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1. Introduction

Parallel manipulators are robotic devices that differ from the more traditional serial robotic 
manipulators by their kinematic structure. Parallel manipulators are composed of multiple 
closed kinematic loops. Typically, these kinematic loops are formed by two or more 
kinematic chains that connect a moving platform to a base, where one joint in the chain is 
actuated and the other joints are passive. This kinematic structure allows parallel 
manipulators to be driven by actuators positioned on or near the base of the manipulator. In 
contrast, serial manipulators do not have closed kinematic loops and are usually actuated at 
each joint along the serial linkage. Accordingly, the actuators that are located at each joint 
along the serial linkage can account for a significant portion of the loading experienced by 
the manipulator, whereas the links of a parallel manipulator generally need not carry the 
load of the actuators. This allows the parallel manipulator links to be made lighter than the 
links of an analogous serial manipulator. The most noticeable interesting features of parallel 
mechanisms being: 

• High payload capacity.

• High throughput movements (high accelerations).

• High mechanical rigidity.

• Low moving mass.

• Simple mechanical construction.

• Actuators can be located on the base.
However, the most noticeable disadvantages being: 

• They have smaller workspaces than serial manipulators of similar size.

• Singularities within working volume.

• High coupling between the moving kinematic chains.

1.1 Prior work 

Among different types of parallel manipulators, the Gough-Stewart platform has attracted 
most attention because it has six degrees of freedom (DOF). It was originally designed by 
(Stewart, 1965). Generally, this manipulator has six limbs. Each one is connected to both the 
base and the moving platform by spherical joints located at each end of the limb.  

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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Actuation of the platform is typically accomplished by changing the lengths of the limbs. 
Although these six-limbed manipulators offer good rigidity, simple inverse kinematics, and 
high payload capacity, their forward kinematics are difficult to solve, position and 
orientation of the moving platform are coupled and precise spherical joints are difficult to 
manufacture at low cost. 
To overcome the above shortcomings, parallel manipulators with fewer than six degrees of 
freedom have been investigated. For examples, (Ceccarelli, 1997) proposed a 3-DOF parallel 
manipulator (called CaPaMan) in which each limb is made up of a planar parallelogram, a 
prismatic joint, and a ball joint. But these manipulators have coupled motion between the 
position and orientation of the end-effector. The 3-RRR (Revolute Revolute Revolute) 
spherical manipulator was studied in detail by (Gosselin & Angeles, 1989).  
Several spatial parallel manipulators with a rotational moving platform, called rotational 
parallel manipulators (RPMs), were proposed (Di Gregorio, 2001), (Karouia & Herve, 2000) 
and (Vischer & Clavel, 2000). (Clavel, 1988) at the Swiss Federal Institute of Technology 
designed a 3-DOF parallel manipulator that does not suffer from the first two of the listed 
disadvantages of the Stewart manipulator. Closed-form solutions for both the inverse and 
forward kinematics were developed for the DELTA robot (Gosselin & Angeles, 1989). The 
DELTA robot has only translational degrees of freedom. Additionally, the position and 
orientation of the moving platform are uncoupled in the DELTA design. However, the 
DELTA robot construction does employ spherical joints. (Tsai, 1996) presented the design of 
a spatial 3-UPU (Universal Prismatic Universal) manipulator and pointed out the conditions 
that lead to pure translational motion and its kinematics was studied further by (Di-
Gregorio & Parenti-Castelli, 1998). (Tsai, 1996) and (Tsai et al., 1996) designed a 3-DOF TPM 
(Translational Parallel Manipulator) that employs only revolute joints and planar 
parallelograms. (Tsai & Joshi, 2002) analyzed the kinematics of four TPMs for use in hybrid 
kinematic machines. (Carricato & Parenti-Castelli, 2001) developed a family of 3-DOF TPMs. 
(Fang & Tsai, 2002) presented a systematic methodology for structure synthesis 3-DOF 
TPMs using the theory of reciprocal screws (Kim  & Tsai, 2002). 
Han Sung Kim and Lung-Wen Tsai (Kim & Tsai, 2002) presented a parallel manipulator 
called CPM (figure 1) that employs only revolute and prismatic joints to achieve 
translational motion of the moving platform. They described its kinematic architecture and 
discussed two actuation methods. For the rotary actuation method, the inverse kinematics 
provides two solutions per limb, and the forward kinematics leads to an eighth-degree 
polynomial. Also, the rotary actuation method results in many singular points within the 
workspace. On the other hand, for the linear actuation method, there exists a one-to-one 
correspondence between the input and output displacements of the manipulator. Also, they 
discussed the effect of misalignment of the linear actuators on the motion of the moving 
platform. They suggested a method to maximize the stiffness to minimize the deflection at 
the joints caused by the bending moment because each limb structure is exposed to a 
bending moment induced by the external force exerted on the end-effector. 

2. Manipulator description and kinematics

2.1 Manipulator structure 

The Cartesian Parallel Manipulator, shown in figure 1, consists of a moving platform that is 
connected to a fixed base by three limbs. Each limb is made up of one prismatic and three 
revolute joints and all joint axes are parallel to one another. 
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Figure 1: Assembly drawing of the prototype parallel manipulator. 

2.2 Kinematic structure 

The kinematic structure of the CPM is shown in figure 2 where a moving platform is 

connected to a fixed base by three PRRR (Prismatic Revolute Revolute Revolute) limbs. The 

origin of the fixed coordinate frame is located at point O and a reference frame XYZ is 

attached to the fixed base at this point. The moving platform is symbolically represented by 

a square whose length side is 2L defined by B1, B2, and B3 and the fixed base is defined by 

three guide rods passing through A1, A2, and A3, respectively. The three revolute joint axes 

in each limb are located at points Ai, Mi, and Bi, respectively, and are parallel to the ground-

connected prismatic joint axis. Furthermore, the three prismatic joint axes, passing through 

point Ai, for i = 1, 2, and 3, are parallel to the X, Y, and Z axes, respectively. Specifically, the 

first prismatic joint axis lies on the X-axis; the second prismatic joint axis lies on the Y axis; 

and the third prismatic joint axis is parallel to the Z axis. Point P represents the center of the 

moving platform. The link lengths are L1, and L2. The starting point of a prismatic joint is 

defined by d0i and the sliding distance is defined by di - d0i for i = 1, 2, and 3.  

2.3 Kinematics constraints 

For this analysis, the position of the end-effector is considered known, and is given by the 

position vector P= [x, y, z] which defines the location of P at the center of the moving 

platform in the XYZ coordinate frame. The inverse kinematics analysis produces a set of two 

joint angles for each limb (θi1 and θi2 for the ith limb) that define the possible postures for

each limb for the given position of the moving platform. 
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Figure 2: Spatial 3-PRRR parallel manipulator. 

2.3.1 The first limb 

A schematic diagram of the first limb of the CPM is sketched in figure 3, and then the 
relationships for the first limb are written for the position P[x, y, z] in the coordinate frame 
XYZ. 

Figure 3: Description of the joint angles and link lengths for the first limb. 

y= L1 cos θ11+L2 cos θ12+L  (1) 

z= L1 sin θ11+L2 sin θ12  (2) 

2 2 2

2 1 11 1 11( cos ) ( sin )L y L L z Lθ θ= − − + −   (3)
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2.3.2 The second limb 

A schematic diagram of the second limb of the CPM is sketched in figure 4, and then the 

relationships for the second limb are written for the position P[x, y, z] in the coordinate 

frame XYZ. 

 z= L1 cos θ21+L2 cos θ22  (4)  

 
1 21 2 22sin sinx L L Lθ θ= + +   (5) 

 2 2 2

2 1 21 1 21( cos ) ( sin )L z L x L Lθ θ= − + − −   (6) 

 

 

Figure 4: Description of the joint angles and link for the second limb. 

2.3.3 The third limb 

A schematic diagram of the third limb of the CPM is sketched in figure 5, and then the 

relationships for the third limb are written for the position P[x, y, z] in the coordinate frame 

XYZ. 
 

 

Figure 5: Description of the joint angles and link lengths for the third limb. 
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 x= L1 cos θ31+L2 cos θ32  (7) 

 
1 31 2 32sin siny D L L Lθ θ= − − −   (8) 

 2 2 2

2 1 31 1 31( cos ) ( sin )L x L y D L Lθ θ= − + − + +   (9) 

2.4 Linear actuation method  

As described by Han Sung Kim and Lung-Wen Tsai (Kim & Tsai, 2002), for the linear 
actuation method, a linear actuator drives the prismatic joint in each limb whereas all the 
other joints are passive. This method has the advantage of having all actuators installed on 
the fixed base. The forward and inverse kinematic analyses are trivial since there exists a 
one-to-one correspondence between the end-effector position and the input joint 
displacements. Referring to figure 2, each limb constrains point P to lie on a plane which 
passes through point Ai and is perpendicular to the axis of the linear actuator. Consequently, 
the location of P is determined by the intersection of three planes. A simple kinematic 
relation can be written as  

 
1

2

3

x d

y d

z d

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
    (10) 

3. Analysis of manipulator dynamics 

An understanding of the manipulator dynamics is important from several different 
perspectives. First, it is necessary to properly size the actuators and other manipulator 
components. Without a model of the manipulator dynamics, it becomes difficult to predict 
the actuator force requirements and in turn equally difficult to properly select the actuators. 
Second, a dynamics model is useful for developing a control scheme. With an 
understanding of the manipulator dynamics, it is possible to design a controller with better 
performance characteristics than would typically be found using heuristic methods after the 
manipulator has been constructed. Moreover, some control schemes such as the computed 
torque controller rely directly on the dynamics model to predict the desired actuator force to 
be used in a feedforward manner. Third, a dynamical model can be used for computer 
simulation of a robotic system. By examining the behavior of the model under various 
operating conditions, it is possible to predict how a robotic system will behave when it is 
built. Various manufacturing automation tasks can be examined without the need of a real 
system. Several approaches have been used to characterize the dynamics of parallel 
manipulators. The most common approaches are based upon application of the Newton-
Euler formulations, and Lagrange’s equations of motion (Tsai, 1999). The traditional 
Newton-Euler formulation requires the equations of motion to be written once for each 
body of a manipulator, which inevitably leads to a large number of equations and results in 
poor computational efficiency. The Lagrangian formulation eliminates all of the unwanted 
reaction forces and moments at the outset. It is more efficient than the Newton-Euler 
formulation. However, because of the numerous constraints imposed by the closed loops of 
a manipulator, deriving explicit equations of motion in terms of a set of independent 
generalized coordinates becomes a prohibitive task. To simplify the problem, additional 
coordinates along with a set of Lagrangian multipliers are often introduced (Tsai, 1999). 
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3.1 Lagrange based dynamic analysis 

It can be assumed that the first rod of each limb is a uniform and its mass is m1. The mass of 
second rod of each limb is evenly divided between and concentrated at joints Mi and Bi. This 
assumption can be made without significantly compromising the accuracy of the model 
since the concentrated mass model of the connecting rods does capture some of the 
dynamics of the rods. Also, the damping at the actuator is disregarded since the Lagrangian 
model does not readily accommodate viscous damping as is assumed for the actuators.  
The Lagrangian equations are written in terms of a set of redundant coordinates. Therefore, 

the formulation requires a set of constraint equations derived from the kinematics of a 

mechanism. These constraint equations and their derivatives must be adjoined to the 

equations of motion to produce a number of equations that is equal to the number of 

unknowns. In general, the Lagrange multiplier approach involves solving the following 

system of equations (Tsai, 1999): 

1

( ) ( )
k

i
j i

ij j j

fd L L
Q

dt q q q
λ

=
∂∂ ∂− = +∂ ∂ ∂∑$

 (11) 

For j =1 to n, where 
j : is the generalized coordinate index, 
n: is the number of generalized coordinates, 
i : is the constraint index, 
qj: is the jth generalized coordinate, 
k : is the number of constraint functions, 
L : is the Lagrange function, where L= T− V,
T : is the total kinetic energy of the manipulator, 
V : is the total potential energy of the manipulator, 
fi : is a constraint equation,  
Qj : is a generalized external force, and 

iλ : is the Lagrange multiplier. 

Theoretically, the dynamic analysis can be accomplished by using just three generalized 
coordinates since this is a 3 DOF manipulator. However, this would lead to a cumbersome 
expression for the Lagrange function, due to the complex kinematics of the manipulator. So 
we choose three redundant coordinates which are θ11, θ21 and θ31 beside the generalized
coordinates x, y, and z. Thus we have θ11, θ21, θ31, , x, y, and z as the generalized coordinates.
Equation 11 represents a system of six equations in six variables, where the six variables are 

iλ  for i = 1, 2, and 3, and the three actuator forces, Qj for j = 4, 5, and 6. The external 

generalized forces, Qj for j=1, 2, and 3, are zero since the revolute joints are passive. This 
formulation requires three constraint equations, fi for i = 1, 2, and 3, that are written in terms 
of the generalized coordinates. 

3.2 Derivation of the manipulator‘s dynamics  
3.2.1 The kinetic and potential energy of the first limb 
Referring to figure 6, the velocities of A1 (the prismatic joint of the first limb), A2 and A3 are 

x$ , y$ and z$ . The angular velocity of the rod A1 M1 is
11θ$ . We can consider the moment of
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inertia of rods A1 M1, A2 M2, and A3 M3 is 21
1

12

m
I L= . m3 is the mass of each prismatic joint 

(A1, A2, and A3). So, the total kinetic energy of the first limb, T1, is 

 2
2 2 22 1 2

1 1 2 3 1

2[ ] ( ) ( )
112 4 6 4

m m mx
T m m m y z L θ= + + + + + +$ $$ $    (12) 

The total potential energy of the first limb, V1,is 

 1 2 2
1 1 11sin

2 2

m m m
V gL gzθ+= − −   (13) 

 

 

Figure 6: Schematic diagram of the first limb for the dynamic analysis. 

3.2.2 The kinetic and potential energy of the second limb 

Referring to figure 7, if the angular velocity of the rod A2 M2 is
21θ$ , the total kinetic energy of 

the second limb, T2 is 

 
2

2 2 22 1 2
2 1 2 3 1

2[ ] ( ) ( )
212 4 6 4

m m my
T m m m x z L θ= + + + + + +$ $$ $   (14) 

 

 

Figure 7: Schematic diagram of the second limb for the dynamic analysis. 

www.intechopen.com



Cartesian Parallel Manipulator Modeling, Control and Simulation 

 

277 

The total potential energy of the second limb, V2, is given by 

 1 2 2
2 1 21cos

2 2

m m m
V gL gzθ+= − −   (15) 

3.2.3 The kinetic and potential energy of the third limb 

Referring to figure 8, the total kinetic energy of the second limb, T3 is  

 
2

2 2 22 1 2
3 1 2 3 1

2[ ] ( ) ( )
312 4 6 4

m m mz
T m m m x y L θ= + + + + + +$ $$ $   (16) 

The total potential energy of the third limb, V3, is 

 
3 1 2 3( )V m m m gz= − + +   (17) 

 

 

Figure 8: Schematic diagram of the third limb for the dynamic analysis. 

3.2.4 Derivation of the Lagrange equation 

From equations 12, 14, and 16, the total kinetic energy of the manipulator T is given by: 

 2 2 2 21 2
1 2 3 4 1

1 2 2 2[ 2 ]( ) ( ) ( )
11 21 312 6 4

m m
T m m m m x y z L θ θ θ= + + + + + + + + +$ $ $$ $ $   (18) 

where m4 is the mass of the tool. From equations 13, 15, and 17, the total potential energy V 
of the manipulator is calculated relative to the plane of the stationary platform of the 
manipulator, and is found to be: 

 1 2
1 11 21 1 2 3 4(sin cos ) ( 2 )

2

m m
V gL m m m m gzθ θ+= − + − + + +   (19) 

The Lagrange function is defined as the difference between the total kinetic energy, T, and 
the total potential energy V:  L= T− V 

 2 2 2

11 21

2 2 2( ) ( ) (sin cos )
11 21 31

L A x y z B C Ezθ θ θ θ θ= + + + + + + + +$ $ $$ $ $   (20) 
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Where: 

1 2 3 4

1
[ 2 ]

2
A m m m m= + + +  , 21 2

1( )
6 4

m m
B L= + , 1 2

1
2

m m
C gL

+=   and 
1 2 3 4( 2 )E m m m m g= + + +  

3.2.5 The constraint equations  

Differentiation of equation 3 with respect to time yields 

   1 11 1 11
11

11 11 1 11 11 1

( cos ) ( sin )
0

(( )sin cos ) (( )sin cos )

y L L z L
y z

y L z L y L z L

θ θ θθ θ θ θ
− − −= + +− − − − $$ $   (27) 

Differentiation of equation 6 with respect to time yields  

 1 21 1 21
21

1 21 21 1 21 21

( cos ) ( sin )
0

( sin ( )cos ) ( sin ( )cos )

z L x L L
z x

L z L x L z L x

θ θ θθ θ θ θ
− − −= + ++ − + − $$$   (28) 

Differentiation of equation 9 with respect to time yields  

 1 31 1 31
31

31 31 1 31 31 1

( cos ) ( sin )
0

( sin cos ( )) ( sin cos ( ))

x L y D L L
x y

x y D L L x y D L L

θ θ θθ θ θ θ
− − + += + ++ − + + − + $$ $   (29) 

The equations 27, 28, and 29 are rearranged so as to produce:  

 
11

21

31

x

y

z

θ
θ
θ
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= Γ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$ $
$ $
$ $

  (30) 

Where 

 

1 11 1 11

11 11 1 11 11 1

1 21 1 21

1 21 21 1 21 21

1 31 1 31

31 31 1

( cos ) ( sin )
0

(( )sin cos ) (( )sin cos )

( sin ) ( cos )
0

( sin ( )cos ) ( sin ( )cos )

( cos ) ( sin

( sin cos ( ))

y L L z L

y L z L y L z L

x L L z L

L z L x L z L x

x L y D L

x y D L L

θ θ
θ θ θ θ

θ θ
θ θ θ θ

θ θ
θ θ

− − −
− − − −

− − −Γ = − + − + −
− − + +

+ − + 31 31 1

)
0

( sin cos ( ))

L

x y D L Lθ θ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥+ − +⎢ ⎥⎣ ⎦

 

3.2.6 Taking the derivatives of the Lagrange function with respect to θ11 

11

11

( ) 2
d L

B
dt

θθ
∂ =∂ $$
$

, 
11

11

cos
L

C θθ
∂ =∂

 

3

1

111 11 11

( ) ( )ii

i

fd L L
Q

dt
λθ θ θ=

∂∂ ∂− = +∂ ∂ ∂∑$
 

 (Q1, Q2 and Q3 =0 since the revolute joints are passive) 

 
11 11 12 cosB Cθ θ λ− =$$   (31) 
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3.2.7 Taking the derivatives of the Lagrange function with respect to θ21

21

21

( ) 2
d L

B
dt

θθ
∂ =∂ $$
$

, 
21

21

sin
L

C θθ
∂ = −∂

3

2

121 21 21

( ) ( )i
i

i

fd L L
Q

dt
λθ θ θ=

∂∂ ∂− = +∂ ∂ ∂∑$

21 21 22 sinB Cθ θ λ+ =$$   (32)

3.2.8 Taking the derivatives of the Lagrange function with respect to θ31

31

31

( ) 2
d L

B
dt

θθ
∂ =∂ $$
$

, 

31

0
L

θ
∂ =∂  

3

3

131 31 31

( ) ( )i
i

i

fd L L
Q

dt
λθ θ θ=

∂∂ ∂− = +∂ ∂ ∂∑$

31 32Bθ λ=$$   (33)

Rearrangement of equations 31, 32, and 33 produces: 

11 11 1

21 21 2

31 3

cos

2 sin

0

B C

θ θ λ
θ θ λ
θ λ
⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

$$
$$
$$

(34) 

Differentiation equation 30 with respect to time yields  

11

21

31

x x
d

y y
dt

z z

θ
θ
θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Γ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

$$ $$ $
$$ $$ $
$$ $$ $

Substituting into equation 34 yields 

1 11

2 21

3

cos

2 2 sin

0

x x
d

B y B y C
dt

z z

λ θ
λ θ
λ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Γ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$$ $
$$ $
$$ $

  (35)

3.2.9 Taking the derivatives of the Lagrange function with respect to X 

( ) 2
d L

Ax
dt x

∂ =∂ $$
$

, 
0

L

x

∂ =∂
3

4

1

( ) ( )ii

i

fd L L
Q

dt x x x
λ

=
∂∂ ∂− = +∂ ∂ ∂∑$

www.intechopen.com



Parallel Manipulators, Towards New Applications 280 

11 1 21 2 31 32 xAx F λ λ λ− Γ − Γ − Γ=$$   (36)

where Fx , Fx and Fx are the forces applied by the actuator for the first, second and third 

limbs. 
ijΓ is the (i, j) element of the Γ  matrix.

3.2.10 Taking the derivatives of the Lagrange function with respect to Y 

( ) 2
d L

Ay
dt y

∂ =∂ $$
$

, 0
L

y

∂ =∂  

3

5

1

( ) ( )ii

i

fd L L
Q

dt y y y
λ

=
∂∂ ∂− = +∂ ∂ ∂∑$

12 1 22 2 32 32 yAy F λ λ λ− Γ − Γ − Γ=$$   (37)

3.2.11 Taking the derivatives of the Lagrange function with respect to Z 

( ) 2
d L

Az
dt z

∂ =∂ $$
$

, L E
z

∂ =∂
3

6

1

( ) ( )ii

i

fd L L
Q

dt z z z
λ

=
∂∂ ∂− = +∂ ∂ ∂∑$

13 1 23 2 33 32 zAz E F λ λ λ− −Γ −Γ −Γ=$$   (38)

Rearrangement of equations 36, 37, and 38 produces:  

1

2

3

0

2 0

x

T

y

z

F x

F A y

F z E

λ
λ
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$$
$$
$$

Substituting into equation 35 yields 

11

21

0 cos

0 sin (2 2 ) 2

0

x

T T T

y

z

F x x
d

F C AI B y B y
dt

F E z z

θ
θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + Γ + Γ Γ Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+ +$$ $

$$ $
$$ $

 

The dynamic equation of the whole system can be written as 

( ) ( , ) ( )F M q q G q q q K q= + +$$ $ $ (39) 

Where  

x

y

z

F

F F

F

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
, 

x

q y

z

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

$$
$$ $$

$$

, 
x

q y

z

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

$
$ $

$

, 
x

q y

z

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
, ( ) 2 2TM q AI B= Γ Γ+  , ( , ) 2T

d
G q q B

dt

Γ= Γ$  , and 
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11

21

0 cos

( ) 0 sin

0

TK q C

E

θ
θ

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= − + Γ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

where q is the 3×1 vector of joint displacements, q$ is the 3×1 vector of joint velocities, F is the 

3×1 vector of applied force inputs, M(q) is the manipulator inertia matrix, ( , )G q q$  is the 

manipulator centripetal and coriolis matrix which is the 3×3 matrix of centripetal and 
coriolis forces, and K(q) is the vector of gravitational forces which is the 3×1 vector of 
gravitational forces due to gravity. The Lagrangian dynamics equation, equation 39, possess 
important properties that facilities analysis and control system design. Among theses are 
(Lewis et al., 1993): the M(q) is a 3×3 symmetric and positive definite matrix and the matrix 

( , ) ( ) 2 ( , )W q q M q G q q= −$$ $  is a skew symmetric matrix. 

4. Controller design 

4.1 Introduction  

The control problem for robot manipulators is the problem of determining the time history 
of joint inputs required to cause the end-effector to execute a commanded motion. The joint 
inputs may be joint forces or torques depending on the model used for controller design.  
Position control and trajectory tracking are the most common tasks for robot manipulators; 
given a desired trajectory, the joint force is chosen so that the manipulator follows that 
trajectory. The control strategy should be robust with respect to initial condition errors, 
sensor noise, and modeling errors.  The primary goal of motion control in joint space is to 
make the robot joints q track a given time varying desired joint position qd. Rigorously, we 
say that the motion control objective in joint space is achieved provided that lim ( ) 0

t

e t→∞ =  

where e(t)=qd(t) - q(t) denotes the joint position error. Although the dynamics of the 
manipulator‘s equation is complicated, it nevertheless is an idealization, and there are a 
number of dynamic effects that are not included in this equation. For example, friction at the 
joints is not accounted for in this equation and may be significant for some manipulators. 
Also, no physical body is completely rigid. A more detailed analysis of robot dynamics 
would include various sources of flexibility, such as elastic deformation of bearings and 
gears, deflection of the links under load, and vibrations. 

4.2 PID control versus model based control 
The PID controller is a single-input/single-output (SISO) controller that produces a control 
signal that is a sum of three terms. The first term is proportional (P) to the positioning error, 
the second term is proportional to the integral (I) of the error, and the third is proportional 
to the derivative (D) of the error. The PID (or PD) type is usually employed in industrial 
robot manipulators because it is easy to implement and requires little computation time 
during real time operation. This approach views each actuator of the manipulator 
independently, and essentially ignores the highly coupled and nonlinear nature of the 
manipulator. The error between the actual and desired joint position is used as feedback to 
control the actuator associated with each joint. However, independent joint controllers can 
not achieve a satisfactory performance due to their inherent low rejection of disturbances 
and parameter variations. Because of such limitation, model based control algorithms were 
proposed (Sciavicco et al., 1990) that have the potential to perform better than independent 

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

282 

joint controllers that do not account for manipulator dynamics. However, the difficulty with 
the model based controller is that it requires a good model of the manipulator inverse 
dynamics and good estimates of the model parameters, making this controller more 
complex and difficult to implement than the non-model based controller. The model based 
control scheme was intensively experimentally tested for example the experimental 
evaluation of computed torque control was presented in (Griffiths et al., 1989). 

4.3 PD control with position and velocity reference 
The first PD control law is based on the position and velocity error of each actuator in the 
joint space. To implement the joint control architecture, the values for the joint position error 
and the joint rate error of the closed chain system are used to compute the joint control force 
F (Spong & Vidyasagar, 1989). 

 
P DF K e K e= + $   (40) 

Where 
de q q= − , which is the vector of position error of the individual actuated joints, and 

de q q= −$ $ $ , which is the vector of velocity error of the individual actuated joints. Where 

dq$ and 
dq are the desired joint velocities and positions, and KD and KP are 3 ×3 diagonal 

matrices of velocity and position gains. Although this type of controller is suitable for real 
time control since it has very few computations compared to the complicated nonlinear 
dynamic equations, there are a few downsides to this controller. It needs high update rate to 
achieve reasonable accuracy. Using local PD feedback law at each joint independently does 
not consider the couplings of dynamics between robot links. As a result, this controller can 
cause the motor to overwork compared to other controllers presented next. 

4.4 PD Control with gravity compensation 
This is a slightly more sophisticated version of PD control with a gravitational feedforward 
term. Consider the case when a constant equilibrium posture is assigned for the system as 
the reference input vector qd. It is desired to find the structure of the controller which 
ensures global asymptotic stability of the above posture. The control law F is given by 
(Spong & Vidyasagar, 1989): 

 ( )P D dF K e K e K q= + +$   (41) 

It has been shown (Spong, 1996) that the system is asymptotically stable but it is only 
proven with constant reference trajectories. Although with varying desired trajectories, this 
type of controller cannot guarantee perfect tracking performance. Hence, more dynamic 
modeling information is needed to incorporate into the controller. 

4.5 PD control with full dynamics feedforward terms  
This type of controller augments the basic PD controller by compensating for the 
manipulator dynamics in the feedforward way. It assumes the full knowledge of the robot 
parameters. The key idea for this type of controller is that if the full dynamics is correct, the 
resulting force generated by the controller will also be perfect. The controller is given by 
(Gullayanon , 2005) 

 ( ) ( , ) ( )d d d d d d P DF M q q G q q q K q K e K e= + + + +$$ $ $ $   (42) 
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If the dynamic knowledge of the manipulator is accurate, and the position and velocity error 
terms are initially zero, the applied force ( ) ( , ) ( )d d d d d dF M q q G q q q K q= + +$$ $ $  

is sufficient to maintain zero tracking error during motion. This controller is very similar to 
the computed torque controller, which is presented next. The difference between these two 
controllers is the location of the position and velocity correction terms. This controller is less 
sensitive to any mass changes in the system. For example, if the robot picks up a heavy load 
in the middle of its operation, this controller is likely to respond to this change slower 
compared to computed torque controller. The advantage of this controller is that once the 
desired trajectory for a given task has been specified, then the feedforward terms relying on 
the robot dynamics ( ) ( , ) ( )d d d d d dM q q G q q q K q+ +$$ $ $ can be computed offline to reduce the 

computational burden. 

4.6 Computed torque control 

This controller is developed for the manipulator to examine if it is possible to improve the 
performance of the trajectory tracking of the manipulator by utilizing a more complete 
understanding of the manipulator dynamics in the controller design. This controller 
employs a computed torque control approach, and it uses a model of the manipulator 
dynamics to estimate the actuator forces that will result in the desired trajectory. Since this 
type of controller takes into account the nonlinear and coupled nature of the manipulator, 
the potential performance of this type of controller should be quite good. The disadvantage 
of this approach is that it requires a reasonably accurate and computationally efficient 
model of the inverse dynamics of the manipulator to function as a real time controller. The 
controller computes the dynamics online, using the sampled joint position and velocity data. 
The key idea is to find an input vector, F, as a function of the system states, which is capable 
to realize an input/output relationship of linear type. It is desired to perform not a local 
linearization but a global linearization of system dynamics obtained by means of a nonlinear 
state feedback. Using the computed torque approach with a proportional-derivative (PD) 
outer control loop, the applied actuator forces are calculated at each time step using the 
following force law as described by Lewis, 1993: 

 ( )[ ] ( , ) ( )d D pF M q q K e K e G q q q K q= + + + +$$ $ $ $   (43) 

where F is the force applied to input links, KD is the diagonal matrix of the derivative gains, 
KP is the diagonal matrix of the proportional gains, and e is the vector of the position errors 

of the input links,
de q q= − . To show that the computed torque control scheme linearizes 

the controlled system, the force computed by equation 43 is substituted into equation 39, 
yielding: ( ) ( ) ( )[ ]d D pM q q M q q M q K e K e= + +$$ $$ $ . Then multiplying each term by M-1(q), and 

substituting the relationship,
de q q= −$$ $$ $$ , provides the following linear relationship for the 

error: 

 0D Pe k e k e+ + =$$ $   (44) 

This relationship can be used to select the gains to give the desired nature of the closed loop 
error response since the solution of equation 44 provides a second order damped system 

with a natural frequency of 
nω , and a damping ratio of  ζ where: 
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n PKω = ,      

2

D

P

K

K
ζ =   (45) 

Since the equation 44 is linear, it is easy to choose KD and KP so that the overall system is 
stable and e → 0 exponentially as t→∞. Usually, if KD and KP are positive diagonal matrices, 
the control law 43 applied to the system 39 results in exponentially trajectory tracking.  
It is customary in robot applications to take the damping ration 1ζ =  so that the response is 

critically damped. This produces the fastest non-oscillatory response. The natural frequency 

nω determines the speed of the response. So, the values for the gain matrices KD and KP are 

determined by setting the gains to maintain the following relationship:  

 2D PK K=    (46)  

If the error response is critically damped. Hence, the general solution of equation 44 is: 

 2
1 2( ) ( )

DK t

e t c c t e
−= +   (47) 

where C1 and C2 are constants. 

5. Trajectory planning and simulation 

5.1 Introduction 

The computer simulation is the first step to verify the performance of the controllers because 
it is an ideal way of comparing performance of various motion controllers. Although 
computer simulation has much fewer disturbances compared to real experiments, factors 
such as the integration estimation and sampling rate can cause the controllers to behave 
differently than the mathematical prediction.  

5.2 Tracking accuracy 

In this research, the main purpose for developing the motion controllers is to obtain a good 
trajectory tracking capability. The performance of each control method is evaluated by 
comparing the tracking accuracy of the end-effector. The tracking accuracy is evaluated by 
the Root Square Mean Error (RSME). The end-effector error is defined as  

 2 2 2( )xyz x y zE e e e= + +   (48) 

where ex, ey and ez are the position errors in x-, y-, and z-axis given in manipulator’s 
workspace coordinates.  

 
2

xyzE
RSME

n
= ∑   (49) 

Where n is the number of the samples.  

5.3 Trajectory planning 

In controlling the manipulator using any types of joint space controllers, any sudden 
changes in desired joint angle, velocity, or acceleration can result in sudden changes of the 
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commanded force. This can result in damages of the motors and the manipulator. Here, the 
manipulator is given a task to move along careful preplanned trajectories without any 
external disturbances or no interaction with environment. The desired trajectory is 
simulated using all motion controllers presented in Section 4 and the tracking accuracy 
RSME is obtained to be compared. The simulation is used to find a set of minimum 
proportional gain KP and derivative gain KD that minimized RSME. It must be considered 
that the actuators can not generate forces larger than 120 Newtons. The values of the 
physical kinematic and dynamic parameters of the CPM are given in table 1 and table 2. 
 

Parameters L(m) L1 (m) L2 (m) D(m) 

Values 0.105 0.5 0.373 0.9144 

Table 1: Kinematic parameters of the CPM 

 

Parameters m1(kg) m2(kg) m3 (kg) m4 (kg) 

Values 1.892994 0.695528 0.2 0.3 

Table 2: Dynamic parameters of the CPM. 

The sample trajectory of the end-effector is chosen to be a circular path with the radius of 
0.175 meters and its center is O(0.425 ,0.425 ,0.3). This path is designed to be completed in 4 
seconds when the end-effector reaches the starting point P1 (0.6, 0.425, 0.3) again with 

constant angular velocity 0.5ω π=  rad/sec. The end-effector path is shown in figure 9. The 

desired end-effector position along x-axis is 0.425 0.175cos( )x tω= +  meters, along y-axis 

is 0.425 0.175sin( )y tω= +  meters and along z-axis is Z=0.3 meters. The desired force 

obtained from the actuators to move the end-effector along the desired trajectory is shown 
in figure 10. 
 

 

Figure 9: End-effector path for the circular trajectory. 
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Figure 10: The desired force obtained from the actuators 

5.4 Simulation results 

To investigate each controller’s performance, computer simulation, carried out in Matlab, is 

used in this thesis. The robot dynamic model, developed earlier, is constructed. The sample 

trajectory, presented in the previous section, is generated and stored offline. The 

environmental disturbances are ignored and full knowledge of the manipulator dynamics 

can be assumed. Hence, the optimal performance of each controller can be obtained and 

compared. The simulation results are presented in table 3. 

5.4.1 PD control with position and velocity reference 

It was required that the robot achieved the desired trajectory with a position error less than 

3 x 10-3 m after 0.3 seconds.  

5.4.2 PD control with gravity compensation 

It was required that the robot achieved the desired trajectory with a position error less than 

3 x 10-4 m after 0.3 seconds.  

5.4.3 PD control with full dynamicsfFeedforward terms 

It was required that the robot achieved the desired trajectory with a position error less than 

10-5 m after 0.3 seconds.  

5.4.4 Computed torque control 

The initial conditions of the error and its derivative of our sample trajectory of the End-

effector, (0) 0e = , and 
0(0)e e=$ $ , are used to find c1 and c2 in equation 47. Then, the solution 

of this equation is  

 2
0

DK t

e e te
−= $   (50) 
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Equation 50 suggests that the derivative gain KD should be a maximum value to achieve the 
desired critical damping but the actuator force cannot exceed more than 120 Newtons. Using 
this criterion, the simulation results are presented in table 3. The position and velocity errors 
of the end-effector obtained from the controllers and the actuator forces required by these 
controllers are shown in figures 11 to 22. 
 

Controller KP KD Position RSME Velocity RSME 

Pd Control with Position 
and Velocity Reference 

12691 436 0.0027 0.0223 

Pd Control with Gravity 
Compensation 

8507 436 3.4804 x 10-4 0.021 

Pd Control with Full 
Dynamics Feedforward 

7053 436 3.0256 x 10-4 0.0182 

Computed Torque Control 2550.25 101 2.3469 x 10-4 0.0161 

Table 3: The performance of various controllers 

 

Figure 11 Position error of the end-effector obtained from the Simple PD Controller. 

 
Figure 12: Velocity error of the end-effector obtained from the Simple PD Controller. 
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Figure 13: The actuator force required by the Simple PD Controller. 

 
Figure 14: Position error of the end-effector obtained from the second PD Controller.  

 
Figure 15: Velocity error of the end-effector obtained from the second PD Controller.  
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Figure 16: The actuator force required by the second PD Controller.  

 

Figure 17: Position error of the end-effector obtained from the third PD Controller. 

 

Figure 18: Velocity error of the end-effector obtained from the third PD Controller. 
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Figure 19: The actuator force required by the third PD Controller.  

Figure 20: Position error of the end-effector obtained from the computed torque controller. 

Figure 21: Velocity error of the end-effector obtained from the computed torque controller. 
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Figure 22: The actuator force required by the computed torque controller. 

6. Conclusions 

The research presented in this chapter establishes the CPM as a viable robotic device for 

three degrees of freedom manipulation. The manipulator offers the advantages associated 

with other parallel manipulators, such as light weight construction; while avoiding some of 

the traditional disadvantages of parallel manipulators such as the extensive use of spherical 

joints and coupling of the platform orientation and position. The CPM employs only 

revolute and prismatic joints to achieve translational motion of the moving platform. The 

main advantages of this parallel manipulator are that all of the actuators can be attached 

directly to the base, closed-form solutions are available for the forward and inverse 

kinematics, and the moving platform maintains the same orientation throughout the entire 

workspace. From simulations done in this research, performance of various motion 

controllers are studied and compared. Although the simple PD controller with only position 

and velocity reference is easy to implement and no knowledge of the system is needed to 

develop this type of controller, the tracking ability is very poor compared to the rest of the 

controllers used in this thesis. At the next step, when partial dynamic modeling information 

is incorporated into the controller, the PD controller with gravity compensation is 

implemented. The simulation results show a significant improvement in tracking ability 

from a simple PD controller. Next, the verification is needed to determine if complete 

mathematical modeling knowledge is needed to give the controller complete advantage in 

motion control. Hence, the PD controller with full dynamic feedforward terms and 

computed torque controller are implemented and put to the test. The model based 

controllers such as computed torque and PD control with full dynamic feedforward terms 

can generate force commands more intelligently and accurately than simple non-model 

based controllers. Hence, the need for studying dynamics of robot manipulator as well as 

having a good understanding of various basic motion controller theories are important in 

designing and controlling motion of the robot to achieve the highest quality and quantity of 

work. The simulation results show that the computed torque controller gives the best 
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performance. This is a result of the computed torques canceling the nonlinear components 

of the controlled system. From the observations seen in this work, one can see the 

motivation for engineers to develop more advanced controllers that not only know the 

dynamic model of the manipulator, but can also detect if the dynamic is changed and can 

tune itself accordingly (i.e. adaptive control). 

7. Future work 

1. The effect of some unknown parameters such as the friction and the nonlinear factors 

introduced by the motors and the gear boxes which may be obtained by experimental 

measurements and through the identification methods can be studied. 

2. The performance of model based control relies on an accurate model of a system. 

However, identifying the accurate dynamic model of a system is very difficult. 

Therefore, effective controllers for the versatile application of parallel robots should be 

developed. Adaptive control has the potential to improve the tracking accuracy because 

it updates the unknown parameters online. Adaptive control algorithm is too 

complicated to be utilized in high speed applications. In such applications, robust 

independent joint control is a prospective method to improve the performance of 

simple PD control. 

3. Adaptive Neuro Fuzzy Inference System (ANFIS) controller can be used for each active 

joint to generate the required control system, then its performance is compared with the 

conventional controllers. Although many of model based methods have been found and 

they provide satisfactory solutions, these solutions have been subordinated to the 

development of the mathematical theories that deal with over idealized problems 

bearing little relation to practice. 
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