
i	
	

IMPROVING CLOUD SYSTEM RELIABILITY USING

AUTONOMOUS AGENT TECHNOLOGY

	

Yuanyao Liu

Under the Supervision of Dr. Ausif Mahmood and Dr. Zhengping Wu

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

Dec, 2015

iii	
	

IMPROVING CLOUD SYSTEM RELIABILITY USING

AUTONOMOUS AGENT TECHNOLOGY

© Copyright by Yuanyao Liu 2015

iv	
	

 IMPROVING CLOUD SYSTEM RELIABILITY USING

AUTONOMOUS AGENT TECHNOLOGY

ABSTRACT

Cloud computing platforms provide efficient and flexible ways to offer services

and computation facilities to users. Service providers acquire resources according to their

requirements and deploy their services in cloud. Service consumers can access services

over networks. In cloud computing, virtualization techniques allow cloud providers

provide computation and storage resources according to users’ requirement. However,

reliability in the cloud is an important factor to measure the performance of a virtualized

cloud computing platform. Reliability in cloud computing includes the usability and

availability. Usability is defined as cloud computing platform provides functional and

easy-to-use computation resources to users. In order to ensure usability, configurations

and management policies have to be maintained and deployed by cloud computing

providers. Availability of cloud is defined as cloud computing platform provides stable

and reliable computation resources to users. My research concentrates on improving

usability and availability of cloud computing platforms. I proposed a customized agent-

based reliability monitoring framework to increase reliability of cloud computing.

v	
		

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God who has helped me all the way to complete

this work successfully. I owe a debt of gratitude to my family for understanding and

encouragement.

Then, I would like to express my deepest appreciation to my advisor Dr.	Ausif

Mahmood and Dr. Zhengping Wu for leading me and guiding me throughout this entire

path. They gives me the opportunity to be creative. They encouraged me at difficult times

and offered valuable suggestions when I faced tough challenges. This dissertation would

not have been possible without their supervision. Second, to my committee members, Dr.

Khaled M. Elleithy, Dr. Jeongkyu Lee, Dr. Xinguo Xiong and Dr. Sun. Thank you for

your encouraging and constructive feedback. Reviewing a thesis is never an easy task,

and I am grateful for their valuable and insightful comments.

Third, to the faculty and staff of School of Engineering at University of

Bridgeport. I am proud to be a member of this family. Thank you for helping me to

develop the skills I need to complete this thesis. Finally yet importantly, this dissertation

would not have been possible without the love and support of my family. Thank you all

for your encouragement.

vi	
	

TABLE OF CONTENTS

ABSTRACT .. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: LITERATURE SURVEY... 6

2.1 Reliability in the Cloud ... 6

2.2 Temporal Logic and Policy Analysis .. 15

2.3 Event Learning and Prediction .. 18

CHAPTER 3: RESEARCH PLAN OVERVIEW ... 21

3.1 An Autonomous Agent Architecture for Reliability ... 21

CHAPTER 4: SERVICE POLICY ANALYSIS ... 24

4.1 Policy Modeling .. 24

4.1.1 General Policy Model ... 24

4.1.2 Policy Representation Using Temporal Logic .. 29

4.2 Knowledge-Augmented Temporal Logic ... 35

4.2.1 Semantic Extension ... 35

4.2.2 Relationship and Entity ... 41

4.3 Rules in Conflict Analysis and Conflict Reconciliation: .. 50

4.4 Experiment of Policy Conflict Analysis Component .. 53

CHAPTER 5 NON-INTRUSIVE LOG PROCESSING ... 57

5.1 Service Event Pattern Learning .. 57

5.1.1 Event Pattern Learning Technique Survey ... 57

vii	
	

5.1.2 Hash Table with Reversed Frequent Pattern Tree .. 60

5.2 Event Pattern Detection .. 68

5.3 Event Pattern Prediction Algorithm .. 70

5.3.1 Filtered-Multi Dimensions Neural Network ... 70

5.4 Experiments .. 75

5.5 Summary ... 79

CHAPTER 6: CONCLUSION .. 81

6.1 Conclusion .. 81

6.2 Future Work .. 82

REFERENCES .. 83

viii	
	

LIST OF TABLES

Table 4.1 Comparison of Different Policy Conflict Analysis

Algorithms (A)

54

Table 4.2 Comparison of Different Policy Conflict Analysis

Algorithms (B)

56

ix	
	

LIST OF FIGURES

Figure 3.1 Autonomous Agent Architecture for Reliability Monitoring 23

Figure 4.1 Service in Different Domain 25

Figure 5.1 Structure of a Node 60

Figure 5.2 Reversed Frequent Pattern Tree 61

Figure 5.3 Reversed Pattern Tree using linked list node 62

Figure 5.4 Example of Hash Table and Linked List 63

Figure 5.5 Reversed Pattern Tree with Child Pointers and Sibling

Pointers

64

Figure 5.6 New Frequent Pattern Insertion Algorithm 65

Figure 5.7 Reversed Frequent Pattern Tree Compress Algorithm 67

Figure 5.8 Event Sequence Recognition Example 69

Figure 5.9 A Simple Wavelet Neural Network 71

Figure 5.10 Layers of Filtered MD Wavelet Neural Network 72

Figure 5.11 Prediction Accuracy Comparison of WNN and AODE 77

Figure 5.12 The performance of WNN, Multi-Dimension WNN (MD-

WNN) and Filter-Multi-Dimension WNN (Filter MD-WNN)

in RMSE for training data set with different hidden nodes

78

Figure 5.13 The average precision and recall of different prediction

algorithms

78

Figure 5.14 The average time cost of different prediction algorithms 79

1	
	

CHAPTER 1: INTRODUCTION

1.1 Research Problem and Scope

Cloud computing provides an infrastructure to support efficient and flexible

computing resource for service providers and service consumers. Cloud is constructed on

various computer systems over communication networks, which provides computing

resources through a unified computing platform. Different types of services are provided

through this unified platform, such as Software as a Service (SaaS), Platform as a Service

(PaaS), Infrastructure as a Service (IaaS), etc. These services fulfill service consumers’

requirements through unified network interfaces. Service consumers choose services based

on various needs. Sometimes, a single service can provide enough functionality for

different service consumers. Sometimes consumers need several services to finish their

tasks. In this situation, consumers have to integrate these services, and service providers

need to coordinate with each other. In service coordination, service consumers face

different issues and problems. These problems are obstacles that stand in the way between

services and consumers. Therefore, service providers intend to provide services that have

been integrated to meet consumers’ needs. This makes the nature of cloud computing,

which provides on-demand and measured services. In a virtualized environment, services

are usually deployed in virtual machines or shared virtual machines. Virtualization is one

of the most important technologies in cloud computing, which is used to increase the

2	
		

utilization of physical hardware resources and network bandwidth. Web application

providers have the potential to scale virtual resources up and down to achieve cost-effective

outcomes. In such virtualized environment, users cannot tell the difference between

virtualized computer hardware and physical hardware. Users expect the same capability

from real physical hardware. Therefore, virtualized systems receive all types of requests

and commands. These requests and commands are finally passed to the host operating

system or hypervisor to allocate system resources and perform the computation. Host

operating systems or hypervisors are foundation of the upper level virtual machines. Events

happened in virtual machines will affect host operating systems or hypervisors. These

events may also affect each other in certain ways.

Regardless of functions and scales of services, service consumers need reliable and

stable services through service providers. The system reliability is one of the most

important requirements for cloud service providers. Reliability means proper functioning

of the system under the full range of conditions experienced in the field [1]. However, the

definition of reliable service may be different according to different needs. Service

consumers consider reliability as proper functioning, security, and ease of use. Service

providers also consider reliability in service creation, deployment, integration and

separation. The reliability in cloud computing environment also includes providing proper

functioning in different stages in service lifecycle. Service integration and separation allow

service providers to offer both full set of functionality and part of functionality to service

consumers according to service level agreements. The reliability covers various aspects of

cloud computing. The base line of the reliability is to provide functioning services.

3	
		

However, the cloud providers cannot guarantee 100% reliability. For example, Amazon’s

data center in northern Virginia was down because of power outage [2]. This incident is

caused by a weather condition. There is another service outage happened in October 2012,

which is caused by a hardware failure. The failure event happened in a single server, and

was propagated to the entire system through a chain of software and hardware events. If

there is a mechanism, which could monitor servers to prevent this kind of situation, the

service providers should be able to provide more reliable services.

Individual services and integrated services face different issues in cloud computing

environment. The scalability of services in integrated services is different from single

services. For example, communication and dependency may need extra resources for

integrated services. In order to ensure the reliability of integrated services, every

component in an integrated service not only has to perform proper function but also can

cooperate with each other. In order to ensure cooperation among different services,

configuration and management policies from different services must be analyzed and

enforced according to service level agreements. Policy analysis is a must during this service

integration process.

Each service may reside or be deployed in one or more virtual machines. The status

of virtual machines reflects the status of running services. The reliability of virtual

machines is an essential component for service reliability. When virtual machines are down

for any reason, services running on these virtual machines are down. A case worth learning

is Heroku [3]. Heroku is a PaaS for Ruby programming. At the time of service outage,

there are about 44,000 running applications in its services. Heroku runs its service on

4	
		

Amazon’s EC2 instances. This lesson taught Heroku that separating its services into

different availability zone is so crucial for its reliability.

In a virtualized environment, virtual machines created in one physical machine

share resources in this physical machine under service level agreements. Virtual machines

acquire their required resources from the shared physical machine. Although every virtual

machine is independent for users, the entire physical environment is integrated. When users

utilize virtual machines or services, resources are usually allocated through virtual machine

monitors or hypervisors. Virtual machine monitors do not only allocate resources but also

keep track of execution status for virtual machines. System events in virtual machines can

be system calls, errors, software failures or system critical failures. Errors and failures are

critical events. System critical events may affect the health of virtual machines. Sometimes,

system critical events may also affect the reliability of the entire virtualized environment.

When one virtual machine crashes, physical machine needs computing and storage

resources to restore the crashed one. Restore processes do need extra resources other than

running a stable virtual machine. In order to increase the reliability of virtual machines,

there must be very effective mechanisms in cloud systems to either avoid system failures

and faults or adjust systems so that more serious failures and faults can be prevented.

5	
		

1.2 Potential Contributions of the Proposed Research

I developed an autonomous agent architecture using knowledge-augmented

temporal logic and filtered-multi dimension neural network for improvement of reliability

of cloud services. The knowledge-augmented temporal logic utilizes semantic extension to

analyze dynamic attributes of entities and dynamic relationships between entities. The

semantic extension provides knowledge supplements for logical reasoning. The temporal

logic filter is implemented in the neural network framework to select sufficient attributes

as input of hidden neurons. A novel reverse pattern tree data structure is also developed.

The reverse pattern tree provides efficient insertion, search and compression functions for

event pattern learning and recognitions. The filtered-multi dimension neural network

provides more accuracy on multi-feature sequential event pattern predictions.

6	
		

CHAPTER 2: LITERATURE SURVEY

2.1 Reliability in the Cloud

In large distributed systems, such as cloud computing systems, reliability is one of

key characteristics in both system design and implementation. Cloud computing

incorporates the computation ability of distributed systems and ease access of the Internet.

Characteristics of cloud computing include service oriented, loose coupling, strong fault

tolerant, business model, ease use, TCP/IP based, high security, and virtualization [4]. The

fault tolerance is one of the most important features for cloud computing. The lack of error

and fault handling coverage has been shown to be a drastic limit to dependability

improvement [28]. Reliability of cloud computing depends on the ability of fault tolerance

[27]. Services running in cloud usually run for weeks or even longer. During the runtime,

there may be faults or errors happen in systems. If there is any fault happens, failure

transactions usually will be roll back. Because there is almost no dependency between two

transactions in cloud computing, failure transactions will not affect other transactions.

Faults in cloud computing can be categorized as provider-inner faults, provider-

across faults, provider-user faults, and user-across faults [4]. If a fault happens in provider

side and services are not urgent, this provider may restart services or start back-up services.

If services are urgent or critical, the fault prevention is more important than fault recovery.

When a fault occurs among providers, the transaction will be cancelled and return an error.

The transaction will be redirected to other providers through load balancer. This type of

faults does not occur very frequently. Between providers and users, the situation is more

7	
		

complicated. There are so many factors can cause faults, such as network failure, browser

crush, request time out or hacker attacks. When users are facing these types of faults, they

usually resubmit their requests. However, if there is any key element involved in faults or

errors, additional action may be needed to deal with system logs. If there is anomaly

behavior occurred in faulted nodes, these nodes may need extra attention from cloud

system protection and security point of view. Through the cloud platform, users not only

connect with service providers but also share resources and activities with other users. In

this situation, users manage their own critical resources. Unsafe security management

configurations may cause unsafe access to critical resources. This is a critical issue in cloud

computing systems. Service providers need to provide such functionality to help users to

analyze their configurations.

Faults can also classified into categorizes according to features of faults [5]. Certain

faults are caused by natural phenomena without human participation. This type of faults is

natural faults, such as production defects. Natural faults also include internal and external

faults. Internal faults are due to natural processes that cause physical deterioration. External

faults are due to natural processes that originate outside the system boundaries and cause

physical interference by penetrating the hardware boundary of the system or by entering

via use interfaces. Other faults are all human-made faults. Human-made faults include

malicious faults and nonmalicious faults. Malicious faults occur in either system

development process or during directly use of system. Both of these types of malicious

faults are with object to cause harm to the system. Nonmalicious faults are without

malicious objectives. Nonmalicious faults can be further categorized into two classes:

8	
		

nondeliberate faults and deliberate faults. Nondeliberate nonmalicious faults are due to

mistakes occurs in the entire software life cycle. Developers, operators, maintainers can

make mistake in any time. This type of faults is hard to prevent. Deliberate nonmalicious

faults are caused by wrong or bad decisions. These bad decisions are made either

accidentally or intended. Intended bad decisions are made because of lack of professional

competence. Therefore, nonmalicious faults also fit into two types: accidental faults and

incompetence faults. Malicious faults are created to fulfill malicious users’ objectives.

Malicious faults are categorized into two classes: malicious logic faults and intrusion

attempts. Malicious logic faults can occur during the development processes, such as

Trojan horses and logic bombs, and operation processes, such as viruses and worms.

Intrusion attempts are performed by malicious users, who try to access confidential

information or get unauthorized rights during the operation processes. Intrusion attempts

can be logical and physical. In order to prevent and avoid system faults in cloud computing

systems, above information is useful to clarify system design objectives.

Correct service is delivered when the service implements system functions [5]. A

service failure is an event that causes delivered service cannot provide correct service. A

service failure is a transition from correct service to incorrect service. Authors in [5] also

categorized system failures into different categories: domain, detectability, consistency,

and consequences. In domain category, failures contain content failure, early timing failure,

late time failure, halt failure, and erratic failure. Every type of failures focuses on different

aspects of system abnormal behaviors. In order to prevent system failures, we may need a

unified framework for most of these types of system failures.

9	
		

In traditional software reliability engineering, there are four main approaches to

build a reliable software system. These four approaches are fault prevention, fault removal

[30], fault tolerant, and fault forecasting [29]. However, in cloud computing environment,

large-scale complex cloud applications only accept fault-prevention techniques and fault-

removal techniques to develop fault-free software systems [7]. In paper [7], authors present

a cloud application component ranking framework to build fault-tolerant cloud

applications. The large scale cloud applications involve large number of components.

Failures of these components affect reliability of cloud applications directly. The idea of

presented framework in this paper is to find most reliable critical components in order to

build reliable cloud applications. Based on the 80-20 rules, authors identify that the

reliability of software system can greatly increase by eliminate small part of faults in the

most important cloud application components. The paper also presents two ranking

algorithms to identify significant components from the huge amount of cloud components

and an optimal fault-tolerance strategy selection algorithm. Fault tolerance can increase the

overall system reliability of cloud applications. One way to improve system reliability is

to employ reliable components that provide equivalent functions to tolerate component

failures. The redundantly devices, which help to maintain system functionality in the

presence of failures, provide additional performance in their absence. In such situations, it

is therefore necessary to employ metrics that take into account both system performance

and reliability [26]. In order to tolerate faults by using redundant components, there are

three well-known fault-tolerance strategies. The first one is Recovery Block [8]. Recovery

Block is structure of redundant program blocks, where secondary blocks is activated when

primary blocks fails. A recovery block fails only when all redundant blocks fail. The

10	
	

second strategy is N-version Programming [9]. It is also known as multiversion

programming, which provides multiple functionally equivalent modules. These modules

generate result independently. The final result is selected according to majority voting. The

third strategy is Parallel strategy. Similar to N-version Programming, modules in Parallel

generate result independently. The first response of all results is selected as the final result.

Component selection strategies use redundant components to form reliable could

applications. Under these strategies, service providers need more resources to build

services, which have lower cost efficiency. The paper [7] also proposes an optimal fault-

tolerance strategy selection algorithm, which calculates the cost, response time, and the

aggregated failure probability values of different fault-tolerance strategy candidates. The

output of proposed algorithm is the strategy candidate with best failure probability

performance. The proposed framework in [7] does not increase the reliability of each

component of services. However, this framework increases the overall reliability of entire

service through combinations of redundant service components. The drawback of this

framework is service providers need more resources to build complete services. And

furthermore, the more critical components a service has, the more redundant components

are needed to tolerant faults.

Most cloud service providers deploy their services in large datacenters. All of

services are running in virtual machines that reside in physical machines. There are usually

multiple virtual machines running in one physical machine. When a virtual machine is

initialized, the administrator or virtual machine monitoring system gets resources from a

resource pool to build requested virtual machine [10]. In the paper [11], authors provide a

11	
	

discussion on parametric sensitive analysis of availability of virtualized servers. The result

of this analysis shows that host failures are the most important factors that affect mean time

to failure of a virtual machine subsystem. Furthermore, the failure rate of applications is

the major concern of capacity oriented availability. Both mean time to failure of virtual

machine subsystems and capacity oriented availability are considered as a part of reliability

of entire virtual system in a virtualized environment.

Reliability is the proper functioning of the system under the full range of conditions

experienced in the field. In order to increase the reliability of systems, there must be some

mechanisms in systems can either avoid the system failures and faults or adjust systems to

prevent the more serious failures and faults. Of cause, there is no system can ensure 100%

reliability. System faults always happen in the entire computer systems, including cloud

computing systems. There are researchers study architecture-based reliability prediction

techniques, in order to increase reliability of computer systems [31, 32, 33, and 34]. The

architecture-based reliability prediction tries to increase the reliability in the architecture

design stage. In architecture-based reliability prediction design, the system usage profile

modeling is one of approaches.

System usage can be described in terms of the expected sequences of system calls,

which may influence the control flow throughout the system. In most of existing

approaches, the system usage profile is encoded into transition probabilities between the

states or scenarios of the system model [36, 37]. In [35], authors present a reliability

modeling and prediction technique that considers the relevant architectural factors of

software systems by explicitly modeling the system usage profile and execution

12	
	

environment and automatically deriving component usage profiles. The transition

probability is hard to get in the architecture design stage. However, it is easy to get

statistical data in the runtime. And the system event logs record most of system events that

include system fault related events. We can trace system faults through system event logs.

There are always system critical events happened before system enter fault states.

Therefore, if a system could predict system critical events, it can predict system faults

before they really happen. Researchers dig into this problem from different aspects.

Following study presents several techniques for system fault monitoring.

Some approaches are implemented with hardware support, such as [12]. Authors

present a virtual lockstep implementation, which is software based, yet capable of using

existing hardware features to enhance performance and fault detection capabilities. By

modifying the KVM hypervisor to support virtual lockstep, the error detection is enhanced

by verifying the state of the virtual processor at the deterministic VM exit boundaries. The

replica virtual machine is used to accept the same inputs as the original virtual machine

and provide out for error detection. The replica virtual machine maintains the same CPU

state as the original virtual machine. Errors are detected by comparing both the outputs

generated and the input types, which indicate calculation errors or significant divergences

in execution. The experiment results show the virtual lockstep model introduces some

runtime performance overhead to the system. The overhead rate is various based on the

specific workload of virtual machines. The error detection of this virtual lockstep model

only focuses on the fault execution of instructions in virtual machines, which ignores other

errors and faults, such as errors of the instructions and application faults.

13	
	

Some approaches focus on software and operating system level [13, 14, 38].

Authors of the paper [13] present a progress monitoring-based fault detection mechanism

to detect and recover the driver VM from faults to enhance the reliability of the whole

system. In hypervisor Xen architecture, an isolated driver model is introduced for I/O

device virtualization. An isolated driver domain (IDD) is a special purpose guest domain

for directly handling of I/O device accesses. In this reliability enhanced Xen, all the

requests of guest domains are forwarded to their corresponding IDDs. The IDD is build

based on commodity operating system, such as Linux. Therefore, failure happened in the

I/O device driver will not affect the entire system. In order to detect faults and errors,

authors also present a detection module called Driver VM Monitor (DVM), which

periodically detects the fault states of IDDs. The DVM is reside in the hypervisor and gets

support from the virtual device drivers. When the fault detection function is invoked, the

DVM logs the information of the I/O ring and physical IRQ (PIRQ). An I/O ring is a

circular queue data structure containing descriptor information, is used to communicate

between the front-end and back-end drivers. Front-end drivers are drivers reside in the

VMs. Back-end drivers reside in IDDs and communicate with native device drivers. DVM

mainly refers the I/O ring pointer information for fault decision, and the PIRQ is used for

a more detailed inspection. If there is a fault occurred in an IDD, a recovery mechanism,

called Driver VM Handoff (DVH), transparently redirects I/O requests and responses of

the fault IDD to another IDD. The proposed monitoring module and recovery mechanism

provide a fault detection and recovery on isolated device drivers.

14	
	

Haibing et al. [14] introduce an Event-Based Polling model (sEBP), which uses

existing system events to trigger a regular packet polling such that network interrupts are

eliminated from the critical I/O paths in the virtual environment. In the sEBP architecture,

events are retrieved by an event collector. An event manager is used to throttle the number

of effective events out of the event poll. The event manager consists of three sub modules:

rate controller, compensating timer, and cross-VM event sharing. The proposed model can

be implemented in either guest OS in Virtual machine or hypervisor. The sEBP guest OS

implementation collects system events in the guest VM. Another implementation, which

sEBP is built in the hypervisor, collects VM_EXITs from various VMs as events. These

two implementation methods fulfill two different administration goals.

 Traditional techniques, such as heartbeat [43], have been frequently used to check

the aliveness of physical and virtual machines. Statistical learning methods are also used

to detect the system fault, such as [15, 16, 44, and 45]. Authors in [15] present a fault

detection framework for virtualized environments. This framework consists of two phases:

a training phase and a detecting phase. The training phase use historical data to train a

Bayes classifier. The train data is collect from multiple levels of virtualized environments.

In the second phase, the trained model is used to detect runtime system faults. In such

virtualized environment, different levels generate different system faults. The proposed

framework concentrates on three levels; application server level, operation system level,

and virtual machine monitor level. The application server level is also considered as the

virtual machine level. In [15], the application server level extractor is a filter resides in the

application to collect application behaviors. The OS level extractor monitors OS events

15	
	

and faults. The VMM level extractor collects adjustment events of virtual machines.

Authors utilize the Bayes classifier on features that are extracted from multiple levels. The

trained model is used in prediction, which is not mentioned in the paper.

Authors in [16] detect aging phenomenon by conducting experiments in physical

and virtual machines and identify the differences between the two, and propose a feature

code-based methodology for failure prediction through system call. The aging problem is

caused by a large number of repeated executions. Authors also define aging rate as the

metric of decreasing trend which quantifies the variation of system resource usage. The

proposed prototype is implemented in the VMM layer to predict the rejuvenation time.

2.2 Temporal Logic and Policy Analysis

Temporal logics have experienced rapid development in recent years. Various

properties for temporal logics’ complexity and axiomatizations are studied [18, 19 and 20].

Logical expression capability makes temporal logic a good tool for system specification

and verification. Recently, temporal logics are used more in reasoning and planning as well

[21, 22, and 23], especially in policy specification reasoning and analysis [24]. In

distributed environments, one entity may carry multiple attributes and these attributes can

have different definitions in different domains. The complexity of an information domain

becomes a barrier for specification and verification of policies. There are two major

categories of temporal logics that can be used to analyze temporal attributes. One is liner-

time temporal logics; the other is branching-time temporal logics. In the first category [25

and 46], information is represented as constraints. In [25], authors implement a Dynamic

Linear Temporal Logic (DLTL) to specify and verify systems with communicating agents

16	
	

and interaction protocols. Semantic facts of agent communication are specified by means

of rules and constraints. In [46], authors describe a logical framework for Temporal Action

Logic (TAL) that specifies and verifies interacting systems. This framework provides a

simple formalization of communicative actions in terms of their effects and preconditions

and the specification of an interaction protocol by means of temporal constraints. Another

temporal logic [47] achieves effectiveness and simplicity through reduction of information

from information domains. Authors present an A-LTL that inherits some properties from

Liner-time Temporal Logic (LTL), including constraints. Interval Temporal Logic (ITL)

[48, 49] is another linear temporal logic working over finite time intervals. The

Propositional Interval Temporal Logic (PITL) [50, 51] is an extended Interval Temporal

Logic, which considers semantic information through past operators. However, if some

information elements cannot be expressed by logic operators, the accuracy of reasoning

may be compromised. In [52], a Fuzzy Temporal Logic is proposed. The fuzzy temporal

constraints are used for simple cases, where constraints are composed in a single interval.

Constraints usually play as a supplement to logical reasoning, which contains limiting

conditions from an information domain. Borrowing from this idea, I propose a semantic

extension as an addition to temporal logic so that hidden and implicit relationships can be

expressed and incorporated in temporal analysis. Meanwhile, a balanced point of time

complexity and space complexity can be achieved through proper usage of this semantic

extension.

Research in policy conflict analysis has attracted growing interest recently as

autonomous and automatic system management has become popular. Dynamic policy

17	
	

analysis also has started to be studied recently. Logic languages [53, 54] are widely used

in this field. Temporal logic is widely used in different types of policy analysis frameworks.

For example, First-order Temporal Policy-analysis Logic (FTPL) [53] is used to check

whether a SPKI policy state satisfies a property specified in FTPL. This property check can

be applied to static properties and static policies, which is insufficient for collaboration

activities. In [54], Event Calculus is implemented in a logic-based policy analysis

framework to represent and perform reasoning about inconstant properties of a domain

regulated by policies. However, this framework can only statically analyze policies when

it monitors runtime policies. Other policy analysis mechanisms [55, 48, and 56] also focus

on static conflict analysis.

Dynamic policy analysis is growing in recent years. In [17], authors present an

approach implemented in their DiffServ QoS management platform to analyze policy

conflict through Event Calculus. They argue that application-specific conflicts are dynamic

and can only be determined at run-time, because such conflicts depend upon current status

of the system. They also illustrate several types of potential conflicts that may arise in

dynamic resource management for QoS support. An event-driven conflict detection

mechanism is introduced in [58], which uses a conflict database to store all possible

conflicts. If there is an event that may cause a conflict, this mechanism will check

corresponding database entries. These dynamic conflict analysis mechanisms can monitor

policy sets during run-time, but they cannot trace implicit attributes in policies and dynamic

relationships among these attributes. In [59], authors use a set of conflict-related Boolean

rules to verify policies in order to discover and resolve IPSec policy conflicts. In [60],

18	
	

authors propose a unified model to represent and encode QoS policies for efficient conflict

analysis. In [61], authors propose a logical reasoning framework for policy analysis in

mobile social network. This framework focuses on the analysis of geological location

information, which also changes over time. However, it cannot analyze policies from other

domains with other types of dynamic information. So I propose a general framework that

can be applied to most types of dynamic policy analysis.

Meanwhile, logical agents have been studied for decades and implemented in many

different research fields. In [62], authors present an agent-based conceptual and

computational model of consumer decision-making based on culture, personality and

human needs. These needs are supplied in a knowledge base to drive the consumer toward

a specific product. In [63], authors present an Agent-Based Modeling (ABM) as a viable

tool to account for the interaction of local and environmental factors to determine

organizational success. Again, a comprehensive knowledge base is constructed to help

decision-making. In [64], authors describe an analysis and simulation of meta-reasoning

processes using an agent architecture for strategic reasoning in naval planning. In these

papers, a knowledge-augmented logical agent can not only make decisions but also perform

logical reasoning and data analysis to support decision-making. Therefore, I will also

incorporate knowledge into logical reasoning and a knowledge base into our policy

analysis framework to help process implicit attributes and relationships.

2.3 Event Learning and Prediction

System event monitoring collects statistical data of system events. Through

machine learning techniques, we can find some patterns that always appear when system

19	
	

faults occur. Statistical data is used in mining and detecting fault patterns, [39, 40, 41, and

42,] mined multivariate time series by recognizing them as weighted graphs to monitor the

graph sequences for failure detection. System critical event prevention is possible through

prediction of system critical event. If there is a high possibility of system critical events,

cloud computing systems can try to avoid system critical events. There are a lot of event

pattern learning and prediction frameworks. But Agrawal and Srikant proposed the first

sequential pattern mining problem in 1995 [57]. Agrawal also presents an Apriori-based

method which is Generalized Sequential Pattern algorithm (GSP) in [82]. The GSP

algorithm screens all length-1 candidates in the database. Those sequences with support

less than the minimum support are filtered out. Then the algorithm screens the database

length-k times to collect support count for each candidate and generates candidate length-

(k+1) sequences from length-k frequent sequences using Apriori. GSP algorithm generates

a huge set of candidate sequences in multiple database scans which is inefficient for large

databases.

Cloud computing platforms provide various services, such as infrastructure as a

service (IaaS), platform as a service (PaaS), software as a service (SaaS) and etc. Most of

these services are managed through configurations and policies. When a user tries to use

two services at the same time, user’s activities have to fulfill both requirements to be

accepted. Conflicts happen during collaboration of services, integration of services and

separation of services. Conflicts of policies or other management requirements prevent

services to provide correct functionalities to users. Furthermore, services may provide

wrong result for users according to conflicted management policies. Therefore,

20	
	

management policy conflict elimination is one aspect of maintain reliability of cloud

computing platform. In order to prevent conflicts in these scenarios, conflict analysis

techniques have been studied.

21	
	

CHAPTER 3: RESEARCH PLAN OVERVIEW

3.1 An Autonomous Agent Architecture for Reliability

In cloud computing, service providers always want to provide reliable services to

customers or service consumers. However, there are obstacles between service providers

and consumers. Customers need customized services with various configurations, these

customizations and configurations make service providers hard to control the stability of

their service, especially from different management domains. Configuration in services are

usually expressed as configuration policies. Therefore, Conflicts between service providers

and consumers is one obstacle that affects the reliability of services in cloud computing

environment.

One of them is policy conflicts when consumers try to integrate multiple services from

different domains. When services from one provider may not fulfill consumers’ needs,

Service consumers have to integrate multiple services from multiple service providers, who

are in different management domains. These service providers set up their own policies

including management policies, control policies, privacy policies, security policies, etc.

Policies from different service providers may not compatible with each other. Therefore,

we need a policy analysis mechanism to find out incompatible parts of policies during the

service integration. In the agent architecture, knowledge base will contain different domain

information and the mapping relation of domain objects.

22	
	

Another obstacle is how to detect abnormal events and predict them during the service

collaboration. In cloud computing environment, although each virtual machine or service

is independent for users, the entire physical environment is integrated. When users are

using services that are running on virtual machines or virtual servers, resources are usually

allocated through the virtual machine monitors. Virtual machine monitors do not only

allocate resources but also monitor status of virtual machines and system events of virtual

machines. System events in virtual machines are system calls, errors, or failures. These

system critical events reflect the status of virtual machines. Sometimes, these system events

also affect the reliability of entire virtualized environment. When one virtual machine

crashes, physical machine needs computing power and storage resource to restore crashed

virtual machine. The restore process does need extra resources rather than running a stable

virtual machine. In order to increase the reliability during the integration, there must be a

mechanism to predict system critical events and prevent them. This mechanism can be

implemented into an agent architecture to fulfill needs of autonomous and efficiency.

To overcome these obstacles, I designed an autonomous agent framework (Figure 1),

which is a customized agent architecture including policy analysis and service critical event

prediction for cloud computing services. This framework monitors service status through

service control policy monitoring and service event monitoring. Control policies and

service event logs are normalized according to domain information in knowledge base.

Policy and event analysis is done by inference engine. Knowledge base contains policy

model and event pattern statistical information. This framework also provides suggestions

according to the result of analysis. Following sections describe major components in this

23	
	

framework. Chapter 4 discusses the policy monitoring and analysis components. Chapter

5 discusses the non-intrusion Log processing components.

Object	Query	
and	Mapping	

Layer

Interaction	
Layer

Knowledge	Base

Service	Examination	Layer

Host	and	VM	
Status	Check

Service	Event	Log	
Monitoring

Service	Policy	
Check

Analysis	Layer

System	
Security	
Analysis

System	
Critical	Event	
Analysis

Conflict	
Analysis

Figure 3.1. Autonomous Agent Architecture for Reliability Monitoring

24	
	

CHAPTER 4: SERVICE POLICY ANALYSIS

4.1 Policy Modeling

4.1.1 General Policy Model
Service collaboration is a clear trend for cloud applications and services over the

Internet. Guarantee for Quality of Service (QoS) is an important yet difficult task to

accomplish among collaborating applications and services. However, different services

have different control and management requirements. When customers try to use multiple

services, the control requirements have to be consistent. For example, a real-time HD video

service requires a large bandwidth for any synchronization or collaboration, and a

messaging service requires low delay and secure transmission for collaboration. These two

services may need to be integrated and work concurrently in a multimedia application. In

order to manage complex requirements between multiple services and service consumers,

policy-based management can be applied and these requirements can be represented in

policies. Policy-based management is an administrative approach to manage system usage

and its governance rules within an information domain. More and more systems have

adopted this policy-based management approach. In a collaborating services environment,

a policy domain (domain hereafter) is a collection of elements and services administered

in a coordinated fashion [1].

Collaborating services can support interactions and coordination between service

providers and individual services, as well as service providers and service consumers.

Different service providers can share their resources and build new services based on

25	
	

existing services. For example, in Figure 4.1.a, domain A contains two services: financial

service A and data service D. Service A requires data service D to provide enough

throughputs. Another domain B contains two services: message processing service B and

data service D. Service B needs data service D to respond to every request within a certain

time limit.

Domai n BDomai n A

Servi ce A

Dat a
Servi ce D

Servi ce B

Dat a
Servi ce D

Domai n BDomai n A

Servi ce A

Dat a
Servi ce D

Servi ce B

a b

Figure 4.1 Service in Different Domain

When these two domains collaborate, they share the same data service D (as illustrated

Figure 4.1.b). At this point, data service D has two policies from service A and service B

respectively. However, different management requirements from these two services are

reflected in different policies in a policy-based management environment. These

requirements may conflict with each other. These conflicts of requirements are usually

reflected in policy rule conflicts. For example, before domain A and domain B collaborate,

they have their own policies to control services and have their own data services. I call the

policy in domain A “Policy 1”, and the policy in domain B “Policy 2”. In “Policy 1”, data

service D has to provide enough throughputs for service A and the maximum throughput

26	
	

is 2MB/s. This maximum throughput value is adjustable according to the number of page

views in service A. In “Policy 2”, data service D has to respond to any request from service

B within 100 time units (0.1 second). Page view on service A is a dynamic and hidden

factor, which affects requirements from service A. Before collaboration, data service D

provides certain throughput for service A only. Therefore, service D can use all of its

capacity to serve A.

In a policy-based management system, a policy is a statement that describes what

entities can do and how these actions can be performed. In other words, a policy describes

several actions and information about these actions. For each action, there is an executor

or a type of executors, a target or a type of targets, and certain constraints, which constrain

and describe certain aspects of the action. Each executor or target is represented by a set of

attributes. An attribute is a characteristic of an entity. In most policy languages, users can

define very comprehensive policies containing different actions and their constraints.

Although one policy is enforced as an entirety, it can be decomposed into policy segments

for analysis. I assume that one segment describes one complete action with one executor,

one target, and its context (in the form of constraints). Therefore, a policy segment is

represented as a tetrad (Executor, Target, Action, and Context). Previously, a policy model

for collaborative services is introduced in [70]. That model is used to represent policies

formally. There is no domain information in that policy model, which makes policies

independent with their domains. However, in the policy analysis, we have to incorporate

domain information into the analysis process. Therefore, I extend the policy model to make

it more general and make it having a dynamic capability.

27	
	

Definition 1: Attribute (α) is a piece of information representing a characteristic of an

entity. For example: A user’s ID number is an attribute.

Definition 2: Entity (E) is a collection of attributes describing a complete element in

an information domain. E={α1,a2,a3… an};

This set of attributes may be independent or interrelated. An entity can also be a set of

entities. I use capital letters to represent entities. A user is an entity in an information

domain; a file is also an entity in an information domain.

Definition 3: Relationship (R) is represented by a predicate of the Cartesian product

of two entities: R=P(E×E’).

If R is a relationship between entity A and D, then R is a predicate of A×D. P() is a

predicate. The value of R represents whether the relationship holds. The Cartesian product

of A and D is the set of all ordered pair (val(α), val(β)), where α ∈A AND β∈D, and val(α)

and val(β) are corresponding values of a and β. The value of predicate P is determined by

selected pairs (val(α), val(β)) in the entire ordered pair set. For example, if attributes a and

β contain two numerical values, the relationship R is hold when val(α)=val(β) is hold. The

relationship is Equal of two numerical values.

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑞𝑢𝑎𝑙 𝛼 × 𝛽 = 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓 𝛼, 𝛽 𝛼 ∈ 𝐴 ∧ 𝛽 ∈ 𝐷 ∧ 𝑣𝑎𝑙 𝛼 = 𝑣𝑎𝑙 𝛽

Definition 4: Action is a function on a relationship between related entities with

constraints. An action is denoted as action(R,{x}).

28	
	

In an action, the input is a relationship between two entities and constraints effective

on the relationship. The output is an altered relationship. The symbol R represents a

relationship between two entities. The symbol {x} is a constraint set for this action. This

constraint set {x} contains zero or more constraints. Different actions concentrate on

different relationships of between entities. For example, action() is an action that A can

change the value of attribute β of entity D. It is represented as action(R,{x}). The

relationship R between A and D indicates there is one attribute a of entity A is equal to one

attribute β of entity D (R=Equal(A×D)). The constraint x is the value range of attribute a.

When this action is performed, the entity A changes the value of its attribute a within the

range that constraint x states. In order to maintain the true value of relationship R, the

attribute β also needs to be changed to the new value of attribute a.

Definition 5: Executor is the source entity of an action, which is the E in the

corresponding relationship. E=Executor={α}. Attributes in an Executor entity initiates

changes to break relationships.

Definition 6 Target is the recipient entity of an action, which is the E’ in the

corresponding relationship. E’=Target={α}; Attributes in a Target entity respond to

changes to maintain the relationship.

Definition 7: Constraint is restrictive information or conditions on entities and actions.

Constraints of a policy usually include restrictive information or conditions from the

system environments or policies. The constraint restricts the executor, target, and/or action.

In this policy model, I separate the constraints into two types: one type of constraints

29	
	

restricts actions, and another type of constraints restricts entities. I consider the second part

of constraints as a part of the Context.

Definition 8: Context in a policy segment includes constraints on entities and

environmental constraints.

A policy segment describes a single action, which contains only one executor, target,

action, and context. In each policy segment, an action represents a function on a

relationship between its executor and target. Therefore, actions work on mappings of

attributes between executors and targets, which are legitimate entities in a policy domain.

Executors and targets consist of sets of attributes.

Definition 9: Policy Segment is the smallest functional policy unit in a policy. A

segment is a tetrad: Segment= (Executor, Target, Action(R,{x}), Context).

The above definitions are common knowledge. I define them in order to formally

present a policy in the following sections.

4.1.2 Policy Representation Using Temporal Logic
“The primary feature of a logic theory is its order, which defines the domain of all

formulae described by the logic.” [64]. Propositional logic is based on a set of elementary

facts connected by a set of logical operators. It indicates a Boolean value set. First-order

logic [71] is an extension of propositional logic. Temporal logic assumes that facts hold at

particular time periods, or before or after certain time points, and these time periods and

points are ordered [72]. In order to incorporate the domain information with the policy

analysis, I proposed a semantic extension to the temporal logic. So implicit relationships

30	
	

and other hidden information can be expressed and incorporated in the temporal analysis.

I can use temporal logic to express policies. The described policies in the previous section

can be expressed as the following logical expressions.

“Policy 1” can be expressed as:

{𝐴, 𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 Θ, 𝛼 , [𝑝𝑒𝑟𝑚𝑖𝑡 𝐴, 𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 Θ, 𝛼

= 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐴 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 𝐷 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 𝛼 < 2000𝐾𝐵/𝑠]}

 In this logical expression, A is the executor; D is the target; requestthroughput(R,

α) is the action that executor A performs on target D; Θ is the relationship between executor

service A and target service D; α is the number that A needs to request. In this policy, the

relationship Θ means there are two attributes in A and D is equal to each other

[𝑝𝑒𝑟𝑚𝑖𝑡(𝐴, 𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(Θ, 𝛼)) = 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐴 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 𝐷

∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 1000𝐾𝐵/𝑠𝛼 < 2000𝐾𝐵/𝑠]

is the context within “Policy 1”. Predicate permit(A,D,requestthroughput(Θ, α)) is true

when A is allowed to perform action requestthroughput(Θ, α) on D. Context information

is placed in square brackets “[]”. According to “Policy 1”, if service A and data service D

both belong to “DomainA”, when service A needs more bandwidth, service A can request

certain amount of throughput denoted as a from data service D for itself (α must be smaller

than 2000KB/s).

“ Policy 2” can be expressed as:

31	
	

{𝐵, 𝐷, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 Φ, 100 , [𝑝𝑒𝑟𝑚𝑖𝑡 𝐵, 𝐷, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 Φ, 100

= 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐵 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ 𝐷 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒N < 𝑅𝑒𝑠𝑝𝑜𝑛𝑒O)]}

 Here, B is the executor; D is the target. The executor service B can perform action

requiredresponsetime(Φ,100) on the target service D. This action is used to set the response

time requirement in service D. Because the parameter in this action is a constant value, this

action reflects that the requirement of service B always stays at 100 milliseconds. The

relationship Φ represents Response_time in D has to be smaller than the response time

requirement from B.

[𝑝𝑒𝑟𝑚𝑖𝑡 𝐵, 𝐷, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 Φ, 100 = 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐵 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ 𝐷

∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒N < 𝑅𝑒𝑠𝑝𝑜𝑛𝑒O)]

is the constraint in “Policy 2”. In this policy, there is only one response time requirement

between service B and data service D. According to this policy, the response time

requirement is a fixed value. In other words, unless data service D cannot provide response

within the required time limit, there is no violation against with this policy. The required

response time is denoted as ResponseB; the response time in data service D is denoted as

ResponseD. Service B cannot change the response time setting in data service D. Predicate

permit() evaluates whether executor B can perform action requiredresponsetime(Φ,100)on

target D.

In the above logical expressions, there is no time or time-dependent information on

executors, targets, actions or constraints. If there is time-dependent information in a policy,

it is difficult to be represented by first-order logic only. For example, in a situation such as

32	
	

“service A is using data service D”, the term “using” is the critical part, which expresses

the action being preformed. Temporal logic can be used to represent time-dependent

situations. It has been broadly used to cover temporal information in many logical analysis

methods. As an extension of first-order logic, temporal logic can also express policies.

Temporal logic adds time elements into expressions without changing the semantics. Then,

the two policy examples can be expressed as follows.

Policy 1:

{𝐴, 𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(Θ, 𝛼), [𝐻𝑜𝑙𝑑𝑠𝐴𝑡(𝑝𝑒𝑟𝑚𝑖𝑡(𝐴, 𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(Θ, 𝛼)), 𝑡)

= 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐴 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 𝐷 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 ∧ 1000𝐾𝐵/𝑠 < 𝛼 < 2000𝐾𝐵/𝑠]}

 Time information is added to “Policy 1”. This is a constraint that does not affect

the format of the general policy model. The time information becomes another dimension

that is denoted as t in logical expression. In this expression, if A and D belong to DomainA

at time t and 1,000KB/s<α<2,000KB/s, the predicate permit() holds true. Figure 2 (a)

illustrates the range of throughput that can be requested by A.

Policy 2:

{𝐵, 𝐷, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 Φ, 100 , [𝐻𝑜𝑙𝑑𝑠𝐴𝑡(𝑝𝑒𝑟𝑚𝑖𝑡 𝐵, 𝐷, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 Φ, 100 , 𝑡)

= 𝑡𝑟𝑢𝑒, 𝑖𝑓𝑓	𝐵 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ 𝐷 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒N < 𝑅𝑒𝑠𝑝𝑜𝑛𝑒O)]}

In this expression, if B and D belong to DomainB at time t, the predicate permit() holds

true.

33	
	

According to the above logical expressions, there is no conflict between these two

policies. In Figure 4.2(a), D’s throughput for A will change between 1,000KB/s and

2,000KB/s; in Figure 4.2(b), D’s response time for B will be a constant yet smaller than

B’s requirement. These two policies are defined on different attributes of data service D.

R
es

po
ns

e
tim

e

Time

ResponseB

Th
ro

ug
hp

ut

Time

1,000 KB/s

ResponseD <100ms

Throughput
required by A

(b)

2,000 KB/s

(a)

100ms

Figure 4.2 Throughput and Response Time for Data Service D

34	
	

Figure 4.3 Relationships between Two Policies over Data Service D

It seems that there is no conflict between these two policies. However, if I take a closer

look at the environment of this collaboration, I discover that service A cannot always

increase its throughput requirement. Otherwise, data service D cannot respond in time to

service B. Figure 4.3 shows this situation with these two policies. In this diagram, when

the number of users for service A increases (as shown in Figure 4.3 (c)), the throughput

requested by service A also increases until the throughput reaches 2,000 KB/s (as shown in

Figure 4.3(b)). Along with the increase of throughput requirement, data service D has to

use more resources to support service A. At the same time, data service D cannot avoid

increasing its response time for service B, because it does not have enough resources for

service B. As shown in Figure 4.3 (a), at time t, the response time of data service D reaches

the upper limit of the requirement from service B, but it will still increase. At time t’ the

N
um

be
r o

f U
se

rs

Time

R
es

po
ns

e
tim

e

Time

t

Th
ro

ug
hp

ut

Time

1,000 KB/s

2,000 KB/s

Throughput
required by A

Number of users
in service A

100ms

>100ms
Response time

in D
(a)

(b)

(c)

t’

35	
	

response time has already exceeded the requirement of service D. The conflict between

these two policies is caused by hidden information. The hidden information does not shown

in policies explicitly. Therefore, I introduce a semantic extension that contains domain and

environment information to provide extra support for logical reasoning.

4.2 Knowledge-Augmented Temporal Logic

4.2.1 Semantic Extension
Logical agent is useful in policy conflict analysis, since it can provide automatic and

autonomous analysis. There are four major components in an agent architecture: inference

engine, knowledge base, sensor, and actuator. Semantic extension is an extended part of

the knowledge base. A semantic extension contains attributes, relationships and dynamic

constraints among attributes and relationships for an information domain. There is not only

information changing along with others, but also information changing over time. This

dynamic information imposes complications on logical analysis, and a traditional

knowledge base is not enough for logical reasoning in policy conflict analysis with

dynamic attributes and relationships. As a part of information, certain type of attributes

that changes overtime, I define this type of attributes as dynamic attributes, such as

temperature, throughput, and response time. The semantic extension provides dynamic

information and supports logical reasoning. Semantic extension is a formal representation

of related information abstracted from an information domain, which includes attributes,

entities, relationships and constraints. Relationship is an important part of a semantic

extension, which works on a Cartesian product of two entities.

36	
	

))}()((|),{(
}){}({

βββ

β

valavalDAaaiff
trueaEqual

=∧∈∧∈

=×=Θ

If Θ is a relationship between Service A and Data Service D, Θ is a predicate on A×D.

A represents the set of attributes for Service A; D represents the set of attributes for Data

Service D. Equal is the predicate. The value of Θ is whether the relationship holds.

For example, during the collaboration between DomainA and DomainB, A and D have

a relationship: relationship Θ (A’s throughput requirement equals to D’s throughput

provided for A); B and D have a relationship: relationship Φ (D’s real response time is less

than B’s response time requirement). Relationship Θ can be expressed as the following

form.

)..(
).,.()(

DomainADDomainAADthroughputDAroughputrequiredthAiff
throughputDroughputrequiredthAEqualDAEqual

∈∧∈∧∈∧∈

=×=Θ

In this logical expression, relationship Θ is consisted of predicate on two attributes:

A.requiredthroughput and D.throughput. These two attribute belong to entities A and D

respectively. In Policy 1, service A can change its throughput requirement, which has to be

fulfilled by Data Service D. According to this policy, the attribute throughput in D has to

be equal to the attribute requiredthroughput in A under certain conditions. I use Equal(A×D)

to represent this requirement from Policy 1. Since the relationship Θ is consisted of a

predicate over two numeric attributes, there are three situations Equal(A×D), Larger(A×D)

and Smaller(A×D) between two attributes. Equal(A×D) can be defined as the following

form:

37	
	

))..(
)/2000./1000(

..|.,.(
..(()(

throughputDroughputrequiredthADomainADDomainAA
sKBroughputrequiredthAsKB

DthroughputDAroughputrequiredthAthroughputDroughputrequiredthAiff
throughputDroughputrequiredthAHoldsAtDAEqual

=∧∈∧∈∧

<<∧

∈∧∈∀

==×

The Equal(A×D) represents a relationship with some constraints between two entities

A and D. Under constraint A.requiredthroughput=D.throughput, relationship Θ becomes

the relationship Equal. Constraint of a relationship will be discussed in section 4.2.

Relationship Φ is between Service B and Data Service D. D should have a smaller

response time than the requirement from B, which means the required response time from

B is larger than the response time in D.

)(
).,_.()(

DomainBDDomainBBiff
ereponsetimDmeresponsetirequiredBLargerDBLarger

∈∧∈

=×=Φ

In this logical expression, relationship Φ’s value is also consisted of a predicate over

two attributes: B.required_responsetime and D.responsetime. In Policy 2, service B has a

response time requirement, which is a fixed value. This value is the maximum response

that can be accepted by service B. Therefore, the response time in Data Service D must be

less than this value. The requirement of this policy can be defined in the following logical

expression:

𝐿𝑎𝑟𝑔𝑒𝑟 𝐵×𝐷

= 𝐻𝑜𝑙𝑑𝑠𝐴𝑡 𝐵. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒

> 𝐷. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒, 𝑡 		𝑖𝑓𝑓∀𝐵. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒, 𝐷. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒|𝐵. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑝𝑜𝑠𝑛𝑒𝑡𝑖𝑚𝑒

∈ 𝐵 ∧ 𝐷. 𝑟𝑒𝑠𝑝𝑜𝑠𝑛𝑒𝑡𝑖𝑚𝑒𝑒 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ 𝐷 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 ∧ 𝐵. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒	

> 𝐷. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒

38	
	

The relationship Larger is built on two attributes B.required_responsetime and

D.responsetime. This relationship is a specific situation of relationship Φ with a constraint.

Only when the constraint is hold, the relationship Φ is Larger.

When two relationships Equal and Larger are held, policies can be enforced on A, D

and B.

The following temporal logic expressions illustrate A’s attributes to reflect possible

attribute changes in the above relationships:

))),.,(,,((
),(

)2000.1000(),.(,

troughputrequiredthAoughputrequestthrDApermitHoldsAt
tEqualHoldsAt

roughputrequiredthAtroughputrequiredthAincreasedtTt

Θ⇒

=Θ⇒

<<∧∧<∀

In this logical expression, increased(A.requiredthroughput,t) is a predicate, which

means attribute A.requiredthroughput is increased at time t. After the increase, the

A.requiredthroughput is still smaller than 2000. Thus relationship Θ can still be Equal. So

I should permit the action requestthroughput (Θ,A.requiredthroughput) to increase

D.throughput. The predicate Permit(A,D, requestthroughput (Θ,A.requiredthroughput)) is

true when A can perform action requestthroughput (Θ.A.requiredthroughput) on D.

))),100,(,,((
),(

)100_.()._.(,

tsponsetimerequiredreDBpermitHoldsAt
tLargerHoldsAt

meresponsetirequiredBmeresponsetiDmeresponsetirequiredBtTt

Φ⇒

=Φ⇒

=∧>∧<∀

 In this logical expression, B.required_responsetime is larger than D.responsetime,

and B.required_responsetime equals to 100. At time t, relationship Φ is Larger. Then at

time t, the predicate permit(B, D, requiredresponsetime(Φ,100)) can hold.

39	
	

In service collaboration, certain relationships are implied in policies to control

information and resource sharing. A relationship between two entities is a relationship

between two attributes or two attribute sets from these two entities. However, certain

attributes will affect relationships, and some of them will affect relationships indirectly and

implicitly. So certain constraints need to be established for this type of effects.

Definition 10: When an attribute affects a relationship and makes it change I call this

attribute an explicit attribute. Explicit attributes define a set of attributes that can initiate

certain changes to a relationship. The superscript in a logical expression denotes an explicit

attribute.

Definition 11: When an attribute is affected by a relationship, I call this attribute an

implicit attribute. Implicit attributes define a set of attributes that are derived from this

relationship, and these attributes are affected by a change to this relationship. Implicit

attributes are denoted as suffixes.

For example, ΘA.requiredthroughput
D.throughput indicates that if the attribute

A.requiredthroughput changes, the relationship Θ will not be held. In order to keep this

relationship, the attribute D. throughput will have to change. If A.requiredthroughput increases,

in order to keep the relationship, the throughput in D will also need to be increased, and

the response time in D will have to increase as well. Figure 4.4 shows the difference and

relationship between explicit and implicit attributes.

40	
	

Requi r edt hr oughput
Ser vi ce A : Ser vi ce A

Rel at i onshi p Θ

Requi r ed_r esponset i me
Ser vi ce B : Ser vi ce B

(a)

Θ

Relationship
“Θ ”

Θ’Equal Larger

Change of A’s Attribute
“Requiredthroughput”

Change of D’s
Attribute

“throughput”

lead

lead

(b)

Rel at i onshi p Φ
t hr oughput
r esponset i me

Ser vi ce D : Dat a Ser vi ce D

Rel at i onshi p
Π

Figure 4.4 Relationships and Constraints

In Figure 4.4 (a), if the explicit attribute requiredthroughput changes, this change will

lead to a change on relationship Θ. For example, relationship Θ changes from Equal (Θ) to

Larger (Θ’). According to Policy 1, the value of A.requiredthroughput has to be the same

as the value of D.throughput. In order to hold the requirement of Policy 1, the relationship

Θ’ has to be changed back to the relationship Θ. The attribute D.throughput has to be

changed to meet the required value of A.requiredthroughput (as shown in Figure 4.4 (b)).

The lead arrows in relationship Θ are solid; this means relationship Θ and its explicit and

implicit attributes are explicitly illustrated in the policy. Attribute D.throughput leads to

the relationship change on Π and then the relationship Π affects D.responsetime. The arrow

in relationship Π is dotted lines, which means relationship Π is implicit in policies.

Relationship Π has a Balance value, which means D.throughput and D.responsetime are

related. When one falls, the other will rise. Finally, the attribute D.responsetime leads to

the change of relationship Φ. I use a logical expression to represent explicit and implicit

attributes, and store them in the semantic extension. Once this logical expression is

retrieved from the semantic extension in the knowledge base, it can help track these

attributes’ updates and derived changes.

41	
	

))),.(,,((

),(

),(

),(

)2000.1000(),.(,

_.
.

_.
.

.
.

.

.

.

.
.
.

troughputrequiredthArequestDApermitHoldsAt

tLargerHoldsAt

tBalanceHoldsAt

tEqualHoldsAt

roughputrequiredthAtroughputrequiredthAincreasedtTt

meresponsetirequiredB
meresponsetiD

meresponsetirequiredB
meresponsetiD

throughputD
meresponsetiD

throughputD
meresponsetiD

roughputrequiredthA
throughputD

roughputrequiredthA
throughputD

⇒

=Φ∧

=Π∧

=Θ∧

<<∧∧<∀

In the above logical expression, if action request(Θ,A.requiredthroughput) holds, and

the requested throughput is less than 2,000 KB/s, relationship Θ, Π and Φ hold and then

action request() is permitted. I denote the attribute A.requiredthroughput, which is an

explicit attribute for relationship Θ, as a superscript and the implicit attribute

D.responsetime as a suffix.

4.2.2 Relationship and Entity
A relationship may not only be affected by attributes but also be affected by constraints.

In an information domain, relationships connect different entities (e.g. services). Because

an entity is represented by a set of attributes, relationships also connect different attributes.

In Figure 4.5, Service A and Service B together with Data Service D have two relationships

(implied in policies). Service A, B and D have three attributes respectively. Relationship Θ

connects attribute requiredthroughput in Service A and Data Service D. If there is a

constraint on attribute requiredthroughput in Service A, relationship Θ will be affected

only when this constraint (1,000 KB/s< throughput<2,000 KB/s in this case) is satisfied. If

this constraint changes over time, I call this constraint a “dynamic constraint”. Dynamic

constraints are very important in an information domain because these constraints usually

control the connection between different entities. In addition, attribute requiredthroughput

42	
	

is an explicit attribute for relationship Θ, attribute responsetime is an implicit attribute for

relationship Θ, and attribute responsetime is also an explicit attribute for relationship Φ.

Therefore, if attribute requiredthroughput changes, it will affect relationship Θ and then

relationship Θ will affect attribute responsetime. Attribute responsetime will eventually

affect relationship Φ. If the results of these two changes are inconsistent, there will be a

conflict (conflict of duty).

Requi r edt hr oughput
Ser vi ce A : Ser vi ce A

Requi r ed_r esponset i me
Ser vi ce B : Ser vi ce B

Rel at i onshi p Θ

Rel at i onshi p Φ
Const r ai nt

Requi r edt hr oughput
Ser vi ce A : Ser vi ce A

Requi r ed_r esponset i me
Ser vi ce B : Ser vi ce B

Rel at i onshi p Θ

Rel at i onshi p Φ
t hr oughput
r esponset i me

Ser vi ce D : Dat a Ser vi ce D

t hr oughput
r esponset i me

Ser vi ce D : Dat a Ser vi ce D

Rel at i onshi p
Π

Figure 4.5 Relationships and Constraints

Relationships in an information domain are connections between entities, which are

sets of attributes (as illustrated in Figure 4.5). Therefore, relationships are connections of

attributes. In Figure 4.6, there is a relationship between attribute requiredthroughput and

attribute throughput, which can be represented as:

Θ=Equal(A.requiredthroughput,D.throughput)=true

43	
	

Because this is also a constraint limiting this relationship, I have to consider this

constraint during logical reasoning related to this relationship. The constraint of this

relationship is:

 (1000KB/s<A.requiredthroughput)<2000KB/s)∧(A∈Domain A) ∧(D∈Domain A)

∧ (A.requiredthroughput∈A,D.throughput∈D).

If I consider this constraint, the relationship becomes two sub-relationships: Θ’(c) and

Θ-Θ’(c) (as illustrated in Figure 4.6 b). Θ’(c) represents one sub-relationship that holds

when constraint c is true or becomes effective. Θ-Θ’(c) represents the other sub-

relationship that is not affected by constraint c. However, in semantic extension, I consider

these two sub-relationships as one complete relationship, which can be expressed as Θ=(Θ-

Θ’(c))∪Θ’(c). If constraints are not active at certain time or under certain conditions, the

Θ’(c) sub-relationship will be empty and the relationship Θ will become Θ=(Θ-φ)∪φ=Θ.

Requiredthroughput
Service A : Service A

Relationship Θ

Constraint(c)

Requiredthroughput
Service A : Service A

Θ-Θ’(c)

Θ’(c)

6. a

6. b

t hroughput
responset i me

Ser vi ce D : Dat a Ser vi ce D

t hroughput
responset i me

Ser vi ce D : Dat a Ser vi ce D

Figure 4.6 Relationships and Sub-relationships

In semantic extension, relationships include all temporal logic relationships, such as

“Earlier than”; and other logical relationships, such as “Equal”, “Larger”, “Smaller”, and

44	
	

“Negative”. The relationships in the knowledge-augmented temporal logic are inherited

from the temporal logic and propositional logics.

Constraints on an action restrict attributes and the relationship of this action. In this

paper, I use symbol Δ to denote this type of constraints. Again, relationship works on a

Cartesian product of two entities, and can be expressed as

Θ=Equal(requiredthroughput,throughput), where requiredthroughput and throughput are

attributes in entities. If there is a constraint c on a relationship, the constrained relationship

becomes Θ’(Δ)=Equal’(requiredthroughput,throughput,Δ), where Δ is one or a set of

constraints. In semantic extension, constraints are expressed as predicates that returns

whether the constraints are satisfied or not. Only when constraints are satisfied, an attribute

or relationship can change to a certain value.

A semantic extension abstracts certain information from an information domain. Now

I can give a definition for semantic extension.

Definition 12: A semantic extension contains {α},{E},{R},{Δ}, that are,

correspondingly, the attributes set, entities set, relationships set and constraint sets from

one information domain. Σ={{α},{E},{R},{Δ}| E⊆{α},E≠∅,R=E×E’}.

{α}, {E}, {R}, {Δ} are attribute set, entity set, relationship set, constraint sets in a

information domain. An entity is a sub set of {α}, and entity cannot be empty. A

relationship works on a Cartesian product of two entities.

Attributes in an information domain are associated not only with entities in the domain

but also with attributes describing properties of the domain. These are domain attributes

45	
	

that usually do not constitute entities. However, domain attributes may be added to entities

under certain circumstances. For example, when two semantic extensions merge together,

the attribute domain ID may become an attribute of an entity.

<Entity>
<Class ID=”Data Service D”/>
<Attributes>
 <Attribute ID=”throughput”/>
 <Attribute ID=”responsetime”/>
</Attributes>

</Entity>

<Entity>
<Class ID=” Service A”/>
<Attributes>

 <Attribute
ID=”requiredthroughput”/>

</Attributes>
</Entity>

<Entity>
<Class ID=”Service B”/>
<Attributes>

<Attribute
ID=”required_responsetime”/>

</Attributes>
</Entity>

Figure 4.7 Example of an Entity in the Knowledge Base

The Figure 4.7 shows examples of entities in the knowledge base. The diagram shows

each entity has its own attributes, which is expressed in XML format in the lower forms.

In these examples, an entity includes a class ID and a set of attributes. A relationship

includes an ID that is the name of this relationship. A relationship also includes two entities:

one Executor and one Target. In an Executor, there is an attribute that involves in this

relationship. In the relationship Equal, there is a constraint in an attribute of the Target.

This constraint limits the maximum value of the attribute throughput of entity Data Service

D. In another example, the relationship Larger has two entities: Service B and Data Service

D. There is a constraint attached to the Service B, which limits the maximum of

46	
	

required_responsetime of Service B. In original knowledge base, entities and attributes are

well presented. The Semantic Extension focuses on relationships and constraints. Each

relationship contains constraints in its attributes.

In the Figure 4.8, each relationship has two entities: Executor and Target. Each entity

is consisted with a set of attributes. In this example, the diagram only shows attributes that

involved in the relationship. There are two attributes in Executor and Target respectively

in relationship Equal. The attribute requiredthroughput has a property on its value. This

property is Adjustable, which indicates the Executor can change this attributes to any value

that smaller than the constrained value 2MB/s. The attribute throughput in Target has a

property that is Variable. This property indicates this attribute will be changed according

to environment. The operator in this relationship is Equal or =. This operator is used to

perform validation of whether this relationship is hold. This example presents if and only

if A.requiredthroughput is equal to D.throughput, and the A.requiredthroughput<2MB/s,

the relationship Equal is hold. The second example presents if and only if

B.required_responsetime is larger than D.responsetime and B.required_responsetime is set

to 100ms, the relationship Larger is hold. In these two relationships, there are dynamic

attributes, such as D.throughput and D.responsetime. This information is stored in the

semantic extension.

47	
	

<Relationship ID=Larger>
 < Executor ID=”ServiceB”>

<Attribute ID=”required_responsetime” >
<Value type= Constant>

100ms
</Value>

</Attribute>
 </Executor>
 <Target ID=”ServiceD”>

<Attribute ID=”repsonsetime”/>
<Value type= Variable/>

 </Target>
 <Operator>Larger</Operator>
</Relationship>

<Relationship ID=Equal>
 < Executor ID=“ServiceA”>

<Attribute ID=“requiredthroughput”>
 <Constraint ID=“Max”>2MB/s</Constaint>

 <Value property=Adjustable type= Variable/>
</Attribute>

 </Executor>
 <Target ID=“ServiceD”>

<Attribute ID=“throughput”>
 <Value type= Variable/>
</Attribute>

 </Target>
 <Operator>Equal</Operator>
</Relationship>

 Figure 4.8 Examples of Relationships in the Semantic Extension

In Equal relationship, there is an arrow from Service A’s attribute requiredthroughput

point to Data Service D’s attribute throughput. The origin attribute of this relationship is

requiredthroughput, which is the superscript of the relationship in logic formulae. The

relationship is the predicate of Cartesian product of two entities. To maintain a relationship

between two entities is to maintain the truth value of the predicate. In the relationship Equal,

the value of two attributes requiredthroughput and throughput from two different entities

are the same. Because the attribute requiredthroughput is adjustable by users, when the

value of requiredthroughput changes, the value of predicate Equal will not be hold as true.

In order to maintain the truth value of predicate Equal, the value of another attribute

throughput in Data Service D has to change. In this process, reason of truth value of

predicate Equal changes is the change of attribute requiredthroughput. In a relationship,

48	
	

the attribute that leads the change of truth value of predicate is the superscript of this

relationship. The attribute that cover the change to maintain the truth value of the predicate

is the subscript of this relationship. In Figure 4.8, the attribute throughput is the one that

changes to maintain the truth value of the predicate Equal. The Equal relationship is

expressed as: EqualA.requiredthroughput
D.throughput. In Larger relationship, the attribute

responsetime is dynamic and affected by the attribute throughput in the same entity. When

Data Service D provides too much throughput for Service A, Data Service D may increase

its response time to Service B. Therefore, the truth value of predicate of Larger relationship

cannot be hold. In order to maintain this relationship, the attribute required_responsetime

supposes to increase as well. However, this attribute is a constant that cannot change

according to environment. Therefore, the attribute required_responsetime is still subscript

of Larger relationship. The Larger relationship is expressed as

LargerB.required_responsetime
D.responsetime.

Domain ontology is a conceptualization for an information domain, which also

provides a formal way to represent domain information. Information in semantic extension

is extracted from one domain, so I use ontology to express and store domain information

in a semantic extension. Usually I use one semantic extension to represent one information

domain. One knowledge base can contain one or more semantic extensions, which depends

upon the scope of this knowledge base. In a semantic extension, relationships are associated

with corresponding attributes. When constraints on these relationships are satisfied,

changes of individual attributes will affect relationships. Since certain constraints will

change over time, I use temporal logic to represent these dynamic constraints.

49	
	

For example (as illustrated in Figure 4.5), relationship Θ, which connects services A,

B and D, has one explicit attribute requiredthroughput in service A and one implicit

attribute throughput in Data Service D. And there is a constraint Δ on requiredthroughput

and Θ. Relationship Φ connects one attribute required_responsetime in service B and one

attribute responsetime in Data Service D. And there is a constraint Δ’ on

required_responsetime and responsetime in relationship Φ. Relationship Π connects

attributes throughput and responsetime in Data Service D. When constraints are satisfied,

requiredthroughput will affect Θ and throughput in Data Service D. And this change is

transferred through relationship Π and will further affect responsetime in Data Service D.

Then the change of responsetime will change the relationship Φ. This situation can be

represented as the following rule:

),(),.(),.(
),.(),'(),(

),(

),(

),()(,

.
_.

.
_.

.
.

.

.

.

.
.
.

tChangetthroughputDChangetresponseDChange
troughputrequiredthAChangeTHoldsAtTHoldsAt

tLargerHoldsAt

tBalanceHoldsAt

tEqualHoldsAttTt

meresponsetiD
meresponsetirequiredB

meresponsetiD
meresponsetirequiredB

throughputD
meresponsetiD

throughputD
meresponsetiD

roughputrequiredthA
throughputD

roughputrequiredthA
throughputD

Φ∧∧⇒

∧Δ∧Δ∧

=Φ∧

=Π∧

=Θ∧<∀

In this logical expression, constraints Δ and Δ’ hold after time T. Therefore, after time T, if

explicit attribute requiredthroughput in service A changes, implicit attribute throughput in

Data Service D will change; attribute response_time in Data Service D will change because

of relationship Π; attribute response_time in Data Service D will further affect relationship

Φ.

	

50	
	

4.3 Rules in Conflict Analysis and Conflict Reconciliation:

In conflict analysis, I usually assume the executor of an action is an entity, and the

target of an action is another entity. There are three major categories of conflicts: (1)

conflict of duty, (2) conflict of interest, and (3) different executors perform different actions

on a single target, and the outcome of each action is incongruent with each other. To

represent these conflict types, let us consider the following elements in the general policy

model. Executor S has an attribute χ, which is an explicit attribute for relationship Θ. There

is also an implicit attribute i in executor S. Attribute i is an explicit attribute for relationship

Φ. Target O has an attribute υ and an attribute j. Relationship Θ connects attribute χ and υ.

Relationship Φ connects attribute i and j. In the following conflict analysis rules,

relationship Κ and Λ indicate two actions respectively. There are two constraints δ and ω

restricting Θ and Φ. Κ and Λ are two actions between S and O. Relationship Θ belongs to

action Κ, and Φ belongs to action Λ.

Conflict of duty: Κ and Λ are two actions between S and O. They contain relationship Θ

and Φ respectively. If their explicit attributes change, these two actions cannot be

performed at the same time:

)'),,(),,((

)',()',(

),()',()'(),(

),(),(),(|',

tOSOSKDutyconflictof

tichangetchange

tHoldsAttHoldsAtttOS

OSKtHoldsAttHoldsAttt
ix

i

Λ⇒

∧⇒

Φ∧Θ∧<∧Λ∧

∧∧∃

χ

ωδ

When action Κ is performed, attribute χ changes, then the implicit attribute i will also

change. However, action Λ is performed at the same time, so attribute i has to change too.

51	
	

These two changes cannot happen at the same point in time. Thus a conflict of duty happens.

When two actions cause a conflict, there is one action has higher priority, such as action

K(S,O). The system should allow K(S,O) instead of action Λ(S,O). Reconciliation rule for

this type of conflict is shown as follow:

)))),,(,,()),,(,,(((

)),((

)),'),,(),,(((

tOSOSdenyOSKOSpermitpermitTrajectory

OSKtyHighPriori

ttOSOSKDutyconflictofHoldsAt

Λ⇒

∧

Λ

Conflict of interest: Κ is an action between S and O, and Λ is an action between S and O’.

There is a relationship Θ between S and O. There is another relationship Φ between S and

O’. The constraint δ constrains the attribute i in entity O, while attribute j in entity O’

cannot change at the same time.

')'),,(),,((

'),('),(

'),('),(),('),(

),('),(')(

'),(),(),(),(|',

tOSOSKInterestconflictof

tjChangetiChange

tvChangetChangetHoldsAttHoldsAt

tHoldsAttHoldsAttt

OSOSKtHoldsAttHoldsAttt

v
j

x
i

v
j

x
i

Λ⇒

∧⇒

∧∧Φ∧Θ⇒

Φ∧Θ∧<∧

Λ∧∧∧∃

χ

ωδ

 When action Κ is performed, attribute χ will change, and the implicit attribute i will

also change. At the same time, if action Λ is performed, attribute υ and attribute j both will

change. There will be a conflict according to the constraint δ. If one of these actions has

higher priority than another action, this action will be granted and another action will be

denied but the system. This reconciliation rule is shown as follow:

52	
	

)))),',(,,()),,(,,(((

)),((

)),'),',(),,(((

tOSOSdenyOSKOSpermitpermitTrajectory

OSKtyHighPriori

ttOSOSKInterestconflictofHoldsAt

Λ⇒

∧

Λ

Different executors perform different actions on a single target, and the outcome of

each action is incongruent with each other:

Κ is an action between S and O, and Λ is an action between S’ and O. There is a

relationship Θ between S and O. There is another relationship Φ between S’ and O. In this

case, relationship Θ connects attribute χ in entity S and attribute i in entity O; relationship

Φ connects attribute υ in entity S’ and attribute i in entity O. When attribute χ and υ change,

these two actions cannot be performed at the same time.

)'),,'(),,((

)',(')',(

)',()',(

),()',(

),()',()'(),'(),(

),(),(|',

tOSOSKDiffconflictof

tiChangetiChange

tvChangetChange

tHoldsAttHoldsAt

tHoldsAttHoldsAtttOSOSK

tHoldsAttHoldsAttt

v
j

x
i

v
j

x
i

Λ⇒

∧⇒

∧∧

Φ∧Θ⇒

Φ∧Θ∧<∧Λ∧∧

∧∃

χ

ωδ

When action Κ is performed, attribute χ will change, and implicit attribute i will also

change. At the same time, if action Λ is performed, attribute υ and attribute i in entity O

will also change. Thus, this type of conflict occurs. If these is an action has higher priority,

this action is permitted by the system, and the low priority action will be denied. The

reconciliation rule is shown as follow:

53	
	

)'))),,(,,(

)),,'(,,(((

)),'((

)),'),,'(),,(((

tOSKOSdeny

OSOSpermitpermitTrajectory

OStyHighPriori

ttOSOSKDiffconflictofHoldsAt

Λ⇒

Λ∧

Λ

4.4 Experiment of Policy Conflict Analysis Component

In the web services case, I have two types of policies (access control policies and

quality of service policies). Both are included in our experiment policy sets. For the

experiment, two policy sets are established. One policy set only contains static conflicts

(the static policy set). Another policy set contains conflicts that are caused by dynamic

attributes and dynamic relationships (the dynamic policy set). In the static policy set,

required information for analysis is static and is contained in the policies themselves. So

during the analysis process, temporal logic does not need additional information since static

conflicts are not caused by dynamic attributes or relationships. Each policy set contains

100 policy segment pairs. In these 100 pairs, there are 45 and 57 conflicts in two policy

sets respectively. I also implement three other conflict analysis algorithms and compare

their results with those generate from our knowledge-augmented temporal logic approach,

as well as with the result from a human domain expert’s manual investigation. In Table 4.1,

under column “Static Policy Set” and “Dynamic Policy Set”, there are three elements in

each row. In each three-element tuple, the first element is the number of conflicts found by

that approach; the second element is the total number of conflicts in the policy set, and the

third number is the total policy segment pairs in the policy set.

54	
	

 Static Policy Set
 Detected Conflict Policy Conflict Policy Segment

Event-driven model[58] 45 45 100
IPCDR [59] 45 45 100
Temporal Logic 45 45 100
Result of TL with Semantic
Extension

45 45 100

Human 43 45 100

 Dynamic Policy Set
 Detected Conflict Policy Conflict Policy Segment

Event-driven model[58] 30 57 100
IPCDR [59] 30 57 100
Temporal Logic 30 57 100
Result of TL with Semantic
Extension

55 57 100

Human 35 57 100

Table 4.1 Comparison of Different Policy Conflict Analysis Algorithms (A)

In this experiment, Event-driven model [58] and IPCDR [59] focus on the policies

themselves without policy domain information. These algorithms can analyze policies with

explicit attributes only. If there are changes in a relationship and implicit attributes, these

algorithms cannot detect conflicts accurately, because they do not consider domain

information during its analysis process. In the experiment on dynamic policy set, results

show that temporal logic integrated with semantic extension has a much better accuracy

than that of pure temporal logic. In the analysis process, semantic extension provides

dynamic attribute and relationship information to supplement temporal logic rules. This

extra information helps our system identify entities and build constraints on different

attributes and relationships. For the dynamic policy set, temporal logic finds 30 policy

conflicts caused by dynamic attributes. Actually, more conflicts rooted 27 from dynamic

relationships and dynamic constraints on relationships. These conflicts are detected by

temporal logic with semantic extension. At the end of the experiment, I also ask a system

55	
	

administrator who has the knowledge of web services and web service policy to analyze

these two policy sets manually. As shown in Table 4.1, most conflicts in static policy sets

are identified by this human expert. However, for the dynamic policy set, only 35 conflicts

are found by this human expert. Although a human expert can incorporate environment

information into policy analysis, the complexity of the environment information is still the

major obstacle in manual analysis. The result of manual analysis heavily depends upon the

analyzer’s experience. Therefore, I clearly see that without a proper knowledge base,

dynamic conflicts are hard to detect. Semantic extension can provide such information for

logical analysis, and the analysis engine can handle very complex situation. The entire

framework can provide recommendation for subsequent reconciliation with a proper

knowledge base.

In the sensor system case, I choose three sets of policies (A, B, C). The policies in

these sets come from two different sensor systems. I collect these policies before these two

sensor systems start collaboration. 30 policies are from one sensor system, and the other

30 are from the other. There are 20 policy pairs in each set. There are 15 static conflicts in

set A, 16 dynamic conflicts in set B, and 13 dynamic conflicts in set C. Conflicts in policy

set B are dynamic conflicts, but there is no hidden relationships, explicit attribute or

implicit attribute involved in any conflict. Conflicts in policy set C are also dynamic

conflicts, but certain hidden relationships, explicit and implicit attributes are involved. The

analysis result is shown in Table 4.2. In this table, under column “Policy Set A”, “Policy

Set B” and “Policy Set C”, there are three elements in each row as well. The numbers in

each row have the same meaning as in Table 4.1.

56	
	

 Policy Set A Policy Set B Policy Set C
 Detected

Conflict
Policy
Conflict

Policy
Segment

Detected
Conflict

Policy
Conflict

Policy
Segment

Detected
Conflict

Policy
Conflict

Policy
Segmen
t

Event-driven
model[58]

15 15 20 16 16 20 10 13 20

IPCDR[59] 15 15 20 15 16 20 8 13 20
Result of TL 15 15 20 16 16 20 8 13 20
Result of TL
with Semantic
Extension

15 15 20 16 16 20 13 13 20

Table 4.2 Comparison of Different Policy Conflict Analysis Algorithms (B)

In this experiment, three policy sets contain different levels of conflict. In set A and B,

all algorithms provide similar results. However, in the Policy Set C, IPCDR and Temporal

logic can only find 8 out of 13 conflicts. These 8 conflicts have either entity or action

overlaps in their corresponding policies. If there are changes of relationships connecting

entity or relationship attributes with environment attributes, the lack of knowledge support

will result in a low accuracy of analysis result.

57	
	

CHAPTER 5 NON-INTRUSIVE LOG PROCESSING

5.1 Service Event Pattern Learning

5.1.1 Event Pattern Learning Technique Survey
In a cloud computing environment, services are deployed in number of virtual

machines. Service events are collected from all involved virtual machines. Service events

contain service status information, service run-time variables, virtual machine status

information and other service related data. Most services provide functions to collect

service events and create service event logs. Through these service event logs, I can learn

the behavior of services and their environment. Pattern learning techniques can help

analyze service event logs to find service event patterns. Each service event pattern

indicates one possible path that service state changes from a normal state to a critical state.

Service events can be categorized into different event levels, such as hardware events,

system level events, software events, maintenance events, etc. In order to detect critical

event pattern and predict critical events, pattern learning and prediction algorithms are must

in the service event monitoring component.

Sequential event pattern learning has been studied for decades [65, 66, 67, 68, 69 and

73], which is a good candidate mechanism for cloud system event detection and prediction.

In [57], Agrawal discusses an Apriori-based pattern learning method called Generalized

Sequential Pattern algorithm (GSP). This GSP algorithm screens all length-1 candidates in

a database. Those sequences with a support that is less than the minimum support are

filtered out. Then the algorithm screens the database k times to collect support count for

58	
	

each length-k candidate and generates length-(k+1) candidate sequences from length-k

frequent sequences using Apriori. GSP algorithm generates a huge set of candidate

sequences in multiple database scans, which is inefficient for large databases. In [74],

authors use a level-wise association-rule algorithm to exploit anti-monotone and monotone

constraints so that the problem’s level-wise dimensions can be reduced. Each transaction,

before being added to the support count, is reduced as much as possible, and only if it

survives this phase, it will be used to count towards the support for candidate item sets.

Each transaction, which can arrive this counting phase at iteration k, is then reduced again

as much as possible; and only if it survives this second set of reduction, it will be written

to the transaction database for the next iteration. Artificial neural network is another family

of learning and prediction mechanisms that utilizes neuron functions to provide outputs

based on a large number of inputs. However, artificial neural network alone may be

difficult to satisfy the close to real-time requirement for cloud system reliability

management. So certain adjustment and improvement together with other auxiliary

mechanisms are necessary. For event prediction, two principal approaches to critical event

prediction based on previous occurrences of failure can be determined. One is estimation

of the probability distribution of a random variable for the time to next failure. The other

type of approach builds its estimation based on the co-occurrence of two or more critical

events [75].

Furthermore, authors of [77] suggest that the behavior of individual services in a

service process must be monitored in order to settle any responsibility issue and to meet

the overall quality requirements from its consumers. To provide a solution, they suggest

59	
	

any under-performed service should be replaced immediately to ensure the required level

of service quality. It is true that quality requirements and under-performed services are the

imperatives for SOA. However, without a clear definition of quality requirements for

services, the motivation of this solution seems obscure. Also, “by using which standards a

recovery application can be invoked to start healing mechanism” is still a question in these

two papers. Similar issues also arise in cloud computing systems. For instance, in the

RESERVOIR architecture [76], a service manager is responsible for monitoring the

deployed services and adjusting their capacity. At the same time, the service manager also

needs to take care of the number of Visual Execution Environment (VEE) instances as well

as their resource allocation to ensure SLA compliance and alignment with high-level

business goals. Although this article mentions adjusting service capability and resource

allocation, there is not a set of explicit requirements of quality defined for services,

especially for a multi-tenant environment. For another instance, Roy Campbell, etc. [75]

propose a cloud computing test-bed to create unified and coherent resources, rather than

several completely separated clusters that provide reliable functionalities. Although, in

their Open Cirrus service stack, the lowest level service is based on a notion of physical

resource set (PRS), there is still no mechanism to provide any monitoring and recording

functionalities for tracking the existence of system resources. In [69], authors present a

BIDE (BI-Directional Extension) algorithm that is adopted to learn event patterns from

service event stream. This BIDE algorithm mines frequent close patterns in a given event

dataset and prunes irrelevant pattern branches more quickly so that the search space

becomes deeper by using the BackScan pruning method.

60	
	

5.1.2 Hash Table with Reversed Frequent Pattern Tree
One most important feature or advantage of Hash table is the search speed, which is a

constant time. A good hash function can greatly reduce search time in hash table search. In

previous section, I summarize the BIDE algorithm which mines the event sequence

database and find out all frequent closed patterns. It consists of Forward-checking,

Backward-checking and BackScan pruning methods. This algorithm constructs a complete

set of frequent closed pattern in an event sequence database, and a frequent closed pattern

tree. During the real-time pattern learning process, the frequent pattern tree will change,

when new pattern are found. And new frequent patterns are not closed, so the frequent

pattern tree is not a closed frequent pattern tree anymore. However, during the learning

process, I still try to compress the pattern tree to reduce the memory consumption. When

the hash occupancy rate reaches a certain number, the rehash function is triggered. The

rehash function hashes all existed node into a new larger hash table. The hash occupancy

rate is set according to previous experience.

In the traditional tree structure, parent nodes are connected with children nodes

through links. However, in our approach, there is only one link from one parent node to its

first child node. This child node is also connected with other children node through sibling

links. The Figure 5.1 shows a structure of a node. Child node pointer points to its first child

node; Sibling Node pointer points to its next sibling node; Parent node pointer points to its

parent node; Next node pointer points to next node in the linked list. In following

presentation, figures only show links that related to their topics.

61	
	

Pat t ern
Chi l d
Node

pi nt oer

Si bl i ng
Node

Poi nt er

Par ent
Node

Poi nt er

Next
Node

Poi nt er

Figure 5.1 Structure of a Node

Because children nodes contain a pointer that points to their parent nodes, I call it a

reversed tree. The Figure 5.2 illustrates an example of a reversed pattern tree. In this figure,

only parent node links are shown. Although there is no directed link from parent nodes to

every child node, because of nature of pattern stream, from node “A” to node “AB” I can

simply grow the node “A” with an event “B”. If there is an “AB” node exists in the tree, I

can increase its statistic information; otherwise, I can create a new node with its parent

node pointer points to node “A”.

Φ

A B C

AA AB AC BB CA CC

Figure 5.2 Reversed Frequent Pattern Tree

There is another problem that I cannot find a path from the root to any leaf node in the

reversed pattern tree. In order to solve this problem, each node is stored in a linked list

node, and there is a hash table that stores indexes and pointers that point to every node in

reversed pattern tree. An entry in this hash table contains an index that calculated by a hash

function, and a pointer points to a linked list node. A linked list node contains event pattern

name and statistic information like support. A linked list node also has two pointers. One

62	
	

pointer point to next linked list; and another pointer point to its parent node in the reversed

pattern tree. So a linked list node can be presented as {pattern, next node pointer, parent

node pointer}. The Figure 5.3 illustrates a reversed pattern tree using linked list node.

AA
AB

A

AB
AC

A

AC
BB

A

BB
CA

B

CA
CC

C

CC
NULL

C

A
B

Φ

B
C

Φ

C
AA

Φ

Φ
A

NULL

Figure 5.3 Reversed Pattern Tree using linked list node

These linked list nodes also connected through their first pointer. Then I have a linked

list L (shown in Figure 5.4). This linked list contains all patterns in the system. When a

new pattern appears, the system calculates an index for this pattern, creates a linked list

node and sets the pointer in the corresponding hash table entry to the new linked list node.

Then the new linked list node is added to the end of the linked list L. If there is a collision,

the new linked list node will be inserted into the linked list L at the position after nodes

that have the same index. The collision linked list is also a part of the linked list L, for

example, the nodes “AA”, “AB” and “AC” are in the same collision linked list. The max

length is also a parameter to trigger the rehash function.

63	
	

1

3

5

2

4

6

Poi nt er
Poi nt er
Poi nt er

Poi nt er

Poi nt er
Poi nt er

AA
AB

A

AB
AC

A

AC
BB

A

BB
CA

B

CA
CC

C

CC
NULL

C

A
B

Φ

B
C

Φ

C
AA

Φ

Figure 5.4 Example of Hash Table and Linked List

The Figure 5.4 shows a visualized example of Hash table T and linked list L. If the

pattern “AC” is a new frequent pattern, the algorithm calculates the index for “AC”. In this

example, I assume the pattern “AA”, “AB” and “AC” have the same index value, and “AA”

and “AB” already exist in the linked list L. The algorithm finds the linked list node “AA”

according to the hash table index “4”, and checks the index of linked list node “AB”, which

is connected with node “AA”. The index of node “AB” is equal to the index of new pattern

“AC”. Then the algorithm checks the index of node “BB”, which is connected with node

“AB”. Because the index of node “BB” is not equal to the index of new pattern, the

algorithm inserts the new pattern “AC” between linked list node “AB” and node “BB” as

shown in the Figure 5.4.

In order to increase the search speed of finding a leaf node for a given node, each node

has two more pointers that link parent node and children nodes. A node in the reversed

frequent pattern tree has a child pointer, which points to one of its children nodes. This

pointer is used to travel from parent node to children nodes (dotted line). Another pointer

in a node is sibling pointer, which points to next sibling node. The child pointer and sibling

64	
	

build a path from parent node to all children nodes (dash-dot line). The Figure 5.5 shows a

reversed frequent pattern tree with child pointers and sibling pointers.

Φ

A B C

AA AB AC BB CA CC

Figure 5.5 Reversed Pattern Tree with Child Pointers and Sibling Pointers

The Figure 5.6 illustrates the algorithm to insert a new frequent pattern into the Hash

Table T and the linked list L. The algorithm first exams whether there is a hit in the hash

table according to the calculated index of new pattern. If the corresponding table entry is

null, then the algorithm checks whether the new pattern meets the minimum support

thresholds. If the new pattern fulfills the requirement of minimum support thresholds,

create a new linked list node N and add this linked list node to the end of the linked list L.

Then the algorithm set the parent pointer of the new node to its parent node. If it is not null

in the corresponding hash table entry, the algorithm exam whether there is a node for the

input pattern already exists. If the input pattern is a new frequent patter, create a new linked

list node, insert the node to the linked list L, and return the index of new frequent pattern.

Any event pattern should have one parent node. The parent node contains a pattern

that is a sub-string of current pattern. The length of parent pattern is not necessary to be

current pattern length-1. The length of parent pattern can be shorter, because some patterns

may be merged with its children during the compress process.

65	
	

Figure 5.6 New Frequent Pattern Insertion Algorithm

Along with the online running of the system, the number of nodes in the linked list

will become bigger and bigger, in order to save space and increase search speed, I have to

compress the reversed pattern tree. In order to compress the reversed pattern tree in a real-

time, each leaf node checks its support and its parent node’s support. If its support equal to

its parent node’s support, I can merge the leaf node and its parent node. If there are different

supports, I do not merge leaf and its parent nodes. Because the real-time online learning

and recognition have a very sensitive time requirement, the compress process only take

place when there are enough CPU idle time. The Figure 5.7 illustrates the Reversed

New Frequent Pattern Insertion Algorithm
FrequentPattern_Insertion(HashTable T, Linked_List L, Event Pattern P, min_sup)
Input: a Hash Table T;
a Linked_List L that stores event pattern P, a minimum support threshold min_sup)
Output: index of Event pattern P in Hash Table T
1: index=Hashi(P);
2: if T[index] is empty
3:{ if P.support > min_sup;
4: {
5: create a linked list node N;
6: store P in N;
7: add N to the end of Linked List L;
8: call Parent_Index(N);
9: }
10: else
11: return null;}
12:else
13:{
14: if Pattern P is already in L
15: update the statistic of exist node;
16: else
17: create a linked list node N;
18: get the linked list node M from the hash table entry pointer;
19: create a temporary node Temp=M.next;
19: if linked list node Temp is not null:
20: Insert N before the node Temp;
22: call Parent_Index(N);
23: return index;}

66	
	

Frequent Pattern Tree compress algorithm. The algorithm first checks whether the current

has a parent node. If there is a parent node and the support of parent node is equal to support

of current node, current node will set its parent node pointer to its parent’s parent. And

remove current node’s parent node. This process is called recursively.

If a node in an event sequence tree has the same support with its parent node, this node

is the only child node of its parent node. In order to prove this statement, I assume event

sequence S is the parent node of event sequence S’. The event sequence S’ can be expressed

as S+Q. Q is the remainder event sequence in S’. Every time S’ appears, the S+Q appears.

When support of S’ increase, the support of S will also increase. If there is another child

node of S appears, the support of S will also increase by this child node. Therefore, if the

support of S is equal to the support of S’, the event sequence S’ is the only child node of

event sequence S.

The collision chain in the hash table is related with the hash function. In the experiment

section, I use FNV algorithm to calculate the index for each event pattern string. FNV is a

non-cryptographic hash algorithm. The length of collision chain is a criterion for rehashing

function. Another criterion is the hash occupancy ratio. When one of these criteria meets

the threshold, the system is ready to start rehash function. The rehash function will not

immediately, but it will start when the system has some ideal CPU cycle.

67	
	

Figure 5.7 Reversed Frequent Pattern Tree Compress Algorithm

	

Compress_Tree(Linked_List L)
Input: a linked list L that contains all frequent patterns;
Output: a compressed Linked list;
1: linked_list_node N=L.firstnode;
2: loop:
3: CheckParentNode(N);
4: if Node.next!=NULL;
5: Node=Node.next;
6: else
7: return;

CheckParentNode(Linked_List_Node N)
Input: a linked list node N;
Output: NULL;
8: if N.parent is not NULL
9: if (N.support == N.parent.support)
10: Compress N and N.parent node
11: Remove(N)
12: CheckParentNode(N);

Remove (Linked_List_Node N)
Input: a linked list node N;
Output: null;
13: If N.Child!=NULL
14: Pointer Temp=N.child;
15: Loop:
16: Move N’s children nodes to child node list of N’s Parent node.
17: If N.Parent.Child!=N
18: Pointer Temp= N.Parent.Child;
19: Loop:
20: if Temp.Sibling!=N&Temp.Sibling!=Null
21: Temp=Temp.Sibling;
22: else
23: Temp.Sibling=N.Sibling;
24: Remove node N from the N.next list;

68	
	

5.2 Event Pattern Detection

System event pattern recognition is the second step of critical event prediction. In this

step, I have to read an event sequences, and search frequent pattern database that try to find

out a matched frequent pattern. If there is a matched frequent pattern, I also have to update

the statistical data for further recognition and prediction.

In a hash table, to search an existed item, I can use hash function to directly calculate

the index of this item. If the hash table entry with this index contains this item, it will report

a match. If there is not a match in this step, I have to consider two situations. One situation

is that the hash table entry of this index is empty, which means there is no such item can

match given data item. Another situation is that there is a linked list in this hash table entry.

If the given pattern can match any item in this linked list, I also can report a match. If there

is no match in the linked list, I will report an unmatched notification.

If the given event sequence can be found in the hash table, which means this event

sequence is a frequent closed pattern. And this item can be found in the event sequence

tree. I will update the statistical data of this event pattern. The Figure 5.8 shows an example

of a process of recognition. In this example I have an event sequence “AC”, the index of

“AC” is 4. The pointer of index 4 is pointing to pattern “AA”, which is not the target pattern.

Then I will try the next node in the linked list. The next node is “AB”, which has the same

index. Because the “AB” is not the target pattern, I will continue to next node that contains

pattern “AC”. The pattern “AC” is the target pattern, and it will be return as a hit. If the

target pattern does not exist in the pattern list, a NULL will be return. For example, if the

index of an event sequence “AD” is 4, which will lead to the pattern “AA”. After I traverse

69	
	

from “AA” to “AC”, the next node is pattern “BB”, which has an index 6. When I traverse

to “BB”, I can return a non hit for current entry of hash table. This means there is no match

pattern for event sequence “AD”.

1

3

5

2

4

6

Poi nt er
Poi nt er
Poi nt er

Poi nt er

Poi nt er
Poi nt er

AA
AB

A

AB
AC

A

AC
BB

A

BB
CA

B

CA
CC

C

CC
NULL

C

A
B

Φ

B
C

Φ

C
AA

Φ

Figure 5.8 Event Sequence Recognition Example

During the recognition process, if a new frequent event pattern is discovered, it will be

inserted into the reversed hash pattern tree using the insertion algorithm. Under some

condition, an event pattern will be inserted as a child node of its parent node, such as pattern

“AB” and pattern “A”. If there is a pattern already exists in as a child node of pattern “A”,

for example pattern “ABC”. The pattern “AB” and pattern “ABC” will be the children

nodes of pattern “A” at the same time. However, during the insertion process, the insertion

algorithm checks whether there are potential children nodes for inserted pattern. If there

are potential children nodes, according to the insertion algorithm, these children nodes will

be moved under the inserted pattern node.

	

70	
	

5.3 Event Pattern Prediction Algorithm

5.3.1 Filtered-Multi Dimensions Neural Network
The information in service event log represents running status of a service. In event

sequences, each event contains a set of system attributes. Events can be categorized into

number of event types or event levels according to attribute types and value of attributes

within events. Events in the same type or level usually contain the same or similar set of

attributes. Attribute set of an event sequence is the union set of attribute sets of events.

Sequences of service events are transmission processes of this union attribute set. In the

meanwhile, attributes in an event have different severities. Some attributes represent event

types, and some attributes represent the location of events. These attributes can be

organized by their severities. The most important attribute is the primary attribute for an

event. In pattern prediction process, attributes with higher severity will be used first to

predict future events. I create several attribute trees to help build prediction model and then

predict possible event. Each attribute has one corresponding tree. Event patterns can be

identified by their primary attributes represented by a sequence. For example, an event

sequence ABC, which A’s attribute set is {a1, a2, a3}, B’s attribute set is {b1, b2, b3}, and

C’s attribute set is {c1, c2, c3}. Therefore, this event sequence can be presented as <a1, b1,

c1>. I call this attribute sequence primary attribute sequence. In a primary attribute

sequence, attributes are primary attributes of events. Figure 3 shows an attribute tree with

severity. In this attribute tree, only the primary attributes have been considered. According

to severity, I can build attribute forest to present an event sequences, and these trees can be

searched or processed parallel.

71	
	

The neural network algorithms can handle time series events and forecast future events.

The basis function neural networks are a class of neural networks. The base function neural

networks produce weighted sum of a number of base functions. A wavelet neural network

(WNN) [79] is an alternative to the classical feed-forward neural network (FFNN) [80] for

approximating arbitrary nonlinear functions, inspired by both the FFNN and wavelet theory.

The WNN has been successfully applied into the function learning and time series

predictions. Wavelet functions include continuous wavelet transform and discrete wavelet

transform. Since wavelets have shown their excellent performance in nonstationary signal

analysis and nonlinear function modeling. In the simplest form of wavelet neural network,

the input and output both have only one variable. The output of this simplest wavelet neural

network can be defined as:

𝜓X,Y 𝑢 = 𝜓(Z[Y
X
)	 	 	

λ is the dilation parameter, and t is the translation parameter. And the structure of this

simple wavelet neural network is shown in Figure 5.9.

ψ		u Ψλ,t(u)

λ t

Figure 5.9 A Simple Wavelet Neural Network

 The n-dimensional wavelet basis function can be calculated by the tensor product

of 1-Dwavelets. Therefore, the output of all hidden layer neurons (wavelons) will be the

same and can be written as

72	
	

𝜓X,Y 𝑢 = 𝜓(Z[Y
X
)

 Attributes of events cannot easily fit in this simple wavelet neural network. Each

event is a multiple dimensional vector. Therefore, I need to employ a multidimensional

wavelet neural network. In the multidimensional wavelet neural network, input event

sequence of the model is considered as a sequence of multidimensional vectors. Figure

5.10 illustrates an architecture of an attribute-based multidimensional wavelet neural

network. In the input layer, each input node read an event from event sequence, and pass

event attribute set into next layer. The filter layer selects attributes base on the severity of

attributes in an event. The severity information is provided by the knowledge-base of the

prediction framework. The goal of this layer is to reduce the dimension of the input of

neural network. The high number of dimensions makes the neural network cannot

convergent and high time complexity.

ψ

ψ

ψ

ψ

ψ

Σ

Σ

Σ

Σ

Σ

f

f

f

f

f

F

Input	Layer Filter	Layer Output	Layer

Figure 5.10 Layers of Filtered MD Wavelet Neural Network

Each type of system attribute has its own neuron to calculate the influence toward the

system. Therefore, the second layer of the network extract every attribute and send them

73	
	

into different neuron. The number of filter nodes is predefined according to the maxima

number of event patterns. The output of filter layer is a set of related attributes of each

event. This attribute set is defined in the log recording and pattern learning process. In each

filter node, there is an attribute selector. Attribute selectors are designed for filter layer to

choose primary attribute set and relation attribute from input event sequences. During the

network learning process, the selector searches the knowledge base for each input event

and provides most important attributes. Attribute selectors is also a control model to control

the number of input dimension of the network. The control logic within attribute selectors

is predefined and expressed as logical expression. For example, Fan speed is an input

attribute, which is an integer value, with a normal range from 1000 to 5000. If the value of

this attribute is out of its range, it indicates either there is some problem with the fan, or

the system is overheated. When the fan speed is in the normal range, this attribute may not

be considered as an input to the network. If the fan speed is out of normal range, the fan

speed is an indicator of some abnormal situations. The logical expression to evaluate this

attribute is:

𝐸 𝑡 = 𝑓𝑎𝑙𝑠𝑒				𝑖𝑓	(𝑡 > 1000	⋀𝑡 < 5000
𝑡𝑟𝑢𝑒				𝑖𝑓(𝑡 < 1000	⋁	𝑡 > 5000

This logical expression will determine whether the fan speed attribute will be

considered in the hidden layer. The input of fan speed is transferred into an indicator that

affects the result of prediction. Service event sequences are time series data, therefore, the

temporal logical expression can handle time-related attributes. For example, the fan speed

is a time-related attribute in an event sequence. This attribute appears in multiple events

and changes its value in the event sequence. Then I can use temporal logic to express this

74	
	

attribute in different events. Neurons in the first layer calculate the output for next layer

according to the output of filter layer. The last layer of nodes in the hidden layer is the

summation layer. Each node in this layer get the sum of previous layer outputs

In virtualized environment, events come from different virtual machines, and these

virtual machines consist of different information domains. Therefore, event attributes

consist of cross-system information. Some attributes contain local node information; some

attributes contain remote user information; and some attribute contains relationship

information of current event and future events. This information can help us evaluate which

attributes should be considered in the learning and prediction process. Events in the same

pattern has stronger mutual relationship than other events. This relationship is mainly

reflected by certain attributes. I call this type of attributes relation attributes. The number

of relation attributes in an event pattern shows the level of interdependency between two

events. The more relation attributes, the stronger relationship between the events in an

event pattern. Taking relation attributes into the hidden layer of the WNN is one task of

filter layer. In order to determine whether an attribute is a relation attribute in an event

pattern, I use logical rules to evaluate event pattern attribute sets and store the relationship

attributes in the knowledge base. In the learning and predicting process, the relationship

attribute is another aspect that to calculate the final output. The temporal logic expressions

and temporal rules are used in the neural network to filter input of each neuron according

to time attribute of each events.

75	
	

Because the input of the wavelet neural network in proposed framework is

multidimensional, the output of the multidimensional wavelet neural network can be

express as:

𝑓(𝑥) = 𝜔aΨa 𝑥 = 𝜔a 𝑎a
[cd𝜓(e[fg

hg
)i

ajk
i
ajk

ai is the scale parameter, and bi is the translation parameter. Ψi is the wavelet activation

function.

 The learning process of this neural network establishes the connection of different

attributes and events. In the learning set, the back propagation method is used in the training

step. In order to increase the chance of convergence, I setup certain adaptive stopping

criterion. Since the function computed by this WNN model is differentiable with respect

to all mentioned unknown parameters, a standard back-propagation (BP) gradient descent

training algorithm can be used with guided attribute selectors.

5.4 Experiments

In our experiment, I collect events from over 20000 event records from a cloud data

center. The data center consists of a number of high performance computing systems. There

are various services running in this data center. In order to test the learning and prediction,

I divide the testing data set into two parts. One part is used for offline learning, the other

part is used for online prediction.

Events in this dataset is recorded in time order. Each event contains its application id

and node id attribute. The application id is used to differential services. One service usually

76	
	

consists of number of nodes. These two attributes indicates the location of events. I divided

the dataset into two parts, one is for offline learning and another one is for testing. In the

first half of dataset, there are 8000 event records are used in offline learning, and 2000

event records are used for tuning the network. The second half are used for test of

prediction.

In the experiments, I setup different candidates from the prediction results, and use

these candidates to verify prediction results. If candidate events happen right after the

prediction, I consider this prediction is correct. If candidate events do not appear after the

prediction, I consider this prediction is incorrect. The result shows the number of

candidates directly affects the accuracy of the prediction. However, larger number of

candidates will affect the efficiency of prediction. In Figure 5.11, I illustrates the

comparison of accuracy from wavelet neural network based algorithm and from an average

one dependency estimator (AODE) based algorithm. The result also shows that the pattern

library is not stable at the beginning. The pattern library is updated during event processes.

New patterns are added into the pattern library, and patterns that cannot meet the minimum

support are removed from the pattern library. The result demonstrates that when pattern

library becomes stable, relation attributes and structural attributes can help wavelet neural

network to generate results that are more accurate.

77	
	

Figure 5.11 Prediction Accuracy Comparison of WNN and AODE

The pattern library is updated during the experiment. Figure 5.12 shows the

performance of WNN, multi-dimension WNN and Filter multi-dimension WNN with

different number of hidden nodes. This result shows the multi-dimension has better

prediction result comparing to WNN algorithm. The filtering layer reduce the complexity

of input dimension without reducing the accuracy. The severity of attributes can help the

proposed framework to achieve better performance with high efficiency.

78	
	

Figure 5.12 The performance of WNN, Multi-Dimension WNN (MD-WNN) and
Filter-Multi-Dimension WNN (Filter MD-WNN) in RMSE for training data set with

different hidden nodes

In Figure 5.13, it illustrates the comparison of prediction results of Support Vector

Machine [81], Ripper[78], MD-WNN, Filter-MD-WNN , and AODE. The average

precision, and the average recall in Figure 5.13. I use recall and precision to measure the

effectiveness of our predictors.

Figure 5.13 The average precision and recall of different prediction algorithms

The cost of time for computer the result, the different network settings and layers have

outcomes. Comparing with SVM with the similar accuracy, the filter-MD WNN has a

fewer time cost in the prediction process. The AODE uses the much more time to provide

0

0.5

1

2 4 6 8 10 12 14 16 18 20RM
SE
	o
f	t
ra
in
in
g

NUmber	of	hidden	Nodes

WNN MD-WNN Filter	MD-WNN

0

0.2

0.4

0.6

0.8

1

LIBSVM MD-WNN Filter-MD	
WNN

Ripper AODE

Average	Precision Average	Recall

79	
	

the result. The time cost of Ripper is in between of LIBSVM and Filter-MD WNN.

Although the MD-WNN has the least time cost, but the accuracy is worse than the Filter-

MD WNN. The Figure 5.14 shows the comparison of the average time cost of different

prediction algorithms.

Figure 5.14 The average time cost of different prediction algorithms

5.5 Summary

In order to predict the cross virtual machine critical events, I proposed a multi-

dimensional wavelet neural network based fast event pattern prediction framework. This

framework combines features of hash table and reversed pattern tree structure to increase

the learning and detection speed for real time critical event pattern. The reversed pattern

tree provides relations between children nodes as well as children nodes and their parent

nodes. This relation is used in prediction to increase accuracy. An attribute forest is also

used for parallel detection and prediction processes. Primary attribute lists and secondary

attribute lists supply additional information to increase the accuracy of prediction. The core

prediction algorithm utilizes the multi-dimensional wavelet neural network to achieve a

0

50

100

150

LIBSVM MD-WNN Filter-MD	
WNN

AODE Ripper

Comparison	of	Time	Cost

Time	Cost

80	
	

balanced result between accuracy and speed. In order to improve the convergence, a filter

layer is enforced to reduce unnecessary dimensions. Meanwhile, I find that the space

complexity of real-time critical event pattern detection and prediction can also be reduced

if a suitable set of wavelet parameters can be found.

81	
	

CHAPTER 6: CONCLUSION

6.1 Conclusion

I have development customized agent architecture including policy analysis and

service critical event prediction for cloud computing environment. This framework utilizes

temporal logic to analyze configuration conflicts and predict potential service critical

events. I developed knowledge-augmented temporal logic that incorporates semantic

extension in a knowledge base to enhance logical expression and supplement reasoning

capability. Experiments confirms the enhanced reasoning capability of this knowledge-

augmented temporal logic and its excellence for multi-domain policy conflict analysis.

Semantic extensions contain structural information of information domains, which include

relationships and their related attributes. They provide the ability that I can incorporate

different information domains without ambiguities. Dynamic relationships with constraints

increase the accuracy of logic reasoning on changing information. This additional

information can reduce the ambiguity of elements from different domains and relationships

among multiple domains, which increases the accuracy of policy conflict analysis.

Furthermore, semantic extension is flexible and extensible so that it can make collaboration

and system integration easier. On the other hand, I developed a non-intrusion log-

processing framework that learn and predict service critical events. This framework

protects the cloud service through service critical event pattern learning and prediction. It

uses a novel reverse pattern tree to store event sequences of collaborative services, and use

filtered multi-dimension neural network online predict potential critical events. Therefore,

82	
	

the static configuration policies and run-time service event monitoring are integrated into

one customized agent architecture. The knowledge base ensures both the accuracy of policy

analysis and critical event prediction.

6.2 Future Work

The reliability in cloud computing environment includes many aspects, the availability,

data retention, real-time migration and other directions. These directions are all worth for

working on. My future work will focus on using more run-time configuration policy

analysis and conflict prediction using filtered neural networks in cloud computing

applications.

83	
	

REFERENCES

[1] Clausing, Don, and Daniel D. Frey. “Improving system reliability by failure-mode

avoidance including four concept design strategies.” Systems engineering, vol.

8.3, 2005, pp. 245-261.

[2] Rich Miller. “Software Bug, Cascading Failures Caused Amazon Outage.”

http://www.datacenterknowledge.com/archives/2012/10/27/cascading-failures-

caused-amazon-outage/, retrieved by 2/28/2014.

[3] Steve Cimino. “Cloud computing outages: What can we learn?”

http://searchcloudcomputing.techtarget.com/feature/Cloud-computing-outages-

What-can-we-learn, retrieved by 2/28/2014.

[4] Chunye Gong; Jie Liu; Qiang Zhang; Haitao Chen; Zhenghu Gong, “The

Characteristics of Cloud Computing,” Proceedings in 2010 39th International

Conference on Parallel Processing Workshops (ICPPW), 2010, pp.275-279.

[5] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C., “Basic concepts and

taxonomy of dependable and secure computing,” IEEE Transactions on

Dependable and Secure Computing, vol.1, no.1, 2004, pp.11-33.

[6] Rich Miller. “Software Bug, Cascading Failures Caused Amazon Outage.”

http://www.datacenterknowledge.com/archives/2012/10/27/cascading-failures-

caused-amazon-outage/, retrieved by 2/28/2014.

84	
	

[7] Zibin Zheng; Zhou, T.C.; Lyu, M.R.; King, I., “Component Ranking for Fault-

Tolerant Cloud Applications,” IEEE Transactions on Services Computing,

vol.5(4), 2012, pp.540-550.

[8] B. Randell and J. Xu, “The Evolution of the Recovery Block Concept,” Software

Fault Tolerance, M.R. Lyu, ed., pp. 1-21, Wiley, 1995.

[9] A. Avizienis, “The Methodology of N-Version Programming,” Software Fault

Tolerance, M.R. Lyu, ed., pp. 23-46, Wiley, 1995.

[10] Rosenblum, M.; Garfinkel, T., “Virtual machine monitors: current

technology and future trends,” Computer , vol.38(5), 2005, pp.39-47.

[11] Matos, R.D.S.; Maciel, P.R.M.; Machida, F.; Dong Seong Kim; Trivedi,

K.S., “Sensitivity Analysis of Server Virtualized System Availability,” IEEE

Transactions on Reliability, vol.61(4), 2012, pp.994-1006.

[12] Jeffery, C.M.; Figueiredo, R.J.O., “A Flexible Approach to Improving

System Reliability with Virtual Lockstep,” IEEE Transactions on Dependable and

Secure Computing, vol.9(1), 2012, pp.2-15.

[13] Heeseung Jo; Hwanju Kim; Jae-Wan Jang; Joonwon Lee; Seungryoul

Maeng, “Transparent Fault Tolerance of Device Drivers for Virtual Machines,”

IEEE Transactions on Computers, vol.59(11), 2010, pp.1466-1479.

[14] Haibing Guan; YaoZu Dong; Kun Tian; Jian Li, “SR-IOV Based Network

Interrupt-Free Virtualization with Event Based Polling,” IEEE Journal on Selected

Areas in Communications, vol.31(12), 2013, pp.2596-2609.

[15] Jianhua Zhang; Wenbo Zhang; Heng Wu; Tao Huang, “VMFDF: A

Virtualization-based Multi-Level Fault Detection Framework for High

85	
	

Availability Computing,” 2012 IEEE Ninth International Conference on e-

Business Engineering (ICEBE), 2012, pp.367-373.

[16] Lei Cui; Bo Li; Jianxin Li; Hardy, J.; Lu Liu, “Software Aging in

Virtualized Environments: Detection and Prediction,” 2012 IEEE 18th

International Conference on Parallel and Distributed Systems (ICPADS), 2012,

pp.718-719.

[17] Charalambides, M., et al., “Policy conflict analysis for diffserv quality of

service management”. IEEE Transactions on Network and Service Management.

vol 6(1), 2009, pp. 15-30.

[18] Fagin, R., Halpern, J.Y., Moses, Y., Vardi M.Y., Reasoning About

Knowledge. MIT Press, Cambridge, MA, 1995

[19] Halpern, J.Y., Vardi, M.Y., “The complexity of reasoning about knowledge

and time”. Journal of Computer and System Sciences. vol 38(1). 1989, pp. 195–

237.

[20] Halpern, J.Y., Van Der Meyden, R., Vardi, M., “Complete axiomatizations

for reasoning about knowledge and time”, SIAM Journal on Computing. vol 33

(3). 2004, pp. 674–703.

[21] Bacchus, F., Kabanza, F., “Planning for temporally extended goals”, Annals

of Mathematics and Artificial Intelligence. 1998, 22. pp. 5–27.

[22] Calvanese, D., Giacomo, G. De, Vardi, M.Y., “Reasoning about actions and

planning in LTL action theories”. Proceedings of the 8th International Conference

on Principles of Knowledge Representation and Reasoning. 2002, pp. 593–602.

86	
	

[23] Batt, G., Belta, C., Weiss, R., “Temporal Logic Analysis of Gene Networks

Under Parameter Uncertainty”, IEEE Transactions on Automatic Control. vol 53,

2008, pp. 215–229.

[24] Janicke, H., Cau, A., Siewe, F., Zedan, H., “Deriving Enforcement

Mechanisms from Policies”, Proceedings of Eighth IEEE International Workshop

on Policies for Distributed Systems and Networks. 2008, pp.161-172.

[25] Jesper, G., Henriksen, P., Thiagarajan, S., “Dynamic Liner Time Temporal

Logic”, Annals of Pure and Applied Logic. 96(1-3), 1999, pp. 187-207.

[26] Beaudry, M.D., “Performance-Related Reliability Measures for Computing

Systems”, IEEE Transactions on Computers, vol.C-27(6), 1978, pp.540,547.

[27] Jhawar, R.; Piuri, V.; Santambrogio, M., “Fault Tolerance Management in

Cloud Computing: A System-Level Perspective,” Systems Journal, IEEE,

vol.7(2), 2013, pp.288-297.

[28] T.F. Arnold, “The Concept of Coverage and Its Effect on the Reliability

Model of Repairable Systems,” IEEE Transactions on Computers, vol. 22(6),

1973, pp. 251-254.

[29] M.R. Lyu, Handbook of Software Reliability Engineering. McGraw-Hill,
1996.

[30] Tsai, W.-T.; Xinyu Zhou; Yinong Chen; Xiaoying Bai, “On Testing and

Evaluating Service-Oriented Software,” Computer, vol.41(8), 2008, pp.40-46.

[31] K. Goseva-Popstojanova and K.S. Trivedi, “Architecture-Based Approach

to Reliability Assessment of Software Systems,” Performance Evaluation, vol.

45(2), 2001, pp. 179-204.

87	
	

[32] S.S. Gokhale, “Architecture-Based Software Reliability Analysis:

Overview and Limitations,” IEEE Transaction on Dependable and Secure

Computing, vol. 4(1), 2007, pp. 32-40.

[33] A. Immonen and E. Niemela¨, “Survey of Reliability and Availability

Prediction Methods from the Viewpoint of Software Architecture,” J. Software

Systems Modeling, vol. 7(1),2008, pp. 49-65.

[34] R. Roshandel, N. Medvidovic, and L. Golubchik, “A Bayesian Model for

Predicting Reliability of Software Systems at the Architectural Level,”

Proceedings on Third Int’l Conf. Software Architectures, Components, and

Applications Quality of Software Architectures, 2007, pp.108-126.

[35] Brosch, F.; Koziolek, H.; Buhnova, B.; Reussner, R., “Architecture-Based

Reliability Prediction with the Palladio Component Model,” IEEE Transactions

on Software Engineering, vol.38(6), 2012, pp.1319-1339.

[36] G.N. Rodrigues, D.S. Rosenblum, and S. Uchitel, “Using Scenarios to

Predict the Reliability of Concurrent Component-Based Software Systems,”

Proceedings on. Conference. Fundamental Approaches to Software Eng., 2005,

pp. 111-126.

[37] S.M. Yacoub, B. Cukic, and H.H. Ammar, “A Scenario-Based Reliability

Analysis Approach for Component-Based Software,” IEEE Transaction on

Reliability, vol. 53(4), 2004, pp. 465-480.

[38] Wei Chen; Toueg, S.; Aguilera, M.K., “On the quality of service of failure

detectors,” IEEE Transactions on Computers, vol.51(1), 2002, pp.13-32.

88	
	

[39] T. IDE and H. KASHIMA, “Eigenspace-based anomaly detection in

computer systems,” Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, New York, NY, USA, 2004,

pp. 440-449.

[40] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood formation

and anomaly detection in bipartite graphs,” Proceedings on Fifth IEEE

International Conference on Data Mining, 2005, pp.8.

[41] S. Papadimitriou, J. Sun, and P. Yu, “Local correlation tracking in time

series”, Proceedings on Sixth International Conference on Data Mining, 2006.

ICDM '06, 2006, pp. 456-465.

[42] Ming-Da Ma; Wong, D.S.-H.; Shi-Shang Jang; Sheng-Tsaing Tseng, “Fault

Detection Based on Statistical Multivariate Analysis and Microarray

Visualization,” IEEE Transactions on Industrial Informatics, vol.6(1), 2010,

pp.18,24.

[43] M.G. Gouda and T.M. McGuire, “Accelerated Heartbeat Protocols,”

Proceedings on 18th Int'l Conf. Distributed Computing Systems, 1998, pp.202-

209.

[44] R. van Renesse, Y. Minsky and M. Hayden, “A Gossip-Style Failure

Detection Service,” Proceedings on Middleware '98, 1998, pp. 55-70.

[45] M. Raynal and F. Tronel, “Group Membership Failure Detection: A Simple

Protocol and Its Probabilistic Analysis,” Distributed Systems Eng. J., vol. 6(3),

1999, pp. 95-102.

89	
	

[46] Giordano, L., Martelli, A., Schwind, C., Specifying and verifying

interaction protocols in a temporal action logic. Journal of Applied Logic.

vol.5(12). , 2007, pp. 214-234.

[47] Zhang, J., Cheng, B.H.C., Using temporal logic to specify adaptive program

semantics. Journal of Systems and Software. vol.79 (10), 2006, pp. 1361-1369.

[48] Kolovski, V., Hendler, J., Parsia, B., Analyzing Web Access Control

Policies. Proceedings of the 16th international conference on World Wide Web,

2007, pp. 677–686.

[49] Goranko, V., Montanari, A., Sala, P., Sciavicco, G., A general tableau

method for propositional interval temporal logics: Theory and implementation.

Journal of Applied Logic, vol.4 (3). 2006, pp. 305-330.

[50] Bowman, H., Thompson, S.J., A Decision Procedure and Complete

Axiomatization of Finite Interval Temporal Logic with Projection. Journal of

Logic and Computation. vol.13(2), 2003, pp. 195–239.

[51] Moszkowski, B., A hierarchical completeness proof for propositional

interval temporal logic with finite time. Journal of Applied Non- Classical Logics.

14(1–2), 2004, pp. 55–104.

[52] Deng, L., Cai, Y., Wang, C., Jiang, Y., Fuzzy Temporal Logic on Fuzzy

Temporal Constraint Networks. Sixth International Conference on Fuzzy Systems

and Knowledge Discovery, 2009, pp. 272 – 276.

[53] Eamani, A.K., Sistla, A.P., 2006. Language based policy analysis in a SPKI

Trust Management System. Journal of Computer Security. vol.14(4). pp. 327-357.

90	
	

[54] Craven, R., Lobo, J., Ma, J., 2009. Expressive Policy Analysis with

Enhanced System Dynamicity. Proceedings of the 4th International Symposium

on Information, Computer, and Communications Security. pp. 239-250.

[55] Ahn, G., Xu, W., Zhang, X., 2008. Systematic Policy Analysis for High-

assurance Services in SELinux. Proceedings IEEE Workshop on Policies for

Distributed Systems and Networks. pp. 3-10.

[56] McDaniel, P., Prakash, A., Methods and limitations of security policy

reconciliation. ACM Transactions on Information and System Security. vol.9(3).

2006, pp. 259-291.

[57] Agrawal, R.; Srikant, R., “Mining sequential patterns,” Proceedings of the

Eleventh International Conference on Data Engineering, 1995, pp.3-14.

[58] Dunlop, N., Indulska, J., Raymond, K., Dynamic conflict detection in

policy-based management systems. Proceedings of Sixth International Enterprise

Distributed Object Computing Conference. 2002, pp. 15- 26.

[59] Niksefat, S., Sabaei, M., Efficient Algorithms for Dynamic Detection and

Resolution of IPSec/VPN Security Policy Conflicts. Proceedings of 24th IEEE

International Conference on Advanced Information Networking and Applications

(AINA). 2010, pp. 737-744.

[60] Samak, T., Al-Shaer, E., Hong, L., QoS Policy Modeling and Conflict

Analysis Proceedings of IEEE Workshop on Policies for Distributed Systems and

Networks. 2008, pp. 19-26.

[61] Wu,Z., Liu, Y., Knowledge-Based Policy Conflict Analysis in Mobile

Social Networks. Wireless Personal Communications. 73(1), 2013, pp 5-22.

91	
	

[62] Roozmand, O., et al., 2011, Agent-based modeling of consumer decision

making process based on power distance and personality. Journal of Knowledge-

Based Systems. vol.24(7). pp. 1075-1095.

[63] Kuhn, J.R.Jr., Courtney, J. F., Morris, B., Tatara, E.R., Agent-based

analysis and simulation of the consumer airline market share for Frontier Airlines.

Journal of Knowledge-Based Systems. vol.23(8). 2010, pp. 875-882.

[64] Bellini, P., Mattolini, R., Nesi, P., Temporal logics for real-time system

specification. ACM Computing Surveys. vol.32(1). 2000, pp. 12-42.

[65] Liang, Yinglung, et al. "Failure prediction in ibm bluegene/l event logs."

Seventh IEEE International Conference on Data Mining, 2007. ICDM 2007. IEEE,

2007, pp583-588.

[66] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for Mining

Sequential Patterns.” Proceedings of European Symp. Principle of Data Mining

and Knowledge Discovery (PKDD ’98), 1998, pp. 176-184.

[67] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu,

“FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining.” Proc. ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (SIGKDD ’00),

2000, pp. 355-359.

[68] Derek Pao, Wei Lin, Bin Liu, “A memory-efficient pipelined

implementation of the aho-corasick string-matching algorithm.” ACM

Transactions on Architecture and Code Optimization (TACO), 2010, pp 1-22.

92	
	

[69] Wang, Jianyong, Jiawei Han, and Chun Li. “Frequent closed sequence

mining without candidate maintenance,” IEEE Transactions on Knowledge and

Data Engineering, vol.19(8), 2007, pp.1042-1056.

[70] Wu, Z., Liu,Y., 2012. “Knowedge-based policy conflict analysis for

collaborative workspace,” Proceedings on 2012 8th International Conference on

Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom). 2012, pp. 727-734.

[71] Friedman, N., Halpern, J.Y., Koller, D., “First-order conditional logic for

default reasoning revisited,” ACM Transactions on Computational Logic (TOCL).

vol.1(2), 2000, pp. 175 – 207.

[72] Antony, G., “Temporal Logic,” The Stanford Encyclopedia of Philosophy

(Fall 2008 Edition), Edward N. Zalta (ed.).

http://plato.stanford.edu/archives/fall2008/entries/logic-temporal/

[73] Artikis, Alexander, Marek Sergot, and Georgios Paliouras. “Run-time

composite event recognition,” Proceedings of the 6th ACM International

Conference on Distributed Event-Based Systems. ACM, 2012, pp.69-80.

[74] Bonchi, Francesco, et al. “ExAMiner: Optimized level-wise frequent

pattern mining with monotone constraints.” Proceedings of the third IEEE

International Conference on Data Mining, 2003, pp.11-18.

[75] Campbell, R., Gupta, I., Heath, M., Ko, S., Kozuch, M., Kunze, M., Kwan,

T., Lai, K., Lee, H.Y., Lyons, M., Milojicic, D., O’Hallaron, D., and Soh, Y.C.,

"Open CirrusTM Cloud Computing Testbed: Federated Data Centers for Open

93	
	

Source Systems and Services Research", Proceedings of the USENIX

Hotcloud'09, San Diego, 2009, pp.1-5.

[76] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,

R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-Yehuda, W. Emmerich,

F. Galán, “The reservoir model and architecture for open federated cloud

computing.” IBM Journal of Research and Development archive, vol. 53(4), 2009,

pp. 535-542.

[77] Yanlong Zhai, Jing Zhang, Kwei-Jay Lin, “SOA Middleware Support for

Service Process Reconfiguration with End-to-End QoS Constraints.” Proceedings

of the 2009 IEEE International Conference on Web Services, 2009, pp. 815-822.

[78] M. Joshi, R. Agarwal, and V. Kumar. Mining needle in a haystack:

Classifying rare classes via two-phase rule induction. In SIGMOD '01 Proceedings

of the 2001 ACM SIGMOD international conference on Management of data,

2001, pp. 91–102.

[79] Chen, Yuehui, Bo Yang, and Jiwen Dong. "Time-series prediction using a

local linear wavelet neural network." Neurocomputing 69.4 2006, pp. 449-465.

[80] Bebis, George, and Michael Georgiopoulos. "Feed-forward neural

networks." Potentials, IEEE vol.13(4), 1994, pp.27-31.

[81] M. Joshi, R. Agarwal, and V. Kumar. “Predicting rare classes: Can boosting

make any weak learner strong?” In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, 2002, pp. 297-

306.

94	
	

[82] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations

and Performance Improvements,” Proceedings of International Conference of

Extending Database Technology (EDBT ’96), 1996, pp. 3-17.

	

	

