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A B S T R A C T

A method of solution and the necessary calibrations are given to permit the steady-state extent of slip to be
found in contacts properly described within a half-plane formulation using only two parameters: the contact
law and the first-order descriptions of tractions arising at the contact edges. The approach takes the assumption
of full stick and corrects for the slip regions using an array of glide dislocations. This is a very versatile approach
and is particularly appropriate when studying fretting fatigue, as it permits the region in which cracks nucleate
to be defined very simply, and in a form which is transportable from contact to contact, including laboratory
tests. The approach has the additional benefit of giving a relatively straightforward expression for the density
of dislocations, from which the slip displacement and shear traction within the stick region may readily be
calculated. An example implementation is provided in the case of a Hertzian contact in the absence of changes
in bulk tension, for which we demonstrate the veracity of the predictions by comparing to previous asymptotic
approaches that build upon the traction solution under the assumption of full sliding, as well as the known
exact solution.
1. Introduction

Fretting fatigue and crack nucleation arising more generally may
be quantified only through experiment. An ambition we have is to
describe the behaviour of contact edges simply and rigorously in a small
number of parameters so that the results of a laboratory experiment
may be carried over with confidence to different prototypes. Here, we
restrict ourselves to the study of convex (or incomplete) contacts, the
majority of which may be modelled well within the basis of a half-plane
formulation [1]. We are particularly interested in problems for which
a steady set of loads is present alongside an oscillatory set, since this
commonly occurs in mechanical components such as the dovetail joint
of a gas turbine blade [2,3]. In particular, we want to find the size of the
reversing slip zone at the contact edges in the steady state. In general,
the loads applied to the problem will be the normal force, 𝑃 ; possibly
a moment, 𝑀 , tending to rock the contact (with the notable exception
in the case of a cylindrical (Hertzian) contact where a moment could
not be resisted and would cause the contact simply to roll); a shear
force, 𝑄; and differential tensions lying in the surface of the bodies of
magnitude 𝜎. The general configuration is shown in Fig. 1.

We have already solved a number of frictional partial slip contact
problems of this general kind using one of two approaches. The first
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approach – the ‘corrective stick’ method, say – was introduced in [4,5],
where we take the rigid-body sliding solution as our starting point, and
use a superposed corrective term in the intended stick region, a method
which is a generalisation of the Jäger–Ciavarella principle [6,7]. As
discussed in [8–10], the second approach – the ‘corrective slip’ method
– considers the reverse problem in which we take the full stick solution
and use an array of glide dislocations along the interface to introduce
regions of slip in the appropriate regions of load space.

There have been two motivations for looking at asymptotic repre-
sentations. One is, as stated earlier, a desire to match experiment with
complex prototype at the contact edges. The second is due to limitations
in the two methods for solving partial slip problems discussed above.
Although the corrective stick formulation can be applied to a problem
of any complexity up to a simultaneous variation of (𝑃 ,𝑄, 𝜎,𝑀), that
class of solution applies only when, at all points in the loading cycle, the
contact edge slip zones are of the same sign, so is only able to describe
problems for which changes in 𝜎 are moderate [5]. On the other hand,
the corrective slip solution is limited by our inability to determine
the change in locked-in shear traction in the presence of a moment
(except near the contact edges [11]) and so applies to problems up to
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Fig. 1. The general contact problem in which a large, almost-flat indenter is pressed
nto an elastically-similar half-space. The applied loads are a normal load, 𝑃 , a moment,

, a shear force 𝑄 and remote bulk tensions 𝜎. As shown in the inset, we are interested
n the asymptotic solution in the vicinity of one of the contact edges — here the right-
and edge is considered without loss of generality. In this region, the contact pressure
s assumed to be well-approximated by a first-order asymptote, which is square-root
ounded in character.

Fig. 2. An array of glide dislocations inserted along a subset 𝛺 of the bond between
two elastically-similar bodies. The coordinate 𝑧 > 0 measures distance from the right-
hand contact edge. The approach will centre around inserting such dislocations in the
slip zones of the contact, in order to correct for the sliding traction there.

a simultaneous variation in (𝑃 ,𝑄, 𝜎) (notably including cases in which
the slip zones are of opposite sign).

A partial remedy to these difficulties is to use an asymptotic form
looking at one edge only (cf. the inset to Fig. 1). We have done this
using the corrective stick approach, again using the sliding traction
near-edge distribution and the generalised Jäger–Ciavarella principle
to find the extent of the slip zone [12], but we have never attempted
a partial slip solution using asymptotes where glide dislocations are
used to introduce slip to a full stick problem, i.e. a corrective slip
approach. Here we remedy this omission, and note that it permits
further deductions to be made about local properties of the partial slip
problem.

2. Asymptotic formulation in terms of dislocations

The starting point for the calculation of the slip zone size is to con-
sider two elastically-similar half planes having a plane strain modulus
𝐸∗ and bonded together over the half-line 𝑧 > 0. Here 𝑧 represents
distance from the near-edge of the contact. Suppose that an array of
glide dislocations is inserted in a subset 𝛺 of the interface, as shown
in Fig. 2. If the dislocation density is given by 𝐵𝑥 (𝑧), the dislocations
induce a shear traction along the interface, 𝑞𝑑 (𝑧), given by [8]

𝑞𝑑 (𝑧) =
𝐸∗

2𝜋
√

𝑧
−
∫𝛺

√

𝑟𝐵𝑥 (𝑟) 𝑑𝑟
𝑟 − 𝑧

, (1)

where the dash on the integral indicates that the integral should be
interpreted in a principal value sense for 𝑧 ∈ 𝛺.

We now turn to the contact problem displayed in Fig. 1 and, for
he purposes of the analysis, we shall assume that there is no applied
2

Fig. 3. The steady-state load path under consideration in the present study. In
particular, we assume that the three loads, 𝑃 , 𝑄 and 𝜎, vary in proportion after the
initial loading (i.e. that we move along a straight line in load space).

moment; that is, 𝑀 = 0. We take (𝑥, 𝑦) to be global Cartesian axes
centred in the contact. We assume that the steady-state loading moves
along a straight line between two points 1 and 2 a finite distance apart
in (generally) a (𝑃 ,𝑄, 𝜎) load-space, i.e. so that the relation
𝛥𝑃

𝑃 − 𝑃1
= 𝛥𝑄

𝑄 −𝑄1
= 𝛥𝜎

𝜎 − 𝜎1
(2)

holds, where

𝛥𝑃 = 𝑃2 − 𝑃1, 𝛥𝑄 = 𝑄2 −𝑄1, 𝛥𝜎 = 𝜎2 − 𝜎1 (3)

are the load changes and a subscript 𝑖 indicates values at load state
𝑖. This is illustrated in Fig. 3. The contact half-width, 𝑎, is related to
the normal load, 𝑃 , by the contact law 𝑎(𝑃 ), which we take to be an
increasing function. Moreover, we assume without loss of generality
that 𝑃2 > 𝑃1 (i.e. 𝛥𝑃 > 0) so that 𝑎2 = 𝑎(𝑃2) > 𝑎(𝑃1) = 𝑎1. We note
that the simpler case in which 𝛥𝑃 = 0 has previously been considered
in detail, see [13] pp. 136–138.

The region of interest is in the vicinity of one of the contact edges,
since it is in these regions that slip (and eventually fatigue) first oc-
curs [14]. Here, we consider the right-hand contact edge without loss of
generality. In this region, we assume that a first-order representation in
an eigenfunction expansion of contact edge stress state applies (see [15]
for a detailed consideration of the validity of this representation for
different indenters), so that the contact pressure at end 𝑖 of the loading
trajectory is given by

𝑝𝑖(𝑥;𝑃𝑖) = 𝐿𝐼,𝑖
√

𝑎𝑖 − 𝑥, (4)

where the coefficient 𝐿𝐼,𝑖 will be discussed in more detail shortly in
Section 2.1. Initially, the coefficient of friction is taken to be sufficient
to inhibit all slip. Then, providing only that we exclude equality be-
tween the normal loads at each end of the cycle, we see that close to
the contact edges the shear traction is simply a scaled version of the
contact pressure [16], and so may write

𝑞𝑖(𝑥;𝑃𝑖) = 𝐿𝐼𝐼,𝑖
√

𝑎𝑖 − 𝑥 (5)

where, again, we will discuss the coefficient 𝐿𝐼𝐼,𝑖 in Section 2.1.
Therefore, under the assumption of full stick, the change in shear

tractions, 𝛥𝑞(𝑥) going from point 1 in the load cycle to point 2, is given
by

𝛥𝑞(𝑥) = 𝐿𝐼𝐼,2
√

𝑎2 − 𝑥 − 𝐿𝐼𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥 for 𝑥 < 𝑎2, (6)

where 𝐻(𝑥) is the Heaviside function. So, relaxing the assumption of
ull stick, if the actual shear traction distribution at point 1 of the load
ycle is 𝑞1(𝑥), that arising at point 2 is given by

2 (𝑥) = 𝑞1 (𝑥) + 𝐿𝐼𝐼,2
√

𝑎2 − 𝑥 − 𝐿𝐼𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥+

𝐸∗
√

−
∫

𝑏
√

𝑎2 − 𝑡𝐵1→2
𝑥

(

𝑎2 − 𝑡
)

𝑑𝑡
,

(7)

2𝜋 𝑎2 − 𝑥 𝑎2 𝑡 − 𝑥
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for 𝑥 < 𝑎2, where we have inserted an array of dislocations in the slip
one, (𝑏, 𝑎2) and added the resulting traction by setting 𝑧 = 𝑎2 − 𝑥,
𝑟 = 𝑎2−𝑡 in (1). Moreover, note that we have added a superscript to the
dislocation density to denote the direction of loading. In the slip zone,
we must have

𝑞2 (𝑥) = 𝜇𝑝2 (𝑥) = 𝜇𝐿𝐼,2
√

𝑎2 − 𝑥 for 𝑏 < 𝑥 < 𝑎2, (8)

where 𝜇 is the coefficient of friction.
The contact is now unloaded from state 2 and returned to state 1, so

that the change in shear traction, under full stick conditions, is given
by

𝛥𝑞(𝑥) = −(𝐿𝐼𝐼,2
√

𝑎2 − 𝑥 − 𝐿𝐼𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥) for 𝑥 < 𝑎2, (9)

and hence, in the presence of the dislocation array, the actual shear
traction distribution is
𝑞1 (𝑥) = 𝑞2 (𝑥) − (𝐿𝐼𝐼,2

√

𝑎2 − 𝑥 − 𝐿𝐼𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥)+

𝐸∗

2𝜋
√

𝑎2 − 𝑥
−
∫

𝑏

𝑎2

√

𝑎2 − 𝑡𝐵2→1
𝑥

(

𝑎2 − 𝑡
)

𝑑𝑡
𝑡 − 𝑥

,
(10)

for 𝑥 < 𝑎2, where a new superscript is added to the dislocation density
to indicate the direction of the load path. We again write down a
statement establishing the size of the slip zone at this point, i.e.

𝑞1 (𝑥) = −𝜇𝑝1 (𝑥) = −𝜇𝐿𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥 for 𝑏 < 𝑥 < 𝑎2. (11)

It should be noted that, in Eqs. (7), (8), (10) and (11), the limits of
integration and the interval over which the slip conditions are imposed
are the same, since, in steady state, the stick-slip boundary at the
extremes of loading (i.e. points 1 and 2 in Fig. 3) must be the same, as
part of the requirement that material must be conserved. The second
aspect of ensuring that material is preserved is to ensure that all the
dislocations inserted during loading are annihilated during unloading,
so that 𝐵1→2

𝑥 (𝑥) = −𝐵2→1
𝑥 (𝑥) for 𝑏 ⩽ 𝑥 ⩽ 𝑎2.

These observations enable us to form a single equation by combin-
ing (7), (8), (10) and (11), which is

(𝜇𝐿𝐼,1 + 𝐿𝐼𝐼,1)𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥 + (𝜇𝐿𝐼,2 − 𝐿𝐼𝐼,2)
√

𝑎2 − 𝑥

= 𝐸∗

2𝜋
√

𝑎2 − 𝑥
−
∫

𝑏

𝑎2

√

𝑎2 − 𝑡𝐵1→2
𝑥

(

𝑎2 − 𝑡
)

𝑑𝑡
𝑡 − 𝑥

for 𝑏 < 𝑥 < 𝑎2.
(12)

This is a Cauchy singular integral equation along an open contour and
may be inverted using standard techniques, see, for example, [17].
Since both the asymptotic form of the shear traction assumed in (5) is
bounded in the slip zone and we require the final shear traction to also
be bounded there, we seek a solution to the singular integral Eq. (12)
that is bounded at both ends 𝑥 = 𝑎2 and 𝑥 = 𝑏. The resulting dislocation
density is given by

𝐵1→2
𝑥 (𝑎2 − 𝑥) =

2
√

𝑥 − 𝑏
𝜋𝐸∗

[

(𝜇𝐿𝐼,1 + 𝐿𝐼𝐼,1)−∫

𝑎1

𝑏

√

𝑎1 − 𝑡
𝑡 − 𝑏

d𝑡
𝑡 − 𝑥

+

(𝜇𝐿𝐼,2 − 𝐿𝐼𝐼,2)−∫

𝑎2

𝑏

√

𝑎2 − 𝑡
𝑡 − 𝑏

d𝑡
𝑡 − 𝑥

]

.

(13)

Now, using the fact that

∫

1

𝛽

√

1 − 𝑡
𝑡 − 𝛽

d𝑡
𝑡 − 𝑥

=

⎧

⎪

⎨

⎪

⎩

−𝜋 for 𝛽 < 𝑥 < 1,

−𝜋
(

1 −
√

𝑥 − 1
𝑥 − 𝛽

)

for 𝑥 > 1,
(14)

for 𝛽 < 1, we may evaluate (13) explicitly, finding

𝐵1→2
𝑥 (𝑎2 − 𝑥) = −

2
√

𝑥 − 𝑏
𝐸∗

(

𝜇(𝐿𝐼,1 + 𝐿𝐼,2) + 𝐿𝐼𝐼,1 − 𝐿𝐼𝐼,2
)

+

2(𝜇𝐿𝐼,1 + 𝐿𝐼𝐼,1)
𝐸∗ 𝐻(𝑥 − 𝑎1)

√

𝑥 − 𝑎1

(15)

for 𝑏 < 𝑥 < 𝑎2. Additionally, we also require the consistency condition

0 = (𝜇𝐿𝐼,1+𝐿𝐼𝐼,1)
𝑎1
√

𝑎1 − 𝑡
d𝑡+(𝜇𝐿𝐼,2−𝐿𝐼𝐼,2)

𝑎2
√

𝑎2 − 𝑡
d𝑡 (16)
3

∫𝑏 𝑡 − 𝑏 ∫𝑏 𝑡 − 𝑏
to hold. Solving this allows us to find the size of the slip zone, 𝑏, in
terms of the contact half-widths 𝑎𝑖 and the coefficients 𝐿𝐼,𝑖, 𝐿𝐼𝐼,𝑖 at
load states 𝑖 = 1 and 𝑖 = 2, viz.:

𝑏 =

(

𝜇𝐿𝐼,2 − 𝐿𝐼𝐼,2
)

𝑎2 +
(

𝜇𝐿𝐼,1 + 𝐿𝐼𝐼,1
)

𝑎1
(

𝜇𝐿𝐼,2 − 𝐿𝐼𝐼,2
)

+
(

𝜇𝐿𝐼,1 + 𝐿𝐼𝐼,1
) . (17)

2.1. Calibrations for contact-edge multipliers

It remains to give the coefficients 𝐿𝐼,𝑖 and 𝐿𝐼𝐼,𝑖 in terms of the
inputs to the problem. Recall that the system moves between load states
(𝑃1, 𝑄1, 𝜎1) and (𝑃2, 𝑄2, 𝜎2) along a straight line so that there exists
constants 𝜆 and 𝜂 such that

𝜆 = 𝛥𝑄
𝛥𝑃

=
𝑄 −𝑄1
𝑃 − 𝑃1

, 𝜂 = 𝛥𝜎
𝛥𝑃

=
𝜎 − 𝜎1
𝑃 − 𝑃1

. (18)

Now, the multipliers on the normal solution defining the contact
pressure, 𝐿𝐼,𝑖, as defined in (4) may be related to the incremental
contact law 𝑎(𝑃 ) by,

𝐿𝐼 = 1
𝜋

√

2
𝑎

d𝑃
d𝑎 , (19)

see, for example, [13] p. 129. Similarly, under the assumptions of full
stick, we have that

𝐿𝐼𝐼 = 1
𝜋

√

2
𝑎

d𝑄
d𝑎 + 1

4

√

2𝑎d𝜎
d𝑎 , (20)

(this is readily seen by considering the Mossakovskii–Barber solution in,
for example, [16]). Hence, by the assumption of proportional loading,
we must have

𝐿𝐼𝐼 = 1
𝜋

√

2
𝑎

(

𝜆 +
𝜋𝜂𝑎
4

) d𝑃
d𝑎 =

(

𝜆 +
𝜋𝜂𝑎
4

)

𝐿𝐼 . (21)

Substituting (19) and (21) into the expression for the asymptotic
ize of the slip zone (17), we find that

=

(

1 − 𝜆
𝜇
−

𝜋𝑎2
4

𝜂
𝜇

)

𝐿𝐼,2𝑎2 +
(

1 + 𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇

)

𝐿𝐼,1𝑎1
(

1 − 𝜆
𝜇
−

𝜋𝑎2
4

𝜂
𝜇

)

𝐿𝐼,2 +
(

1 + 𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇

)

𝐿𝐼,1

. (22)

where 𝐿𝐼,𝑖 may be calculated from (19).

2.2. Necessary conditions for the asymptotic theory to be valid

The procedure of Section 2 relies on the applicability of the asymp-
totes (4) and (5), which are equivalent to assuming that the change
in contact size from load state 1 to load state 2 is much smaller than
he contact half-width at (without loss of generality) load state 1 and,
oreover, that the size of the slip zone is much smaller the contact
alf-width in load state 1.

For the first of these, a straightforward application of Taylor’s
heorem states that there exists a 𝜉 ∈ (𝑃1, 𝑃2) such that

2 = 𝑎(𝑃2) = 𝑎(𝑃1 + 𝛥𝑃 ) = 𝑎1 + 𝛥𝑃𝑎′(𝜉), (23)

here a prime indicates differentiation with respect to argument.
ence, provided that

𝛥𝑃𝑎′(𝑃 )
𝑎1

≪ 1 (24)

for all 𝑃1 < 𝑃 < 𝑃2, we are guaranteed to have that (𝑎2 − 𝑎1)∕𝑎1 ≪ 1,
s required.

The second condition on the size of the slip zone is met provided
hat

𝑏 − 𝑎1
𝑎1

|

|

|

|

=
𝑎2 − 𝑎1

𝑎1

|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎜

⎜

1 +

(

1 + 𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇

)

𝐿𝐼,1

(

1 − 𝜆 −
𝜋𝑎2 𝜂

)

𝐿𝐼,2

⎞

⎟

⎟

⎟

⎟

−1
|

|

|

|

|

|

|

|

≪ 1. (25)
|

|

⎝
𝜇 4 𝜇

⎠

|

|
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Notably, since we already require that (24) holds, we are allowed
significant scope in the size of the term in brackets in (25).

While cumbersome, the condition (25) is exact. A simpler expression
may be found if we make the assumption that changes in the multiplier
𝐿𝐼 are small, that is, following a similar argument to the contact law
above,
𝛥𝑃𝐿′

𝐼 (𝑃 )
𝐿𝐼,1

≪ 1 (26)

for all 𝑃1 < 𝑃 < 𝑃2. Upon combining this with (24) and (25), we find
hat a necessary condition for the slip zone to be significantly smaller
han the size of the contact is given by
𝛥𝑃𝑎′(𝑃 )

𝑎1

|

|

|

|

1 − 𝜆
𝜇
−

𝜋𝜂𝑎1
4𝜇

|

|

|

|

≪ 1 (27)

or all 𝑃1 < 𝑃 < 𝑃2. Moreover, in this case, the size of the slip zone is
hen given by

𝑏
𝑎1

≈ 1 −
𝛥𝑃𝑎′(𝑃1)

2𝑎1

(

𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇
− 1

)

, (28)

It is worth noting that (28) is independent of the geometry, aside from
through the contact law 𝑎(𝑃 ), but we stress that we require (24),(26)
and (27) to hold for this approximation to be valid.

3. Example application to a Hertzian problem

In some problems, it is envisaged that the procedure being de-
veloped will be applied to geometries where the calibration for the
contact edge multipliers will have been found numerically, and where
the contact law is also not known in closed form. In such cases, we will
need to extract an approximation of 𝐿𝐼,𝑖 in (22) or of 𝑎′(𝑃1) in (28)
from the numerical implementation.

However, there are several geometries for which it is possible to find
explicit solutions (see [18–21] for some examples) and we will illustrate
the veracity of our asymptotic approach for one such example, namely
the contact of a cylinder, also known as a Hertzian contact. The contact
law for a Hertzian problem is given by

𝑎2 = 4𝑃𝑅
𝜋𝐸∗ , (29)

ee, for example, [1]. We will further simplify the loading to one
oving between load states specified in (𝑃 ,𝑄) space, so that 𝜂 =

0. Thus, we consider the size of the slip zone for a case where the
normal load differs between the ends of the loading path,

(

𝑃2, 𝑄2
)

and
(

𝑃1, 𝑄1
)

,with 𝑃2 > 𝑃1 so that the change of shear tractions under
conditions of full stick is bounded, and we will do this in three ways:

(a) from the full solution for the contact geometry [2];
(b) using an asymptotic approach based on superposition of the full

sliding solution — i.e. a corrective stick approach [12];
(c) using the dislocations-based method developed in Section 2 —

i.e. a corrective slip approach.

In each case, we shall make the assumption that the change in size
of the contact region and the size of the slip zone are much smaller
than the contact half-width, as discussed in Section 2.2. For a Hertzian
geometry, these conditions simplify somewhat, as we shall now show.

First, it is straightforward to see from (29) that 𝑎′(𝑃 ) = 𝑎∕2𝑃 , so
that the condition for the change in contact size to be much smaller
than the magnitude of the contact, (24), reduces to
𝛥𝑃
𝑃1

≪ 1 (30)

for a Hertzian problem, that is, the change in load is much smaller than
the magnitude of the load (importantly, we are not assuming that 𝛥𝑃
s small).

Second, by combining (19) and (29), the calibration for the contact
ressure multiplier applied to a Hertzian geometry, is given by

𝐼 = 𝐸∗
√

𝑎 = 2𝑃
√

2 , (31)
4

𝑅 2 𝜋 𝑎3
Fig. 4. The steady-state load path under consideration for the Hertzian example. The
size of the permanent stick zone is given by 𝑎(𝑃𝐾 ), where (𝑃𝐾 , 𝑄𝐾 ) is the intersection
oint between lines parallel to ∓𝜇𝑃 drawn through the load states 1 and 2, respectively.

o that, after some straightforward calculation, we see that 𝐿′
𝐼 (𝑃 ) =

𝐼∕4𝑃 . Thus, since we already require 𝛥𝑃∕𝑃1 ≪ 1, the condition (26) is
utomatically satisfied for the Hertzian problem. Hence, the conditions
or the asymptotic solution to be valid in the Hertzian regime are simply

𝛥𝑃
𝑃1

≪ 1, 𝛥𝑃
𝑃1

|

|

|

|

1 − 𝜆
𝜇
|

|

|

|

≪ 1. (32)

n each of the following subsections, we shall therefore assume these
onditions are satisfied.

.1. (a) Solution derived from consideration of full contact

In [2] it is shown that, for a general steady-state loading ‘loop’
rawn in (𝑃 ,𝑄)-space that is just enclosed by two tangential lines with
radients ±𝜇 and whose intersection, in turn, defines a point with
bscissa 𝑃𝐾 , a Hertzian contact has a stick zone of half width 𝑏 = 𝑎(𝑃𝐾 ).

So, this point is defined by

𝑃𝐾 =
𝑃1 + 𝑃2

2
−

𝑄2 −𝑄1
2𝜇

. (33)

We depict the load path and the point (𝑃𝐾 , 𝑄𝐾 ) in Fig. 4. Now, substi-
tuting (33) into (29), we see that

𝑏2 = 2𝑅
𝜋𝐸∗

(

𝑃1 + 𝑃2 −
𝑄2 −𝑄1

𝜇

)

, (34)

so that, using the approximations (32),we deduce

𝑏2 = 𝑎21

(

1 + 𝛥𝑃
2𝜇𝑃1

(𝜇 − 𝜆)
)

. (35)

ence, as 𝛥𝑃∕𝑃1 → 0, we find that

𝑏
𝑎1

≈ 1 −
(

𝜆
𝜇
− 1

)

1
4
𝛥𝑃
𝑃1

. (36)

.2. (b) Asymptotic solution based on corrective stick

The asymptotic method based on full sliding to be used here is
escribed in [12]. In that paper, the limit is taken of making the
hange in contact size become infinitesimal, so that the change in shear
raction becomes the difference between two slightly different bounded
olutions, and is hence singular. So, in addition to the contact pressure
ultipliers 𝐿𝐼,𝑖 defined previously in (4), we need also to record the

mplied singular change in shear tractions, and it is straightforward, in
his context, to introduce the effect of differential bulk tension, too, for
ompleteness. The singular contact-edge shear traction distribution is
iven by

(𝑥) =
𝐾𝐼𝐼

√
as 𝑎 − 𝑥 → 0, (37)
𝑎 − 𝑥
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𝑏

where the calibration 𝐾𝐼𝐼 is given by [13] p. 135,

𝐼𝐼 = 𝑄

𝜋
√

2𝑎
+ 𝜎

4

√

𝑎
2
. (38)

nd hence
𝛥𝐾𝐼𝐼
𝛥𝑃

= 𝜆

𝜋
√

2𝑎
+

𝜂
4

√

𝑎
2
. (39)

In [12], the asymptotic prediction for the size of the steady-state
slip zone at point 1 of the load cycle is found to be

𝑏 = 𝑎1 − 𝑑1, where 𝑑1 =
𝛥𝐾𝐼𝐼
𝜇𝐿𝐼

− 𝛥𝑎
2
. (40)

Hence, utilising (31) and (39), we see that

𝑏 = 𝑎1 −
𝛥𝑃𝑅

𝜋𝜇𝐸∗𝑎1

(

𝜆 +
𝜋𝜂𝑎1
4

)

+
𝑎2 − 𝑎1

2
. (41)

Thus, recalling the assumption that 𝛥𝑃∕𝑃1 ≪ 1 and the expansion for
𝑎2 given by (23), we can expand the contact law (29) to show that

𝑎2 = 𝑎(𝑃1 + 𝛥𝑃 ) ≈ 𝑎1

(

1 + 2𝑅𝛥𝑃
𝜋𝐸∗𝑎21

)

. (42)

Substituting this into (41), we find

𝑏 ≈
𝑎1
2

(

2 + 2𝑅𝛥𝑃
𝜋𝐸∗𝑎21

)

− 𝛥𝑃𝑅
𝜋𝑎1𝜇𝐸∗

(

𝜆 +
𝜋𝜂𝑎1
4

)

(43)

o that, recalling (29),

𝑏
𝑎1

≈ 1 −
(

𝜆
𝜇
+

𝜂
𝜇
𝜋𝑎1
4

− 1
)

𝛥𝑃
4𝑃1

, (44)

hich agrees with the result derived from the full solution (36) when
e set 𝜂 = 0.

.3. (c) Asymptotic solution based on corrective slip

Following the above discussion that, for the Hertzian example, the
ondition (26) is automatically satisfied when (24) holds, we may write
own the size of the slip zone by using (28) with 𝜂 = 0; we again
etrieve
𝑏
𝑎1

≈ 1 −
(

𝜆
𝜇
− 1

)

𝛥𝑃
4𝑃1

, (45)

consistent with both (36) and (44).

3.4. Shear tractions

It is clear that we correctly retrieve the first term in a small-𝛥𝑃∕𝑃1
expansion of the exact solution for the size of the slip zone using each
of the asymptotic methods: the corrective slip method presented in
the current paper and the corrective stick method developed by [12].
To demonstrate an advantage of the current method, we conclude by
comparing the asymptotic solution for the shear tractions to the known
exact solution.

In order to do this, it is easiest to consider the difference between
the shear tractions at each end of the load cycle, namely

𝑞dif f (𝑥) = 𝑞2(𝑥) − 𝑞1(𝑥). (46)

By utilising the difference, we may neglect any tractions developed
in the initial loading path (cf. Fig. 3). By a careful application of the
Jäger-Ciavarella principle, the exact solution gives

𝑞dif f (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜇(𝑝(𝑥, 𝑃2) + 𝑝(𝑥, 𝑃1) − 2𝑝(𝑥, 𝑃𝑘)) for 0 < 𝑥 < 𝑏
𝜇(𝑝(𝑥, 𝑃2) + 𝑝(𝑥, 𝑃1)) for 𝑏 < 𝑥 < 𝑎1,
𝜇𝑝(𝑥, 𝑃2) for 𝑎1 < 𝑥 < 𝑎2

(47)

where 𝑃𝐾 is given by (33) and the Hertzian contact pressure is given
by

𝑝(𝑥, 𝑃 ) = 2𝑃 √

𝑎2 − 𝑥2. (48)
5

𝜋𝑎2
Fig. 5. The exact solution (47) (solid blue) and asymptotic approximation (49) (dashed
red) solutions for 𝑞dif f (𝑥) = 𝑞2(𝑥) − 𝑞1(𝑥) for a Hertzian contact with illustrative values
f 𝑅 = 𝐸∗ = 1, 𝜇 = 0.1, 𝜆 = 0.2, 𝑃1 = 100, 𝛥𝑃 = 5.

ere we have exploited symmetry to consider 𝑥 > 0 only.
By (7), the asymptotic solution is given by

dif f (𝑥) = 𝐿𝐼𝐼,2
√

𝑎2 − 𝑥 − 𝐿𝐼𝐼,1𝐻(𝑎1 − 𝑥)
√

𝑎1 − 𝑥+

𝐸∗

2𝜋
√

𝑎2 − 𝑥
−
∫

𝑏

𝑎2

√

𝑎2 − 𝑡𝐵1→2
𝑥

(

𝑎2 − 𝑡
)

𝑑𝑡
𝑡 − 𝑥

,
(49)

where the dislocation density is found from (15), (21), (29), (31) and
(35).

We plot the exact solution (47) alongside the asymptotic approxima-
tion (49) in Fig. 5, where we have chosen some representative values of
the parameters for illustrative purposes: 𝑅 = 𝐸∗ = 1, 𝜇 = 0.1, 𝜆 = 0.2,
1 = 100, 𝛥𝑃 = 5. Notably, 𝛥𝑃∕𝑃1 = 𝛥𝑃∕𝑃1|1 − 𝜆∕𝜇| = 0.05 ≪ 1 so
hat the necessary conditions for the asymptotic solution to be valid,
32), hold. It is clear that the asymptotic solution does an excellent job
f capturing the local shear tractions: the error in the approximation
s only ≈ 0.004 at 10% of the distance in from the contact edge at
= 𝑎2. In fact, the error for this example is only ≈ 0.01 at the centre

f the contact, 𝑥 = 0, although we stress that the values taken for
his example are illustrative rather than physical. Nevertheless, we see
ery encouraging evidence that the asymptotic model presented herein
rovides an excellent description of the shear traction distribution in
he vicinity of the contact edge.

. Conclusion

A new solution for solving partial slip problems within a half-plane
ormulation using asymptotic representations of the near-edge solution,
as been found under the assumption that the changes in the loads
re directly proportional. In contrast to an earlier asymptotic method
cf. [12]), the approach starts with the assumption that the change of
tate occurs under full stick, and slip is introduced by distributing glide
islocations in the slip zones. The approach may be applied whether the
hear tractions originate from the application of a shear force, or the
eneration of differential tension.

The method provides a straightforward approximation for the size
f the slip zone

=

(

1 − 𝜆
𝜇
−

𝜋𝑎2
4

𝜂
𝜇

)

𝐿𝐼,2𝑎2 +
(

1 + 𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇

)

𝐿𝐼,1𝑎1
(

1 − 𝜆
𝜇
−

𝜋𝑎2
4

𝜂
𝜇

)

𝐿𝐼,2 +
(

1 + 𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇

)

𝐿𝐼,1

. (50)

where 𝜇 is the coefficient of friction; 𝑎𝑖 is the size of the contact at
load state 𝑖; 𝜆 = 𝛥𝑃∕𝛥𝑄 and 𝜂 = 𝛥𝜎∕𝛥𝑃 where 𝛥𝑃 , 𝛥𝑄 and 𝛥𝜎 are
the changes in normal load, shear force and bulk tension respectively;
and 𝐿𝐼,𝑖 is the coefficient of the square-root term in the local contact

pressure expansion at load state 𝑖. This expression further simplifies
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when the change in 𝐿𝐼 is small compared to its absolute value, viz.:

𝑏
𝑎1

≈ 1 −
𝛥𝑃𝑎′(𝑃1)

2𝑎1

(

𝜆
𝜇
+

𝜋𝑎1
4

𝜂
𝜇
− 1

)

. (51)

Eqs. (50) and (51) may be readily used in laboratory simulations of
contact problems. In particular, we demonstrated explicitly the veracity
of our predictions in the simple example of a Hertzian contact with no
changes in bulk tension, for which we were able to show that the slip
zone size was the same as that found from the full-sliding asymptotic
approach [12], as well as the known exact solution [2].

For more general problems, given the ease with which the dislo-
cation density, and hence the tractions themselves, may be found (cf.
Eq. (15)), it may be that the present methodology has advantages over
the sliding traction approach. We demonstrated the accuracy of our
asymptotic method for predicting the shear traction distributions for
a Hertzian problem: there is very strong agreement with the exact so-
lution, with errors of less than 0.01% over the contact for an illustrative
set of material and loading parameters. This provides a strong indicator
of both the veracity and usefulness of the approach in future analyses
and experimental investigations.
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