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Abstract— The aim of quantum cryptography is to overcome 

the everlasting problem of unrestricted security in private 

communication. The usage of the quantum principles protects 

the privacy of the user data during the time it is in the 

transmission process over the telecommunication channels. The 

sophisticated algorithm we have developed will make the data 

meaningless to eavesdroppers. The security of modern 

cryptographic systems has been accomplished by using a long 

key that will require many years to launch a brute force attack. 

Therefore, we designed an efficient algorithm that is developed 

based on BB84 and B92 techniques. In this paper, we utilized the 

classic features of quantum mechanism, such as superposition 

and uncertainty principle. We present the underlining 

mechanisms of quantum cryptography that enhances the security 

of data transmission in three stages with valid results that 

promise a low rate of errors that leads to a strong consistent key 

by raising the constraint of the security concept. 
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I. INTRODUCTION 

The revolution of Quantum mechanism occurred early in 
the 20th century.  Therefore, every time we use electronics 
devices or transmit and receive information unconsciously, we 
utilize our knowledge of the nature of quantum.  Yet, in 
information, technology there is still enough room for 
developing quantum properties [1].  During the early 80, 
scientists have acknowledged quantum aspects as a supply for 
identifying with protocols banned by traditional laws of 
physics.  Furthermore, in modern computers, the increase in 
performances goes hand in hand with decrease in size. 
Consequently, more rapidly, a single transistor will be so 
modest that it will be essential to account for quantum effects 
to understand fully and to predict decisively its behavior [2]. 

The theory of quantum cryptography was developed in 
1984 (BB84) by Charles H. Bennett and Gilles Brassard as part 
of a research study between physics and information at IBM. It 
was known at that time as quantum distribution scheme [1].  

The fundamental concept of the quantum system relies on 
the distribution of single particles or photons and the value of a 
classical bit encodes by the polarization of a photon [2]. 
Actually, the quantum cryptography is based on two important 
elements of quantum mechanics: The Heisenberg Uncertainty 

principle and the principle of photon polarization. Based on 
physical law, a photon is an elementary particle of light 
carrying a fixed amount of energy, light may be polarized; 
polarization is a physical property that comes forward when 
light is observed as an electromagnetic wave [3]. The direction 
of a photon’s polarization can be fixed to any desired angle 
(using a polarizing filter) and can be measured using a calcite 
crystal. 

II. PROBLEM IDENTIFICATION

While genuine algorithms have fulfilled the markets for a 
practical secure system, the search for a provable secure 
algorithm is still searched by scientists. Furthermore, security 
of RSA, the mainly used crypto protocol today, resides on the 
not disproven fact that no efficient factorization algorithm that 
is able to break it in logical times is known.  

We now know that if quantum computers will be ever 
available, RSA could be broken by Shor’s quantum Algorithm 
[4] a quantum computer could factorize large numbers in a 
very efficient manner exploiting entangled states. The open 
traditional problem was essentially the key distribution 
process.  Identical shared keys will be given to Alice and Bob 
by QC protocol. Then to categorize the approximate 
communication error level, the two parties have to compare 
their strings [5]. The third party Eve interceptions could be the 
reasons for the error, channel flaws (as losses) and detectors’ 
inefficiencies and/or dark counts, to make it more difficult to 
differentiate among these types of errors is physically 
impossible. For that reason, we assume all the errors are due to 
eavesdropping.  QC tries to answer the following question: Is it 
actually possible to produce and distribute a sequence of truly 
strings random numbers of bits to form a shared trusted key in 
a provably secure way? 

III. RELATED WORK

The Heisenberg Uncertainty principle states that, it is not 
possible to measure the quantum state of any system without 
disturbing that system. This means that polarization of a 
photon or light particle can only be known at the point when it 
is measured [9]. This principle plays an important role in 
preventing the attempts of eavesdroppers in a cryptosystem 
based on quantum cryptography [6].  
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Secondly, the photon polarization principle explains how 
light photons can be polarized in a specific direction. In 
addition, an eavesdropper cannot copy unknown qubits i.e. 
unknown quantum states, due to the no-cloning theorem which 
was first presented by [8] in 1982. The quantum cryptography 
allows a bit string to be agreed between two communications 
parties without having two parties to meet face to face, and yet 
these two parties can be sure with a high confidence that the 
agreed bit string is exclusively shared between them. 

A. One Time Pad 

In cryptography, a one-time pad (OTP) is an encryption 
technique that cannot be broken if used correctly [10]. In this 
technique, a plaintext is paired with a random, secret key (or 
pad). Then, each bit or character of the plaintext is encrypted 
by combining it with the corresponding bit or character from 
the pad using modular addition [4]. If the key is truly random 
and at least as long as the plaintext and never reused in whole 
or in part and kept completely secret, the resulting cipher text 
will be impossible to decrypt or break [7]. It has also been 
proven that any cipher with the perfect secrecy property must 
use keys with effectively the same requirements as OTP keys. 
However, practical problems have prevented one-time pads 
from being widely used. 

Despite Shannon's proof of its security, the one-time pad 
has serious weakness in practice; it requires perfectly 
unpredictable random one-time pad numbers, which is a non-
trivial software requirement [5]. 

 Secure generation and exchange of the one-time pad 
material must be at least as long as the message [9].  The 
security of the one-time pad is only as secure as the security of 
the one-time pad key-exchange. Careful treatment must make 
sure that it continues to remain secret from any adversary 

Key distribution is needed bcause the pad, like all shared 
secrets, must be passed and kept secure, and the pad has to be 
at least as long as the message, once a very long pad has been 
securely sent (e.g., a computer disk full of random data), it can 
be used for numerous future messages until the sum of their 
sizes equals the size of the pad [12]. Quantum key distribution 
also proposes a solution to this problem. 

Distributing very long one-time pad keys [11] is inconvenient 

and usually poses a significant security risk. The pad is 

essentially the encryption key but unlike keys for modern 

ciphers, it must be extremely long and is much too difficult for 

humans to remember [8]. Storage media such as thumb drives, 

DVD-Rs, or personal digital audio players can be used to carry 

a very large one-time-pad from place to place in a non-

suspicious way, but even so the need to transport the pad 

physically is a burden compared to the key negotiation 

protocols of a modern public-key cryptosystem. Finally, the 

effort needed to manage one-time pad key material scales very 

badly for large networks of communicants [7]. 

The number of pads required increase as the square of the 

number of user’s increase freely exchanging messages. For 

communication between only two persons or a star network 

topology, this is less of a problem [14]. 

The key material must be securely disposed of after use to 

ensure that key material is never reused and to protect the 

messages sent. Because the key material must be transported 

from one endpoint to another and persist until the message is 

sent or received, it can be more vulnerable to forensic 

recovery than the transient plaintext it protects [13]. 

IV. CRYPTOGRAPHY

Cryptography came to use thousands of years ago, and 

since then, it has been constantly developing along with 

human civilization [11]. The significantly influenced 

human society and some time even the course of history. 

Today cryptography has become important technology in 

the internet society that each individual relies on [9]. 

One typical example is the RSA [7] crypto scheme; it is 

often used in online shopping: The net shop   prepares a 

public key containing the product (N) of p and q prime 

numbers. A net shop published this product (N) for its 

customers and keeps the values of p and q secret [8]. 

The costumers encrypted their credit card information 

with the purchase information with public key and sent 

the encrypted data to the net shop; the net shop derives 

the private key from the two primes by simple calculation 

to decrypt this data [10]. Let us assume the malicious 

hacker knows the public key but has no idea of the private 

key. For decryption, the hacker needs to factorize (n) to 

find the prime p and q. The factorization of this prime 

numbers is a time consuming task when (n) is large [8]. 

In the end of the last century, it was said even the most 

powerful computer would take thousands of years to 

factorize 200 digit numbers [12]. Since then rapid 

progress has been made in both software and hardware. 

In December 2009, an international team of researchers 

succeeded in cracking 786-bit RSA key in only two years 

using a novel encryption algorithm and cluster of personal 

computers [15]. If military intelligence had a method of 

breaking longer keys, it would never announce this fact. 

For this reason, RSA scheme today employs a public key 

with at least 1024-bit key. 

In recent years, the fiber tapping device [13] became 

available in the market, making it easy for hacker to tap 

signal for a fiber. It has been actually reported that fiber 

networks in some U.S. investment firms and Frankfort 

airport were intercepted in the past. Therefore, encryption 

is necessary to guarantee safe transmission to sensitive 

data.   

A. BB84 

  The first QKD protocol was introduced in 1984 [6], labeled 

as BB84. It used two polarization bases, rectilinear (R) basis 

and diagonal (D) basis, and the single photon that may be 
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polarized with four states:  |h›, |v› |lcp›, and |rcp›. Polarization 

state |h› (|v›) in R-basis reveals “0” (“1”) and polarization 

state |lcp› (|rcp›) in D-basis reveals “0” (“1”). The italic letters 

h mean horizontal, v vertical, lcp left circle polarized, and rcp 

right circle polarizes [10]. 

Alice and Bob would like to send an encrypted message to 

each other so their message securely can be made private [12]. 

To do this, they need a cryptographic key that is only known 

to them that they will use to encrypt their message [15]. In 

addition, there is Eve; she tries to intercept their message, 

BB84 will allow them to come up with secret key both can use 

and trust. 

To follow the BB84 protocol, Alice and Bob need to use two 

communication channels [11], classical channel and quantum 

channel. The classical channel allows them to send individual 

bits of information back and forth. As the bits travel among 

the classical channel, it is possible for Eve to intercept them. 

Eve can observe the bits and send a copy of them to their 

regular destination. When communicating through a classical 

channel, Alice and bob have no way to detect Eve. 

The quantum channel [8] behaves differently. Instead of 

transferring bit, it transfers qubits. The qubits represent bit, 

and either of two processes can generate them. Let us call 

them (A) and (B).  The BB84 takes advantage of some 

properties of qubits.  Qubits cannot be copied and it is not 

possible to determine whether if qubits were generated by 

process (A) or (B). When qubits represent zero in machine 

(A), it will produce a zero and when qubits represent one, the 

machine will produce one [10]. In both cases the qubits will be 

destroyed in the process, on the other hand, if machine (A) is 

fed with qubits that were produced by machine (B), the output 

will be randomly half the time is zero and half the time is one, 

and the qubits is still be destroyed [9]. Likewise, a special 

machine exists to observe qubits produced by process (B). Let 

us call it machine (B). When it gives qubits produced by 

process (B), a machine (B) will out put the correct bit, but 

when is fed a qubits produced by process (A), machine (B) 

output will be random and just as machine (A) qubits will be 

destroyed. Therefore, when Bob receives a qubit over the 

quantum channel, he will not know which machine to use to 

observe it. He will decide by a coin toss [5]. Half the time he 

will feed qubits to machine (A) and half the time, he will feed 

it to machine (B) [9]. 

The protocol began [11] when Alice sent Bob a very large 

number of qubits over the quantum channel. Bob recorded all 

the output he received as he fed the qubits randomly to his 

qubits measuring machine. He will pick the right machine half 

the time; an average 50 percent of his measuring will be 

correct for the remaining qubits. He will still end up half the 

time just by chance. This means 75% of Bob measurement 

will be correct [5].  

      However, if Eve intercepted [9] the qubits before they 

reach Bob, she will also need to make random guesses as to 

which machine to use. Thus because Eve intercepted half of 

the qubits, therefore half of the qubits she will send to Bob. 

Half has been generated correctly and half of them incorrectly 

[5]. This means only 75% of the qubits that will reach Bob 

will represent what Alice intended [9]. Now when Bob 

receives the qubits, he will have to make random guesses. This 

will give Bob a new accuracy of 62.5%. Bob however does 

not know that yet, so he and Alice will have to communicate 

some information to each other to work out what accuracy 

Bob is getting. Once Bob finished measuring all the qubits he 

received, he will open the classical channel and send Alice a 

stream of bits that indicates to her which machines he used to 

measure each of her qubits. Once she received that message 

from Bob, she will review the personal record and send to Bob 

telling him which of the qubits he ended up measuring 

correctly [11]. Now Bob can throw away the wrong qubits and 

Alice can do the same.  Now they are in possession of a string 

of bits that is only known to them and no one else. 

If the observation accuracy [10] is below 100%, they will 

know Eve intercepted some of their Qubits and the 

communication is not secure. Proved that Eve was attempting 

to confound their effort, they should now be in possession of 

string of bits that is known only to them. They have very large 

sequence of bits so they can afford to sacrifice a random 

subset of them in order to determine whether Eve was 

listening to them over the classical channel [7]. They need to 

choose a subset of bits and compare them, and if they are 

satisfied they are secure, then they can use the reaming bit to 

form a secret cryptographic key. If they observe an accuracy 

of 100 %, they can be reasonably confident that their share 

key is secure. Now they can use them to encrypt further 

communications, using this protocol allow Alice and Bob to 

generate a cryptographic key and they can determine whether 

secrecy has been compromised or not. 

Table 1.A 8-bit sample of Alice (A) and Bob (B) for BB84 

Sequence of 

bits 
1 2 3 4 5 6 7 8 

A’s bit 1 0 1 0 0 1 0 0 

A’s source 

basis 
D R R D R D D D 

A’s 

polarization 
|rc

p› 

|h› |v› |lcp› |h› |rcp› |lcp› |lcp› 

B’s detector 

basis 
D D D R R D R D 

B’s 

measuremen

t 

|rc

p› 

|rc

p› 

|lcp› |v› |h› |rcp› |h› |lcp› 

B’s bit 1 1 0 1 0 1 0 0 

A’s response Y N N N Y Y N Y 

Shared 

secret key 
1 _ _ _ 0 1 _ 0 

B. Protocol B92 

     In the B92 protocol [4], two states can be regarded as 

“half” of the BB84 protocol. Alice and Bob first have to agree 

that Alice uses |h›-photon and |rcp›-photon to represent “0” 
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and “1”. Bob uses |lcp›-basis and |v›-basis as “0” and “1”. 

Table 1 and Table 2 show BB84 and B92 in detail. 

 Based on B92 only two states are more important than the 

possible four polarization states in BB84 protocol [16], and 

this is the main difference in B92. “0” can be encoded as “0” 

degree in the (R) rectilinear basis and “1” can be encoded by 

“45” degrees in the diagonal basis (D). Just like the BB84, 

Alice transmits to Bob a random string of photons encoded 

with randomly chosen bits, however now, Alice dictates which 

bases she must use [1]. Bob still randomly chooses a basis by 

which to measure, but if he chooses the wrong basis, he will 

not measure anything (a condition in quantum mechanics that 

is known as an erasure). Bob can simply tell Alice after each 

bit she sends whether or not he measured it correctly. 

Table 2.A 8-bit sample of Alice (A) and Bob (B) for B92 

Sequence of 

bits 

1 2 3 4 5 6 7 8 

Alice’s bit 1 1 0 0 1 0 0 1 

A’s 

polarization 

|rcp› |rcp› |h› |h› |rcp› |h› |h› |rcp› 

B’s detector |lcp› |v› |v› |v› |lcp› |lcp› |v› |lcp› 

Bob’s bit 0 1 1 1 0 0 1 0 

Bob 

measurement 

N Y N N N Y N N 

Shared secret 

key 

_ 1 _ _ _ 0 _ _ 

For instant, in Table 2, only two bits are shared by Alice and 

Bob (2,  6) as the secret key, the efficiency is 2/8= 25%. 

For protocol B92 [4, 17, 18], the ideal efficiency is 25%. To 

analyze the +efficiency in properly way is shown in Figure 2. 

Assume that Alice sent |h›-photon, i.e., “0” (Figure 2(a)). Bob 

will choose randomly |lcp› -basis or |v›-basis. If Bob selects 

the wrong basis, i.e., |v›-basis, he cannot detect the photon. If 

Bob selects the correct basis, i.e., |lcp›-basis, he has 50% 

probability to detect the photon; however, even if he chooses 

the correct basis, he still has the probability of 50%. Finally, 

Bob will have idealized maximum efficiency of 25% to share 

the correct bits [16, 17, 18]. 

V. PROPOSAL ALGORITHM TO IMPROVE SECURITY 

In this protocol, we introduced the three stages process. The 

first stage convention is similar to the BB84 protocol. Alice 

will choose random strings bits through the four bases 

according to the BB84 protocol and send them to Bob through 

Quantum channel. Bits “0” can be encoded as |v› state in (R) 

basis and as |lcp› degrees in the (D) basis and bits “1” can be 

encoded as |v› state in (R) and |rcp› (D) basis [11]. 

A. In the first stage Bob will make his guess and use random 

basis to measure Alice’s Qubits; then Bob will open a 

classical channel to communicate with Alice and announce 

what basis he used to measure his bits. Alice will compare 

their bases and find out which is the wrong measurement 

and then discard the wrong basis from the strings that she 

received from Bob, and she will save what resulted from 

this process. 

a) In the second stage Alice will repeat the first step

again and generate another random sequence of

photon using the same polarization basis from stage

one and send it to Bob through quantum channel.

b) Bob will detect each photon that is represented in the

binary sequence using random basis from |lcp›, |rcp›-

basis or |h›, |v›-basis to measure Alice string.

c) Alice and Bob will share the results of Bob’s

measurement through classical channel. Alice will

analyze Bob’s result and proceed to the final stage.

d) Alice compares both Bob’s result with her string, and

discards the correct matched Bob’s result from his

measurement.

e) Finally, Alice will combine the first stage result and

second stage result string together to generate the

final shared secret key. It will be a strong

sophisticated key that will provide more security and

reliability to their information transaction.

These key will be developed from the result of deriving the 

two keys represented as one strong Encryption key, so both 

user can use now to transmit their data safely. 

First stage for producing the key works exactly according to 

BB84 protocol 

Table 3.A 8-bit sample of Alice (A) and Bob (b) 1st stage 

Sequence of 

bits 

1 2 3 4 5 6 7 8 

A’s bit 1 0 1 1 0 1 0 1 

A’s basis D D R D R D R R 

A’s 

polarization 

|rcp› |lcp› |v› |rcp› |h› |rcp› |h› |v› 

B’s detector R D R R R D D D 

B’s 

measurement 

|h› |lcp› |v› |h› |h› |rcp› |rcp› |lcp› 

Bob’s bit 0 0 1 0 0 1 1 0 

Bob reports 

basis 

R D R R R D D D 

A’s response N Y Y N Y Y N N 

1st shared 

secret key 

_ 0 1 _ 0 1 _ _ 
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B. The Second stage for producing the secret key 

Alice will generate another random string through the 

quantum channel to Bob. Bob will measure the string 

randomly and compare his measured bits through classic 

channel with Alice. Alice here will discard the correct basis 

that is matched Bob’s measurement from her string. 

C. The Third stage Alice will compare both keys from first 

and second stage together and combine them as one strong 

secret key that will be used to transfer data between both 

parties through the classic channel. 

Table 3.B 8-bit sample of Alice (A) and Bob (b) 2nd stage 

Sequence of 

bits 

1 2 3 4 5 6 7 8 

A’s bit 0 0 1 0 1 1 1 0 

A’s basis D R D R R R R D 

A’s 

polarization  

|lcp› |h› |rcp› |h› |v› |v› |v› |lcp› 

B’s detector  D R D R R D R D 

B’s 

measurement 

|lcp› |v› |lcp› |h› |v› |rcp› |h› |lcp› 

Bob’s bit 0 1 0 0 1 1 0 0 

Bob reports D R D R R D R D 

A’s response N Y Y N N Y Y N 

2nd Shared 

secret key 

_ 1 0 _ _ 1 1 _ 

Final stage to combine 1st and 2nd secret key to finalized the 

shared secret key. 

Table 3.C 8-bit sample of Alice (A) and Bob (b) final stage 

1st  key 0 _ 1 0 1 _ _ _ _ 

2nd  key _ 1 0 _ _ 1 _ 1 _ 

Final 

Shared 

Secret 

key 

0 1 0 1 0 1 1 1 _ 

VI. ANALYSIS

In figure 3.A, if Bob chooses the correct basis, he will detect 

the correct polarized photon. However, if Bob chooses the 

wrong basis, he knows that his result is inconclusive. 

Therefore, the idealized maximum efficiency is 50% for 

BB84. It also shows that Alice used R-basis sending |h›-

photon and |v›-photon. In B92, the efficiencies are 25% and 

for BB84 its 50% and this is the price that two QKD protocol 

must pay for secrecy. Here we proposed two-way transmission 

over the quantum channel (Alice →Bob and Alice→ Bob) 

instead of one-way transmission. Our enhanced QKD protocol 

has three stages. In the first stage, Alice sends random 

sequence of photon according to BB84; in the second stage 

Alice will use a modified version of BB84 to send another 

large sequence of photon, and in the final stage Alice will 

generate a cryptography key that resulted from previous 

stages. 

     Our enhanced protocol enhances the efficiency to 43.8% 

with the average complexity order 2.76 when using BB84 in 

the first stage. In addition, when using the modified version in 

the second stage the idealized maximum efficiency can reach 

28.9% with average complexity of 2.4. 

VII. CONCLUSION 

Quantum cryptography is a fascinating illustration; the 

uncertainty principle imposes restrictions on the capacity of 

certain types of communication channels. It is not possible for 

hackers to determine whether the qubits were generated by R-

basis or D-basis. Furthermore, by taking advantages of 

transmitting the qubits over the quantum channel, that will 

increase the security by developing strong cryptographic key 

and use it to exchange data between two parties. However, in 

our proposed protocol, we take advantages of the properties of 

quantum qubits twice to generate a secret key that can be 

generated without any interference from an eavesdropper. By 

increasing the restriction of the security. Therefore, we 

develop a strong reliable key by adding more security 

demands without being worrying about any guesses from 

intruder who might be present. Even if the guess of the 

attacker in the first case was 25%, we enforced this error to be 

decreased to 15% to 18%. This is because of` the principles of 

quantum mechanics that ensure that no eavesdropper can 

successfully measure the quantum state while it is being 

transmitted without disturbing the state in some detectable 

way. Using this protocol allows Alice and Bob to generate 

secure a cryptographic key, and they can determine whether or 

not their secrecy has been compromised. 
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