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ABSTRACT
Galactic dust emission is often accounted for in cosmic microwave background (CMB)
analyses by fitting a simple two-parameter modified blackbody (MBB) model in each
pixel, which nominally accounts for the temperature and opacity of the dust. While
this may be a good approximation for individual dust clouds, typically a number
of such clouds are found along each line of sight and within each angular pixel,
resulting in a superposition of their spectra. In this paper, we study the effects of this
superposition on pixel-based foreground fitting strategies by modelling the spectral
energy distribution (SED) in each pixel as the integral of individual MBB spectra over
various physically-motivated statistical distributions of dust cloud properties. We
show that fitting these SEDs with the simple two-parameter MBB model generally
results in unbiased estimates of the CMB Stokes Q and U amplitudes in each pixel,
unless there are significant changes in both the dust SED and polarization angle
along the line of sight, in which case significant (> 10σ) biases are observed in an
illustrative model. We also find that the best-fit values of the dust temperature, Td,
and spectral index, βd, are significantly biased away from the mean/median of the
corresponding statistical distributions when the distributions are broad, suggesting
that MBB model fits can give an unrepresentative picture of the physical properties
of the dust at microwave wavelengths if not interpreted carefully. Using a Fisher
matrix analysis, we also determine the experimental sensitivity required to recover
the parameters of the Td and βd distributions themselves by fitting a probabilistic
MBB model, finding that only the parameters of broad distributions can be measured
by SED fitting on a single line of sight.

Key words: cosmic background radiation – polarization – dust, extinction

1 INTRODUCTION

As cosmic microwave background (CMB) polarization ex-
periments rapidly gain in sensitivity, it is becoming increas-
ingly important to build a detailed understanding of Galac-
tic dust emission. As well as being the brightest compo-
nent of the polarized microwave sky at frequencies above
∼100 GHz, dust emission is also one of the most complex,
with evidence of significant spectral and spatial structure
in polarization (Planck Collaboration XXII 2015; Planck
Collaboration XXIX 2016; Guillet et al. 2018; Pelgrims
et al. 2021; Ritacco et al. 2022) that is non-trivial to model
and remove (e.g., BICEP2/Keck and Planck Collaborations
2015; Kogut & Fixsen 2016; Planck Collaboration X 2016;

? E-mail: lisaleemcb@gmail.com

Hensley & Bull 2018; Mangilli et al. 2021). This is con-
cerning for the low amplitude, large angular scale phenom-
ena that many CMB polarization experiments are target-
ing, particularly the B-mode signal from primordial grav-
itational waves that has the potential to constrain funda-
mental physics and provide concrete physical constraints on
an inflationary period in the early Universe (Kamionkowski
& Kovetz 2016). Upcoming experiments like Simons Obser-
vatory (Ade et al. 2019), LiteBIRD (Lee et al. 2019), and
CMB-S4 (Abazajian et al. 2016) aim to make a measure-
ment of the tensor to scalar ratio, r, with an uncertainty
on the order of σ(r) ∼ 10−3 or below. In order to achieve
this, residual foreground power must be reduced to below
the level of DBB

` ∼ 10−5µK2 in the BB power spectrum
on scales ` . 100 (Abazajian et al. 2016; Remazeilles et al.
2016).

© 2022 The Authors
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2 Lisa McBride et al.

A common approach has been to assume a simple em-
pirical model for the thermal dust emission, the modified
blackbody (MBB), which takes a thermal (blackbody) spec-
trum characterized by the dust temperature, Td, and mod-
ifies it with an opacity factor that scales with frequency as
ν βd . While employing only two spectral parameters, plus
an amplitude per pixel, this model has proven adequate
for modeling both total and polarized dust emission at the
sensitivities of current CMB experiments both at the map
level (Planck Collaboration X 2016) and power spectrum
level (BICEP2 Collaboration et al. 2018; Planck Collabora-
tion IX 2020).

A question that immediately arises is whether the sim-
ple MBB fitting approach gives rise to model errors that
can bias the recovered CMB signal when applied to the
real sky at the sensitivities of next-generation experiments.
The physical properties of interstellar dust grains, such as
temperature and composition, are known to vary in the in-
terstellar medium (ISM), resulting in spatial variability of
the dust spectral energy distribution (SED). Indeed, analy-
sis of component-separated maps of the microwave sky has
revealed variations of the dust SED on the & 1◦ scales rel-
evant to CMB B-mode analyses (Planck Collaboration X
2016; Planck Collaboration IX 2020; Ritacco et al. 2022).
These variations give rise to “frequency decorrelation,” i.e.
the map of dust emission at one frequency is not simply
equivalent to the map at another frequency rescaled by a
spatially-constant frequency-dependent multiplicative fac-
tor. The level of frequency decorrelation between microwave
frequencies is a major uncertainty in current CMB analyses
(BICEP2 Collaboration et al. 2018; Abazajian et al. 2022).

Just as dust properties can vary across the sky, they
can also vary along the line of sight. If a sightline inter-
sects clouds with different dust SEDs, e.g., due to the dust
having different compositions or temperatures, and if the
magnetic fields in these clouds are misaligned, then the po-
larization angle of the dust emission becomes decorrelated
across frequencies (Tassis & Pavlidou 2015). This “line of
sight frequency decorrelation” is a clear indicator of spa-
tially variable dust SEDs, and has recently been detected
in Planck data (Pelgrims et al. 2021). In order to produce
the observed level of line of sight frequency decorrelation,
Pelgrims et al. (2021) found that the shape of the polar-
ized dust SED between 217 and 353 GHz must vary at the
' 10% level from cloud to cloud.

In addition to complexity induced by spatial variability,
dust emission even from a single grain population localized
along the line of sight is unlikely to correspond perfectly to
a MBB. Detailed physical models of dust polarization have
been constructed based on derived material properties of in-
terstellar grains (e.g., Draine & Fraisse 2009; Guillet et al.
2018; Draine & Hensley 2021). The models elucidate how
the polarized dust SED changes in response to different
grain size distributions, grain shapes, grain porosities, dust
alignment properties, the intensity and spectrum of the am-
bient radiation field, and the relative abundances of differ-
ent grain materials. These models are described by a large
number of parameters connected to the physics of dust and
the interstellar environments in which dust resides, each of
which may vary both across the sky and along the line of
sight.

Given these complications, but also lack of evidence for
inadequacy of the MBB in current data, it is imperative to
understand whether and how the MBB parameterization

could lead to biases when used in CMB data analyses. It
has already been demonstrated that measurements can in-
deed be biased if more complicated underlying dust models
are assumed (e.g., Kogut & Fixsen 2016; Remazeilles et al.
2016; Hensley & Bull 2018; Errard et al. 2022). Even as-
suming a modest ‘2MBB’ extension, where a single MBB
model is replaced by the combination of two separate MBB
signals, can cause a significant bias in the recovered tensor
to scalar ratio measurement (Remazeilles et al. 2016).

In this paper, we use parametric MBB model fitting
as a convenient reference case. Our aims are to study not
only possible biases in recovery of polarized CMB infor-
mation, but also the recovery of the dust model parame-
ters themselves. In particular, we quantify whether MBB
fits are capable of reliably recovering summary information
about more complex true distributions of dust cloud prop-
erties along each line of sight, or whether physical conclu-
sions drawn from such model fits may be misleading. We
do this by studying a range of more complex dust SEDs
for individual lines of sight, constructed by integrating sim-
ple MBB models over various probability distributions with
physically motivated properties, including one that allows
line-of-sight variations in polarization angle that can lead
to more complex spectral structure. For simplicity, we con-
sider only the Stokes Q and U parameters, which allows us
to avoid making additional model assumptions about the
unpolarized fraction of the dust emission.

The paper is organized as follows. In Section 2, we
present the set of dust models used in our analysis, and
we set out our single-pixel simulation and parameter-fitting
methodology in Section 3. We investigate the implications
of each dust model scenario in Section 4, both for produc-
ing biased model fits, and to learn how well the statistical
parameters of the model can be constrained from observa-
tions, and then summarize our results in Section 5.

2 LINE-OF-SIGHT DUST SED MODELS

In this section, we outline the various dust models used
in our analysis. These include a simple single modified
blackbody (sMBB) model; a generic ‘probabilistic’ (pMBB)
model based on integrating the basic MBB SED over a dis-
tribution of model parameters; and a Turbulent Magnetic
Field model (TMFM) based on integrating a varying polar-
ization angle over the line-of-sight. These models are then
used, in conjunction with a synchrotron and CMB model,
to generate our simulated data.

2.1 Single-population dust models (sMBB)

In the optically-thin limit, thermal dust emission at CMB
frequencies has been shown empirically (Planck Collabo-
ration X 2016; Planck Collaboration XI 2020) to be well-
described by a modified blackbody of the form

IMBB
ν = Aid

(
ν

νd0

)βd
Bν(Td), (1)

where the function Bν(T ) is the Planck function with
temperature Td, and the power-law term represents a
frequency-dependent opacity with spectral index βd. In
terms of the physical interpretation of this model, Td rep-
resents an assumed uniform effective temperature for the

MNRAS 000, 1–15 (2022)



Characterizing line-of-sight variability of polarized dust emission 3

Figure 1. A simplified picture of dust populations along a single

line-of-sight with angular extent. Polarized emission from dust is
due to alignment of non-spherical grains with the Galactic mag-

netic field. Different dust clouds sample different regions along

the line of sight and therefore could have different magnetic field
orientations. The composition and temperature of dust in each

cloud can also differ. All of the emission within the conic column

is collapsed into a single combined SED, which is measured at
the antenna.

dust, and βd is determined by its composition. A final pa-
rameter, Aid, is the intensity of the emission for polarization
i at the reference frequency, νd0 = 353 GHz.

As discussed in the previous section, we adopt this
‘sMBB’ model as our reference model. For our analysis,
the amplitude parameters are chosen such that the ampli-
tude at the reference frequency is consistent the observed
high Galactic latitude values from the Commander analysis in
Planck Collaboration X (2016), i.e., AQd = AUd = 3.5µKRJ.
We adopt fiducial values of Td = 20 K and βd = 1.6, which
are also broadly representative of the Planck data (Planck
Collaboration IX 2020). We ignore any polarization effects
that could lead to a different frequency dependence of the
Q versus U polarization, only relaxing this assumption for
the TMFM model in Sect. 2.2.2.

2.2 Probabilistic models

The observed dust emission in an angular pixel on the sky is
an integral of the flux along the line-of-sight, which based on
observations including the distribution of neutral hydrogen,
is believed to encompass different physical dust emission
regions (i.e., ‘clouds’, Panopoulou & Lenz 2020; Clark &
Hensley 2019; Pelgrims et al. 2021). It is physically unlikely
that the dust emission will be uniform along any given line
of sight; instead, there will be variability both between, and
within, different regions. The physical properties of each
cloud, as well as the distribution from which their prop-
erties are drawn, are currently unknowns. Constraints on
these quantities would be of tremendous interest to efforts
to characterize the ISM.

For the purposes of our model, we assume that ther-
mal dust emission can be described, in generality, by a single
model, Imodel

ν (~θ), with only the values of the model parame-

ters ~θ varying both internally, and from region to region (see
Fig. 1). The possible values of these parameters are then
described by a continuous statistical distribution under the
assumption that along a single LOS there is sufficient vari-
ability both between regions, and within individual clouds
themselves, such that the entire statistical distribution is
well-sampled. The resulting model for the intensity along a

Table 1. Fiducial parameter values for the foreground models used

in our analysis. For the statistical dust models, hyperparameters
of the Gaussian spectral parameter distributions are specified,

while the sMBB and synchrotron models are deterministic. The
reference frequencies for all models are νref = 353 GHz, except

synchrotron, which has νref = 30 GHz.

Component β T [K] σβ σT [K] κ

sMBB 1.6 20 – – –

pMBB narrow 1.6 20 0.02 0.4 –

pMBB inter. 1.6 20 0.10 2.0 –
pMBB broad 1.6 20 0.20 4.0 –

TMFM narrow 1.6 20 0.02 - 0.1

TMFM inter. 1.6 20 0.10 - 1
TMFM broad 1.6 20 0.20 - 100

Synchrotron −1.2 – – – –

single line of sight is

Iν(~σ) =

∫
Imodel
ν (~θ) p(~θ;~σ) d~θ, (2)

where p(~θ;~σ) is the probability distribution function (pdf)
for the parameters, which itself is parametrized by a set
of hyperparameters ~σ that describe its shape. The pdf also
carries an implicit normalization which is subsumed into
the overall amplitude parameter.

2.2.1 Probabilistic MBB model (pMBB)

We now consider a specific case of the statistical model
described above. We assume a functional form for the model
SED that is given by a single MBB model (Eq. 1), and
a joint pdf for the dust temperature and spectral index
parameters that is an uncorrelated Gaussian distribution,

p(βd, Td;T d, β̄d, σT , σβ) ∝ e
− (Td−Td)2

2σ2
T e

− (βd−β̄d)2

2σ2
β

where T d and β̄d are the means of the dust temperature
and spectral index pdfs, and σT and σβ are the standard
deviations. The Gaussian normalisations and all other nor-
malising factors are subsumed into an overall amplitude
factor per polarization, Aid. We call this the probabilistic
MBB (pMBB) model.

For the fiducial values of the hyperparameters, we
again use the Planck results as our guide. Mean values of
T d = 20 K and β̄d = 1.6 were chosen to be consistent with
the sMBB model parameters (see Sect. 2.1 and Table 1),
such that, in the limit that the variance of the pdf goes to
zero, the sMBB model is recovered.

For the standard deviation parameters, three illustra-
tive cases were considered, corresponding to narrow, inter-
mediate, and broad spreads in the distribution of possible
values of the physical parameters. The values taken for each
case are summarized in Table 1. These values are roughly
consistent with the dispersion between pixels, as derived by
Planck Collaboration XLVIII (2016). We plot the fractional
difference of the SED for each case with that of the sMBB
model in Fig. 2.

For completeness, we also considered whether alterna-
tive forms for the pdf (e.g., with heavier tails, or skew-
ness) could substantially affect the SED. Replacement of
the Gaussian pdf with Lognormal and Gamma pdfs did
yield slightly different SEDs, but on fitting single MBB
models to each model and fixing the pdfs to the same mean

MNRAS 000, 1–15 (2022)
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Figure 2. Fractional difference in dust SEDs between each input model and a base model (sMBB), divided by the base model, for

probabilistic MBB models with broad, intermediate, and narrow temperature and spectral index distributions are shown in blue (see
Table 1 for the explicit values of the statistical parameters). Equivalent cases for the TMFM model are shown separately for the Stokes

Q (green) and U (orange) channels. Vertical grey lines correspond to the frequency bands of the PICO mission (Hanany et al. 2019).

and variance, the resulting best-fit values of the sMBB pa-
rameters were very similar. As such, we do not consider the
effects of differing pdfs further here, restricting our atten-
tion solely to the Gaussian case.

2.2.2 Turbulent Magnetic Field model (TMFM)

In the above set of pMBB models we have ignored any
polarization-dependent effects on the dust SEDs. Different
regions along the line of sight can have different dust phys-
ical properties and magnetic field orientations. While the
emission from each region simply adds in total intensity,
they add vectorially in polarization. This leads to preferen-
tial amplifications and cancellations of the signal at some
frequencies, imparting additional spectral structure in the
Stokes Q and U channels compared with total intensity
(Tassis & Pavlidou 2015; Poh & Dodelson 2017; Pelgrims
et al. 2021). As a result, we can no longer treat the shape of
the SED as being the same in Stokes Q as in Stokes U, ne-
cessitating the addition of more spectral model parameters.
The shapes of the polarized SEDs also become position-
dependent, with differences in magnetic fields along differ-
ent lines of sight causing spatial variations in the resulting
SEDs, and cancellations along the line of sight also reduce
the overall polarized fraction.

To investigate the potential impact of these ‘decorre-
lation’ effects on the fitting process, we construct a sim-
ple model in which there is a distribution of polarization
angles along each line-of-sight. We call this the Turbulent
Magnetic Field model (TMFM), as it describes a scenario
in which the Galactic magnetic field structure is dominated
by approximately uncorrelated random fluctuations in ori-
entation on small scales (Fig. 3). This is consistent with the
phenomenological model used for analysis in Planck Col-
laboration XII (2020), and agrees with the relationships

Figure 3. A simplified picture of the Turbulent Magnetic Field

model (TMFM) for a single line of sight. In this model, dust
clouds are allowed to have different polarization angles χ, which

are randomly drawn from a von Mises distribution, and are as-

sumed uncorrelated. The vectorial nature of the polarization sig-
nal leads to variations in the SEDs between the Stokes Q and U

channels.

between various polarization statistics like the polarization
fraction and polarization angle dispersion.

For the distribution of polarization angles χ, we as-
sume a von Mises distribution, P (χ; χ̄, κ), with mean angle
χ̄ and shape parameter κ that governs the width of the
distribution. The von Mises distribution is an analogue of
the Gaussian distribution on the unit circle. Since dust at
different orientations is expected to come from physically
distinct regions, we model the dust temperature in each re-
gion, Td, as a simple function of the polarisation angle, χ,

Td (χ) = T ′d +
Tχ ∆χ

π/2
, (3)

MNRAS 000, 1–15 (2022)



Characterizing line-of-sight variability of polarized dust emission 5

where T ′d is a fixed reference dust temperature, and Tχ =
4 K defines the maximum contribution to the effective dust
temperature due to the alignment of the polarised emission.
Lastly, ∆χ ∈ [0, π/2) is the difference between χ and χ̄. This
is a convenient toy model used to illustrate the physical
effects of correlation between the polarized dust SED and
the polarization angle; we do not intend to suggest that
there is any causal relationship between the magnetic field
orientation and the dust temperature.

In the following analysis, the reference dust temper-
ature is set to the previous mean of the pMBB models,
T ′d = 20K. The intensities for the Q and U channels are
then defined via integrals over the von Mises distribution
for χ,

Q′ν(β) =
(
ν
ν0

)β ∫
Bν (Td (χ)) cos(2χ) dP

dχ
dχ (4)

U ′ν(β) =
(
ν
ν0

)β ∫
Bν (Td (χ)) sin(2χ) dP

dχ
dχ. (5)

As in all of the other cases, we assume that the Q and U
amplitudes are equal, resulting in a mean angle, χ̄ = π/8. In
contrast to the pMBB model, the parameter model with a
statistical distribution is the polarization angle of the dust
emission in each cloud rather than its dust temperature
(although the dust temperature also fluctuates due to its
dependence on χ). We again assume that the dust temper-
ature is uncorrelated with the opacity parameter, βd, which
as in our previous models follows a Gaussian distribution.
The final SED for this model is then

Qν = AQ

∫
Q′ν(β) exp

(
− (βd − β̄d)2

2σ2
β

)
dβ, (6)

with a similar expression holding for Uν . In what follows, we
will consider three different values of the von Mises shape
parameter, κ, to illustrate the effects of line of sight fre-
quency decorrelation (see Table 1).

2.3 Other signal components

The microwave sky is a superposition of many radiation
sources, including synchrotron emission, anomalous mi-
crowave emission (AME), free-free emission, and the CMB
in addition to Galactic dust. Since our focus is only on
the polarized emission in this paper, we neglect two of
these sources: free-free (bremsstrahlung) emission, which is
mostly present at low Galactic latitudes and is only weakly
polarized, and AME, for which there is a stringent empirical
upper bound of ∼ 2% on its polarization fraction (Kogut
et al. 2007; Planck Collaboration XXII 2015; Macellari et al.
2011; Herman et al. 2022) and theoretical arguments pre-
dicting negligible polarization (Draine & Hensley 2016).

With this in mind, we consider a sky signal composed
only of the CMB signal, synchrotron emission, and ther-
mal dust emission in our analysis. We adopt values of the
synchrotron signal to be consistent with the Planck Com-

mander results at high Galactic latitudes, i.e., polariza-
tion amplitudes of AQs = AUs = 280 Jy sr−1 at a reference
frequency of 30 GHz. We also set the synchrotron spec-
tral index to βs = −1.2 in units of flux density. For the
CMB polarization signal, we adopt representative values of
Qν = Uν = 0.6µKCMB. In all models, we assume a con-
stant polarization angle for both the CMB and synchrotron
emission, the latter agreeing with the dust polarization an-
gle (or, in the case of the TMFM, the mean dust polariza-

tion angle). An overview of the parameters used for each
foreground model is given in Table 1.

3 RECOVERING DUST PROPERTIES FROM SED
FITS

In this Section we describe the noise properties of our single-
pixel simulations and give an overview of the single-pixel
model fitting procedure that was previously presented in
Hensley & Bull (2018).

3.1 Single-pixel simulations

Simulated data vectors of the Stokes Q and U intensity
per pixel were generated using the SinglePixel1 package.
Each data vector represents the intensity along a single line-
of-sight for a set of frequency bands, assuming a common
angular smoothing of 1◦ FWHM for all bands, which is
appropriate for a CMB B-mode analysis.

We adopt the noise properties and band specification
of PICO (Sutin et al. 2018; Hanany et al. 2019), a pro-
posed space-based polarimeter intended to conduct full-sky
surveys with a few arcmin. resolution in each band across
21 bands between 21 and 799 GHz. We assumed a delta
function bandpass at each center frequency, and added un-
correlated Gaussian noise according to the noise rms per
frequency band specified in Sutin et al. (2018) (and adjust-
ing to 1 deg2 pixels). Each data vector contains contribu-
tions from the CMB, synchrotron, and a particular thermal
dust emission model. As discussed above, we neglected the
Stokes I channel.

In what follows, data vectors constructed with the sin-
gle MBB model for the thermal dust will be referred to as
‘sMBB data’, and similarly for the other dust models. We
include the same CMB and synchrotron components in all
data vectors, and generate 200 noise realisations for each
dust model. The explicit values for all of the input models
are presented in Table 1.

3.2 MCMC-based model fitting procedure

We constructed a simple Gaussian likelihood for the simu-
lated data, using the input noise covariance per frequency
band (which assumes no correlations between bands), and
assuming only a single pixel per dataset. Uniform priors
are assumed for all parameters; see Table 2 for the corre-
sponding ranges. Note that these priors will be informative
for some parameters; alternatively a Jeffreys prior could be
adopted for (e.g.) the spectral index parameters (Eriksen
et al. 2008; Jew et al. 2019), but we do not study this ques-
tion further here. We then used the emcee affine-invariant
ensemble sampler (Foreman-Mackey et al. 2013) to sample
from the joint posterior distribution of the CMB amplitude
parameters, and amplitude and spectral parameters for the
synchrotron component and a chosen dust model. We ini-
tialized 48 walkers per run, allowing 1000 steps of burn-in
before running each walker for 10,000 steps. Note that in
all cases considered in this paper, we fit only to the Stokes
Q and U data, and always include synchrotron and CMB
models with free Q and U amplitude parameters, and free
spectral parameter βs for the synchrotron component.

1 http://philbull.com/singlepixel/

MNRAS 000, 1–15 (2022)
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Table 2. Uniform prior ranges used for the MCMC fitting proce-

dure.

Parameter Notation Prior range

sMBB amplitudes Q, U AQ,UsMBB [1,100] µK

pMBB amplitudes Q, U AQ,UpMBB [1,100] µK

Dust temperature Td [16, 24] K

Dust spectral index βd [1.4, 1.8]

Dust temperature std. dev. σT [0.1, 10] K

Dust spectral index std. dev. σβ [0.01, 1]

Synchrotron spectral index βs [-1.6, -0.8]

The fitting procedure was repeated for each of 200 noise
realizations for each of the cases we considered. We then
calculated summary statistics such as the marginal median
and standard deviation for each parameter from the pos-
terior for each run, and used these to calculate the error-
normalized bias,

∆θ

σθ
=
θfit − θ̄
σθ

, (7)

where θfit is the best-fit value from the MCMC (the median
of the marginal posterior in all cases considered here), and
θ̄ is the input parameter value, or the mean of the input
Gaussian distribution that was used to generate the sim-
ulated signal. In this context, σθ is the marginal standard
deviation calculated from the posterior for each noise real-
ization, found by determining the 68% confidence interval
for the parameter.

The error-normalized bias quantifies the level of dis-
crepancy between the recovered best-fit value of a param-
eter and the input value to the simulation. It is similar to
a ‘Z-score’ or ‘standard score’ except that the normalizing
factor is the standard deviation calculated from the poste-
rior rather than the population standard deviation. In the
cases where θ̄ is the mean of an input parameter distri-
bution, e.g., for the pMBB models, this quantity gives an
indication of how well the best-fit model parameters repre-
sent the mean of that distribution.

If the error-normalized bias differs systematically from
zero over many realizations, this is an indication that the
best-fit model parameters are either biased or not represen-
tative of the properties of the input parameter distribution,
potentially leading to flawed physical inferences. A simple
measure of this is the mean error-normalized bias, 〈∆θ/σθ〉,
where the angle brackets denote averaging over the ensem-
ble of runs with different noise realizations.

4 RESULTS

In this section we consider three sets of scenarios: fitting
an sMBB model to the data when the underlying dust
model is actually a more complex probabilistic MBB model
(Sect. 4.1); the same, but for an underlying TMFM model
(Sect. 4.2); and recovering the pMBB model hyperparame-
ters from the data to infer the dust parameter distributions
themselves (Sect. 4.3). A summary of results for the param-
eter biases in each case is shown in Table 3.

4.1 Fitting the sMBB model to pMBB data

In this section, we consider data vectors that have been
generated using each of the pMBB models, but which we

fit using an sMBB model. The key questions that we would
like to answer are whether recovery of the polarized CMB
can be biased as a result of the greater complexity of the un-
derlying dust SEDs, and whether the best-fit sMBB model
parameters are representative of the average properties of
the population of dust clouds along each line of sight. Recall
that we are performing fits only on polarized data; including
Stokes I data as well would require further model assump-
tions about how the polarized and unpolarized SEDs are
related, which we leave to future work.

We considered four cases for the underlying (input)
dust model. The first is simply an sMBB model, which we
used as a check on our fitting procedure. We then selected
three options for the pMBB model, centered on the same
mean value, but with varying widths for the βd and Td dis-
tributions: narrow, intermediate, and broad. The values of
the widths of the distributions were summarized in Table 1.

Fig. 4 shows the error-normalized bias for the recov-
ered best-fit parameters (including sMBB, CMB, and syn-
chrotron parameters) in each of the four cases, for fits to
each of 200 noise realizations per model. It can be seen that
fitting an sMBB model to data that truly contains an sMBB
model recovers unbiased estimates of all of the parameters
on average, as expected. The same is largely true for the
narrow pMBB model too, with no significant biases seen
for any of the parameters.

The picture starts to change for the intermediate
pMBB model however; while most parameters remain un-
biased on average (including the CMB polarization ampli-
tudes), the recovered dust temperature and spectral index
parameters are significantly biased (by approximately 3σ
and 2σ respectively). This is a sign that that the sMBB pa-
rameter fits are no longer representative of the properties
of the underlying dust cloud population. The bias is even
more pronounced for the broad pMBB case, where on aver-
age a 10σ discrepancy from the mean dust temperature is
observed, and a 12σ discrepancy from the mean dust spec-
tral index. Notably, Td and βd are inversely biased, which
may be an artefact of the well-known degeneracy between
these two parameters (Shetty et al. 2009).

Next, we consider whether these biases would be de-
tectable, in the sense that fitting the wrong model to
the data could produce a noticeably poor goodness of fit.
Fig. 5 plots the maximum log-posterior value (i.e., log p for
the best-fit model) for each realization against the error-
normalized bias. There are no significant differences in the
goodness of fit between the different cases, despite the sig-
nificant biases in the recovered parameters, suggesting that
an analyst would be unable to distinguish between the four
scenarios by fitting sMBB models to the data alone.

4.2 Fitting the sMBB model to TMFM data

Next, we repeat our analysis but for the case of an sMBB
model being fitted to data with an underlying TMFM dust
model, i.e., now allowing significant polarization-dependent
effects. Results for this model are shown as histograms in
Fig. 6 corresponding to three different values of the shape
parameter, κ (these three values again representing a nar-
row, intermediate, and broad case). In sharp contrast to
the results for the pMBB models, the best-fit CMB ampli-
tudes are now significantly biased on average, and in fact
only the dust amplitude and synchrotron spectral index do
not exhibit strong biases. As expected, the biases become
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Dust model AQMBB AUMBB AQCMB AUCMB AQS AUS βd Td βS

sMBB −0.11 −0.10 −0.02 −0.01 0.01 0.11 0.17 −0.17 0.03

pMBB narrow 0.03 −0.0041 0.11 −0.07 −0.04 −0.023 −0.15 0.14 −0.07

pMBB intermediate 0.11 0.13 −0.10 −0.17 0.19 0.13 −2.7 2.2 0.25

pMBB broad 0.19 0.22 0.037 0.070 0.19 0.27 −12 9.9 0.037

TMFM narrow 41 −46 −14 16 4.1 −4.5 0.18 7.1 −0.054

TMFM intermediate 41 −46 −14 17 3.9 −4.6 −0.52 8.9 −0.023

TMFM broad 40 −47 −0.0015 18 3.7 −5.0 −2.5 14 −0.51

sMBB (decoupled) 0.039 −0.031 −0.079 −0.020 −0.026 0.57 −0.081 −0.069 −0.0029

pMBB broad (decoupled) 0.16 0.14 0.063 0.000 90 0.21 0.23 −0.085 −0.071 −0.0030

TMFM broad (decoupled) −0.77 −1.1 1.5 1.8 −0.31 −0.33 −0.086 −0.054 0.0045

Table 3. Mean error-normalized bias, 〈∆θ/σθ〉, for all free model parameters in each scenario, where an sMBB + CMB + synchrotron

model is being fitted to Stokes Q and U data in all cases. Absolute values of this quantity greater than ∼ 1 denote large biases.
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Figure 4. The error-normalized bias values (see Eq. 7) of sMBB model parameters over N=200 noise realizations, for the four pMBB
dust models considered. The input value (or input mean, for pMBB) is shown as the ‘truth’ value in the upper left of each panel.

Vertical black lines denote unbiased measurements.
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Figure 5. Error-normalized bias values of the sMBB model parameters (x-axis) corresponding to the median value of the log posterior

(y-axis), for the four dust models considered. For each input model, the values and spread of the log posterior median values are roughly

the same, implying that the sMBB model produces equally good fits to the data in each case.

more pronounced as the size of κ increases. The size of the
bias is also more strongly dependent on the specific noise
realisation than for the pMBB models.

However, in this case the standard goodness of fit met-
ric (i.e., maximum log-posterior values) is very low, indi-
cating that the sMBB model is identified as giving a very
poor fit to the data assuming PICO-like noise characteris-
tics. Therefore these biases would be easily detectable. It is
perhaps unsurprising that the sMBB model is not a good fit
in this case, as it does not allow differences in SED between
the different polarization channels, while the Stokes Q and
U SEDs can be quite different for TMFM, as seen from the
significant low-frequency residual shown in Fig. 7.

Because of the decorrelation between the Stokes Q and
U channels in the TMFM model, we investigate whether
it may be more practical to fit the two polarization chan-
nels independently. We performed the same analysis as for
the above cases, but this time fitting the Q and U chan-
nels separately. The results are shown in Figs. 8 and 9. In
this case, the results are not biased, however the resultant
uncertainties are considerably larger. This is in line with

what is expected from introducing a more flexible model—
there is more freedom to fit the different SEDs in the Q and
U channels, but more parameters to fit in total, which in-
creases the uncertainty on all parameters across the board.

We have also checked the median log-posterior values
for each model, in analogy to Fig. 5. We again found that
the log-posterior values are consistent across all cases, with
a reasonable goodness of fit for each of them; hence, study-
ing the goodness of fit would not allow an analyst to dis-
tinguish between these scenarios.

These results, coupled with recent detections of fre-
quency decorrelation related to the dust polarization angle
in Planck data (Pelgrims et al. 2021; Ritacco et al. 2022),
illustrate the importance of testing component separation
methodologies with simulations of Galactic emission that
include line of sight frequency decorrelation. Such models
include the 3D “layer” model of Mart́ınez-Solaeche et al.
(2018), those based on the TIGRESS 3D magnetohydro-
dynamic simulations developed by Kim et al. (2019), and
the 3D filament model of Herv́ıas-Caimapo & Huffenberger
(2022).

MNRAS 000, 1–15 (2022)



Characterizing line-of-sight variability of polarized dust emission 9

0 20 40

truth=45.8 AQ
sMBB

−40 −20 0

truth=45.8 AU
sMBB

−15 −10 −5 0

truth=0.6 AQ
CMB

0 10 20

truth=0.6 AU
CMB

−2.5 0.0 2.5 5.0 7.5

truth=10.2 AQ
S

−7.5 −5.0 −2.5 0.0 2.5

truth=10.2 AU
S

−4 −2 0 2
∆θ
σθ

mean=1.6 βd

0 5 10 15
∆θ
σθ

mean=20.0 Td

−4 −2 0 2
∆θ
σθ

truth=-1.2 βS

sMBB

TMFM narrow

TMFM intermediate

TMFM broad

Figure 6. Error-normalized bias values of sMBB model parameters over N=200 noise realizations, for the three widths of TMFM models

considered. Of particular note is the strong biasing of the CMB amplitudes in both polarization channels.
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Figure 8. Error-normalized bias values of sMBB model parameters over N=200 noise realizations, for one illustrative decoupled case

for each model (sMBB, pMBB, and TMFM). The broadest distributions for both probabilistic models were used. Decoupling the two
polarization channels greatly reduces the bias on the recovered parameters, at the expense of increasing the estimated uncertainties. For

comparison, the 1σ estimated errors from a non-decoupled MCMC run of each model are overlaid on each histogram (colored vertical

lines in each panel). While each model’s errors are overlaid, they are too close together to be easily distinguishable. The marginal
distributions in the non-decoupled case are much narrower (the parameters are much better constrained).

4.3 Inferring the hyperparameters of the dust parameter
distributions

We now turn to the question of whether the hyperparam-
eters of the dust cloud parameter distributions themselves
can be recovered from the data. This would be of signif-
icant interest in understanding the structure of the dusty
ISM for example, as well as informing the construction of
more realistic dust models for foreground removal. To this
end, we first attempted to perform the same MCMC anal-
ysis outlined above, but now fitting the hyperparameters of
the pMBB model instead of the sMBB parameters.

We found that fitting the pMBB model suffered from
convergence issues for data simulated from narrow pdf dis-
tributions (i.e., the sMBB, and pMBB narrow models). The
MCMC chains for the the wider distributions (the pMBB
intermediate and broad models) were able to converge, and
so we could study the recoverability of the hyperparame-

ters in these cases. The confidence intervals derived from
the MCMC samples were much smaller than those calcu-
lated from the Fisher matrix formalism however (see be-
low), which implies that the MCMC is not fully explor-
ing the relevant portions of the posterior distribution.2 A
comparison between the MCMC and Fisher approaches is
shown in Fig. 10.

2 An exploration of ways to improve the convergence of the
MCMC fitting to the pMBB model was conducted. Techniques

that were tried included a suite a different initialisation posi-

tions for the walkers, running noiseless simulations, and fitting
modified functions of the hyperparameters (e.g., as a proxy for

alternative prior distributions), which appear to be the cause of
the convergence issues. While these various changes did improve
convergence, they ultimately didn’t prove successful enough to

confidently determine the constraints on the hyperparameters.
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Figure 9. Error-normalized bias values of sMBB model parameters (x-axis) versus the median value of the log posterior (y-axis), for the

same illustrative decoupled cases for each model as shown in Fig. 8.

As an alternative to the MCMC-based method, we also
performed Fisher matrix forecasts to understand how well
the statistical dust model hyperparameters could be con-
strained by future CMB experiments. While approximate,
Fisher forecasting has the advantage of being fast and com-
paratively simple, allowing forecasts for many different ex-
perimental configurations to be studied en masse. While the
forecasts are by nature optimistic (they constitute a ‘best-
case’ estimate of uncertainty given a particular experimen-
tal configuration), and do not account for non-Gaussianities
in posteriors and other such complications, they are a useful
method of comparison.

For the single pixel SED-fitting problem, the Fisher
matrix can be calculated as

Fij =
∑
ν

1

σ2
ν

∂m(~θ)

∂θi

∂m(~θ)

∂θj

∣∣∣∣∣
~θ0

, (8)

where σν is the noise rms per frequency band (assumed

uncorrelated), m(~θ) =
∑
k Akfk(ν; ~θ) is the signal model

along the line of sight, summed over all components k,
and ~θ0 is a set of fiducial model parameters. As in our

MCMC studies, we assume that all frequency bands have
been smoothed to the same angular resolution, and that
there is a δ-function bandpass response. The predicted pa-
rameter covariance matrix can then be approximated by
inverting the Fisher matrix, Cij ≈ (F−1)ij , where the el-
ements of Cij are the expected covariance of parameters
θi and θj marginalized over all other parameters. The free
parameters included in the Fisher matrix are the same as
those included in the MCMC fits, i.e., we marginalize over
the CMB, synchrotron, and dust amplitude parameters, as
well as the synchrotron spectral index.

The Fisher formalism was first applied to the case of
fitting an sMBB model to data generated from an underly-
ing sMBB model. All derivatives for both this case and the
pMBB model were calculated numerically using a simple
finite difference method. The estimated 68% CL result is
overlaid onto an illustrative MCMC run in Fig. 10, where
the input data vector was a noiseless sMBB SED for the
same set of fiducial model parameters. The two different
methodologies are in good agreement with one another,
which provides a check on our Fisher matrix machinery.
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Figure 10. A corner plot of one MCMC run, fitting the sMBB model to noiseless sMBB data (for noiseless data, we expect the best-fit

model to be the true input model if the fitting procedure is working correctly). Fisher confidence intervals for the sMBB model (red) and
pMBB model (dark blue), using the same simulated sMBB model as the fiducial model of the data, are overlaid on the contours. Note

the substantial degradation of all of the constraints once the means and widths of the dust parameter distributions are marginalized in

the pMBB case. The vertical and horizontal lines (light blue) show the positions of the true input parameters (which are the same as
the fiducial parameters for the Fisher analysis). All quantities have the same dimensions as in Table 2.

Next, the Fisher matrix was calculated for the scenarios
of fitting the pMBB model hyperparameters to the narrow,
intermediate, and broad pMBB fiducial models in a single
pixel. The results are shown in Table 4 as signal to noise
ratios, i.e., the ratio of the fiducial value to the forecast
1σ error for each parameter. In general, we found that the
means of the β and Td distributions are measurable, but the
widths (standard deviations) are not, at least for a single
pixel. The broad distribution is the easiest to characterise,

with our forecasts predicting good measurements of β̄ and
T d (SNRs of 13 and 5 respectively), and a 3.6σ measure-
ment of σT . The width of the spectral index distribution,
σβ , is not measurable however, with a predicted SNR of
only 0.4. The picture for the intermediate and narrow dis-
tributions is less encouraging, with very poor constraints
on both width parameters, but reasonable (SNR ∼ 3− 6)
measurements of the means of the distributions. Note that
the means can actually be measured slightly better in the
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Dust model SNR(β̄) SNR(σβ) SNR(T d) SNR(σT )

pMBB narrow 5.68 0.002 3.08 0.004

pMBB inter. 4.91 0.045 2.53 0.101

pMBB broad 13.4 0.414 5.38 3.61

Table 4. Forecast signal-to-noise ratios for the pMBB hyperpa-

rameters, derived from the Fisher matrix analysis.

narrow case than in the intermediate case; this appears
to be due to correlations between parameters changing as
the constraints on the distribution width parameters im-
prove significantly (most other parameter constraints, e.g.,
for the synchrotron and CMB parameters, are quite similar
between the narrow and intermediate cases).

Some additional context for these results is provided by
Fig. 2, which shows the fractional difference of the pMBB
SEDs with the reference sMBB model. The broad distribu-
tion is the only one that deviates substantially from sMBB
at both high and low frequencies, which goes some way to
explaining its better forecast constraints. It also has a larger
deviation from sMBB at low frequencies, where the PICO
mission has more bands, but the dust SED itself is lower in
intensity (not shown in the figure; the thermal dust polar-
ized intensity becomes sub-dominant to other foregrounds
at around 60 GHz; Planck Collaboration X 2016). The nar-
row case is essentially degenerate with sMBB, so the dis-
tribution mean parameters β̄ and T d can be identified with
the β and Td parameters of sMBB. The intermediate case
only deviates from sMBB significantly at low frequencies,
with a deviation that is approximately five times smaller
than the one for the broad distribution.

In terms of prospects for measuring the dust parameter
distributions with future microwave experiments, the main
implication of our Fisher analysis is that the distributions
along individual lines of sight will probably only be char-
acterisable if they are quite broad, i.e., if there is substan-
tial variation in physical properties from dust cloud to dust
cloud. This is because narrower parameter distributions re-
sult in SEDs that deviate comparatively little from simple
single MBB models. While we have only looked at a few
particular cases, and have not explored distributions with
correlations between β and Td for example, we did consider
different shapes of distribution (see Sect. 2.2), finding little
difference in the resulting SEDs. We therefore expect this
conclusion to be reasonably robust. Indeed, as we showed
in the previous section, the polarisation properties of the
clouds seem to have a much stronger effect on the SEDs.

5 CONCLUSIONS

In this paper, we studied a probabilistic thermal dust model
based on the modified blackbody (MBB) model commonly
used for component separation in CMB experiments. This
‘probabilistic MBB’ (pMBB) model was intended to ac-
count for the variation of physical properties that occurs
between the many individual dust clouds within the angu-
lar beam of a CMB experiment along each line of sight. We
investigated the implications of fitting simulated data gen-
erated with this probabilistic model to both the simplistic
single MBB (sMBB) model, and the pMBB model itself.

In Section 2 we described the single-population MBB
dust model, in addition to introducing our statistical mod-
els, both the probabilistic MBB models, and a Turbulent

Magnetic Field model (TMFM). The latter model incorpo-
rates line of sight frequency decorrelation effects that lead to
different frequency dependence in Stokes Q versus U (Tassis
& Pavlidou 2015).

We found that even in the most extreme pMBB case
considered (that of a broad distribution in the physical dust
parameters), the CMB signal remains unbiased when fitting
a simple sMBB model to the data. The fitted dust parame-
ters are biased from the mean values of the pMBB distribu-
tion by several σ however, which suggests that any physical
conclusions drawn about the dust cloud population from
the sMBB parameters could be misleading. The biases of
these values appear to be inversely related, in that a lower
fitted temperature Td is offset by a higher value of βd. This
reproduces the well-known dust temperature-spectral index
degeneracy (e.g. Shetty et al. 2009).

When polarization effects exist, as illustrated by the
TMFM model, we find that fitting an sMBB model does
tend to lead to significant biases in most parameters, includ-
ing the polarized CMB amplitudes. Essentially, the sMBB
model is unable to absorb differences in the shapes of the
SEDs between polarization channels that arise, particularly
at lower frequencies. However, this also gives rise to poor
goodness of fit statistics, which would make it relatively
clear to an analyst that an sMBB model fit is inappropriate
in this scenario. This is in contrast to the pMBB models, for
which the goodness of fit statistics are equally good for all
three pMBB data sets, and much the same as for the sMBB
data. In other words, the pMBB data without polarization
effects gives rise to biases in the dust model parameters
that are hard to detect, whereas the TMFM data give rise
to biases that are easy to detect.

As a further check, we also tried fitting ‘decoupled’
sMBB models to the pMBB and TMFM scenarios, in which
a different sMBB model was fitted per polarization. This
largely mitigated the biases observed for both models, at
the expense of broadening the marginal distributions of the
recovered parameters as more parameters were being fitted
in total. We note that the CMB amplitudes could remain
biased by around 1σ on average for the TMFM model with
the broadest distribution however (see Fig. 8), at least for
the PICO-like experimental setup we considered.

Finally, we also considered the possibility of trying to
recover the (hyper)parameters of the pMBB model from the
data. Fitting the pMBB model directly using an MCMC ap-
proach proved to be difficult from a numerical standpoint,
and we have deferred a solution to this issue to later work.
Instead, we performed Fisher forecasts to understand how
well the pMBB hyperparameters could in principle be con-
strained in each 1 deg2 pixel of an experiment like PICO,
with frequency coverage over a wide range of the microwave
spectrum. We found that all hyperparameters except the
width of the spectral index distribution, σβ , could be re-
covered with a reasonable signal-to-noise ratio (& 4) in
the case of a fiducial model with the broadest distribution.
Only the means of the dust temperature and spectral in-
dex distributions were recoverable for models with narrow-
and intermediate-width distributions however, with little
prospect of measuring the widths of those distributions ac-
cording to our forecasts. This places an interesting limita-
tion on how well we may be able to infer the properties of
the dust cloud distribution in the Milky Way from future
CMB data alone; only if there is substantial variation from
dust cloud to dust cloud along each line of sight will we
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be able to actually measure the properties of the distribu-
tions in a single sky pixel. Moment-based methods applied
over large sky areas offer a promising way to go beyond this
limitation and constrain the true distributions of physical
parameters using upcoming polarization data (e.g., Chluba
et al. 2017; Remazeilles et al. 2021; Vacher et al. 2022).

In conclusion, we find that the single MBB model can
reasonably be used for per-pixel foreground cleaning in
CMB polarization experiments in the absence of depolar-
ization effects, but that physical conclusions about the dust
properties obtained from such fits should be treated with
caution. Conversely, single MBB models should not be used
in the presence of depolarization effects, as strong biases in
both the recovered CMB and dust parameters can be ob-
tained. This is partly, but not fully, ameliorated if separate
sMBB models are fit to each of Stokes Q and U, at the cost
of increased uncertainties on the recovered parameters.

As a final note, we point out that we have only con-
sidered relatively ad hoc models and distributions in this
paper. Physical parametric models that more accurately de-
scribe the actual composition of the dust, and thus the as-
sociated statistical parameters, if they could be recovered,
could yield information about the nature of dust in the
ISM itself. The construction of sufficiently realistic phys-
ical models is an on-going process, and one that requires
observations of dust not just at microwave frequencies, but
across the electromagnetic spectrum.

Note added — Immediately prior to submission, a pa-
per by Sponseller & Kogut (2022) appeared that also stud-
ies the impact of line-of-sight variation in dust properties
on recovery of the polarized CMB temperature fluctuations.
Their study also uses PICO as the target instrument and
considers a range of probability distributions for the dust
temperature and spectral index. A key methodological dif-
ference is that we fit the sMBB and pMBB models directly,
while they construct a moment expansion of the kind intro-
duced by Chluba et al. (2017).

They find that models with σT & 1.6 K and/or
σβ & 0.045 can bias the scalar-tensor ratio r measured
from the polarized CMB if sMBB (single MBB) models
are used to fit the dust foreground in each pixel. This is
closest to our ‘pMBB intermediate’ case (σT = 2.0 K and
σβ = 0.10), for which we found a small mean bias on the
recovered polarized CMB amplitudes for a PICO-like ex-
periment (1 deg2 pixel size) of ≈ 0.12σ; see Table 3. For
a typical value of the error on the measured CMB Q/U
amplitude of ≈ 0.1 µK (see Fig. 10), this corresponds to
a bias of ∆Q ≈ ∆U ≈ 10 nK, which is roughly a factor
of 2 larger than the corresponding results shown in Figs. 3
and 4 of Sponseller & Kogut (2022). This is a relatively
small discrepancy, and may be caused by the fact that we
have chosen σT and σβ to be non-zero simultaneously; so,
we believe this result to be approximately consistent with
ours.

Sponseller & Kogut (2022) also claim that the line-
of-sight dust parameter distributions can be recovered suc-
cessfully using the moment expansion, particularly as larger
numbers of moments are included. Conversely, we found
that the parameters were difficult to recover in our pMBB
Fisher forecasts, except for in the pMBB broad case (see Ta-
ble 4). Part of the reason for this discrepancy may be that
Sponseller & Kogut (2022) use the continuous, noise-free
SED for their moment fitting, whereas we use PICO-like
frequency bands with PICO-like noise. An exception is for

the ‘transient heating model’ (their Fig. 10), which does
use PICO-like instrumental properties. This model’s (rela-
tively broad) distribution in dust temperature is recovered
to within roughly a factor of two, but with a somewhat
poor fit to the shape of the distribution, even with six mo-
ments fitted. While we are unable to make a direct compar-
ison of these results, both papers are consistent in finding
that broad distributions can be characterized observation-
ally with a PICO-like experiment.
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by Calcul Québec (calculquebec.ca) and the Digital Re-
search Alliance of Canada (alliancecan.ca).

DATA AVAILABILITY

Code and associated data files used in this analysis
are available from http://philbull.com/singlepixel/.
Monte Carlo outputs can be regenerated by using these
scripts/data.

REFERENCES

Abazajian K. N., et al., 2016, CMB-S4 Science Book, First Edi-

tion (arXiv:1610.02743)

Abazajian K., et al., 2022, ApJ, 926, 54

Ade P., et al., 2019, J. Cosmology Astropart. Phys., 2019, 056

BICEP2 Collaboration et al., 2018, Phys. Rev. Lett., 121, 221301

BICEP2/Keck and Planck Collaborations 2015, Phys. Rev. Lett.,
114, 101301

Chluba J., Hill J. C., Abitbol M. H., 2017, MNRAS, 472, 1195

Clark S. E., Hensley B. S., 2019, ApJ, 887, 136

Draine B. T., Fraisse A. A., 2009, Astrophys. J, 696, 1

Draine B. T., Hensley B. S., 2016, ApJ, 831, 59

Draine B. T., Hensley B. S., 2021, ApJ, 909, 94

Eriksen H. K., Jewell J. B., Dickinson C., Banday A. J., Gorski

K. M., Lawrence C. R., 2008, Astrophys. J., 676, 10

Errard J., Remazeilles M., Aumont J., Delabrouille J., Green D.,

Hanany S., Hensley B. S., Kogut A., 2022, arXiv e-prints, p.
arXiv:2206.03389

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013,

PASA, 125, 306

Guillet V., et al., 2018, Astronomy & Astrophysics, 610, A16

Hanany S., et al., 2019, arXiv e-prints, p. arXiv:1902.10541

Hensley B. S., Bull P., 2018, Astrophys. J, 853, 127

Herman D., et al., 2022, arXiv e-prints, p. arXiv:2201.03530

Herv́ıas-Caimapo C., Huffenberger K. M., 2022, ApJ, 928, 65

Jew L., et al., 2019, MNRAS, 490, 2958

Kamionkowski M., Kovetz E. D., 2016, ARA&A, 54, 227

Kim C.-G., Choi S. K., Flauger R., 2019, ApJ, 880, 106

Kogut A., Fixsen D. J., 2016, ApJ, 826, 101

Kogut A., et al., 2007, ApJ, 665, 355

Lee A., et al., 2019, BAAS, 51, 286

Macellari N., Pierpaoli E., Dickinson C., Vaillancourt J. E., 2011,

MNRAS, 418, 888

MNRAS 000, 1–15 (2022)

calculquebec.ca
alliancecan.ca
http://philbull.com/singlepixel/
http://arxiv.org/abs/1610.02743
http://dx.doi.org/10.3847/1538-4357/ac1596
https://ui.adsabs.harvard.edu/abs/2022ApJ...926...54A
http://dx.doi.org/10.1088/1475-7516/2019/02/056
https://ui.adsabs.harvard.edu/abs/2019JCAP...02..056A
http://dx.doi.org/10.1103/PhysRevLett.121.221301
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121v1301B
http://dx.doi.org/10.1103/PhysRevLett.114.101301
http://dx.doi.org/10.1093/mnras/stx1982
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.1195C
http://dx.doi.org/10.3847/1538-4357/ab5803
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..136C
http://dx.doi.org/10.1088/0004-637x/696/1/1
http://dx.doi.org/10.3847/0004-637X/831/1/59
https://ui.adsabs.harvard.edu/abs/2016ApJ...831...59D
http://dx.doi.org/10.3847/1538-4357/abd6c6
https://ui.adsabs.harvard.edu/abs/2021ApJ...909...94D
http://dx.doi.org/10.1086/525277
https://ui.adsabs.harvard.edu/abs/2022arXiv220603389E
https://ui.adsabs.harvard.edu/abs/2022arXiv220603389E
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1051/0004-6361/201630271
https://ui.adsabs.harvard.edu/abs/2019arXiv190210541H
http://dx.doi.org/10.3847/1538-4357/aaa489
https://ui.adsabs.harvard.edu/abs/2022arXiv220103530H
http://dx.doi.org/10.3847/1538-4357/ac54b2
https://ui.adsabs.harvard.edu/abs/2022ApJ...928...65H
http://dx.doi.org/10.1093/mnras/stz2697
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2958J
http://dx.doi.org/10.1146/annurev-astro-081915-023433
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..227K
http://dx.doi.org/10.3847/1538-4357/ab29f2
https://ui.adsabs.harvard.edu/abs/2019ApJ...880..106K
http://dx.doi.org/10.3847/0004-637X/826/2/101
https://ui.adsabs.harvard.edu/abs/2016ApJ...826..101K
http://dx.doi.org/10.1086/519754
https://ui.adsabs.harvard.edu/abs/2007ApJ...665..355K
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.286L
http://dx.doi.org/10.1111/j.1365-2966.2011.19542.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418..888M


Characterizing line-of-sight variability of polarized dust emission 15

Mangilli A., Aumont J., Rotti A., Boulanger F., Chluba J.,
Ghosh T., Montier L., 2021, A&A, 647, A52

Mart́ınez-Solaeche G., Karakci A., Delabrouille J., 2018, MN-

RAS, 476, 1310
Panopoulou G. V., Lenz D., 2020, ApJ, 902, 120

Pelgrims V., Clark S. E., Hensley B. S., Panopoulou G. V., Pavli-

dou V., Tassis K., Eriksen H. K., Wehus I. K., 2021, A&A,
647, A16

Planck Collaboration X 2016, A&A, 594, A10

Planck Collaboration XI 2020, A&A, 641, A11
Planck Collaboration XII 2020, A&A, 641, A12

Planck Collaboration XLVIII 2016, A&A, 596, A109
Planck Collaboration XXII 2015, A&A, 576, A107

Planck Collaboration XXIX 2016, A&A, 586, A132

Planck Collaboration IX 2020, A&A, 641, A9
Poh J., Dodelson S., 2017, Phys. Rev. D, 95, 103511

Remazeilles M., Dickinson C., Eriksen H. K. K., Wehus I. K.,

2016, Mon. Not. Roy. Astron. Soc., 458, 2032

Remazeilles M., Rotti A., Chluba J., 2021, MNRAS, 503, 2478
Ritacco A., Boulanger F., Guillet V., Delouis J.-M., Puget

J.-L., Aumont J., Vacher L., 2022, arXiv e-prints, p.

arXiv:2206.07671
Shetty R., Kauffmann J., Schnee S., Goodman A. A., 2009, ApJ,

696, 676

Sponseller D., Kogut A., 2022, arXiv e-prints, p.
arXiv:2207.13109

Sutin B. M., et al., 2018, in Space Telescopes and Instru-

mentation 2018: Optical, Infrared, and Millimeter Wave. p.
106984F

Tassis K., Pavlidou V., 2015, MNRAS, 451, L90

Vacher L., Chluba J., Aumont J., Rotti A., Montier L., 2022,
arXiv e-prints, p. arXiv:2205.01049

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–15 (2022)

http://dx.doi.org/10.1051/0004-6361/201937367
https://ui.adsabs.harvard.edu/abs/2021A&A...647A..52M
http://dx.doi.org/10.1093/mnras/sty204
http://dx.doi.org/10.1093/mnras/sty204
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.1310M
http://dx.doi.org/10.3847/1538-4357/abb6f5
https://ui.adsabs.harvard.edu/abs/2020ApJ...902..120P
http://dx.doi.org/10.1051/0004-6361/202040218
https://ui.adsabs.harvard.edu/abs/2021A&A...647A..16P
http://dx.doi.org/10.1051/0004-6361/201525967
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..10P
http://dx.doi.org/10.1051/0004-6361/201832618
https://ui.adsabs.harvard.edu/abs/2020A&A...641A..11P
http://dx.doi.org/10.1051/0004-6361/201833885
https://ui.adsabs.harvard.edu/abs/2020A&A...641A..12P
http://dx.doi.org/10.1051/0004-6361/201629022
https://ui.adsabs.harvard.edu/abs/2016A&A...596A.109P
http://dx.doi.org/10.1051/0004-6361/201424088
https://ui.adsabs.harvard.edu/abs/2015A&A...576A.107P
http://dx.doi.org/10.1051/0004-6361/201424945
http://dx.doi.org/10.1051/0004-6361/201935891
http://dx.doi.org/10.1103/PhysRevD.95.103511
http://dx.doi.org/10.1093/mnras/stw441
http://dx.doi.org/10.1093/mnras/stab648
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.2478R
https://ui.adsabs.harvard.edu/abs/2022arXiv220607671R
https://ui.adsabs.harvard.edu/abs/2022arXiv220607671R
http://dx.doi.org/10.1088/0004-637X/696/1/676
https://ui.adsabs.harvard.edu/abs/2009ApJ...696..676S
https://ui.adsabs.harvard.edu/abs/2022arXiv220713109S
https://ui.adsabs.harvard.edu/abs/2022arXiv220713109S
http://dx.doi.org/10.1093/mnrasl/slv077
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451L..90T
https://ui.adsabs.harvard.edu/abs/2022arXiv220501049V

	1 Introduction
	2 Line-of-sight dust SED models
	2.1 Single-population dust models (sMBB)
	2.2 Probabilistic models
	2.3 Other signal components

	3 Recovering dust properties from SED fits
	3.1 Single-pixel simulations
	3.2 MCMC-based model fitting procedure

	4 Results
	4.1 Fitting the sMBB model to pMBB data
	4.2 Fitting the sMBB model to TMFM data
	4.3 Inferring the hyperparameters of the dust parameter distributions

	5 Conclusions

