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Highlights: 

• Mitochondrial bioenergetics evaluated using Seahorse Bioscience Analyser were 

altered in Tenon’s ocular fibroblast cells from glaucoma patients compared to non-

glaucomatous control patients.  

• Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular 

fibroblasts including basal respiration, maximal respiration and spare capacity.  

• Basal oxidative stress was elevated in glaucomatous Tenon’s ocular fibroblasts and 

hydrogen peroxide (H2O2) induced reactive oxygen species (ROS) simulated the 

glaucomatous condition in normal Tenon’s ocular fibroblasts. 

• Mitochondrial dysfunction observed in glaucomatous patients within this study 

provides further evidence for the potential of neuroprotective bioenergetic based 

therapies for this irreversible cause of blindness. 
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Abstract:   

Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the 

retinal ganglion cells (RGCs) resulting in irreversible visual impairment and eventual 

blindness. RGCs are extremely susceptible to mitochondrial compromise due to their marked 

bioenergetic requirements and morphology. There is increasing interest in therapies targeting 

mitochondrial health as a method of preventing visual loss in managing glaucoma. The 

bioenergetic profile of Tenon’s ocular fibroblasts from glaucoma patients and controls was 

investigated using the Seahorse XF24 analyser. Impaired mitochondrial cellular bioenergetics 

was detected in glaucomatous ocular fibroblasts including basal respiration, maximal 

respiration and spare capacity. Spare respiratory capacity levels reflect mitochondrial bio-

energetic adaptability in response to pathophysiological stress. Basal oxidative stress was 

elevated in glaucomatous Tenon’s ocular fibroblasts and hydrogen peroxide (H2O2) induced 

reactive oxygen species (ROS) simulated the glaucomatous condition in normal Tenon’s 

ocular fibroblasts. This work supports the role of therapeutic interventions to target oxidative 

stress or provide mitochondrial energetic support in glaucoma.  

 

Keywords: Tenon’s fibroblast, glaucoma, mitochondria, Seahorse XF analyser, oxidative 

stress, bioenergetics 

Abbreviations:  RGCs: Retinal ganglion cells, POAG: primary open angle glaucoma, IOP: 

intraocular pressure, LHON: Leber’s Hereditary Optic Neuropathy, ADOA: Autosomal 

Dominant Optic Atrophy, H2O2: hydrogen peroxide, ROS: reactive oxygen species, GSS2: 

glaucoma staging system 2, TFs: Tenon’s fibroblasts, GTFs: Glaucomatous Tenon’s 

fibroblasts, NTFs: non-glaucomatous controls, DMEM: Dulbecco’s Modified Eagle’s Medium, 

PBS: phosphate buffered saline, SEM: standard error of the mean, OCR: oxygen 

consumption rate, DMSO: Dimethyl sulfoxide, mtDNA: mitochondrial DNA 
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Introduction  

 

Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the 

retinal ganglion cells (RGCs) resulting in irreversible visual impairment and eventual blindness 

[1]. In glaucoma, damage and degeneration of RGCs and their axons result in characteristic 

changes in the appearance of the optic nerve head and patterns of visual field loss [2]. 

Glaucoma is the leading cause of irreversible blindness worldwide and is estimated to affect 

over 60 million people globally of which approximately 10% are estimated to be blind from this 

disease [3]. Glaucoma is an umbrella term for a heterogenous group of optic neuropathies of 

which primary open angle glaucoma (POAG) is the most prevalent [4]. The pathogenesis of 

POAG is multifactorial and complex [5,6] but currently lowering intra-ocular pressure (IOP) 

medically or surgically is the only modifiable risk factor [7]. POAG can be clinically sub-divided 

into patients with normal IOP, termed normal-tension glaucoma, and those with raised IOP, 

termed high-tension glaucoma [2,4]. Given that POAG can develop with a normal IOP, and 

even when IOP is adequately treated and controlled POAG patients can still progress to 

blindness [8–10], supports the concept that other non-IOP mechanisms can drive glaucoma 

development and progression.  

Increased chronological age is an independent risk factor for glaucoma [11–14] and 

mitochondrial dysfunction is associated with age-related neurodegenerations [15]. RGCs are 

particularly susceptible to mitochondria dysfunction due to their high energy demands and 

unique morphology [16–18]. In the human glaucomatous retina, the RGC dendrites show early 

degeneration with remodelling and redistribution of the mitochondria, and a reduction in 

mitochondrial volume [19]. This mirrors glaucomatous degeneration in animal models in which 

RGCs are under metabolic stress [20,21]. Inherited optic neuropathies like Leber’s Hereditary 

Optic Neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) result from 

mitochondrial mutations or nuclear gene mutations encoding mitochondrial proteins [22]. 

Vision is lost in both LHON and DOA due to RGC death secondary to mitochondrial 
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dysfunction [22,23]. Due to the phenotypic similarities of these inherited optic neuropathies 

with glaucomatous optic neuropathy there has been increasing investigation of mitochondrial 

involvement in the pathogenesis of glaucoma [16,24–28]. Our group and others have reported 

mitochondrial DNA mutations in peripheral blood leucocytes from POAG patients [29–31]. 

Furthermore, defects in complex I oxidative phosphorylation and subsequent decreased 

mitochondrial respiration and ATP production have been detected in blood lymphocytes from 

POAG patients [23,32].  

Cells derived from ocular tissues better represent the glaucomatous disease context and can 

be derived during ocular surgery [33,34] or from post-mortem studies [19,25]. Post-mortem 

studies are limited, expensive and challenging to obtain clinical data but have identified 

mitochondrial defects in the glaucomatous retina [19] and lamina cribrosa cells [25]. 

Mitochondrial dysfunction and autophagy have also been studied in glaucoma using Tenon’s 

ocular fibroblasts [35]. Cataract surgery is an ocular procedure commonly performed in 

patients with and without glaucoma and allows the relatively simple harvesting of Tenon’s 

ocular fibroblasts [36].  

Herein, we report impaired mitochondrial cellular bioenergetics in Tenon’s ocular fibroblasts 

derived from glaucoma (POAG) patients. Basal oxidative stress was elevated in glaucomatous 

Tenon’s ocular fibroblasts and hydrogen peroxide (H2O2) induced reactive oxygen species 

(ROS) simulated the glaucomatous condition in normal Tenon’s ocular fibroblasts. This work 

supports the role of therapeutic interventions to target oxidative stress or provide mitochondrial 

energetic support in glaucoma.  
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Methods  

 

Subjects and Clinical Assessment 
 

Participants with primary open angle glaucoma (POAG) and disease negative non-glaucomatous 

controls were recruited at the Royal Liverpool University Hospital, Liverpool, U.K. This study 

adhered to the tenets of Declaration of Helsinki and were approved by the relevant institutions, 

with all participants giving informed written consent. Ethical approval for the study was acquired 

from the NHS Research Ethics Committee (REC Ref 14/LO/1088). Clinical phenotyping included 

a detailed ocular and medical history, drug history, intra-ocular pressure (IOP) measurement by 

Goldmann tonometry, slit-lamp bio-microscopy with stereoscopic disc examination and 

gonioscopy, and visual field testing (Humprey Visual Field Analyzer, Zeiss; Swedish interactive 

algorithm standard 24-2 program). The diagnosis of POAG was based on open anterior chamber 

angles on gonioscopy, glaucomatous optic nerve damage on fundoscopy and a glaucomatous 

visual field defect. Glaucoma severity was graded by analysis of the visual field using the 

Glaucoma Staging System (GSS2) staging system [37]: mild (stage 0-1), moderate (stage 2-3), 

advanced (stage 4-5). Patients were excluded if below 18 years of age, if they had previous 

intraocular surgery or any findings on examination suggesting ocular hypertension or a 

secondary cause of glaucoma. Ethnically matched and age matched controls without 

glaucomatous optic neuropathy and a pressure less than 21mmHg, were also recruited to the 

study. 

Isolation of human primary Tenon’s ocular fibroblasts 
 

Human primary Tenon’s ocular fibroblasts (TFs) were cultured from subjects with POAG 

(GTFs) or non-glaucomatous controls (NTFs) undergoing glaucoma or cataract surgery using 

the explant method as previously described [38].  A limbal incision was created as a part of 

glaucoma surgery (or at the site of sub-Tenon’s injection of local anaesthetic after 

administration of topical anaesthetic for cataract surgery) and a 5mm x 5mm square of Tenon’s 
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tissue was excised from beneath the conjunctiva after separation by blunt dissection. Petri 

dishes were scored with blade with a middle ‘X’ and the Tenon’s tissue explant was 

mechanically applied into this central ‘X’. TFs were cultured in complete medium (Dulbecco’s 

Modified Eagle’s Medium/ Nutrient Ham F12 (1:1) medium: DMEM/F12) supplemented with 

L-glutamine, 10% fetal calf serum, penicillin/ streptomycin mix (1:1) and amphotericin (all from 

Sigma-Aldrich, UK). 5ml of complete medium was applied and incubated at 37°C with 5% CO2 

and 95% humidity in an incubator (Sanyo CO2 Incubator MCO-17A, Sanyo, Japan) and cells 

were passaged until they reached passage 4. The cells were tested for mycoplasma using 

previously described techniques [39] and then used for further experiments or conserved at -

80ᵒC using 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, UK) until further use. Vimentin 

(V9) mouse monoclonal antibody (MA5 11883) (Thermofisher Scientific, USA) 

immunocytochemical staining (2µg/ml in 1% BSA for 1 hour at 37ᵒC) was performed to confirm 

that the cells were fibroblasts. 

 

Measurement of mitochondrial content  
 

Citrate synthase activity was used as a quantitative marker of mitochondrial content in TFs. 

Intact mitochondria were isolated from TFs using a commercial Mitochondrial Isolation Kit 

(Thermoscientific, USA) from a Citrate Synthase Activity Assay (Sigma-Aldrich, USA). Citrate 

synthase activity is reported as nmole/min/mL = milliunit/mL. One unit of citrate synthase is 

the amount of enzyme that generates 1.0 mmole of CoA per minute at 25 °C and pH 7.2. 

Tenon’s ocular fibroblasts from subjects with POAG (GTFs; n=5) or non-glaucomatous 

controls (NTFs; n=5) were tested in duplicate and citrate synthase activity assay analysed. 

Statistical significance was determined using unpaired t testing. 

 

Seahorse XF24 Analyzer measurement of cellular bioenergetics 
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Cellular bioenergetics of human primary Tenon’s ocular fibroblasts (TFs) was determined 

using the extracellular flux analyser (Seahorse XF24 Analyzer; Seahorse Bioscience, Agilent 

Technologies, UK). TFs (2 x 104) were seeded in a 24 well Seahorse XF plate and incubated 

at 37°C with 5% CO2 and 95% humidity for 24 hours.  Prior to the experiment the medium was 

removed from the cells and incubated for one hour with serum free medium with or without 

hydrogen peroxide (Sigma-Aldrich, UK) to a final concentration of 100µM and 200µM in 450µl 

of serum free medium. Hydrogen peroxide (H2O2) was used to induce oxidative stress [40] 

and the concentration and duration of H2O2 treatments were determined through optimisation 

experiments and mirror previous studies in Tenon’s ocular fibroblasts [41];  a 1-hour exposure 

of 50µM H2O2 is considered physiological and 100-200µM H2O2 is deemed 

pathological[42,43]. Medium was then removed and the cells were washed twice with 

Seahorse medium (DMEM supplemented with 10mM D-glucose (Sigma-Aldrich, UK), 2mM L-

glutamine (Sigma-Aldrich, UK) and 2mM pyruvate (Sigma-Aldric, UK), pH 7.4) prior to applying 

450µl of seahorse medium as previously described [44]. The plates were then incubated at 

37°C with no CO2 for a further hour. XF Cell Mito Stress Test assays (Seahorse Bioscience, 

Agilent Technologies, UK) were performed to assess mitochondrial respiration through real-

time, non-invasive measurement of oxygen consumption rate (OCR). The sequence of the 

Seahorse XF24 Mito Stress Test involves five measurements of the OCR at 7-minute intervals, 

three measurements after addition of 1.26µM oligomycin (Sigma-Aldrich, UK), three 

measurements after addition of 1.0µM of FCCP (Sigma-Aldrich, UK) and two final 

measurements after the addition of a combination of 1µM antimycin A (Sigma-Aldrich, UK) 

and 1µM rotenone (Sigma-Aldrich, UK). Within the assay empty wells were used as blanks 

and two wells had cells without the Mito Stress test reagents as a control. Six replicates were 

performed of each test condition and enabled the mitochondrial respiration parameters to be 

calculated, including basal respiration, ATP-linked respiration, proton leak respiration and 

spare capacity (see Supplement Figure S1 and Table S1). The data was normalised by cell 

number using the CyQUANT Cell Proliferation Assay (Thermo Scientific, USA). For 

standardisation purposes, as the individual values per cell are small, these were then 

Jo
urn

al 
Pre-

pro
of



multiplied by 1 x 106 and all the results from the Seahorse XF24 assay were presented in this 

manner [45].  

The statistical analysis of the data was performed using GraphPad Prism 6.0 software (La 

Jolla, CA, USA). Additionally, linear mixed effect model was run in R [46]. This method of 

analysis was preferred as the analysis was performed on all data (120 data points from 20 

subjects), while adjusting for correlation on measurements from same subjects, which was 

achieved by introducing a random intercept parameter for data that came from the same 

subject. This method of analysis pulls information from all variables into one model and hence 

has higher effective sample size to estimate the variability due to subject differences [47].  

Measurement of oxidative stress  

Tenons fibroblasts were tested for mitochondrial function changes using two probes: Mitosox 

Red (Thermo Fisher Scientific, USA) and CM-H2DCFDA (Thermo Fisher Scientific, USA). In 

order to perform these test the cells were prepared in a similar manner. 8 x 104 cells Tenon’s 

ocular fibroblasts were incubated with serum free medium at 37°C with 5% CO2 and 95% 

humidity in an incubator for 24 hours prior to testing.  

MitoSOX™ Red (Thermo Fisher Scientific, USA) was used for detection of mitochondrial 

superoxide production. On the day of testing the medium was removed and washed twice with 

Hanks' Balanced Salt Solution (HBSS) (Gibco, Thermo Fisher Scientific, UK). Thereafter 5µM 

MitoSOX™ in HBSS was applied and incubated in the dark for thirty minutes. The cells were 

washed twice with HBSS, trypsinised and centrifuged at 1500RPM for 5 minutes. The pellet 

was washed with HBSS and centrifuged at 1500RPM for 5 minutes and resuspended in 500µl 

of HBSS and flow cytometry was performed. 

CM-H2DCFDA (Thermo Fisher Scientific, USA) was used to measure intracellular reactive 

oxygen species (ROS). 5µM CM-H2DCFDA in phenol free and serum free DMEM/F12, 

(HEPES no phenol red) (Gibco, Thermo Fisher Scientific, UK) was applied and incubated in 

the dark for thirty minutes. The cells were washed twice with 1x phosphate-buffered-saline 
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(PBS)(Gibco, Thermo Fisher Scientific, UK), trypsinised and centrifuged at 1500RPM for 5 

minutes. The pellet was washed with PBS and centrifuged at 1500RPM for 5 minutes and 

resuspended in 500µl of phenol free and serum free DMEM/F12, (HEPES no phenol red) and 

flow cytometry was performed.  

Flow cytometry data was collected on the BD Accuri™ C6 Flow cytometer (BD Biosciences, 

USA) by collecting 5000 events and by setting an FSC-H threshold of 1,000,000.  All 

experiments were performed in triplicate and statistical analysis of the data was performed 

using GraphPad Prism 6.0 software (La Jolla, CA, USA). Mann-Whitney U test was performed 

for each parameter. 

Results  

Primary Tenon’s ocular fibroblasts (TFs) were cultured from POAG patients (GTFs; n=10) and 

disease negative non-glaucomatous controls (NTFs; n =10). All subjects were Caucasian and 

the POAG group were 70.03 (SD ±11.90) years of age (mean ages (± standard deviation/SD) 

(n=5 female) and the control group were 78.30 (SD ± 7.59) years of age (n=6 female). The 

phenotypic data for each individual donor is given in Supplement Table S2. (n=6 had 

advanced glaucoma and n=4 had moderate glaucoma). There were no significant differences 

in the mitochondrial content of Tenon’s ocular fibroblasts from disease negative non-

glaucomatous and glaucomatous subjects as measured by citrate synthase activity (Fig.1). 

This confirmed that the differences in subsequent experiments was not observed due to 

variations in mitochondrial content.  

 

Impaired mitochondrial cellular bioenergetics in glaucomatous Tenon’s ocular 
fibroblasts  

The Mito Stress Test from the Seahorse XF24 Analyzer was used to investigate mitochondrial 

cellular bioenergetics in glaucomatous Tenon’s ocular fibroblasts (GTFs) compared to non-

glaucomatous Tenon’s ocular fibroblasts (NTFs). An oxygen consumption rate (OCR) curve 

was generated from NTFs and GTFs obtained from POAG (n =10) and disease negative 
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controls (n=10) and run in six replicates per subject (Fig. 2A) from which mitochondrial 

respiration parameters were calculated (Fig. 2B).  Basal respiration is a measure of ATP 

synthase (ATP production) and proton leak. There was a significant reduction in basal 

respiration (basal OCR) between NTFs (3933+/-536 pmol/min/106cells) compared to GTFs 

(2803 ± 231 pmol/min/106cells). Maximal respiration which is a measure of the maximum rate 

of respiration that the cell can achieve and was significantly reduced in GTFs (5617±463 

pmol/min/106cells) compared to NTFs (9163±1798 pmol/min/106cells). The spare capacity 

was also significantly reduced in GTFs (2813±354 pmol/min/106cells) compared to NTFs 

(5230±1288 pmol/min/106cells). The spare capacity describes the amount of additional ATP 

than can be generated by oxidative phosphorylation in the event of a sudden increase in 

energy demand or cell stress. The extracellular acidification rate was measured throughout 

the Mito Stress Test to calculate the baseline ECAR and ECAR oligomycin which reflects the 

glycolytic capacity. There was no significant difference in the ECAR in control fibroblasts 

compared to glaucoma. Overall, the reductions in basal and maximal respiration coupled with 

spare capacity defects highlights significant defects in mitochondrial bioenergetics in GTFs.  

Oxidative stress and mitochondrial cellular bioenergetics in Tenon’s ocular 
fibroblasts 

Oxidative stress was induced by pre-treatment of H2O2 at two concentrations (100µM and 

200µM) for 1 hour prior to the Mito Stress Test using the Seahorse XF24 Analyzer in NTFs 

and GTFs (Fig. 3 and Table 1).  In both GTF and NTF, the basal respiration increased with 

exposure to 100 µM H202 but not 200µM H202. Mitochondrial basal respiration responded to 

lower levels of oxidative stress but at higher levels of oxidative stress resulted in mitochondrial 

bioenergetic compromise. Proton leak increased at both 100µM and 200µM H202 indicating 

mitochondrial damage due to increased uncoupling protein activity, damage to the inner 

mitochondrial membrane and/or electron transport chain complexes. In NTFs increasing 

concentrations of H202 reduced the OCR curve with significant reductions in maximal 

respiration and spare capacity mirroring the findings in the GTFs without H2O2 treatment (Fig.3 
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and Table 1).  These findings demonstrate increasing mitochondrial dysfunction in response 

to oxidative stress in NTFs with reduced cellular bioenergetics. This reflected the pre-

treatment state of GTFs and the induction of further oxidative stress only impacted spare 

capacity in GTFs. Pre-treatment with 200µm H2O2 significantly reduced spare capacity 

(1262±446 pmoles/min/106 cells vs. from 2813±354 pmoles/min/106 cells) in GTFs (Fig.3G.). 

H2O2 induced oxidative stress further compromises spare capacity in GTFs hindering the cells 

already compromised ability to respond to cell stress. Given that mitochondrial cellular 

bioenergetics were already compromised in GTFs and the induction of oxidative stress 

resulted in similar OCR profiles in the NTFs while further impacting spare capacity in the GTFs 

we sought to determine the basal oxidative stress in both GTFs and NTFs. The level of 

intracellular ROS was measured using a CM-H2DCFDA assay and a MitoSOX Red assay and 

in GTFs compared to NTFs there was a significant increase in general ROS in the cell, but no 

changes were observed in mitochondrial derived superoxide (Fig.4). GTFs are already under 

oxidative stress prior to H2O2 treatment which exacerbates already compromised 

mitochondrial bioenergetics.    

Discussion    

 

The role of mitochondria in glaucoma pathogenesis has gained increasing interest as they are 

considered potential targets for therapeutic intervention [48–51]. In this study we have 

demonstrated impaired mitochondrial cellular bioenergetics in Tenon’s ocular fibroblasts 

derived from glaucoma (POAG) patients. Furthermore, we have shown elevated basal 

oxidative stress in GTFs compared to NTFs. H2O2 induced ROS simulated the glaucomatous 

condition in NTFs and further compromised mitochondrial function in GTFs.   

Using the Seahorse XF Mito Stress Test our study demonstrated that the mitochondrial 

respiration profile was globally impaired in GTFs compared to NTFs.  Specifically, there were 

significant reductions in basal respiration, maximal respiration and the spare capacity in GTFs. 
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A significant reduction in basal respiration has also been demonstrated in glaucoma lamina 

cribrosa cells [52]. The maximal respiration shows the maximum activity of electron transport 

chain and substrate oxidation that the cell can achieve. In GTFs the reduction in maximal 

respiration indicates a global defect in the electron transport chain and is a strong indicator of 

potential mitochondrial dysfunction [53]. Maximal respiration was reduced in blood 

lymphoblasts from POAG subjects [54] and complex I enzyme specific activity was 

significantly reduced by 18% in POAG lymphoblasts [55]. A significant reduction of maximal 

respiration has also been observed in other ocular age-related conditions (age related macular 

degeneration in RPE cells) using the Seahorse XF analyser [56].  

There was a significant reduction in spare capacity in ocular Tenon’s fibroblasts from 

glaucoma patients. The spare capacity is a measure of the mitochondrial capacity to meet 

additional cellular energy requirements in response to cellular stress to avoid an ATP crisis 

[57]. In effect, spare capacity indicates how close a cell is to operating at its bioenergetic limit  

[53]. In this respect spare capacity is a measure of mitochondrial fitness, and low spare 

capacity reflects mitochondrial dysfunction which might not be apparent under basal 

conditions and has been reported in cardiovascular and chronic neurological diseases [58]. A 

significant reduction in spare capacity has also been demonstrated in human glaucoma lamina 

cribrosa cells from the optic nerve head  [52]. Ocular Tenon’s fibroblasts therefore mirror 

mitochondrial dysfunction in the optic nerve head and are therefore also likely to reflect altered 

mitochondrial bioenergetics in the optic nerve and RGCs in glaucoma.  Patient derived cells, 

and specifically ocular cells, provide an excellent platform to assess mitochondrial dysfunction 

in glaucoma [19,25,28,34,35]. Tenon’s ocular fibroblasts provide an accessible cell type to 

provide enough material and case numbers for study and evaluate future metabolic and 

mitochondrial therapies in glaucoma.  
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Spare capacity depends on the functional integrity of the electron transport chain and the inner 

mitochondrial potential, the availability of energetic substrates for oxidation and the 

maintenance of mitochondrial homeostasis via biogenesis and mitophagy [57]. Oxidative 

stress has a significant impact on mitochondrial spare capacity [59,60]. Under conditions of 

oxidative stress, the spare capacity of cells is further depleted, and if the basal respiratory 

threshold is breached, cell death occurs [59–62]. Spare respiratory capacity levels correlate 

with the degree of mitochondrial plasticity, allowing bio-energetic adaptability in response to 

pathophysiological stress, and hence inadequate levels are associated with pathological 

conditions [57]. In GTFs there was elevated basal oxidative stress compared to NTFs which 

could represent one mechanism resulting in a reduced spare capacity.  Oxidative stress and 

ageing can induce mitochondrial DNA (mtDNA) mutations impacting mitochondrial 

bioenergetics including spare capacity, in addition, to contributing to further ROS production 

[63]. Previous work by our group has demonstrated pathogenic variants in mtDNA extracted 

from peripheral blood leucocytes and Tenon’s ocular fibroblasts from glaucoma patients 

[30,64]. The results demonstrate that the source of ROS in glaucomatous TFs is not 

mitochondrial in origin. In this paper we demonstrate elevated ROS and impaired 

mitochondrial bioenergetics in glaucoma, but the underlying mechanism of ROS induced 

mitochondrial dysfunction requires further investigation. The mechanistic basis is important to 

identify therapeutic strategies to reduce ROS, and mitigate impaired mitochondrial 

bioenergetics, to prevent or reduce RGC loss and protect vision in glaucoma. Several 

antioxidant-based therapies have been evaluated in experimental glaucoma models and 

clinical trials [65,66].  Coenzyme Q10 (ubiquinone) is a molecule that shuttles electrons from 

complex I and I to complex III which maintains the mitochondrial membrane potential, 

supporting ATP synthesis and inhibiting reactive oxygen species generation [67]. 

Improvements in retinal ganglion cell health following the topical administration of coenzyme 

Q10 have been demonstrated in rodent glaucoma models [67–70]  
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Neural tissue has significant energy demands and neurons can utilise 80% of their spare 

capacity to maintain ionic gradients and thus neuronal excitability [71,72]. This places neuronal 

function and survival vulnerable to mitochondrial dysfunction [73]. RGCs are extremely 

susceptible to mitochondrial compromise due to their marked bioenergetic requirements and 

morphology [16,17,51]. In the DBA/2J mouse model of glaucoma mitochondrial dysfunction is 

an early feature in the RGCs [74] and nicotinamide adenine dinucleotide (NAD) shows an age-

dependent decline contributing to mitochondrial dysfunction and vulnerability to glaucoma in 

this model [51,74,75]. The prevention of NAD decline by dietary supplementation with 

nicotinamide (NAM; the amide form of vitamin B3) protected against mitochondrial and 

metabolic dysfunction and so RGC neurodegeneration in the DBA/2J glaucoma mouse model 

[51,76]. Recent human studies with oral nicotinamide supplementation with or without 

pyruvate have shown short term beneficial effects [77,78].  

Conclusions 

Bioenergetic based therapies in glaucoma face several challenges including the chronic 

nature of glaucoma, the clinical variability in disease progression and determining robust 

primary endpoints [51,79]. We have used Tenon’s ocular fibroblasts derived from glaucoma 

(POAG) patients to detect elevated basal ROS levels and altered mitochondrial bioenergetics. 

This approach provides important insight into the pathogenesis of glaucoma but also could be 

employed as a strategy to risk profile patients for future bioenergetic based neuroprotection 

trials in glaucoma.  
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Fig 1. The mitochondrial content measured by citrate synthase activity of 

glaucomatous Tenon’s ocular fibroblasts (GTFs) and disease negative non-

glaucomatous Tenon’s ocular fibroblasts (NTFs). Citrate synthase is an exclusive 

marker of the mitochondrial matrix. There was no statistically significant difference 

(p=0.3845) in the citrate synthase activity assay between the GTFs and NTFs (n =5).  
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Fig 2. The Seahorse XF Analyzer Mito Stress Test detected altered mitochondrial 

cellular bioenergetics in glaucomatous Tenon’s ocular fibroblasts. (A) The oxygen 

consumption rate (OCR) curve of the Mito Stress Test in disease negative non-

glaucomatous Tenon’s ocular fibroblasts (NTFs) (n=10) and glaucomatous Tenon’s 

ocular fibroblasts (GTFs)) (n=10) after sequential addition of Oligo (oligomycin), FCCP  

and Rot/Ant A (rotenone/ antimycin A) (mean of six replicates); (B) Calculation of the 

mitochondrial respiration parameters demonstrated a significant reduction of the basal 

respiration (p=0.0449), maximal respiration (p=0.0113) and spare capacity 

(p=0.0481). Data on the graph represents the mean ± SEM (*=p<0.05, **= p< 0.01).  
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Fig 3. Effect of hydrogen peroxide (H2O2) induced oxidative stress on mitochondrial 

cellular bioenergetics in Tenon’s ocular fibroblasts. (A) The oxygen consumption rate 

(OCR) curve of the Mito Stress Test in in disease negative non-glaucomatous Tenon’s 

ocular fibroblasts (NTFs) (n=10) and glaucomatous Tenon’s ocular fibroblasts (GTFs)) 

(n=10) after sequential addition of Oligo (oligomycin), FCCP and Rot/Ant A (rotenone/ 

antimycin A) (mean of six replicates). These graphs compare pre incubation with 0µm 

H2O2, 100µm H2O2 and 200µm H2O2 in A) control group B) glaucoma group. The 

mitochondrial respiration parameters were then calculated, and two-way ANOVA 

testing was performed to compare the differences. The respiration parameters include 

C) basal respiration, D) ATP production, E) proton leak, F) maximal respiration, G) 

spare capacity, H) non-mitochondrial respiration. The data shown is the mean ± SEM. 

(* = p< 0.05 * = p<0.05,  **= p< 0.01, ***= p<0.005, **** = p<0.0001).
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Table 1: Post hoc Tukey’s Multiple Comparison Testing to analyse the findings from the significant two-way ANOVA test of the 

mitochondrial respiration parameters after Seahorse XF Analyzer Mito Stress testing with or without hydrogen peroxide (H2O2) in 

glaucomatous Tenon’s ocular fibroblasts (GTFs) and disease negative non-glaucomatous Tenon’s ocular fibroblasts (NTFs). Testing 

performed with  0µm H2O2, 100µm H2O2, and 200µm H2O2 in 10 GTFs and 10 NTFs. This demonstrates that control fibroblasts exhibit 

a more significant response to H2O2 than glaucoma fibroblasts (as shown by the response of the spare capacity and maximal 

respiration after pre incubation with H2O2. * = p<0.05,  **= p< 0.01, ***= p<0.005, **** = p<0.0001.  

All results per 1x 

106 cells 

Basal Respiration  ATP Production  Proton Leak  Maximal Respiration  Spare Capacity  Non Mitochondrial 

Respiration 

 Significant Adjusted 

p Value 

Significant Adjusted 

p Value 

Significant Adjusted 

p Value 

Significant Adjusted 

p Value 

Significant Adjusted 

p Value 

Significant Adjusted 

p Value 

 

Control              

0µm H202 vs. 

100µm H202 

Yes** 0.0015 

Yes**** <0.0001 Yes**** <0.0001 No 0.9576 Yes** 0.0031 Yes** 0.0067 

0µm H202  vs. 

200µm H202 

No 0.2940 

Yes**** <0.0001 Yes**** <0.0001 Yes** 0.0061 Yes**** <0.0001 No 0.9676 

100µm H202 vs. 

200µm H202 

No 0.0710 

No 0.2373 No 0.3052 Yes** 0.0029 Yes** 0.0085 Yes** 0.0034 

             

Glaucoma              

0µm H202 vs. 

100µm H202 

Yes* 0.0136 

Yes**** <0.0001 Yes**** <0.0001 No 0.8342 No 0.0795 Yes* 0.0193 

0µm H202 vs. 

200µm H202 

No 0.3843 

Yes**** <0.0001 Yes*** 0.0001 No 0.2627 Yes** 0.0012 No 0.7626 

100µm H202 vs. 

200µm H202 

No 0.2379 

No 0.6141 No 0.4621 No 0.0910 No 0.2419 No 0.0951 
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Fig 4. Measurement of intracellular reactive oxygen species in  glaucomatous Tenon’s 

ocular fibroblasts (GTFs) and disease negative non-glaucomatous Tenon’s ocular 

fibroblasts (NTFs) was performed using A- MitoSOX Red assay to measure 

mitochondrial superoxide and B- CM- H2DCFDA to evaluate general reactive oxygen 

species. Oxidation of these probes by reactive oxygen species yields a fluorescent 

adduct Measurement of mean fluorescence intensity of TFs using flow cytometry 

showed a significant increase in general reactive oxygen species in GTF (n=5) 

compared to NTF (n=5) but no significant difference in mitochondrial superoxide. 
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Supplemental Figures: 
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Fig S1. The Seahorse XF Mito Stress Test curve with sequential additions of treatment 

and the numbered measurements of oxygen consumption rates (OCR) over time, 

which are subsequently used for further calculations of mitochondrial respiration 

parameters. Measurements are labelled M1- M13. Arrows indicate time of injection for 

specific reagents. Table S1 demonstrates the methods mitochondrial parameters 

were calculated.  
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Table S1. The methods of calculations using different measurements from the oxygen 

consumption rate curve to calculate the mitochondrial respiration parameters of the 

Seahorse XF Mito Stress test. The measurements M1- M13 are taken over time and 

demonstrated in Figure S1. 

 

Parameter Calculation 

Basal respiration Mean (M4, M5) - Mean (M12, M13) 

ATP production Mean (M4, M5) - Mean (M7, M8) 

Maximal respiration Mean (M9, M10) - Mean (M12, M13) 

Spare capacity Mean (M9, M10) - Mean (M4, M5) 

Proton Leak Mean (M7, M8) - Mean (M12, M13) 

Non-Mitochondrial respiration Mean (M12, M13) 
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Table S2. A table of the phenotypic information about glaucoma patients from whom Tenon fibroblasts were extracted and used 

during this study  

Sample phenotype was classified using the glaucoma staging system 2 (GSS2) as mild (stage 0-1), moderate (stage 2-3), advanced 

(stage 4-5). MOPP - Mean ocular perfusion pressure, VA - Snellen visual acuity, MD - mean deviation, PSD - pattern standard 

deviation, N - none, R - right, L - left, B - bilateral 

Tenon 

sample 

ID 

Eye Phenotype Other eye 

phenotype 

Age at 

surgery 

Ethnicity Family 

history 

Previous 

ocular 

surgery 

Other co 

morbidity 

MOPP 

(mmHg) 

Max drops VA GSS2 MD PSD 

1 L Advanced Advanced 75 Caucasian  N N Hypertension 34.11 Xalatan, 

Cosopt, 

Alphagan 

6/9-

2 

5 -25.58 10.25 

2 L Advanced Normal 51 Caucasian Mother N Hypertension 53.56 Cosopt, 

Travatan 

6/5 4 -12.21 14.89 

3 L Moderate Moderate 78 Caucasian Mother B 

blepharoplas

ties 

Myocardial 

infarction and 

coronary artery 

bypass graft 

27.22 Ganfort, 

alphagan 

6/9 2 -6.56 2.67 

4 R Advanced Advanced 75 Caucasian Mother N Osteoarthritis 58.89 Ganfort, 

Azopt, 

alphagan 

6/6 

+3 

5 -26.8 9.17 

5 R Moderate Moderate 61 Caucasian Grandfather 

and maternal 

uncle 

N Type 2 DM, 

hypertension 

43.67 Xalacom, 

Azopt, 

Alphagan, 

Diamox 

6/5 2 -3.31 6.57 

6 L Advanced Moderate 73 Caucasian Brother N Hypothyroid 43.11 Duotrav, 

Azopt 

6/9-

2 

5 -22.5 7.97 
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7 L Advanced Advanced 69 Caucasian N N High cholesterol 51 Cosopt, 

Latanoprost, 

Alphagan 

6/5 5 -16.99 10.83 

8 R Moderate Moderate 72 Caucasian N Right 

selective 

laser 

trabeculopla-

sty 

N 39.44 Lumigan, 

Alphagan, 

Cosopt 

6/5-

3 

3 -9.27 9.24 

9 L Moderate Moderate 89 Caucasian None N Angina, High 

cholesterol 

43.44 Travatan, 

Azopt 

6/9 3 -5.98 6 

10 L Advanced Moderate 61 Caucasian Father  N Hypertension, 

nasal steroid 

25.67 Ganfort, 

trusopt 

6/10

-2 

4 -11.39 10.53 
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Highlights: 

• Mitochondrial bioenergetics evaluated using Seahorse Bioscience Analyser were 

altered in Tenon’s ocular fibroblast cells from glaucoma patients compared to non-

glaucomatous control patients.  

• Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular 

fibroblasts including basal respiration, maximal respiration and spare capacity.  

• Basal oxidative stress was elevated in glaucomatous Tenon’s ocular fibroblasts and 

hydrogen peroxide (H2O2) induced reactive oxygen species (ROS) simulated the 

glaucomatous condition in normal Tenon’s ocular fibroblasts. 

• Mitochondrial dysfunction observed in glaucomatous patients within this study 

provides further evidence for the potential of neuroprotective bioenergetic based 

therapies for this irreversible cause of blindness. 
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