor (NEPSP) (p-value = 0.040), and the two-order interaction
(SADUR ∗NEPSP) (p-value = 0.003) were concluded to be statistically significant on Y and
can therefore be considered in the PLSR model. In fact, the logarithmic polynomial model
(Equation (8)) was concluded to be appropriate for analysing the variability of activity
duration when subjects use the restroom (p-value = 0.000; α = 0.05).

Table 2. ANOVA results for the Use restroom PLSR model.

Source DF Contribution Adj SS Adj MS F-Value p-Value

Regression 3 98.32% 123.55 41.18 100.79 0.000
SADUR 1 3.61% 4.54 4.54 11.11 0.021
NEPSP 1 2.46% 3.09 3.09 7.50 0.040
SADU ∗
NEPSP

1 9.47% 11.90 11.90 29.12 0.003

Error 5 1.62% 2.043 0.4087
Total 8 100% 125.60

On the other hand, the model presented in Equation (8) has also been evaluated
from the goodness-of-fit and predictive ability perspectives (Table 3). In this respect, an
important metric to study is the standard error of the estimate (S) which, in this instance,
indicates that the average distance of the original observations from the model zone is about
0.639 s. This result is near 0, thereby demonstrating a close match for the prediction interval.
Meanwhile, Table 3 postulates an AdjR2 = 97.40% revealing a high explanatory power of
the model proposed for Use restroom. Additionally, satisfactory predictive performance
was proved through the PRESS statistic (4.51), which favours the use of this model in
providing valid predictions that can complement the training datasets employed by the
AR algorithms. Random noise was also discarded, as there is no meaningful difference
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between the AdjR2 and R2 (pred) (0.99%). From the scalability point of view, it is good to
highlight that the computational run time for this model ranged from 0.630 to 0.690 s.

Table 3. Predictive ability and fit of Use restroom PLSR model.

S R2 Adj R2 PRESS R2 (Pred)

0.639 98.37% 97.40% 4.51 96.41%

ln Y = 0.1132 ∗ SADUR + 0.298 ∗NEPSP − 0.0077 ∗ SADUR ∗NEPSP (8)

Finally, the DW statistic was calculated to verify the interdependence assumption of
residuals. As DW > DU (2.549 > 1.777), neither negative nor positive auto-correlation is
evidenced in the group of random errors. In the meantime, homogeneity of variances was
confirmed, thereby validating the adequacy of the PLSR model shown in Equation (8).

5.2.2. Make Breakfast

Table 4 presents the results of the ANOVA test performed to detect synthetic variables
that can support the prediction of time spent by the subjects when making breakfast. It
is good to highlight that NEPAMB (p-value = 0.004) was identified as a good predictor
because the number of tasks may vary from one person to the other as there are different
ways of cooking; even without considering the ordering of events, which is intrinsic in
each subject. Likewise, the significance of SADMB (p-value = 0.004), also reported in
Dahmen and Cook [7], explains how the specific characteristics of PwD can be captured
through a simulator (e.g., IESim) to then be transformed for representing the real behaviour.
Interestingly, when coupling these terms SADMB ∗ NEPAMB (p-value = 0.014), it was
further noticed how each ADL (in this case, make breakfast) is differently performed
by each individual, thereby underpinning the finding postulated by Fortino et al. [67]
regarding the wide range of PwD profiles that may be encountered in the real world.
Learning about these ADLs appropriately is of utmost importance for modelling activity
durations more accurately. In this instance, the final outcome is a quadratic polynomial
expression (Equation (9)) capable of predicting the time invested by the inhabitants of the
HINT smart home when preparing breakfast (p-value = 0.000).

Table 4. ANOVA results for the Make breakfast PLSR model.

Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Regression 3 777.21 99.07% 777.72 259.24 178.08 0.000
SADMB 1 739.72 94.23% 37.46 37.46 25.73 0.004

NEPAMB 1 18.33 2.33% 37.96 37.96 26.08 0.004
SADMB ∗
NEPAMB

1 19.66 2.50% 19.66 19.66 13.51 0.014

Error 5 7.27 0.93% 7.27 1.45
Total 8 785.00 100%

The performance indicators illustrated in Table 5 further detail the characteristics of
the model (Equation (9)) with regards to the ability to forecast the real activity duration of
inhabitants when preparing breakfast based on the simulator outputs. The findings point
out a very small divergence between the AdjR2 and R2 (pred) (1.07%), therefore discarding
the presence of overfitting effects hindering the applicability of the model to complement
the datasets used for training the associated AR algorithms. Notably, an excellent fit is
provided by the attained quadratic expression as AdjR2 is over 90%. No less important are
the low values of S (1.206) and PRESS (20.04), which are accounted by the overlapping of
fitted data with the prediction interval.
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Table 5. Predictive ability and fit of Make breakfast PLSR model.

S R2 Adj R2 PRESS R2 (Pred)

1.206 99.07% 98.52% 20.04 97.45%

√
Y = 0.2567 ∗ SADMB + 0.930 ∗NEPAMB − 0.0249 ∗ SADMB ∗NEPAMB (9)

Every PLSR model needs to be appraised in search of potential abnormalities or
random errors that may invalidate the predictions made by the model in presence of new
synthetic entries. Consequently, the randomness of residuals was scanned via the DW
indicator at a 5% significance level. As the DW > DU (2.064 > 1.777), sufficient evidence has
been collected to reject potential inter-dependencies among the residuals. Complementary
to this result, no proof of unequal variances was detected in the sample which, in addition
to the foregoing, confirms the practicality of the model in real applications including the
one related to the AR models for Prepare breakfast. In this case, the computational time
invested in this model fluctuated between 0.480 and 0.550 s.

5.2.3. Stay in the Office

Another challenging ADL to model based on synthetic data is Stay in the office. The
time invested by individuals staying at the smart homes may differ from one to the other
based on a plethora of extrinsic and intrinsic factors. Despite this, as seen in other ADLs, the
number of events per activity (NEPASIO; p-value = 0.000) and synthetic activity duration
(SADSIO; p-value = 0.006) were held to be good regressors of the time invested by the
individuals when staying in the office (Table 6). In fact, as also evidenced in other ADLs,
the interplay between these simulated variables was also concluded as significant on the
response variable Y and can be included in the predictive model (Equation (10)).

Table 6. ANOVA results for the Stay in the office PLSR model.

Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Regression 2 801.53 95.76% 801.53 400.76 67.80 0.000
NEPASIO 1 702.81 83.97% 333.92 333.91 56.49 0.000
SADSIO ∗
NEPASIO

1 98.72 11.79% 98.72 98.72 16.70 0.006

Error 6 35.47 4.24% 35.47 35.47
Total 8 837.00 100%

The proposed equation (Equation (10)) satisfies all the conditions for further use in
real AR applications. First, both AdjR2 and R2 (pred) are over 90%, thus indicating that
this quadratic polynomial expression explains a great proportion of the activity duration
variation in Stay in the office and in the meantime is excellent for making predictions of
the response variable. This allows us to create an approximation of real data without a
time-consuming recruitment process and substantial investments. Training AR classifiers
required datasets with enough size so that the algorithms can effectively learn about the
human behaviour in a particular ADL [68]. Nonetheless, it is advised to collect a pre-sample
of real data (approximately 10 individuals) to estimate the effects of new office layouts and
other critical factors on the activity duration. In the near future, other synthetic features
may be explored to increase the fitting and prediction power of the model. On a different
tack, the small distance between AdjR2 and R2 (pred) (3.51%) proves that all of the terms
do not substantially increase the model bias, which makes it useful for complementing the
small-sized datasets constructed from the smart home environments. In addition to this
body of findings, it is good to highlight the small values of S (2.431) and PRESS (64.83)
that provide good support for the high prediction performance statement (Table 7). An
important aspect is the run time, which varied from 0.580 to 0.610 s.



Sensors 2022, 22, 5410 15 of 21

Table 7. Predictive ability and fit of Stay in the office PLSR model.

S R2 Adj R2 PRESS R2 (Pred)

2.431 95.76% 94.35% 64.83 92.25%

√
Y = 2.227 ∗NEPASIO − 0.040 ∗ SADSIO ∗NEPASIO (10)

Ultimately, the presence of auto-correlation in the adjacent residuals of the PLSR
model proposed for describing the duration of Stay in the office was evaluated via the
Durbin–Watson test at a 5% significance level. This discards the fact that the PLSR equation
can miscalculate the standard error of the coefficients and therefore show them significantly
when they are really not. As D > DU (1.814 > 1.777), no correlation exists among the
random errors. Furthermore, no heterogeneity was observed in the residuals, which favours
the adequacy of the model when used for underpinning the training of the correspondent
AR classifier.

5.2.4. Get Hot Drink

Table 8 presents the significance analysis of potential predictors included in Equation (11).
In this instance, a p-value of 0.000 proves that the PLSR model proposed in Equation (11) is
suitable for describing the variations of real activity duration Y when getting a hot drink
(p-value = 0.000; α = 0.05). This is supported features significantly contributing to the
prediction of Y: Synthetic Activity Duration (SADGHD) (p-value = 0.004), the Number of
Events per Activity (NEPAGHD) (p-value = 0.004), and the interaction between these vari-
ables (SADGHD ∗NEPAGHD) (p-value = 0.002). All these synthetic factors were considered
in a polynomial quadratic PLSR formula modelling the time spent by a person getting hot
drinks at a real home environment.

Table 8. ANOVA results for the Get hot drink PLSR model.

Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Regression 3 1570.99 97.82% 1570.99 523.66 74.80 0.000
SADGHD 1 1287.84 80.19% 184.11 184.11 26.30 0.004

NEPAGHD 1 13.23 0.82% 174.71 174.71 24.95 0.004
SADGHD ∗
NEPAGHD

1 269.92 16.81% 269.92 269.92 38.55 0.002

Error 5 35.01 2.18% 35.01 7.001
Total 8 1606.00 100%

The model attained in Equation (11) evidences very good performance in both fit
and predictive power domains (Table 9). First, the standard deviation S was estimated to
be very small (2.645), and it can therefore be deemed as a symptom of model adequacy
regarding the description of activity durations Y in Get hot drink. Moreover, Table 9 shows
an AdjR2 = 96.51%, which demonstrates an excellent fit of Equation (11) with respect to the
original observations. On a different tack, adequate predictive power was demonstrated as
the PRESS indicator (77.27) was found to be very low. In a similar vein, an insignificant
difference (1.32%) was noted between the AdjR2 and R2 (pred), thereby rejecting the
overfitting problem in the model. From the applicability perspective, it is good to stress the
low computational time invested by the data analysts to derive the model (0.580 to 0.690 s).

Table 9. Predictive ability and fit of Get hot drink PLSR model.

S R2 Adj R2 PRESS R2 (Pred)

2.645 97.82% 96.51% 77.27 95.19%

√
Y = 0.2811 ∗ SADGHD + 2.191 ∗NEPAGHD − 0.0386 ∗ SADGHD ∗NEPAGHD (11)
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The usability of the PLSR model proposed in Equation (11) is validated through
the randomness and equal variance assumption (Equation (3)). The interdependence
hypothesis was evaluated by employing the Durbin–Watson test (Equation (2)). In this case,
the observed DW (2.981) was concluded to be higher than the DU limit (1.777), and it is thus
not evidenced by the presence of significant auto-correlations among the random errors
of the model. In the meantime, the homogeneity assumption was assessed; however, no
sufficient support was detected against the null hypothesis. The above-mentioned reasons
then provide a statistical base underpinning the model deployment in the real world.

5.2.5. Cook Dinner

The ANOVA test (Table 10) indicates that the PLSR model proposed in Equation (12) is ade-
quate to explain the variability of real activity duration Y when cooking dinner (p-value = 0.000;
α = 0.05). More specifically, the Synthetic Activity Duration (SADCD) (p-value = 0.002), the
Number of Events per Chair Pressure Sensor (NEPSCHP) (p-value = 0.001), and the interaction
between these factors (SADCD ∗NEPSCHP) (p-value = 0.007) were concluded to be good
predictors of Y and can therefore be employed for modelling this response variable. In this
instance, a logarithmic PLSR expression was found to be the most effective alternative for
describing the time period taken by each subject when preparing dinner. It took from 0.510
to 0.690 s to generate the PLSR model.

Table 10. ANOVA results for the Cook dinner PLSR model.

Source DF SS Contribution Adj SS Adj MS F-Value p-Value

Regression 3 188.24 98.59% 188.24 62.74 116.28 0.000
SADCD 1 163.16 85.45% 19.02 19.02 35.25 0.002

NEPSCHP 1 14.502 7.60% 24.28 24.28 45.00 0.001
SADCD ∗
NEPSCHP

1 10.57 5.54% 10.57 10.57 19.59 0.007

Error 5 2.698 1.41% 2.69 0.53
Total 8 190.93 100%

Upon assessing the predictive ability and fit inherent to the model in Equation (12), it
is worth noting that the standard deviation of the data points around the fitted observations
S is close to 0 (0.734 s), which demonstrates that there are no significant distances between
the original Y values and the fitted data. We can accordingly postulate that the model
(Equation (12)) is appropriate to describe the activity duration Y patterns corresponding
to Cook dinner. Additionally, as depicted in Table 11, a high proportion of the variation
in Y (AdjR2 = 97.74%) is described by Equation (12), thereby providing good support
for the goodness-of-fit hypothesis. On a different note, the PRESS statistic (13.55) was
calculated to be small, thereby underpinning a satisfactory predictive ability of the model.
Similarly, the predictive R2 (pred) (93.11%) proves that the polynomial model predicts
the response for new observations at high performance and can be hence categorized
with excellent predictive ability. No less important is the small gap between the AdjR2

and R2 (pred) (4.63%), which discards overfitting problems and confirms that the model
is effective for estimating new real durations of Cook dinner activity when entering new
SADCD and NEPSCHP values into Equation (12).

Table 11. Predictive ability and fit of Cook dinner PLSR model.

S R2 Adj R2 PRESS R2 (Pred)

0.734 98.59% 97.74% 13.15 93.11%

ln Y = 0.1888 ∗ SADCD + 1.255 ∗NEPSCHP − 0.0311 ∗ SADCD ∗NEPSCHP (12)

Lately, the independence assumption was verified through the Durbin–Watson (DW)
statistic (Equation (2)). As the number of regressors denoted by k′ = 2 (SADCD and
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NEPSCHP) and the sample size n = 8, the respective theoretical printed bounds (with-
out intercept) are dL = 0.371 and dU = 1.777. Comparing the observed DW value (1.888)
with the parameters dL and dU at the 5% level of significance, it is proven that no posi-
tive/negative auto-correlation exists among the model residuals (DW > dU). Likewise, no
heterogeneity of residuals was detected in this case, thereby validating the suitability of the
proposed model.

6. Conclusions

Monitoring the daily living of PwD along the time supports the early diagnosis and
treatment by healthcare systems, which contributes to increasing the life quality of these
patients while alleviating the economic burden caused by this disease. The cornerstone
is the effective automatic recognition of ADLs whose intrinsic properties and evolution
provide a comprehensive overview of how dementia has progressed over time. Nonetheless,
the performance of these recognition models is greatly based on the availability of intricate
and suitable data. Adversely, there is accompanying difficulty in achieving formal ethical
approval for gathering massive amounts of data while recruitment processes are costly,
resource-consuming, and characterized by low engagement rates.

Simulation tools have arisen as a more efficient solution to obtaining synthetic data
complementing the real datasets. The principal barrier hindering the potential applicability
of these simulators is that synthetic data for critical behavioural variables (e.g., activity
duration) have been concluded to be substantially divergent from the real observations
in ADLs with a large number of tasks. This outcome is underpinned by differences in
user profiles, home layouts, and background in the use of simulators. In this respect,
significant dissimilarities were detected between the real and simulated activity durations
of Use restroom, Make breakfast, Stay in the office, Get hot drink, and Cook dinner. In this case,
the “activity duration” variable has been targeted considering its capability of evidencing
behavioural changes in PwD, which may be an indicator of health decline as a result of a
neurological deterioration process.

In this paper, we have proposed the use of PLSR models to transform the synthetic
variables derived from the IE Sim simulator into a better approximation of real activity
durations calculated from stays at the HINT smart home. It has aimed to bridge the
previous gaps regarding research contrasting real and synthetic data. It goes beyond
other reported approaches such as the SynSys algorithm [7], which does not consider the
particular nature of each ADL, an aspect addressed by the proposed PLSR models.

Two primary contributions stem from this research. The main outcome has been the
creation of predictive models providing a more accurate transformation of simulated data
for describing real activity durations. In particular, logarithmic and quadratic polynomial
models were defined for predicting the real duration of the aforementioned ADLs. All
the models were found to provide good fitting (AdjR2 > 90%) and predictive power
(R2 (pred) > 90%; MaxS < 3; MaxPRESS < 100) whilst satisfying the PLSR adequacy
assumptions. Therefore, they can be used for complementing the small-sized datasets
employed for training the AR algorithms. A secondary contribution of this work has been
the identification of the main synthetic predictors for real activity duration in each ADL,
which helps to elucidate the intrinsic properties of each activity and how this metric may
vary from one user to the other. Specifically, the Synthetic Activity Duration, Number of
Events per Activity, Number of Events per Sensor per Activity, and their interactions were
concluded to be the most popular regressors of real activity durations since they capture
the intrinsic properties of human behaviour when staying at home. Of course, the results
presented here may be limited to the specific layouts of IESim and HINT, as well as the
experience of the inhabitants in the use of the simulator. Hence, it is recommended to first
train the users on how to perform the ADLs virtually until overcoming the learning curve.

Future works will consider the sequence of tasks (sensor activations) performed by
the subjects within each ADL. Thereby, it will be possible to discriminate and model
the intrinsic properties of human behaviour. In a similar vein, it is important to explore
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how the sensor event ordering can be included in the PLSR models and whether the
predictive ability and fit can be upgraded for producing a better approximation of the real
activity duration. Another pathway to investigative is the application of other prediction
algorithms, including Random Forest and Naïve Bayes, to perform comparative analysis
with a focus on the ADLs with significant differences between real and synthetic activity
durations as identified in this work.

Author Contributions: Conceptualization, M.O.-B. and E.J.; methodology, M.O.-B. and E.J.; software,
M.O.-B., N.J.-R. and S.A.-F.; validation, M.O.-B. and E.J.; formal analysis, M.O.-B., N.J.-R., S.A.-F. and
E.J.; investigation, M.O.-B., E.J., M.G.-C., C.N., I.C. and S.A.-F.; resources, C.N.; data curation, M.O.-B.,
N.J.-R., S.A.-F. and E.J.; writing—original draft preparation, M.O.-B., E.J., M.G.-C., I.C., N.J.-R. and
S.A.-F.; writing—review and editing, M.O.-B., E.J., M.G.-C., C.N., I.C. and S.A.-F.; visualization,
M.O.-B., N.J.-R., S.A.-F. and E.J.; supervision, M.O.-B. and C.N.; project administration, C.N.; funding
acquisition, C.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received funding under the REMIND project Marie Sklodowska-Curie
EU Framework for Research and Innovation Horizon 2020, under Grant Agreement No. 734355.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank to Jonathan Synnott for his previous work in the field.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADLs Activities of Daily Living
AI Artificial Intelligence
ANOVA Analysis of Variance
AR Activity Recognition
CNN Convolutional Neural Network
DF Degrees of Freedom
DTW Dynamic Time Warping
DW Durbin Watson
GANs Generative Adversarial Networks
HINT Halmstad Intelligent Home
HMM Hidden Markov Model
ML Machine Learning
MS Mean Square
NEA Number of Events per Activity
NEPAGHD Number of Events per Activity for Get Hot Drink
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NEPASIO Number of Events per Activity for Stay in the Office
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PCA Principal Components Analysis
PCR Principal Components Regression
PIR Passive Infrared
PLS Partial Least Squares
PLSR Partial Least Squares Regression



Sensors 2022, 22, 5410 19 of 21

PRESS Prediction Residuals Sum of Squares
PwD People with Dementia
SAD Smoking Activity Dataset
SADCD Synthetic Activity Duration for Cook Dinner
SADGHD Synthetic Activity Duration for Get Hot Drink
SADMB Synthetic Activity Duration for Make Breakfast
SADSIO Synthetic Activity Duration for Stay in the Office
SADUR Synthetic Activity Duration for Use Restroom
SHL Sussex-Huawei Locomotion
SS Squared Sum
UTI Urinary Tract Infection
WHO World Health Organization
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