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ABSTRACT39

Precise measurements of the 21 cm power spectrum are crucial for understanding the physical pro-40

cesses of hydrogen reionization. Currently, this probe is being pursued by low-frequency radio inter-41

ferometer arrays. As these experiments come closer to making a first detection of the signal, error42

estimation will play an increasingly important role in setting robust measurements. Using the delay43

power spectrum approach, we have produced a critical examination of different ways that one can esti-44

mate error bars on the power spectrum. We do this through a synthesis of analytic work, simulations of45

toy models, and tests on small amounts of real data. We find that, although computed independently,46
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the different error bar methodologies are in good agreement with each other in the noise-dominated47

regime of the power spectrum. For our preferred methodology, the predicted probability distribution48

function is consistent with the empirical noise power distributions from both simulated and real data.49

This diagnosis is mainly in support of the forthcoming HERA upper limit, and also is expected to be50

more generally applicable.51

1. INTRODUCTION52

The Epoch of Reionization (EoR)—when neutral hy-53

drogen in the intergalactic medium (IGM) was ion-54

ized by photons from early galaxies and active galac-55

tic nuclei—remains one of the most exciting frontiers in56

modern astrophysics and cosmology. Precise measure-57

ments of this era will significantly enhance our under-58

standing on the origin of very first stars, the process of59

galaxy formation and the thermal history of the IGM60

(Barkana & Loeb 2001; Dayal & Ferrara 2018). Some61

measurements, such as those of the optical depth of62

Cosmic Microwave Background (CMB) photons (Planck63

Collaboration et al. 2020), the Gunn-Peterson trough in64

distant quasar spectra (Becker et al. 2001; Fan et al.65

2006; Bolton et al. 2011; Becker et al. 2015), quasar66

damping wings (Davies et al. 2018), and the decrease in67

the number density and the clustering trends of Ly-α68

emitters at high redshifts (Stark et al. 2010; Ouchi et al.69

2010; Bosman et al. 2018), have already established the70

basic parameters of the EoR. Collectively, they suggest71

that reionization is a process which probably began at72

z � 10 and ended around z ≈ 6. However, the afore-73

mentioned probes paint an indirect and incomplete pic-74

ture of the EoR. For example, CMB measurements are75

integral constraints over redshift, making the extraction76

of detailed information technically difficult (often involv-77

ing subtle kinetic Sunyaev-Zel’dovich effect or polariza-78

tion measurements); Lyα photons suffer from severely79

saturated absorption that makes it difficult for them to80

probe earlier times than the end of reionization; and81

low-mass galaxies (i.e., those thought to be responsi-82

ble for supplying a large fraction of ionizing photons)83

are too faint to be directly detected. A complementary84

probe capable of making direct observations of the EoR85

is therefore desirable.86

A strong candidate for a direct probe of reionization is87

the 21 cm line. Arising from the “spin flip” transition in88

the hyperfine structure of atomic hydrogen, the 21 cm89

line is a promising way to directly trace the evolution90

of HI regimes on different spatial scales and to eventu-91

ally provide a comprehensive three-dimensional picture92

throughout the history of reionization (Furlanetto et al.93

2006; Morales & Wyithe 2010; Pritchard & Loeb 2012;94

Liu & Shaw 2020). Current experimental efforts are95

focused on slightly more modest—but still ambitious—96

observables. One example is the global 21 cm signal,97

which is a single spectrum of 21 cm absorption or emis-98

sion averaged over the entire angular area of the sky99

(Bowman et al. 2008; Singh et al. 2018). Recently,100

the Experiment to Detect the Global Epoch of reioniza-101

tion Step team (EDGES) reported a tentative detection102

of a 21 cm absorption signature at z ∼ 17 (Bowman103

et al. 2018a), although this result remains controver-104

sial (Hills et al. 2018; Bowman et al. 2018b; Bradley105

et al. 2019; Singh & Subrahmanyan 2019; Sims & Pober106

2020). Global signal measurements are complemented107

by experimental efforts to map spatial fluctuations in the108

21 cm brightness temperature field. Most such efforts109

currently focus on a measurement of the power spec-110

trum, i.e., the variance in Fourier space. Power spec-111

trum measurements have the potential to significantly112

improve constraints on cosmological and astrophysical113

parameters of reionization models, and to potentially114

even discover new fundamental physics (e.g., McQuinn115

et al. 2006; Pober et al. 2014; Greig & Mesinger 2015;116

Pober et al. 2015; Kern et al. 2017; Greig & Mesinger117

2017; Hassan et al. 2017; Park et al. 2019; Ghara et al.118

2020). Typically, these measurements are pursued by119

low-frequency radio interferometer arrays, such as the120

Murchison Widefield Array1 (MWA; Tingay et al. 2013;121

Bowman et al. 2013), the Low Frequency Array2 (LO-122

FAR; van Haarlem et al. 2013), the Donald C. Backer123

Precision Array for Probing the Epoch of Reionization3
124

(PAPER; Parsons et al. 2010), the Hydrogen Epoch of125

Reionization Array4 (HERA; DeBoer et al. 2017), and126

the Square Kilometre Array5 (SKA; Mellema et al. 2013;127

Koopmans et al. 2015). Although no experiment has128

yet to claim a detection of the 21 cm power spectrum at129

redshifts relevant to the EoR, steady progress has been130

made in recent years in the form of increasingly strin-131

gent and robust upper limits(Dillon et al. 2014, 2015;132

Beardsley et al. 2016; Patil et al. 2017; Barry et al. 2019;133

Kolopanis et al. 2019; Li et al. 2019; Mertens et al. 2020;134

Trott et al. 2020).135

1 http://www.mwatelescope.org
2 http://www.lofar.org
3 http://eor.berkeley.edu
4 https://reionization.org
5 https://www.skatelescope.org

http://www.mwatelescope.org
http://www.lofar.org
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https://reionization.org
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In this paper, we tackle the crucial problem of er-136

ror estimation in the context of 21 cm power spectrum137

measurements. While an extensive literature on power138

spectrum error estimation exists for CMB measurements139

and galaxy surveys, there are several challenges that are140

unique to 21 cm cosmology. Chief amongst these is the141

fact that any measured signals will be strongly contami-142

nated by the foregrounds, which are generally 4 to 5 or-143

ders of magnitude stronger in temperature (de Oliveira-144

Costa et al. 2008; Jelić et al. 2008; Bernardi et al. 2009).145

To overcome this obstacle, some collaborations pursue146

a strategy of foreground subtraction, where models of147

foreground emission are subtracted from the data (e.g.,148

Harker et al. 2009; Bernardi et al. 2011; Cho et al. 2012;149

Chapman et al. 2012; Shaw et al. 2015). Different ap-150

proaches to foreground subtraction make different as-151

sumptions (see Liu & Shaw 2020 for examples), but all152

face the same problem of attempting to subtract a large153

contaminant from a large raw signal to reveal a small154

cosmological signature. With empirical constraints on155

the low-frequency radio sky being relatively scarce and156

generally imprecise, the chances of mis-subtraction are157

high. Errors in such a subtraction process as well as the158

effects of subtraction residuals must therefore be prop-159

agated through to a final power spectrum estimate.160

In this paper, however, we do not tackle the problem of161

error propagation in the context of foreground subtrac-162

tion; instead, we consider error estimation in the con-163

text of foreground avoidance, where one aims to make164

cosmological measurements exclusively in Fourier modes165

where foregrounds are expected to be subdominant. Key166

to this is the notion of the foreground wedge, a regime167

in Fourier space beyond which spectrally smooth fore-168

grounds cannot extend if observed using an ideal in-169

terferometer (Datta et al. 2010; Parsons et al. 2012b;170

Vedantham et al. 2012; Morales et al. 2012; Trott et al.171

2012; Thyagarajan et al. 2013; Hazelton et al. 2013;172

Liu et al. 2014a). The limitation of foregrounds to173

the wedge is a theoretically robust notion (Liu & Shaw174

2020), and in principle one can make foreground-free175

measurements simply by avoiding the regime. In prac-176

tice, observations are never made using perfect interfer-177

ometers, and instrumental systematics such as having178

non-identical antenna elements, cable reflections, and179

cross couplings (e.g., Kern et al. 2019, 2020a) complicate180

one’s foreground mitigation efforts. These complications181

can result in the appearance of contaminants outside of182

the foreground wedge, and in this paper we define and183

tackle the problem of error estimation in two regimes: a184

noise-dominated regime and a signal-dominated regime185

(whether these signals could be foregrounds, systemat-186

ics, or any other coherent signals).187

Through a combination of analytic work, simulations188

of toy models, and tests on small amounts of real data,189

we critically examine different ways in which one can190

place error bars on 21 cm delay power spectra. Our191

goal is to produce a “buyer’s guide” that enumerates192

the advantages and disadvantages of various error es-193

timation methods. Understanding these strengths and194

weaknesses are crucial for setting upper limits, diagnos-195

ing systematics, interpreting the results of null tests,196

and for the design and optimization of future telescopes197

(Morales 2005; McQuinn et al. 2006; Parsons et al.198

2012a). Although we will focus primarily on the de-199

lay power spectrum-style analysis (Parsons et al. 2012b)200

in support of recent HERA upper limits (HERA Collab-201

oration 2021), we expect many of our results to be more202

generally applicable.203

This paper is organized as follows: in Section 2, we204

review the basics of power spectrum estimation using205

the delay spectrum technique, establishing our notation.206

In Section 3 we propose several methods for estimating207

errors in 21 cm delay power spectra. These approaches208

are then compared and contrasted using simulations and209

real data in Section 4. We then discuss the strengths and210

weaknesses of each error estimation method in Section 5211

before summarizing our conclusions in Section 6. For212

readers’ convenience, we provide dictionaries for a num-213

ber of quantities defined in this paper in Tables 1 and214

2.215

2. POWER SPECTRUM ESTIMATION VIA THE216

DELAY SPECTRUM217

In this section we review the delay spectrum approach218

to 21 cm power spectrum estimation (Parsons et al.219

2012b) using the the language of the quadratic estimator220

(QE) formalism (Liu & Tegmark 2011) that we adopt in221

this paper.222

The delay spectrum technique enables power spectra223

to be estimated using just a single baseline of a ra-224

dio interferometer, with fluctuations in the 21 cm sig-225

nal probed primarily in the line-of-sight direction via226

spectral information. The starting point is the visibility227

V (b, ν) measured by an interferometer’s baseline b at228

frequency ν. Under the flat-sky limit, it is given by229

V (b, ν) =

∫
I(θ, ν)A(θ, ν) exp

(
−i2πν

c
b · θ

)
d2θ , (1)230

where c is the speed of light, θ is the angular sky posi-231

tion, I(θ, ν) is the source intensity function, and A(θ, ν)232

is the primary beam function. If we express I(θ, ν) in233

terms of its Fourier transform Ĩ(u, η), i.e.,234

I(θ, ν) =

∫
Ĩ(u, η)ei2π(u·θ+ην)d2udη, (2)235
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then our visibility equation becomes236

V (b, ν) =

∫
Ĩ(u, η)A(θ, ν)ei2π(u·θ+ην−bλ·θ)d2udηd2θ237

=

∫
Ĩ(u, η)Ã(bλ − u, ν)ei2πηνd2udη, (3)238

where we have defined bλ ≡ ν
c b as the normalized base-239

line vector for baseline b in units of wavelength. In the240

angular directions, we see that a visibility has a response241

to u modes centred around bλ. If the primary beam A is242

fairly broad, Ã will be highly compact and the majority243

of the integral will be sourced from u ≈ bλ. We will244

use this fact later. From this, one sees that a visibility245

V (b, ν) is a linear function of Ĩ(u, η). This quantity is di-246

rectly related to the cylindrical power spectrum P (u, η),247

which decomposes power into Fourier wavenumbers per-248

pendicular to the line of sight (u) and parallel to the line249

of sight (η), and is formally defined as250

〈Ĩ∗(u, η)Ĩ(u′, η′)〉 ≡ δD(u− u′)δD(η − η′)P (u, η). (4)251

Such a power spectrum can be recast into more conven-252

tional cosmological coordinates via the relations6
253

k⊥ =
2πu

Dc
; k‖ =

2πν21H0E(z)

c(1 + z)2
η, (5)254

where Dc is the line-of-sight comoving distance, ν21 is255

the rest frequency of the 21 cm line, H0 is the Hubble256

parameter today, and E(z) ≡
√

ΩΛ + Ωm(1 + z)3, with257

ΩΛ and Ωm as the normalized dark energy and matter258

density, respectively.259

Since the power spectrum is a quadratic function of260

the Fourier representation of the sky, we expect that261

one should be able to estimate the power spectrum by262

forming some quadratic function of visibilities. How-263

ever, directly squaring some functions of the visibili-264

ties will incur a noise bias because noise that is sym-265

metrically distributed about zero will have a positive266

contribution that does not average down with cumula-267

tive samples. Fortunately, the noise bias can be avoided268

by cross-multiplying nominally identical measurements269

rather than by squaring a single measurement. For in-270

stance, one might choose to form quadratic combina-271

tions of data from adjacent time samples of a single272

baseline’s time stream, or perhaps to cross-multiply the273

time streams from two redundant baselines that satisfy274

b1 = b2 = b for some b. In this paper, we will consider275

power spectrum measurements that are formed from276

6 In addition to mapping the arguments of P , there is also an ad-
ditional multiplicative constant; see Liu et al. (2014a) for explicit
expressions.

cross-multiplications in both time and different copies277

of an identical baseline. Utilizing both types of cross-278

multiplications has the advantage of avoiding skewness279

in the probability distributions of the measured power280

spectra, simplifying the interpretation of our results.281

This is discussed in Appendix A. In this section, how-282

ever, we will—for simplicity—suppress explicit reference283

to the data time stream and use notation that explic-284

itly refers to cross-correlating different baselines. Given285

a pair of redundant baselines b1 and b2, we stack their286

measuring visibilities at multiple frequencies ν1, ν2... at287

single time instants into two data vectors x1 and x2,288

such that289

x1 =


V (b1, ν1)

V (b1, ν2)
...

 ; x2 =


V (b2, ν1)

V (b2, ν2)
...

 . (6)290

To make an explicit connection between visibilities291

and power spectra, we must examine the statistical292

properties of these data vectors. For quadratic statistics293

the key quantity is the covariance matrix C12 ≡ 〈x1x
†
2〉,294

which can be written as295

C12
ij ≡〈V (b1, νi)V

∗(b2, νj)〉296

=

∫
P (u, η)Ã(bλ1i − u, νi)Ã∗(bλ2j − u, νj)297

×ei2πη(νi−νj)d2udη298

≈
∫
P (bλ, η)ei2πη(νi−νj)dη299

×
∫
Ã∗(bλ1i − u, νi)Ã(bλ2j − u, νj)d2u , (7)300

where bλ1i and bλ2j are the normalized baseline vectors301

for baseline b1 and b2 evaluated at frequencies νi and νj ,302

respectively, and bλ is the mean of the two. In deriving303

Equation (7), we first substituted Equation (3) for the304

expressions of visibilities in the angle bracket, and then305

factored the evaluated cylindrical power spectrum out306

of the integral over u. Next we replace the continuous307

integral on power spectra with discrete sums over a series308

of piecewise constant bandpowers P (bλ, ηα), such that309

C12
ij ≈

∑
α

P (bλ, ηα)

∫
ηα

ei2πηα(νj−νi)dη310

×
∫
Ã(bλ1i − u, νi)Ã∗(bλ2j − u, νj)d2u311

≈
∑
α

P (bλ, ηα)ei2πηα(νi−νj)∆η312

×
∫
e−i2π(bλ1i−bλ2j)·θA(θ, νi)A

∗(θ, νj)d
2θ313

≡
∑
α

P (bλ, ηα)Q12,α
ij , (8)314
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Henceforth, we will adopt the notation Pα ≡ P (bλ, ηα)315

to mean the value of the cylindrical power spectrum316

P (u, η) evaluated at u = bλ and η = ηα. The index317

α discretely runs over a series of bins in η, and as long318

as these bins are narrow compared to the scales over319

which the power spectrum changes, a piecewise constant320

treatment is appropriate.321

Equation (8) shows the cross-baseline covariance ma-322

trix of visibilities encodes information about the power323

spectrum bandpowers via a family of response matri-324

ces Q12,α (with a different matrix for every value of325

the bandpower index α). Since the covariance is an326

ensemble-averaged quadratic function of the data, one327

might venture that estimators for the bandpowers can328

be constructed by forming quadratic combinations of the329

data, i.e.,330

P̂α = x†1E
12,αx2 , (9)331

where E12,α is a matrix that can be chosen (within cer-332

tain limitations) by the data analyst. Taking the en-333

semble average on both sides and inserting Equation (8)334

then yields335

〈P̂α〉 =
∑
β

tr
(
E12,αQ21,β

)
Pβ ≡

∑
β

WαβPβ , (10)336

where W is the window function matrix. To ensure that337

our estimated bandpowers are correctly normalized, we338

require that each row of W sum to unity.339

In the HERA power spectrum pipeline, we pick a fam-340

ily of E12 matrices of the form341

E12,α ≡MαR1Q
DFT,αR2, (11)342

where the matrix QDFT,α
ij ≡ ei2πηα(νi−νj) is responsible343

for taking the Fourier transform of the two copies of the344

data vectors in the quadratic estimator. The matrices345

R1 andR2 are weighting matrices that act on visibilities346

from b1 and b2, respectively. In this paper, we use R =347

TY , where both T and Y are diagonal matrices. The348

former is used to impose a Blackman-Harris tapering349

function on the spectral data, and the latter propagates350

data flags. With a quadratic estimator of this form, the351

normalization scalar, Mα, should take the form352

Mα =
1∑

β tr(R1QDFT,αR2Q12,β)
(12)353

which ensures that the rows of W sum to unity, and354

therefore that the bandpowers are properly normalized.355

In our case, we do use this normalization, but we approx-356

imate the Q12,β term in the denominator. Rather than357

evaluating the full integral in Equation (8), we make the358

approximation that bλ1i ≈ bλ2i. In fact, this is the mo-359

tivation for the use of QDFT,α in Equation (11) rather360

than Q12; notice that if bλ1i = bλ2i, then Q12 ∝ QDFT.361

Over large bandwidths, this will fail for long baselines,362

since bλ ≡ νb/c.363

The approximation that we have just made is equiva-364

lent to the delay spectrum approximation (Parsons et al.365

2012b; Liu et al. 2014a). To see this, we can write our366

estimator in the continuous limit. Our current form for367

E12,α is separable into the product of two matrices that368

each involve only one of the two baselines. In particu-369

lar, if γ(ν) is the functional form of the Blackman-Harris370

taper, then we have E12,α
ij = γ1(νi)e

i2πηα(νi−νj)γ2(νj),371

and its action on each baseline’s visibilities in Equation372

(9) is to compute the quantity373 ∑
i

V (b, νi)γ(νi)e
−2πηνi∆ν, (13)374

which is just a discrete approximation to375

Ṽ (b, η) =

∫
V (b, ν)γ(ν)e−i2πηνdν . (14)376

Note Equation (14) is an equivalent expression of the377

delay transform in Parsons et al. (2012b). Therefore378

P̂α=x†1E
12,αx2379

∝
∑
ij

V ∗(b1, νi)γ1(νi)V (b2, νj)γ2(νj)e
i2πηα(νi−νj)

380

= Ṽ ∗(b1, ηα)Ṽ (b2, ηα) . (15)381

Equation (15) just indicates that the quadratic estima-382

tor is proportional to the product of delay-transformed383

visibilities. This is an estimator that is based on Fourier384

transforming the visibility spectra from individual base-385

lines, rather than combining information from different386

baselines. In principle, only the latter can probe truly387

rectilinear Fourier modes on the sky, since k⊥ ∝ bλ388

(which is a frequency-dependent quantity), and thus to389

probe the same k⊥ at multiple frequencies—which is390

needed to perform the Fourier transform along the line-391

of-sight direction—one needs multiple baselines. The392

delay spectrum approach uses the fact that bλ evolves393

only slowly with frequency for short baselines to form394

an approximate power spectrum estimator. We make395

this approximation throughout this paper, as this is396

the choice that has been made for the next iteration397

of power spectrum upper limits from HERA observa-398

tions. In recognition of this, we will henceforth use τ399

to index our line-of-sight Fourier modes (as is custom-400

ary for delay spectra) instead of η (which is generally401

used to denote true rectilinear line-of-sight wavenum-402

bers) (Morales et al. 2012, 2019).403

In the language of the delay spectrum, the foreground404

wedge becomes particularly simple to describe: smooth405
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Quantity Definition/Meaning First Appearance

b; bp Baseline vector; Vector of the pth index baseline Equation (1)

θ Angular sky position Equation (1)

ν; νi Frequency; Frequency of the ith index channel Equation (1)

bλ; bλpi Normalized baseline vector in units of wavelength; Normalized vector for baseline bp
at frequency νi

Equation (3)

u Fourier dual to θ Equation (2)

η; ηα Fourier dual to ν; the αth index η mode Equation (2)

τ ; τα Delay, i.e., Fourier dual to ν on a single baseline; the αth index delay mode Equation (16)

A(θ, ν) Primary beam function at position θ and frequency ν Equation (1)

Ã(u, ν) Spatial Fourier Transform Dual of primary beam function Equation (3)

γ(ν) Spectral tapering function at frequency ν Equation (14)

Ntime;Nblp Number of time instants; Number of baseline-pairs Equation (18)

Nboot Number of bootstrapping sample sets Equation (24)

I(θ, ν) Sky source intensity function at position θ and frequency ν Equation (1)

Ĩ(u, η) Fourier transform of I at angular wavenumber u and line-of-sight wavenumber η Equation (2)

V (b, ν) Visibility measured by baseline b at frequency ν Equation (1)

P (u, η) Cylindrical power spectrum at angular wavenumber u and line-of-sight wavenumber
η

Equation (4)

Pα The αth bandpower Pα ≡ P (bλ, ηα) Equation (8)

P̂α The estimator for the αth bandpower Pα Equation (9)

Mα The normalization scalar of the estimator for the αth bandpower Equation (11)

Ṽ (bp, τα), x̃p(τα) Delay spectra of baseline bp at delay mode τα Equation (15)

Ṽsignal(bp, τα), s̃p(τα) The signal component of Ṽ of baseline bp at delay mode τα Equation (16)

Ṽnoise(bp, τα), ñp(τα) The noise component of Ṽ of baseline bp at delay mode τα Equation (16)

Px̃1x̃2 Power spectra formed from visbilities x1 and x2 Equation (30)

Table 1. Dictionary of highlighted scalars and functions.

Quantity Definition/Meaning Size First Appearance

xp Stacked visibilities at multiple frequencies of baseline bp Nfreq Equation (6)

Cpq Covariance matrices Cpq ≡ 〈xpx†q〉 Nfreq ×Nfreq Equation (7)

Qpq,α Response of covariance Cpq to the αth bandpower Nfreq ×Nfreq Equation (8)

Epq,α Matrix for quadratic estimator of bandpower Pα, i.e., P̂α = x†pE
pq,αxq Nfreq ×Nfreq Equation (9)

W Window function matrix Ndelay ×Ndelay Equation (10)

Rp Weighting matrix acting on xp Nfreq ×Nfreq Equation (11)

QDFT,α Matrix taking Fourier Transform in the estimator Nfreq ×Nfreq Equation (11)

Upq two-point correlation matrices Upq ≡ 〈xpxTq 〉 Nfreq ×Nfreq Equation (33)

Gpq two-point correlation matrices Gpq ≡ 〈x∗px†q〉 Nfreq ×Nfreq Equation (33)

Table 2. Dictionary of highlighted vectors and matrices.
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spectrum foregrounds simply contaminate all modes be-406

low a particular delay, the value of which depends on the407

baseline length (Parsons et al. 2012b; Liu et al. 2014a;408

Liu & Shaw 2020). Suppose we decompose the delay409

transformed visibility into the signal component Ṽsignal410

(mainly foregrounds, and we are neglecting the much411

weaker EoR signal here) and the noise component Ṽnoise,412

such that413

Ṽ (b1, τα)≡ x̃1(τα)414

≡ Ṽsignal(b1, τα) + Ṽnoise(b1, τα)415

≡ s̃1(τα) + ñ1(τα). (16)416

Since we are working on redundant baselines, we will417

henceforth drop the subscript on s̃, as the two baselines418

used in Equation (15) should measure identical signals.419

Mathematically, then, the statement that the smooth420

spectrum foregrounds contaminate only low delay modes421

is given by422

P̂α ≈

{
s̃∗s̃+ s̃∗ñ2 + ñ∗1s̃ if |τα| < τ0

ñ∗1ñ2 otherwise,
(17)423

where τα is the delay corresponding to the αth band-424

power, and τ0 is some critical delay value that sepa-425

rates parts of the power spectrum that are foreground-426

dominated from those that are not. In general, τ0 will427

depend on the properties of one’s instrument as well428

as the extent to which the assumption of smooth fore-429

grounds is good. At delays less than τ0, we have assumed430

that the foreground signal is so large that the noise-noise431

cross term can be neglected.432

Throughout the rest of this paper, we will appeal to433

Equation (17) for intuition when contemplating the be-434

haviour of our power spectrum estimates at different de-435

lays. For now, we note two of its important properties.436

First, while the power spectrum of a signal s̃∗s̃ will be437

always real valued, the overall estimator P̂α is complex.438

It is possible to write down symmetrized estimators that439

give real power spectra. However, since the imaginary440

part is sourced by noise, it is a useful diagnostic quantity441

to examine. Second, even though the noise-noise terms442

may be negligible in the signal dominated regimes, there443

will still be a considerable uncertainty here that enters444

via the signal-noise cross terms.445

Until now, we have focused on power spectra esti-446

mated from visibilities measured at single time instants.447

Given data from multiple times, we can average the448

power spectra estimated from individual measurements449

together. For a drift scan telescope, this averaging of450

power spectra from different time samples is tantamount451

to invoking statistical isotropy to justify the spherical452

averaging of power spectra over different wavevector k453

directions. In addition to averaging in time, if we have454

multiple pairs of baselines within the same redundant455

group of baselines, we may average over the power spec-456

trum estimates from multiple baseline pairs. The sim-457

plest way to do this is to perform an unweighted average:458

459

P̂α =
1

NtimeNblp

∑
time,blp

P̂α(time,blp) , (18)460

where Ntime is the number of time integrations, Nblp is461

the number of baseline pairs, P̂α(time,blp) is the power462

spectrum estimate (given by previous equations in this463

section) at a time instant and a baseline pair (“blp”),464

and P̂α is the average of estimates. The type of averag-465

ing performed here may be termed an “incoherent aver-466

age”, to distinguish it from a “coherent average”, where467

one averages over visibilities (or converts them into a468

single image) before squaring them in power spectrum469

estimation. The latter provides greater sensitivity—if470

calibration errors and other systematic effects can be471

brought under control (Morales et al. 2019). The for-472

mer retains the ability to inspect the contributions from473

particular baseline pairs and time until right before the474

final result, making some systematics easier to diagnose.475

However, note that by employing a suitable fringe-rate476

filtering of the time-stream data, it is in principle pos-477

sible to recover the lost sensitivity from a “square-then-478

add” approach (Parsons et al. 2016). In this paper, we479

will focus on the error statistics of the incoherent aver-480

age approach, as this is what is currently used in the481

HERA pipeline (HERA Collaboration 2021).482

Before we move into the discussion on error estima-483

tion methods in the next section, it is worth noting that484

Equation (18) is not the optimal way to obtain average485

power spectra with the least variance. Generally, given486

a set of estimates P̂α for bandpower Pα with measure-487

ment errors σ, such that488

P̂α = DPα + ε , (19)489
490

an linear estimator of Pα is written as491

P̂α = KP̂α . (20)492
493

Here D is a column vector of 1s. We need to select K494

such that KD = I in order to achieve an unbiased con-495

straint that satisfies 〈P̂α〉 = Pα. For an arbitrary matrix496

K, the error bar Σα ≡ 〈|P̂α−Pα|2〉 = KεKt, where the497

error covariance matrix ε ≡ 〈σσt〉. The superscript “t”498

used here and along in this paper refers to the matrix499

transposition. Note that Equation (18) is just a special500

case where K = [DtD]−1Dt. When Σα is minimized501

(optimal), P̂α and the corresponding Σα should take the502
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form of (Tegmark 1997; Dillon et al. 2014)503

P̂α = [Dtε−1D]−1Dtε−1P̂α (21)504

Σα = [Dtε−1D]−1 , (22)505
506

which amounts to an inverse covariance weighting of507

the data in averaging it down. Equation (21) brings508

us the ability to propagate the full covariance informa-509

tion over samples to obtain an least-variance average510

result. The diagonal elements of ε are easily interpreted511

as the variance in each individual measurement, while512

the off-diagonal elements, reflected by the coherency be-513

tween time samples and baseline-pair samples, are far514

more complicated. If estimating the covariance matrix515

ε of the pre-averaged data is difficult, one may opt to516

weight the data using some other matrix Γ instead of517

ε in Equation (21). In this case, the final variance Σα518

ends up being519

Σα = [DtΓ−1D]−1DtΓ−1εΓ−tD[DtΓ−tD]−1 . (23)520

In principle, one could model the off-diagonal elements521

of ε. This is particularly important in the cosmic-522

variance dominated regime where the sky signal—which523

is what sources a cosmic variance error—is slowly drift-524

ing through HERA’s field of view over the course of the525

day, thus inducing strong correlations between different526

time samples. In this paper we do not consider the mod-527

elling of off-diagonal covariances in ε (or between differ-528

ent α values in P̂α). We assume diagonal covariance529

matrices and set Γ = I, i.e., we use Equation (18) when530

computing the “incoherently-averaged” power spectra,531

and here we are acknowledging other possibilities only532

for completeness.533

3. ERROR ESTIMATION METHODOLOGY534

Placing robust error bars on power spectra is crucial535

to our data analysis, whether it is for setting upper lim-536

its, diagnosing experimental systematics, or eventually537

declaring a detection of the cosmological 21 cm signal.538

Generally, contributions to the error bars of observed539

power spectra come from three sources: the EoR sig-540

nal, noise, and foregrounds (Thyagarajan et al. 2013;541

Trott 2014; Dillon et al. 2014, 2015; Lanman & Pober542

2019). Of course, this is all complicated by the response543

of one’s instrument, and ultimately, one’s ability to place544

reliable error bars rests on one’s ability to understand545

the behaviour of each data source in the context of the546

instrument.547

The intrinsic variance of the EoR signal, also known548

as “cosmic variance”, is the ensemble covariance on all549

possible realizations of the 21-cm temperature field. If550

the field is Gaussian, then its cosmic variance is pro-551

portional to the square of the power spectrum ampli-552

tude over the number of independent modes. Lanman553

& Pober (2019), for example, estimate the cosmic vari-554

ance could go as high as ∼ 35% of the EoR signal for555

HERA-like fields of view with eight hours of local side-556

real time (LST) observations using only the shortest557

(14.6-m) baselines of HERA. This uncertainty due to558

cosmic variance is brought down to a few percent level559

for the spherically averaged power spectrum when us-560

ing all types of baselines. Importantly, as reionization561

evolves, the 21-cm temperature field is expected to be-562

come highly non-Gaussian, and the excess contribution563

from the non-Gaussian component could lift the cosmic564

variance in Gaussian part staggeringly, which is signifi-565

cant and should be considered for future high-sensitivity566

measurements (Mondal et al. 2016, 2017; Shaw et al.567

2019). In this paper, however, we assume that at our568

current levels of precision the cosmic variance is sub-569

dominant to noise and foregrounds.570

For instrumental noise, we assume that the noise in571

the visibility from each baseline is independent and572

Gaussian-distributed. This is what one might expect573

based on the statistics of correlator outputs in a radio574

interferometer, but is also an assumption that we will575

see borne out in our empirical data in Section 4. With576

these well-understood statistical properties, the noise-577

dominated delays (recall Equation 17) are relatively easy578

to model, at least in principle.579

The low-delay, foreground-dominated regimes are580

trickier to model. One key problem is that the statistics581

of foregrounds are not well-understood, particularly at582

the low frequencies relevant to us. There are different583

approaches that one can take to this roadblock. The584

first is where one attempts to make a measurement of585

the cosmological 21 cm signal only, by proactively sub-586

tracting (or simultaneously fitting) a foreground model.587

To properly set error bars on such a power spectrum, it is588

necessary to propagate uncertainties (accounting for the589

possibility of mis-subtractions) in the foreground model590

to the final errors (or in the case of a simultaneous fit-591

ting, to allow the errors on the cosmological signal to592

be appropriately inflated as one marginalizes over fore-593

ground uncertainties). While conceptually straightfor-594

ward, these steps are difficult to implement in practice595

without a deep understanding of foreground statistics.596

Instead, in this paper we treat foregrounds as addi-597

tive systematics on the total sky emission. Crucially,598

this means we only require empirical knowledge of the599

foregrounds themselves, and not their full probability600

distribution. We simply quantify the error bars on a601

measurement of total sky emission due to instrumental602
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Name Description Definition

σbs Error bar of the average power spectra by bootstrapping over the collection of samples Equation (24)

Pdiff Power spectra from differenced visibility used as a form of error bar Equation (26)

PN Analytic noise power spectrum Equation (27)

PSN Error bar based on PN but including the extra signal-noise cross term Equation (30)

σQE-N Error bar from the output covariance in QE formalism including only noise-noise term Equation (37)

σQE-SN Error bar from the output covariance in QE formalism including noise-noise term and
signal-noise term

Equation (38)

P̃SN Same as PSN but with an adjustment for noise double-counting Equation (31)

σ̃QE-SN Same as σQE-SN but with an adjustment for noise double-counting Equation (39)

Table 3. Dictionary of error bars.

noise, rather than what the error bars on the cosmo-603

logical signal due to foreground uncertainties and noise.604

Some understanding of foregrounds is still needed for605

setting our errors because of the signal-noise cross terms606

in Equation (17). Implicit in this approach is a strat-607

egy of foreground avoidance in the hunt for a cosmo-608

logical signal detection, where it is hoped that the sep-609

aration between foreground-dominated and foreground-610

negligible regimes in Equation (17) is a clean one. It611

is important to note, however, that we seek to compute612

error bars that transition smoothly between the regimes613

and are valid even if the conceptual separation is not a614

clean one in practice.7615

In addition to foregrounds, one can treat instrumental616

systematics in the same way. In other words, interpret-617

ing systematics as additive “signals”, the signal-noise618

cross term in the variance of power spectra is sourced619

by not just foregrounds, but also other systematics such620

as cable reflections and cross couplings (Kern et al. 2019,621

2020a). We can apply some models to remove sys-622

tematics from the signal, but the residuals due to mis-623

subtraction will still increase the total uncertainties via624

the signal-noise cross term. Note, however, that in this625

paper we do not develop a comprehensive model to ac-626

count for all systematics, which is particularly difficult627

when unknown modeling errors are present in compli-628

7 We stress that our analysis does not cease to apply at a certain
delay—it is simply the case that at high delays, there is less of
a pressing need to construct detailed models for foreground sub-
traction, which to some extent mitigates the need to consider
the complicated statistical properties of this subtraction. It is
likely that our formalism can be generalized to encompass some
foreground subtraction, but detailed work beyond the scope of
this paper would be necessary. As an example, suppose one were
to use information at τ = 0 and an instrument model to sub-
tract off leakage from other low (but non-zero) delay modes. In
such a scenario, one would need to account for the fact that the
noise contributions between different delay modes are now cou-
pled. This can in principle be accommodated with appropriate
covariance matrix modeling, but we leave this to future work.

cated effects (e.g. direction-dependent gains). We will629

instead argue that a procedure of using the measured630

visibility itself to model the foregrounds and systematics631

allows us to set robust upper bounds, provided certain632

safeguards are in place to avoid biases. We will leave633

more exquisite a priori characterizations of foregrounds634

and systematics in the signal-noise cross terms for the635

future.636

Finally, one might worry that the averaging of power637

spectra from multiple measurements together like Equa-638

tion (18) might complicate the statistics. Appendix B639

shows an example of this. There, we show that when640

averaging over redundant baseline-pairs, the variance641

of average power spectra in the foreground-dominated642

regime goes down roughly with N
−1/2
blp and not N−1

blp643

because some baselines will appear in multiple base-644

line pairs. In other words, in foreground-dominated645

(or systematics-dominated) regimes, one cannot assume646

that baseline pairs average together in an independent647

fashion. This has consequences for certain methods of648

error bar computation, such as the bootstrapping ap-649

proach discussed in the next subsection, which will tend650

to underestimate error bars in these regimes. To avoid651

this, one might just use pairs in which each baseline652

only appears once in all baseline pairs, or to compute653

a correction factor on the final results. In contrast to654

the foreground/signal-dominated regime, in the noise-655

dominated regime one obtains correct final error bars656

by assuming that the baseline-pair samples are indepen-657

dent (even if they are not for the aforementioned rea-658

sons). In this paper, to avoid averaging power spectra659

over correlated samples, we will concentrate on the av-660

eraging of power spectra of a single baseline-pair over661

multiple time samples.662

We will have a more extensive discussion of the mean-663

ing of our error bars in Section 5. For concreteness,664

however, we will now propose several different meth-665

ods for generating error bars based on the HERA power666

spectrum pipeline before performing quantitative com-667
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parisons in Section 4. For the convenience of our readers,668

we provide Table 3 as a quick preview.669

3.1. Bootstrap670

Bootstrapping is a natural method for computing the671

error bars on the final averaged power spectrum with672

only minimal a priori modeling assumptions. Within673

the 21 cm cosmology literature, it has previously been674

used to set error bars on power spectrum upper limits675

(Parsons et al. 2014; Ali et al. 2015; although see Cheng676

et al. 2018 for caveats on these limits). Bootstrapping677

is a process that goes hand in hand with the averaging678

step described in Equation (18). Rather than perform-679

ing a single average, we repeatedly form a new set of680

pre-averaged data by resampling the original set with681

replacement (i.e., allowing repeated entries). A new es-682

timate of the final average, P̂
(k)

, can be produced from683

the kth draw. The scatter in the realizations of the final684

averaged power spectrum is then quoted as an error bar685

σbs, such that686

σ2
bs =

1

Nboot

∑
k

[
P̂

(k)

− 1

Nboot

∑
l

P̂
(l)
]2

, (24)687

where Nboot is the number of bootstrapping sample sets.688

In essence, one is using the data itself as an empirical es-689

timate of the distribution from which the data is drawn690

(Efron & Tibshirani 1994; Press et al. 2007).691

If the input data samples are independent and identi-692

cally distributed, bootstrapping will give the same error693

bars as the true ones from ensemble average. However,694

this assumption is likely to be violated with our data.695

Consider the two axes that we have at our disposal. One696

possibility is to bootstrap over different time samples.697

Over short timescales, different time integrations have698

relatively uncorrelated noise realizations. However, as699

our drift scan telescope moves across different local side-700

real time (LST) values, the sky brightness seen by the701

telescope changes, leading to slow changes in the noise702

level for a sky-noise dominated telescope. An alternative703

to bootstrapping over time is to bootstrap over differ-704

ent copies of an identical (“redundant”) baseline group.705

Here, the downside is that it remains an open question706

as to how truly redundant current interferometric arrays707

are (Dillon et al. 2020), and precisely what the conse-708

quences of non-redundancy are (Choudhuri et al. 2021).709

With correlated data samples, bootstrapping tends710

to underestimate the true error bars on a final aver-711

aged power spectrum (Cheng et al. 2018). On the other712

hand, non-stationary effects such as non-redundancy can713

inflate bootstrap errors rather than revealing the fact714

that the data in fact come from multiple distributions.715

In later sections, we will compute error bars that come716

from bootstrapping over different LSTs, but will inter-717

pret these results with caution given the caveats we have718

just outlined. Of course, these caveats by no means719

diminish the value of bootstrap errors as yet another720

consistency check, particularly when one is diagnosing721

systematic effects (e.g., Kolopanis et al. 2019).722

3.2. Direct Noise Estimation By Visibility Differencing723

The foreground and EoR signal varies relatively slowly724

in time (or frequency), such that after differencing the725

integrated visibility between very close LSTs (or fre-726

quencies), the normalized residual,727

Vdiff =
V (b, ν, t1)− V (b, ν, t2)√

2
728

or729

Vdiff =
V (b, ν1, t)− V (b, ν2, t)√

2
, (25)730

731

is almost noise-like. We can propagate such Vdiff732

through power spectrum estimation pipelines to gener-733

ate a “noise-like” power spectrum Pdiff, such that734

Pdiff ∝ Ṽ ∗diffṼdiff , (26)735

where appropriate proportionality/normalization con-736

stants allow Pdiff to have the same units as—and there-737

fore be directly comparable to—power spectra. This738

quantity can be viewed as a random variable that rep-739

resents random realizations of the noise in the system,740

which can be used to at least roughly estimate error741

bars in noise-dominated regimes (see Appendix C for742

more details). It can be computed from either time-743

differenced or frequency-differenced visibilities. How-744

ever, by differencing neighbouring points in frequency,745

we are in fact applying a high-pass filter in the delay746

space, which means that power is suppressed at low de-747

lay modes. This is illustrated in Figure 1, and for this748

reason that the time-differencing method is preferred for749

empirical noise uncertainty estimation. However, it is750

important to note that many correlators do not dump751

data to disk fast enough for this to be feasible, as the sky752

changes non-negligibly on the timescale of a few seconds.753

The maximum time length of a single integration before754

reaching a decorrelation threshold depends on the base-755

line length, thus ones need particular simulations for756

their instruments to determine the suitable time scale757

(Wijnholds et al. 2018). For the upgraded HERA corre-758

lator, it will be able to produce time-differenced visibili-759

ties on the milli-second timescale for accurate, empirical760

noise estimates.761
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Figure 1. Here we generate ∼ 60 realizations of time streams of white-Gaussian-noise visibilities, and compute the time-
differenced visibilities and frequency-differenced visibilities respectively. Left : Power spectra from the original visibilities.
Center : Power spectra from time-differenced visibilities. Right : Power spectra from frequency-differenced visibilities. In each
panel, we plot the power spectra from every realization, along with the mean (solid red) and the standard deviation (dashed
red) of power spectra over all realizations. We see power spectra from frequency-differenced visibilities are highly suppressed at
low delays.

3.3. Power Spectrum Method762

With appropriate approximations (see Liu & Shaw763

2020 for details), it is possible to write down an ana-764

lytic expression for the noise power spectrum given a765

system temperature, Tsys in units of Kelvin:766

PN =
X2Y ΩeffT

2
sys

tintNcoherent

√
2Nincoherent

, (27)767

where X ≡ Dc and Y ≡ c(1+z)2

ν21H0E(z) are conversion factors768

from sky angles and frequencies to cosmological coordi-769

nates, Ωeff is the effective beam area, tint is the integra-770

tion time, Ncoherent is the number of samples averaged771

at the level of visibility while Nincoherent is the num-772

bers of samples averaged at the level of power spectrum773

(Zaldarriaga et al. 2004; Pober et al. 2013; Cheng et al.774

2018; Kern et al. 2020a). This is an estimate of the775

root-mean-square (RMS) of a power spectrum measure-776

ment in the limit that it is purely thermal noise dom-777

inated. The system temperature, Tsys = Tsky + Trcvr,778

is the sum of the sky and receiver temperature and de-779

scribes the total noise content of the visibilities formed780

between cross-correlating data from different antennas781

(Thompson et al. 2017).782

There are many ways in which the key quantity Tsys783

can be estimated. For example, we can take advantage784

of the differenced visibilities discussed in the previous785

subsection. These differences can then be converted into786

an estimate of Tsys via the relation787

VRMS({p, q}) =
2kbν

2Ωp
c2

Tsys,{p,q}√
B∆t

, (28)788

where kb is the Boltzmann constant, Ωp is the integrated789

beam area, B is the bandwidth, and ∆t is the integration790

time at a single time sample. The “RMS” subscript791

signifies taking the root-mean-square of the differenced792

visibilities and p and q are indices denoting two different793

antennas that form a baseline {p, q}. This serves to794

emphasize the fact that we can have a distinct system795

temperature for every baseline.796

Another way to estimate Tsys—which we use in this797

paper—is to use auto-correlation visibilities, i.e., visibil-798

ities formed by correlating a single antenna’s data with799

itself. The system temperature on a non-auto correla-800

tion baseline {p, q} is then related to the geometric mean801

of the auto-correlation visibilities of the two constituent802

antennas as (Jacobs et al. 2015)803 √
V ({p, p})V ({q, q}) =

2kbν
2Ωp
c2

Tsys,{p,q} . (29)804

In Figure 2 we plot the system temperatures predicted805

using both methods for some HERA data. The lower806

scatter with the second method is why we recommend807

its usage.808

The noise power spectrum PN correctly describes the809

error bars assuming that our instrument measures noth-810

ing but noise. This may be a suitable approximation811

for noise-dominated delays. More generally, however,812



12 Tan et al.

Figure 2. Comparison of two ways to estimate the system temperature based on HERA data. The system temperatures of
cross-correlation visibilities on two 14.6 m baselines [indexed by HERA antenna numbers (23, 37) and (36, 51)] are averaged
across the LST range of 6.10 to 6.46 hours. The green regime, from frequency channel number #515 to 695, show the HERA
data band used for analysis in this paper. The label “autos” and “RMS” indicate the method (either from products of auto-
visibilities or the RMS of differenced visibilities) by which the curves of system temperatures are calculated. And the values of
temperatures shown in labels are the average values over the band specified by the green regime. We see the results from two
methods are consistent to 5%, though the curves from auto-correlations are far less scattered.

when a signal (be it foregrounds or systematics) exists,813

the cross terms of Equation (17) provide an additional814

contribution to the noise scatter/error bars.8 This term815

exists regardless of whether one’s foreground mitigation816

strategy is based on subtraction or avoidance. In the817

former case, the foreground residuals after subtracting818

a model from data enter into the final expression; in the819

latter case, the whole foreground contribution is propa-820

gated as a systematic signal in the data. We show how821

to take this into account in Appendix D, where we define822

PSN as823

P 2
SN ≡

√
2Re(Px̃1x̃2

)PN + P 2
N (30)824

which serves as a characterization of the error bars on825

the total sky emission, consistent with the form derived826

in Kolopanis et al. (2019). Here, Re(Px̃1x̃2), the real827

part of power spectra formed from x1 and x2, serves as828

a stand-in for a signal-only power spectrum PS assum-829

ing that the signal dominates the noise (whether this830

“signal” takes the form of foregrounds, systematics, or831

the cosmological signal).832

8 We stress that this scatter/error is still due to instrumental noise
and not the variance of the signal term. Even for a perfectly
constant and known signal, the presence of the cross term al-
ters the uncertainty, essentially having the signal term act as a
multiplicative amplifier for noise fluctuations.

Using real data helps us approximate the true PS when833

we do not possess good a priori models. However, by834

using real data our estimate of the first term of Equa-835

tion (30) can in principle be negative because x̃1 and836

x̃2 contain different noise realizations. This can cause837

problems, since the signal-only power spectrum is ex-838

pected to be non-negative. We thus enforce a hard prior839

on this term and set negative values of Re(Px̃1x̃2
) to840

zero. In this way P 2
SN is always positive and the error841

bar PSN is at worst a conservative estimate. When we842

average power spectra with error bars, this conservatism843

leads to a substantial bias between PSN and PN in our fi-844

nal error estimates in the noise-dominated regime. This845

is due to Re(Px̃1x̃2
) in the first term of Equation (30)846

is empirical—and therefore contains noise—which effec-847

tively yields a double-counting of the noise-noise term848

in the variance. This double-counting does not result in849

an average bias if one does not enforce our prior, since850

in a noise-dominated regime Re(Px̃1x̃2) has zero mean.851

Our prior ensures that PSN > PN. Despite this, we852

will show that Equation (30) is a reasonable approxima-853

tion over broad swaths of the power spectrum. More-854

over, if we understand the statistics of noise fluctuations,855

one can simply predict—and correct for—the double-856

counting bias in PSN. In the noise-dominated regime,857

PN characterizes the scatter in Re(Px̃1x̃2). Thus one can858

estimate the expectation value of the extra noise contri-859
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bution from the first term of Equation (30) by comput-860

ing861

√
2〈Re(Px̃1x̃2)〉PN862

=
√

2

[
1√

2πPN

∫ ∞
0

y exp (−y2/2P 2
N)dy

]
PN863

=P 2
N/
√
π . (31)864

865

The integral runs over only positive values since we are866

imposing a non-negative prior. Note that here where we867

have neglected any complicated window function effects868

in inserting the measured power spectrum, essentially869

assuming that all power is locally sourced at the delay870

where it is measured. In principle, these effects can be871

taken into account in a more general derivation within872

the quadratic estimator formalism, but we leave this for873

future work.874

We see from Equation (31) that the excess of PSN875

above PN in the noise-dominated regime is proportional876

to PN; thus, we can just subtract it from the initially877

computed PSN. We then define a modified “PSN” free878

from the double-counting noise bias as9
879

P̃SN ≡ PSN −
(√

1/
√
π + 1− 1

)
PN . (32)880

The reduction of double-counting noise bias in this way881

also holds where signal dominates over noise. Since PN,882

PSN, and P̃SN are all either power spectra or constructed883

from products of power spectra, we name this methodol-884

ogy of error estimation the “Power Spectrum Method”.885

3.4. Covariance Method886

The quadratic estimator formalism leads to a natu-887

ral way to write down an analytic form of error bars by888

propagating the input covariance matrices on visibili-889

ties into the output covariance matrices on bandpowers,890

which we name “Covariance Method” (see Appendix E891

for more details). Provided three set of matrices below892

containing the full frequency-frequency two-point corre-893

9 Here we derived the correction factor
√

1/
√
π + 1 − 1 ≈ 0.251

assuming Re(Px̃1x̃2 ) follows Gaussian distribution. This is ap-
propriate assuming that enough power spectra formed from data
at different times have been incoherently averaged together for
the Central Limit Theorem to apply (we will examine this point
further in Section 4.1). For a single snapshot in time, the mea-
sured power spectrum follows a Laplacian distribution (again, see

Section 4.1) and the correction factor becomes
√

3/2−1 ≈ 0.225.
Since the difference is small and in practice we operate in the
Gaussianized regime anyway we use

√
1/
√
π + 1− 1 in our defi-

nition.

lation information of complex visibilities894

C12
ij ≡〈x1,ix

∗
2,j〉 ,895

U12
ij ≡〈x1,ix2,j〉 ,896

G12
ij ≡〈x∗1,ix∗2,j〉 , (33)897

898

the variance in the real part of P̂α is899

var
[
Re(P̂α)

]
900

=
1

4

{
tr
[
(E12,αU22E21,α∗G11 +E12,αC21E12,αC21)901

+ 2× (E12,αU21E12,α∗G21 +E12,αC22E21,αC11)902

+ (E21,αU11E12,α∗G22 +E21,αC12E21,αC12)
]}
,

(34)

903

904

and the variance in the imaginary part of P̂α is905

var
[
Im(P̂α)

]
906

=
−1

4

{
tr
[
(E12,αU22E21,α∗G11 +E12,αC21E12,αC21)907

− 2× (E12,αU21E12,α∗G21 +E12,αC22E21,αC11)908

+ (E21,αU11E12,α∗G22 +E21,αC12E21,αC12)
]}
,

(35)

909

910

To get the final error bar on power spectra, we should911

accurately model input covariance matrices on visibil-912

ities and propagate them into output covariance ma-913

trix on bandpowers. Generally, we assume that the914

input covariance matrices can be decomposed as C ≡915

Csignal +Cnoise.916

Assuming the distributions of the real and imaginary917

parts of noise in visibilities are independently and iden-918

tically distributed (IID) at the same frequency and are919

uncorrelated between different frequency channels, our920

expressions simplify considerably. With these assump-921

tions, C11
noise and C22

noise are diagonal and C12
noise, U11

noise,922

U22
noise, U12

noise, G11
noise, G22

noise and G12
noise are all zero.923

Analogous to Equation (29), one can estimate the di-924

agonal terms of C11
noise and C22

noise using the amplitudes925

of auto-correlation visibilities. For a baseline {p, q} com-926

posed by two antennas p and q, its Cnoise is927

C
{p,q},{p,q}
noise,ii (t) ≡ 〈Vnoise({p, q}, νi, t)V ∗noise({p, q}, νi, t)〉928

≈
∣∣∣∣V ({p, p}, νi, t)V ({q, q}, νi, t)

NnightsB∆t

∣∣∣∣ ,
(36)

929

930

where B∆t is the product of the channel bandwidth and931

the integration time, and Nnights is the total number of932

nights of data analyzed from a drift scan telescope.933
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Inserting only Cnoise for C in Equations (34) and (35),934

we have another estimate on the noise power variance935

as936

var
[
Re(P̂α)

]
= var

[
Im(P̂α)

]
937

=
1

2

{
tr
[
E12,αC22

noiseE
21,αC11

noise

]}
938

= σ2
QE-N . (37)939

940

By taking the trace on the products of matrices, we have941

in fact taken a weighted average of covariance informa-942

tion over frequencies. The quantity σQE-N should be943

equal to PN from the previous subsection, provided that944

in computing Tsys using Equation (27) we average over945

frequencies to obtain an effective Tsys in the same way.946

In this way, we see that the analytic noise power spec-947

trum essentially reduces to a special case of Equation948

(37).949

Of course, the fully covariant treatment here also im-950

plicitly includes the signal-noise cross terms discussed in951

previous sections. Including both Csignal and Cnoise in952

C gives953

var
[
Re(P̂α)

]
= var

[
Im(P̂α)

]
954

=
1

2

{
tr
[
E12,αC22

noiseE
21,αC11

noise955

+E12,αC22
signalE

21,αC11
noise956

+E12,αC22
noiseE

21,αC11
signal

]}
957

= σ2
QE-SN . (38)958

959

Since we have assumed only C11
noise and C22

noise are non-960

zero, the extra signal-noise cross terms entering into the961

expression are just their couplings with the signal coun-962

terparts. For that last contribution, we estimate Csignal963

as964

C11
signal,ij = C22

signal,ij =
1

2

[
x1,ix

∗
2,j + x2,ix

∗
1,j

]
. (39)965

966

Note that this way of modelling Csignal is Hermitian and967

noise-bias free when taking the ensemble average, but968

not positive definite. With a similar argument to PSN969

in subsection 3.3, we enact a hard non-negative prior970

on Csignal, where rows and columns containing negative971

diagonal elements are set to zero. This procedure can be972

shown to give signal-noise cross terms in Equation (38)973

that are always non-negative. However, this means that974

σQE-SN suffers from the same double-counting noise bias975

with PSN, and analogously we may construct a modified976

“σQE-SN” which is also free from the bias as977

σ̃QE-SN = σQE-SN −
(√

1/
√
π + 1− 1

)
σQE-N . (40)978

Generally speaking, the power spectrum method of979

the previous subsection is a special case of the covariance980

method of this subsection. For example, if we estimate981

PN in a way that carefully accounts for the frequency982

dependence of Tsys, we should find that when we in-983

sert it into the expression for PSN that PSN = σQE-SN.984

The covariance method has the advantage of providing985

off-diagonal covariances between different bandpowers986

in addition to variances.987

3.5. Summary988

The methods of error bar estimation introduced in this989

section can be categorized into two groups:990

• σbs, PSN, σQE-SN: these estimate error bars on the991

total emission, including both contributions from992

signal-noise cross terms and noise-noise terms.993

• Pdiff, PN, σQE-N: these estimate the error bar in994

the limit of noise-dominated (or noise level), only995

including contributions from the noise-noise terms.996

Before we jump into a quantitative discussion using the997

HERA power spectrum pipeline to compute these error998

bars in the next section, it is important to stress that999

there are other methods of error estimation that we do1000

not cover in this paper. For example, LOFAR has used1001

the Stokes V parameter as an estimator of noise level1002

(Patil et al. 2017; Gehlot et al. 2019; Mertens et al. 2020)1003

since the astrophysical sky is expected to exhibit only1004

extremely weak circular polarization. However, reliably1005

estimating Stokes V power requires more accurate po-1006

larization calibration solutions than that are currently1007

available for HERA (Kohn et al. 2019). Since one of our1008

goals is to test our error estimation methods on HERA1009

data, we will omit discussion of Stokes V techniques in1010

this paper.1011

4. TESTS1012

In this section, we quantitatively examine the error1013

estimation methods introduced in Section 3. We apply1014

them to 21 cm delay power spectra estimated from both1015

simulated data and HERA Phase I data. We directly1016

compare the relative amplitudes of the error bars pre-1017

dicted by each method, delay mode by delay mode. We1018

also study how the error bars respond to systematics1019

and foregrounds in different regimes of delay space.1020

4.1. Simulations from a Toy Model1021

We start with simulations from a toy model. This al-1022

lows us to generate a large number of realizations, with1023

which we can numerically test the validity of our error1024

bars in the ensemble-averaged limit. Our simulated vis-1025

ibilities include only the foregrounds and noise. For the1026
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Figure 3. Error bars on single-baseline-pair power spectra at one timestamp from simulations described in Section 4.1. Top: We
plot power spectra together with error bar types Pdiff, σQE-SN and σQE-N. The green shaded regime ranges from ±50 ns to ±750
ns, where the foreground power is dominant over the noise power. Bottom: We plot histograms of bandpowers from ∼ 10000
realizations at τ = 320.0 (strongly foreground-dominated regime), 640.0 (transition regime), 960.0 (noise-dominated regime) ns
respectively, along with probability distribution function (PDF) curves predicted using the σQE-SN and σQE-N values at the same
delay. At τ = 320.0, 640.0 ns, the PDF takes a Gaussian form. At τ = 960.0 ns, the PDF takes the form of a Laplacian. The
P (k‖) values used in the histograms have been subtracted from the mean value of all realizations. We can see error bars are
roughly comparable to each other in amplitudes in the noise-dominated regime. At τ = 320.0, the envelope of the histogram
matches exactly with the PDF using σQE-SN. At τ = 960.0, the envelope of the histogram matches the PDF using σQE-N, while
we see the PDF using σQE-SN is broader. Therefore, using σQE-SN will lead to a more conservative estimate of errors in this
delay regime.

foreground portion of the visibilities we draw a random1027

visibility from a frequency-frequency covariance matrix1028

of the form Cij = A exp [−(νi − νj)2/l2], where A and l1029

characterize the amplitude and correlation length of the1030

foreground signal, respectively. The adopted covariance1031

model creates smoothly varying functions in frequency1032

space, which is roughly in accordance with the relatively1033

flat spectral structure of real foregrounds. Here we sim-1034

ulate visibilities on two redundant baselines for 20 con-1035

secutive timestamps. We set A = 25 and l = 5MHz,1036

and the foreground visibilities are kept the same on each1037

baseline and over all timestamps. The noise components1038

of the visibilities on each baseline at each timestamp1039

are independently drawn from the same white Gaussian1040

distribution N (0, σ2 = 1). We produce ∼ 10000 realiza-1041

tions of such visibilities and then use hera pspec code10
1042

to estimate the delay power spectra and to compute the1043

error bars discussed previously.1044

In Figure 3, we plot power spectra together with a1045

few of the error bar types computed from one times-1046

tamp of data from the simulations. We compute Pdiff1047

by differencing visibilities between the one timestamp1048

and the next. We use Equation (37) and (38) to cal-1049

culate error bars of the “covariance method”, while we1050

evaluate Cnoise using the exact covariance matrix from1051

which noise visibilities are drawn, since we did not sim-1052

ulate visibilities on auto-correlation baselines. In the1053

top panel of Figure 3, the green shaded regime (which1054

10 https://github.com/HERA-Team/hera pspec

https://github.com/HERA-Team/hera_pspec
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Figure 4. Error bars on time-averaged power spectra over 20 timestamps from simulations in Section 4.1. The figure follows
similar conventions to Figure 3, except Top: σbs is added; Bottom: All PDFs take the forms of Gaussian and the ones specified
by σ̃QE-SN are appended. We observe good agreement between σbs and σQE-SN in the foreground-dominated regime, and the
consistency of all types of labeled error bars in the noise-dominated regime. After the incoherent average, we see histograms at
all delays become Gaussian. Additionally, σ̃QE-SN is clearly different from σQE-SN where the signal is less dominant. Especially
at τ = 960.0 ns, the PDF using σ̃QE-SN is closer to the exact noise-dominated version using σQE-N.

ranges from ±50 ns to ±750 ns) is where the foreground1055

power is dominant over the noise power. We see that1056

Pdiff and σQE-N are insensitive to the foreground power1057

in this regime, and when moving to higher delays, the1058

noise levels characterized by Pdiff, σQE-N, and σQE-SN are1059

very close to one another. Compared to the other two,1060

Pdiff shows much more scatter from delay to delay since1061

it is a more empirical estimation of noise based on ex-1062

amining what amounts to noise realizations. Notice also1063

that as expected by construction, the σQE-SN curve al-1064

ways lies above σQE-N, due to the fact we enforce a zero1065

clipping on the signal-noise cross term.1066

In the bottom panel of Figure 3, we plot histograms1067

of power spectra at three delays (τ = 320.0, 640.0 and1068

960.0 ns) by accumulating data points from ∼ 10000 re-1069

alizations. The results here are therefore representative1070

of ensemble-averaged expectations. At each delay, we1071

also plot theoretical predictions for the probability dis-1072

tribution functions (PDFs). Precisely what form these1073

PDFs take will depend on the delay. In the low-delay1074

regime, Equation (17) shows the variation comes from1075

single powers of visibility noise, which we assume is1076

Gaussian. (Recall that we are not modelling the signal1077

as a random field, in the sense that it does not partici-1078

pate in our ensemble average.) The result is a Gaussian1079

PDF. At high delays Equation (17) shows that the power1080

spectrum is the cross-multiplication of two independent1081

realization of noise. The resulting PDF is a Laplacian.1082

Both of these distributions take one free parameter (the1083

standard deviation of power) and we show predictions1084

where this standard deviation is specified by σQE-SN and1085

σQE-N. At τ = 320.0 and 640.0 ns, we plot Gaussian ref-1086

erence PDFs. At τ = 960.0 ns, we plot a Laplacian1087

reference PDF. We see at τ = 320.0 ns, where fore-1088

ground power is overwhelmingly dominant, the shape of1089

the histogram is indeed Gaussian-like, and its envelope1090

matches the PDF curves using σQE-SN. At τ = 960.01091

where noise is dominant, the shape of the histogram is1092

indeed Laplacian-like, and its envelope matches the PDF1093

curves using σQE-N (since σQE-N does not suffer from1094
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the conservatism of σQE-SN discussed in Section 3.3).1095

With τ = 640.0 ns we have a transition case between1096

the two extremes. The distribution of power spectra1097

will be skewed since neither the signal nor the noise1098

dominates in this occasion (for a mathematical proof of1099

the skewness see Appendix F). The histogram does not1100

match the PDF predicted by either standard deviation,1101

but note from the widths of the PDFs that an error bar1102

given by σQE-SN is a conservative error, as we designed1103

it to be.1104

In Figure 4, we present the same types of error bars1105

plus a bootstrapped one on power spectra which were1106

formed by incoherently averaging over 20 timestamps.1107

We see in the green regime that σbs agrees with σQE-SN.1108

All the different kinds of error bars agree well with each1109

other in the noise dominated regime, and with the ex-1110

tra time averaging step (compared to Figure 3) Pdiff ex-1111

hibits less scatter. Again, we plot histograms of the1112

averaged power spectra from Monte-Carlo simulations1113

against Gaussian PDF curves at τ = 320.0, 640.0 and1114

960.0 ns. One feature to note from the histogram is that1115

each distribution has become nearly Gaussian. This is1116

simply due to the Central Limit Theorem as power spec-1117

tra are averaged together incoherently. In addition to1118

σQE-SN and σQE-N, we also plot the PDFs using σ̃QE-SN1119

which eliminates the double-counting bias in σQE-SN. It1120

is as expected that the PDF using σ̃QE-SN is more close1121

to the one using σQE-N at the noise-dominated delay1122

mode.1123

4.2. Application to HERA Phase I Data1124

The HERA Phase I data used for analysis in this pa-1125

per consists of 18 observing nights taken in the Karoo1126

Desert, South Africa from December 10th to 28th, 2017.1127

The HERA array consisted of ∼ 40 functional anten-1128

nas during observations, which were taken across a 1001129

to 200 MHz band comprised of 1024 channels and dual1130

polarization “X” and “Y” feeds. [See Table 1 of Kern1131

et al. (2020b) for more details on the array and corre-1132

lator specifications during the observations.] The data1133

used in this work were first preprocessed with the HERA1134

analysis pipeline (internally called H1C IDR2.211). This1135

includes automated metric evaluation and data flag-1136

ging for faulty antennas and radio frequency interference1137

(RFI). In addition, the data are redundantly calibrated1138

(Dillon et al. 2020), absolutely calibrated (Kern et al.1139

2020b), binned and averaged across observing nights,1140

in-painted over RFI gaps in frequency and then treated1141

for known instrumental systematics (Kern et al. 2020a).1142

11 http://reionization.org/manual uploads/HERA069 IDR2.
2 Memo v3.html

We pick a slice of HERA Phase I visibilities taken from1143

a 14.6-m redundant baseline group during an LST range1144

of 5.75 to 6.10 hours. The visibilities in each timestamp1145

are integrated over ∼ 10 seconds. We select visibilities1146

falling within a 150.3 to 167.8 MHz band to compute1147

power spectra. We use pseudo-Stokes I visibilities VpI,1148

which are constructed by combining the visibilities from1149

a cross correlation of two X feeds (“XX”) and a cross-1150

correlation two Y feeds (“YY”) as follows:1151

VpI =
1

2
(VXX + VYY) . (41)1152

In forming the delay power spectra we cross correlate1153

visibilities from different baselines (e.g., b1-b2, b1-b3, b2-1154

b3, etc.) and between odd and even timestamps (e.g.,1155

t1-t2, t3-t4, t5-t6, etc.) to form delay power spectra. In1156

this way, we obtain power spectra on 253 baseline-pairs1157

at 30 timestamps.1158

We show the power spectra from one baseline-pair1159

at one timestamp in Figure 5, together with error bar1160

types Pdiff, σQE-SN, σQE-N, PSN, and PN. The Pdiff errors1161

are computed from time-differenced visibilities, e.g., for1162

power spectra at the cross timestamp t1 − t2 we form1163

Vdiff ∝ V (t2) − V (t1) and then we cross multiply Vdiff1164

from two different baselines to obtain the correspond-1165

ing Pdiff for that baseline pair. We calculate σQE-SN1166

and σQE-N using Equations (38) and (37) with Csignal1167

and Cnoise specified by Equation (39) and (36). Equa-1168

tions (30) and (27) give the expressions for PSN and PN.1169

See hera pspec for detailed implementation.1170

In the top panel of Figure 5, we see all error bars1171

agree well with each other in the noise-dominated regime1172

(the red curve for PN is almost exactly underneath the1173

brown curve for σQE-N, making the former difficult to1174

see; the same is true for the teal curve for PSN versus the1175

bright green curve for σQE-SN). The green shaded regime1176

ranging from ±20 ns to ±200 ns is where foregrounds1177

are expected to dominate. Here we see that Pdiff also1178

responds to the foreground power, similar to PSN and1179

σQE-SN. This tells us that the time-differenced visibil-1180

ities contain non-negligible foreground residuals, which1181

is not surprising since the sky is expected to evolve non-1182

negligibly over the ∼ 10 seconds of difference between1183

our time samples.1184

In Section 3, we argued that the “covariance method”1185

and the “power spectrum method” should be equivalent1186

to each other. In the middle and bottom panels of Fig-1187

ure 5, we compute the relative difference in magnitudes1188

between error bars, setting σQE-SN and σQE-N as the1189

benchmarks respectively. We see that PSN differs from1190

σQE-SN and PN from σQE-N by less than 1%, so they1191

are essentially equivalent in our pipeline. On the other1192

hand, Pdiff can differ from σQE-N at more than the 10%-1193

http://reionization.org/manual_uploads/HERA069_IDR2.2_Memo_v3.html
http://reionization.org/manual_uploads/HERA069_IDR2.2_Memo_v3.html
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Figure 5. Error bars on single-baseline-pair power spectra at one timestamp from HERA Phase I data. The visibilities are
selected from a band spanning 150.3 to 167.8 MHz. Top: Power spectra with error bars. The green shaded regime ranging from
±20 ns to ±200 ns is expected to be foreground dominated. Middle: Absolute relative difference between selected error bars
with σQE-N. Bottom: Absolute relative difference between selected error bars with σQE-SN. We see numerically that PSN differs
from σQE-SN by less than 1% and that the same is true for PN and σQE-N.

level due to the fact that it is highly scattered. Note1194

that σQE-SN and PSN are also scattered at some delays,1195

whereas they are equal to σQE-N and PN at other delays.1196

This is due to our imposition of a non-negative prior on1197

the signal-noise cross term.1198

In Figure 6, we show the power spectra with error bars1199

on the same baseline-pair as Figure 5, but with the fur-1200

ther step of incoherently averaging over 30 time samples.1201

We still see that all error bars (with bootstrap errors σbs1202

added) agree well in the noise-dominated regime. At low1203

delays, σbs peaks at an even higher value than σQE-SN.1204

This is because the sky is not unchanged over different1205

timestamps, so the bootstrapped error bars over time1206

samples are inflated. After incoherently averaging, we1207

still see PSN differing from σQE-SN and PN differing from1208

σQE-N by less than 1%. On the other hand, Pdiff and σbs1209

differ from σQE-N at roughly the 10% level in the noise-1210

dominated regime. We also see that in the limit of noise1211

domination, σQE-SN has a relative bias over σQE-SN by1212

about 30%. Therefore, using σQE-SN or PSN leads to1213

a conservative estimate of one’s errors, as we expected.1214

For comparing, we also plot results of σ̃QE-SN, which1215

eliminates the double-counting noise bias in σQE-SN.1216

The relative difference between σ̃QE-SN and σQE-N is re-1217
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Figure 6. Error bars on single-baseline-pair power spectra incoherently averaged over 30 time samples from the same slice of
HERA Phase I data as Figure 5. Our plotting conventions also follow those of Figure 5 for other conventions. We add results
from σ̃QE-SN in each panel. In the center panel we see the relative difference between σ̃QE-SN and σQE-N drops remarkably from
∼ 30% to a few percent compared to the σQE-SN, demonstrating the effectiveness of our noise-double-counting bias removal.
On the other hand, in the bottom panel we see that going from σQE-SN to σ̃QE-SN results in significant changes only at the
noise-dominated delays, and thus there one can always elect to use σ̃QE-SN even in foreground-dominated regimes.

duced to a few percents in the noise-dominated regime.1218

While σ̃QE-SN is not significantly modified from σQE-SN1219

in the foreground-dominated regime. Thus if we want1220

a compromise on reflecting the properties of the signal-1221

noise cross term while not introducing noise bias, σ̃QE-SN1222

might be our choice.1223

What we have established so far is the relative agree-1224

ment (or lack thereof) between different types of error1225

bars in different regimes. However, we have not yet es-1226

tablished the absolute validity of these error bars on real1227

data (i.e., we have not ruled out the possibility that they1228

are all incorrect in the same way). For simulated power1229

spectra we were able to compare the Monte-Carlo his-1230

tograms with the PDF curves predicted from the error1231

bars. The good match between the two gave us confi-1232

dence in applying our error estimation methods. Might1233

we perform similar analyses for power spectra from real1234

data? Unfortunately, in real observations we only have1235

one realization of the sky so that we cannot reach en-1236

semble average limit by accumulating data points from1237

a large number of realizations. Also, unlike simulated1238

data with understood statistics, real data will contain1239
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Figure 7. We plot the histograms of incoherently averaged power spectra over certain timestamps from pure noise simulations.
The histogram in each column contains ∼ 10000 data points. We compute σQE-N and refer to Equation (G33) to evaluate the
“Sum of Laplacians” PDF. Data points have been subtracted from the mean over all realizations. We also plot the equivalent
Gaussian PDF with the same variance as the “Sum of Laplacians” PDF. The green arrows point to the dotted vertical lines
representing “3σ” and “5σ”, where σ is the square root of the variance of the predicted PDF. We see the envelopes of the
histograms match the PDFs predicted using (G33) very well. As a check, the fractions of outliers beyond 3σ in each histogram
are (1.27%, 0.57%, 0.25%), while the corresponding values from the predicted PDFs are (1.34%, 0.58%, 0.22%)—a very close
agreement. And with more time samples to be incoherently averaged, the shape of the histogram becomes increasingly Gaussian,
which is a consequence of the central-limit theorem. As expected, we also see the distribution get narrower with more samples
averaged together.

systematics that make their statistics more complicated1240

and difficult to understand (although this may change1241

as the field of 21 cm cosmology continues to mature).1242

For now, we may partially achieve our goal by checking1243

the distributions of noise-like modes in our power spec-1244

tra of real data. The noise-like modes refer to power1245

spectra at higher delays where noise power is thought to1246

be dominant and systematics are negligible. As we dis-1247

cussed in Section 3, we expect the noise visibilities to be1248

Gaussian-distributed. This makes it possible to analyt-1249

ically compute the resultant statistics of power spectra.1250

In Appendix G, we derive the mathematical form of the1251

PDF of incoherently averaged noise-dominated power1252

spectra. The final result, Equation (G33), shows that1253

the correct PDF is a weighted sum of a series of Lapla-1254

cian distributions. As a numeric test of the derivation,1255

we produce Monte-Carlo histograms of incoherently av-1256

eraged power spectra from pure Gaussian noise visibil-1257

ities with an increasing number of averaged samples in1258

Figure 7. We generate ∼ 10000 realizations of power1259

spectra with multiple time samples, and evaluate the1260

power spectra at a single timestamp, as well as what it1261

would be if incoherently averaged over 5 or 15 times-1262

tamps. For realizations at each time sample, we can1263

calculate the error bar σQE-N of the power spectra and1264

substitute them into Equation (G33). It is clear that the1265

predicted PDF matches the envelope of the histograms1266

and that the shape of the histograms of averaged power1267

spectra become increasingly Gaussian when averaging1268

is over more timestamps. This is again a result of the1269

Central Limit Theorem.1270

Confronting our results with real data, we use the1271

power spectra from the same HERA Phase I data set1272

as Figures 5 and 6 to generate the histograms. To ac-1273

cumulate sufficient data points for a histogram, we view1274

all noise-like modes in power spectra over different re-1275

dundant baseline-pairs as independent realizations. And1276

we carry out the incoherent average over the time axis.1277

Because the noise level at different baseline pairs may1278

differ, all power spectra are first normalized by being1279

divided over their corresponding σQE-N and then sub-1280

tracted from the mean of all data points. After the1281

normalization, we have a uniform error bar σQE-N for1282

all data points at each time sample. We then make his-1283

tograms and compare their envelopes with the PDF of1284

“Sum of Laplacians” predicted using Equation (G33).1285

Before we jump to the results, we first take a look1286

at the data set which includes RFI gap inpainting but1287

without the removal of systematics. For histograms1288

drawn in Figure 8, we evaluate the distributions of power1289

spectra at delays larger than 2000 ns and at delays be-1290

tween 500 and 1500 ns, respectively. In the former case,1291

we see the shape of histograms are perfectly consistent1292

with the predicted PDF, and the distributions become1293

more Gaussian and narrower with increasing number1294

of averaged samples, similar to what we saw in Fig-1295
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Figure 8. Histograms of power spectra at noise-like modes from the same HERA Phase I data used in Figure 5 and 6, including
RFI gap inpainting, but without the removal of systematics. The data points are accumulated from power spectra at the same
delays from different redundant baseline-pairs. Because their noise levels may differ, they are first normalized by dividing out
their corresponding σQE-N and then having the mean of all data points subtracted off. In this way we have a uniform σQE-N

for all points, and we use Equation (G33) to compute the “Sum of Laplacians” PDF. Refer to Figure 7 for other plotting
conventions. Top: histograms from power spectra at all delays larger than 2000 ns, where there are ∼ 27000 points in each
column. Bottom: histograms from power spectra at delays between 500 and 1500 ns, where there are ∼ 9000 points in each
column. As a check, in the top panel, the fractions of outliers beyond 3σ in each histogram are (1.49%, 0.65%, 0.40%), which are
close to the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%). In the bottom panel, the fractions of outliers
beyond 3σ in each histogram are (7.95%, 10.70%, 11.46%), which greatly exceed corresponding values from the predicted PDFs
(1.36%, 0.57%, 0.24%).

ure 7. While in the latter case, we observe the his-1296

tograms are flattened and much wider compared to the1297

predicted PDF and there exist evidently hefty wings on1298

either ends. Numerically, the fractions of outliers be-1299

yond 3σ in each histogram are (7.95%, 10.70%, 11.46%),1300

which greatly exceed corresponding values from pre-1301

dicted PDFs (1.36%, 0.57%, 0.24%). This is a remark-1302

able proof that significant systematics exist at lower de-1303

lays in inpainted only data, as we expect.1304

We produce histograms for the systematics-removed1305

data, as we used for Figures 5 and 6, in Figure 9. At1306

delays larger than 2000 ns, we still see a good match be-1307

tween the Monte-Carlo histograms with the predicted1308

PDFs. While at delays between 500 and 1500 ns, we see1309

the deviations between histograms and PDFs are highly1310

suppressed, compared to Figure 8. This is not surpris-1311

ing since we have exerted systematics removal. Though1312

there is still a little excess above PDFs in histograms1313

on far ends, this does not substantially affect the error1314

bars that one might quote on a power spectrum mea-1315

surement (which serve as a summary statistic for the1316

main bulk of the PDF rather than its wings). However,1317

such deviations are worth keeping an eye on, especially1318

when performing rigorous jackknife or null tests in an1319
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Figure 9. Histograms of power spectra at noise-like modes from inpainted and systematics-mitigated HERA Phase I data.
The power spectra used here come from exactly the same data set as Figure 5 and 6. As a check, in the top panel the
fractions of outliers beyond 3σ in each histogram are (1.48%, 0.63%, 0.39%), which are close to the corresponding values from
the predicted PDFs (1.36%, 0.57%, 0.24%). And in the bottom panel, the fractions of outliers beyond 3σ in each histogram are
(2.19%, 1.32%, 0.80%), which slightly exceed the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%), but at a
much lower level than the disagreement seen in Figure 8.

attempt to understand the systematics in one’s instru-1320

ment. As noted above, the excessive wings of the his-1321

tograms in the bottom panel of Figure 8 can serve as1322

a diagnostic tool for systematics that lead to deviations1323

from Gaussian noise-like visibilities. They may also be1324

used to investigate the related question of how instru-1325

mental systematics (e.g., Kern et al. 2019, 2020a) might1326

affect the validity of one’s error bars. There are of course1327

limitations of this analysis, but we show the systematics1328

does not effectively change the noise properties of power1329

spectra at high delays. Readers should interpret Figure1330

8 and 9 as a quality check of HERA Phase I data, which1331

shows the power spectra at high delays (> 2000 ns) and1332

at middle delays (500-1500 ns) after systematics miti-1333

gation are close to the predicted behaviors of Gaussian1334

noise visibilities. Thus σQE-N (along with other equiva-1335

lent methods) validates itself a successful tool to charac-1336

terize the noise statistics in real data. However, we will1337

still quote σ̃QE-SN as a more robust error bar on report-1338

ing EoR upper limits at those delays. One should be1339

aware that not all systematics can be cleanly corrected1340

for, which mean that in principle the statistics can be1341

much more complicated than the simple Gaussian distri-1342

bution shown here. Along this theme, we urge readers1343

to always perform consistency checks on the data, in-1344

cluding but not limited to the ones we have performed1345

here.1346

5. DISCUSSION1347

In previous sections, we have examined a number of1348

different methods for assigning error bars to a HERA1349

power spectrum. Here, we perform a comparison of the1350
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different types of error bars, highlighting the advantages1351

and disadvantages of each.1352

We first consider the error bars using the “covariance1353

method” (σQE-N and σQE-SN) to those computed using1354

the “power spectrum method” (PN and PSN).1355

• The “covariance method” error bars analytically1356

take the covariance of the input visibilities and1357

propagate them through to the output covariance1358

of the bandpowers, via general formulae given by1359

Equations (34) and (35). There are two weak-1360

nesses to this approach. First, the output errors1361

will only be as good as the modeling of the input1362

covariances. This modeling is particularly difficult1363

for foregrounds and systematics, which can have1364

statistical properties that are not entirely under-1365

stood. In this paper, we adopt a strategy where1366

we view systematics as non-random, and empiri-1367

cally estimate them from the real data. The other1368

weakness of our “covariance method” is that our1369

derivations rely on Gaussianity (Indeed, it would1370

be strange for this method to only require an input1371

covariance—a two-point function—if it were capa-1372

ble of capturing the effects of non-Gaussianity).1373

This assumption will also be violated by fore-1374

grounds and systematics as well the cosmological1375

signal (which is an effect that was modeled in Mon-1376

dal et al. 2016, 2017; Shaw et al. 2019).1377

Sidestepping these modeling restrictions on the1378

“covariance method” are the noise-dominated1379

bandpowers at high delays. In this regime, we use1380

an input covariance matrix that is Cnoise that is1381

diagonal, with the diagonal elements set by the1382

auto-correlation visibilities as Equation (36). The1383

resulting error bars we call σQE-N (see Table 3 for1384

a reminder of our notation). These error bars are1385

confirmed by tests on simulations and real data in1386

Figure 7 and Figure 9, which verify that the error1387

bars do properly account for the spread seen in1388

an ensemble of Monte Carlo simulations. Further1389

bolstering our confidence in using the “covariance1390

method” are their agreement with other error met-1391

rics at our disposal. Figures 5 and 6 show that in1392

the noise-dominated regime, the error bars using1393

the “covariance method” are in excellent agree-1394

ment with the bootstrap errors σbs, error bars us-1395

ing the ‘power spectrum method’, and the power1396

spectrum of differenced data Pdiff.1397

• The agreement between these different error es-1398

timation methods raises the question of why one1399

might favour the “covariance method” over others.1400

Consider first a comparison between σQE-N and1401

PN from the “power spectrum method”. These1402

two methods are in fact quite similar, because PN1403

is also an analytically propagated measurement of1404

error, as one can see for instance in the deriva-1405

tion of Zaldarriaga et al. (2004). The difference1406

is one of generality, whether in the inputs, the1407

intermediate steps, and the outputs. On the in-1408

put side, PN assumes uncorrelated noise between1409

visibilities whose amplitude is governed by the ra-1410

diometer equation; σQE-N can accept an arbitrary1411

input covariance (even though in our tests we take1412

it to be diagonal). During the actual propagation1413

of errors, the derivation of PN assumes that fluctu-1414

ations in uvν space are uncorrelated; σQE-N makes1415

no such approximations. Finally, on the output1416

side, the “power spectrum method” returns a sin-1417

gle error bar; the ’covariance method’ provides a1418

full bandpower covariance matrix.1419

Of course, in reality not all delay modes are noise-1420

dominated, and reliable error bars need to be placed1421

even in signal-dominated regimes (whether this sig-1422

nal comes in the form of instrument systematics, fore-1423

grounds, or—ultimately—the cosmological signal). It is1424

difficult to place rigorous error bars on bandpowers in1425

these regimes: unless one has a physical model for all the1426

systematics involved (with knowledge of their probabil-1427

ity distributions), it is an ill-defined problem to ask how1428

errors propagate. Unfortunately, the presence of unex-1429

plained (or at least not fully explained) systematics is1430

the current state of affairs in 21 cm cosmology, and truly1431

rigorous error bars will need to wait for future work on1432

the modeling of systematics.1433

Even with well-defined (if not perfectly characterized)1434

systematics, the meaning of one’s error bars is subtle.1435

For instance, foregrounds such as a continuum of unre-1436

solved point sources can be appropriately treated as a1437

random field. Given this, one’s approach might be to say1438

that the unresolved point sources contribute some effec-1439

tive power spectrum to the measurement. With such1440

a formalism, there is a fundamental limit to how well1441

these foregrounds can be characterized, since they come1442

with their own form of cosmic variance. In other words,1443

if one is trying to place constraints on foregrounds, one1444

must account for the fact that the particular realization1445

of foregrounds that we see may not be representative1446

of foregrounds in general. This sort of error is diffi-1447

cult to compute in general, as the squared nature of1448

the power spectrum means that the non-Gaussian—and1449

therefore non-trivial—four-point function of the fore-1450

grounds needs to be known.1451

A goal of characterizing the general statistical prop-1452

erties of all possible foregrounds, however, may be un-1453
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necessarily ambitious. In particular, for a cosmological1454

measurement one is not particularly concerned with the1455

behaviour of a “typical” foreground; one is primarily1456

concerned with how our particular realization of fore-1457

grounds affect our observations. As a concrete exam-1458

ple, if our Galaxy’s synchrotron emission happens to be1459

anomalously bright compared to a typical galaxy’s syn-1460

chrotron emission, it is our own brighter foregrounds1461

that we need to deal with! With such a mindset, it1462

is more appropriate to consider all foregrounds as non-1463

random components of our data. By this, we do not1464

mean that the foregrounds need to be spatially or spec-1465

trally constant; rather, we mean that in hypothetical1466

random draws for taking ensemble averages, the cosmo-1467

logical signal and the instrumental noise change with1468

each new realization, but the foregrounds remain the1469

same. If the foregrounds are not formally random, our1470

error bars are the result of instrumental noise (and in1471

principle cosmic variance of the cosmological signal, al-1472

though this contribution is small for current upper lim-1473

its).1474

It is important to stress, however, that even if our er-1475

ror bars are due to the randomness of instrumental noise,1476

the resulting error bars are not simply what one obtains1477

from imagining a noise-only measurement and propa-1478

gating the noise fluctuations through to a power spec-1479

trum. This is because the power spectrum is a squared1480

statistic. Thus, in the squaring of a measurement that1481

contains both noise and a (non-random) signal, there1482

are signal-noise cross-terms to contend with. These1483

terms are zero in expectation, but do not have non-1484

zero variance. This means that knowledge of the signal1485

(whether from systematics or foregrounds) is needed to1486

correctly account for instrumental noise errors in non-1487

noise-dominated regimes.1488

• In short, even if we lower our ambitions and forgo1489

incorporating knowledge about signal statistics1490

into our error calculations, understanding the sig-1491

nal itself is necessary for computing noise-sourced1492

error bars. This requirement is where noise-only1493

computations like PN and σQE-N fall short.1494

• This shortcoming is remedied by generalized ver-1495

sions of PN and σQE-N, which we dub PSN and1496

σQE-SN. These are given by Equations (30) and1497

(38). The key idea is that in signal dominated1498

regimes, the measured data itself can be a good1499

approximation to the signal. Thus, we may rein-1500

sert the data in an appropriate way to capture1501

signal terms in our general expressions. Figures 31502

and 4 show that these error bars work well in both1503

signal-dominated and noise-dominated regimes.1504

• Although we treat foregrounds and systematics1505

as a single signal term that is directly estimated1506

from measured data in this paper, we note that for1507

future high-sensitivity detections, more elaborate1508

modeling of both are needed. Of course, there is1509

also the possibility of unknown systematic effects,1510

which our formalism does not account for.1511

• However Moreover, two cautionary warnings are in1512

order when applying Equations (30) and (38). The1513

first is that because the measured data are now1514

part of the error bars themselves, it can be danger-1515

ous to use these error bars to inform data weight-1516

ings for downstream averages in one’s pipeline1517

(e.g., in further incoherent time averaging of power1518

spectra or in incoherent averaging of power spectra1519

from different baselines). If the data weightings1520

are coupled to the data themselves, our so-called1521

quadratic estimators are no longer quadratic. As1522

shown in Cheng et al. (2018), a blind application1523

of the usual methods for normalizing quadratic es-1524

timators leads to power spectrum estimates that1525

are biased low (“signal loss”). For this reason,1526

while PSN and σQE-SN are fine ways to compute er-1527

ror bars, we recommend that any error-motivated1528

data weightings be based on PN and σQE-N in-1529

stead.1530

• The second warning is that there almost certainly1531

exist regimes that are neither signal- nor noise-1532

dominated, where signal and noise are compara-1533

ble in magnitude. Here, it becomes necessary to1534

contend with the fact that a noisy measurement1535

of the signal can be unphysically negative. Said1536

differently, if our estimate of the signal itself con-1537

tains noise, we are in effect double counting the1538

noise in our error computations. One approach is1539

to enact a hard prior on the positivity of the sig-1540

nal. This is what was done in all computations of1541

PSN and σQE-SN in this paper. However, Figures 31542

and 4 show that this has the effect of inflating the1543

error bars. Given that this is a conservative bias1544

on the errors, this may or may not be appropriate1545

depending on one’s application.1546

• A slightly more accurate approach is to assume1547

that instrumental noise is Gaussian distributed1548

and to quantitatively predict and correct the noise1549

bias in the errors. Implementing this correction1550

gives P̃SN and σ̃QE-SN, which are given by Equa-1551

tions (32) and (40) respectively. Figures 3 and 41552

show that this corrects the bias and gives error1553

bars that are no longer overly conservative. How-1554

ever, because this correction is designed to give1555
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Error Bar Type Pros Cons

Bootstrap (σbs) Easy to implement with minimal a priori
assumptions; can be useful as a reference
statistics in diagnosis of systematics

Not strictly applicable in the presence of
non-independent and non-statistically sta-
tionary data samples

Power spectra from differ-
enced visibilities (Pdiff)

Data product close to raw data Provides noise realizations rather than di-
rect error bars, resulting in considerable
scatter

Power spectrum method
(PN and PSN)

Accurately captures variances/error bars
in noise-dominated regimes (both PN and
PSN) and signal-dominated regimes (PSN)

Does not contain covariance information
between different bandpowers; PSN re-
quires non-negativity prior on the signal,
which slightly inflates errors; downstream
data weightings using PSN at risk of signal
loss

Covariance method (σQE-N

and σQE-SN)
Same accuracy as PN and PSN for variance
information and additionally provides full
covariance information

Derivation assumes data is Gaussian;
σQE-SN requires non-negativity prior on
the signal, which slightly inflates errors;
downstream data weightings using σQE-SN

at risk of signal loss

Modified covariance method
(σ̃QE-SN) and modified
power spectrum method
P̃SN

Eliminates conservative double counting of
noise in noisy estimates of the signal

Occasional error predictions that are
slightly smaller than instrumental noise ex-
pectations from σQE-N and PN

Table 4. A summary of the advantages and disadvantages of different error estimation methods in 21 cm power spectrum
estimation.

unbiased errors in expectation, it will occasionally1556

give error bars that are slightly smaller than the1557

error predicted by noise-only estimators such as1558

PN. In practice, however, we find that this is a1559

reasonably rare occurence.1560

With the aforementioned difficulties with error esti-1561

mation in the presence of poorly characterized signals,1562

one may be tempted to make use of more empirically1563

based error estimates. These estimates also come with1564

their strengths and weaknesses:1565

• As discussed in Section 3.2, Pdiff from frequency-1566

differenced data suffers from a bias at low delays.1567

Figure 1 shows that even at reasonably high de-1568

lays ∼ 1500 ns, the bias can be significant. Thus,1569

while Pdiff from frequency-differenced data is a1570

useful asymptotic check at high delays, it is not1571

a robust estimator of our errors. Implementing1572

Pdiff using time-differenced data does not have the1573

delay-dependent bias, as one can also see in Figure1574

1. However, care must be taken to ensure that the1575

time differencing is small enough to suppress any1576

sky signal that is coherent between adjacent time1577

samples (Dillon et al. 2015). In addition, with a1578

differencing scheme one is ultimately constructing1579

noise realizations, not noise statistics. The result-1580

ing error bars thus show considerable scatter. In1581

that sense, the analytically propagated error bars1582

vary in a more physically plausible—smoother—1583

way with time and frequency.1584

• The problem of a noisy error bar estimate per-1585

sists with σbs. However, bootstrapping has several1586

appealing features that makes it a crucial check1587

on the analytically propagated error bars. First,1588

no assumptions are made regarding Gaussianity of1589

the input data. Thus, the fact that our σbs agree1590

with our analytically propagated errors—which as-1591

sumed the input noise in the visibilities—is an es-1592

sential validation of our assumptions. In a similar1593

way, σbs may potentially capture increased vari-1594

ance due to systematics since it is a measure of1595

uncertainties of total sky emission. However, the1596

bootstrap method is known to suffer from some1597

important limitations. For example, as noted in1598

Appendix B, if systematics are correlated between1599

samples, the bootstrap method tends to underes-1600

timate errors. Also, bootstrapped error bars will1601

be inflated from non-stationary effects such as sky1602

brightness changes and non-redundancies between1603

nominally identical baselines. Precisely how these1604

non-stationary effects should be folded into one’s1605

error estimation is reserved for future work, but1606

the correct approach will certainly be more so-1607

phisticated than a simple inflation of errors. That1608

said, this increase in bootstrap errors due to non-1609
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stationarity can serve as a useful diagnostic for1610

further examination of unexpected systematics.1611

In Table 4 we summarize the discussion in this section1612

with an succinct listing of the pros and cons of each error1613

estimation method.1614

6. CONCLUSIONS1615

In this paper, we have systematically studied a va-1616

riety of error bar methodologies in 21 cm power spec-1617

trum estimation. We have synthesized some of the com-1618

mon techniques in the literature, outlining their relative1619

strengths and weaknesses in quantifying noise levels and1620

in accounting for residual systematics. Specifically, we1621

considered a variety of types of error estimators, includ-1622

ing1623

• Power spectrum methods. This includes the stan-1624

dard PN estimator for the noise power spectrum1625

found in the literature (Zaldarriaga et al. 2004;1626

Parsons et al. 2012a; Pober et al. 2013; Cheng1627

et al. 2018; Kern et al. 2020b) and the PSN es-1628

timator that involves cross products with signal1629

power spectrum PS, as detailed in Kolopanis et al.1630

(2019). Here we set PS to be the real values of ex-1631

perimentally observed power spectrum, which is1632

a good approximation when the signal dominates1633

the noise. Our implementation of PSN leads to1634

a double-counting bias compared to PN which is1635

considerable in noise-dominated regimes, and we1636

show how a modified form P̃SN can eliminate this1637

bias.1638

• Covariance methods. This consists of propagat-1639

ing a data covariance matrix between frequencies1640

per timestamp and per baseline-pair through the1641

quadratic estimator (QE) formalism to the band-1642

power covariance matrix (Liu & Tegmark 2011;1643

Dillon et al. 2014; Liu et al. 2014a,b), includ-1644

ing error metrics described here: σQE-N for noise-1645

dominated spectra and σQE-SN that include signal-1646

noise terms. These have identical variance pre-1647

dictions as PN and PSN by construction but also1648

provide bandpower covariance information.1649

• Other methods. Other methods studied in this1650

work includes the bootstrapping method that can1651

lead to misreported errors when not handled care-1652

fully (Cheng et al. 2018), as well as the method1653

of using differenced visibilities as noise realiza-1654

tions propagated through a power spectrum esti-1655

mator. We show that differencing in frequency1656

is ill-advised for this approach. Differencing in1657

time avoids some problems, but either differencing1658

scheme generates error estimates that are rather1659

scattered. However, we stress the importance of1660

these more empirically based methods are useful1661

cross-checks (e.g., in the manner performed in this1662

paper) that can also be helpful diagnostics for sys-1663

tematics (e.g., Kolopanis et al. 2019).1664

Using simulations and real HERA Phase I data, we1665

show that these methods are generally in agreement1666

with each other, demonstrating their robustness and1667

their applicability to future delay power spectrum mea-1668

surements from HERA. Importantly, we show that for1669

bandpowers that are not completely dominated by noise,1670

one needs to go beyond the standard thermal noise esti-1671

mates and account for signal-noise cross terms in order1672

to fully describe the uncertainty on the band power. In1673

a series of Appendices, we also examine sources of skew-1674

ness in probability distributions of measured power spec-1675

trum bandpowers (Appendices A and F), derive exact1676

expressions for the probability distributions of incoher-1677

ently summed delay power spectra (Appendix G), and1678

examine whether common baselines in the cross multi-1679

plication of multiple baseline pairs affects assumptions1680

about error independence (Appendix B). The insights1681

gained in this paper regarding error estimation are appli-1682

cable in 21 cm cosmology beyond HERA. They provide1683

a foundation upon which to develop rigorous error esti-1684

mation methods which will prove to be key in unlocking1685

the potential of the 21 cm line as a powerful probe of1686

our high redshift universe.1687
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APPENDIX1726

A. SKEWNESS IN POWER SPECTRA ESTIMATED FROM MULTIPLE IDENTICAL BASELINES1727

In this Appendix, we consider a source of skewness in probability distributions of delay spectra. In particular, we1728

consider the noise properties of power spectra formed from a set of identical (“redundant”) baselines. We show that1729

even if each baseline is measuring Gaussian random noise with mean zero, the resulting power spectra will exhibit some1730

skewness. We emphasize, however, that this skewness vanishes if one additionally splits the data into two distinct set1731

of time samples (e.g., even and odd time stamps) and estimates power spectra that are not only cross-baselines but1732

also cross-times.1733
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As a concrete example, suppose that on the ith copy of a particular baseline we measure x̃i ≡ ci + idi after taking1734

the delay transform, where ci and di are independently Gaussian distributed random variables with variance σ2/2.1735

This represents the behavior of x̃i at noise-dominated delays. If only two identical baselines were available, cross1736

multiplying them to obtain a power spectrum would yield1737

x̃1x̃
∗
2 = (c1 + id1)(c2 − id2) = (c1c2 + d1d2) + i(d1c2 − c1d2). (A1)1738

Consider the real part. Since c1 and c2 are independent random variables, c1c2 is a symmetric distribution about zero1739

(and in fact is given by K0, the zeroth modified Bessel function of the second kind). The same reasoning holds for the1740

d1d2 term. Since {ci} and {di} are independent, it follows that c1c2 and d1d2 are also independent. The result is that1741

the probability distribution for c1c2 + d1d2 is given by the convolution of the distributions for the individual terms.1742

With the two contributing distributions both symmetric about zero, their convolution inherits this property, and is in1743

fact given by the Laplacian distribution discussed in Section 4.1.1744

The situation is different when we have more than two baselines. Taking all possible pairwise combinations (excluding1745

the multiplication of a baseline with itself to eliminate noise bias), we obtain1746

Re[x̃1x̃
∗
2 + x̃1x̃

∗
3 + x̃2x̃

∗
3] = (c1c2 + c1c3 + c2c3) + (d1d2 + d1d3 + d2d3), (A2)1747

where we have grouped our result into two terms that can be considered separately because {ci} and {di} are inde-1748

pendent. Consider the first term. It has zero mean:1749

〈c1c2 + c1c3 + c2c3〉 = 〈c1〉〈c2〉+ 〈c1〉〈c3〉+ 〈c2〉〈c3〉 = 0 (A3)1750

because the different {ci} are independent. However, the resulting distribution has a skewness to it, which can be seen1751

by the fact that the third moment is non-zero:1752

〈(c1c2 + c1c3 + c2c3)3〉= 〈c32c31 + c33c
3
1 + 3c2c

2
3c

3
1 + 3c22c3c

3
1 + 3c2c

3
3c

2
1 + 6c22c

2
3c

2
1 + 3c32c3c

2
1 + 3c22c

3
3c1 + 3c32c

2
3c1 + c32c

3
3〉1753

= 6〈c22c23c21〉 = 6〈c22〉〈c23〉〈c21〉 6= 0 (A4)1754

[Of course, in principle we should be taking the cube of Equation (A2) in its entirety, not just the first term. However,1755

the independence of {ci} and {di} means we reach the same conclusion.] The non-zero third moment shown here1756

arises because the three terms that make up the sum are correlated as a triplet, even though each pair has no average1757

covariance. For instance, the covariance between c1c2 and c1c3 is1758

〈c1c2c1c3〉 − 〈c1c2〉〈c1c3〉 = 〈c21〉〈c2〉〈c3〉 = 0. (A5)1759

This implies that even though c1c2, c1c3, and c2c3 are not independent, for the purposes of computing the variance of1760

the final result, one obtains the same result even if one pretends that these contributions are independent. This result1761

is explored in more detail in the first half of Appendix B1762

To summarize, the different moments of the distribution provide different insights into power spectrum estimation1763

with different baseline pair combinations. The mean of the distribution is zero, indicating that there is no bias (as one1764

might expect for cross-correlation spectra). The variance turns out to be the same expression as if we had completely1765

independent baseline pairs, so the noise averages down with the number of baseline pairs as one might naively have1766

expected them to (without worrying about correlations). However, the skewness is non-zero. This complicates the1767

interpretation of null tests that implicitly assume that the probability distributions of noise-dominated delays are1768

symmetric.1769

Importantly, these considerations do not apply when we consider the imaginary part, which is given by1770

Im[x̃1x̃
∗
2 + x̃1x̃

∗
3 + x̃2x̃

∗
3] = c2d1 + c3d1 − c1d2 + c3d2 − c1d3 − c2d3. (A6)1771

This has a third moment given by 〈(c2d1 + c3d1 − c1d2 + c3d2 − c1d3 − c2d3)3〉. To get terms that are non-zero1772

under the expectation value, we require terms that contain squares of the random variables when we multiply out the1773

polynomial. For example, the first term c2d1 must be multiplied onto c2d3, because there is no other c2 term in the1774

expression to pair to. This gives us c22d1d3. However, we now need to multiply this onto d1d3, or we end up with a1775

stray d1 and a stray d3. But none of the terms are the product of two {di}, so no matter what terms we pair this up1776
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with, it will average to zero. This logic applies to any of the terms, so the distribution of the imaginary part will not1777

be skewed. Because of this, statistical tests involving the imaginary part of a power spectrum estimator can be more1778

easily interpreted using symmetric distributions.1779

Our result here has implications for how one should avoid the noise bias in power spectrum measurements. Two1780

commonly used methods for doing so are to cross-multiply either different identical baselines together or different time1781

stamps together. Here we have shown that employing only one of these will incur a skewness. (While our discussion1782

above focused on cross multiplying different baselines, the same conclusions hold if we consider cross multiplying more1783

than two groups in time—after all, the indices in our mathematical expressions can simply be considered timestamp1784

indices instead of baseline indices.) However, if we perform cross-multiplications across both time and baseline axes,1785

the skewness vanishes. To see this, imagine that we split our data into odd and even time samples, labeled with1786

superscripts “o” and “e” respectively. Equation (A2) then becomes1787

Re[x̃e1x̃
o∗
2 + x̃e1x̃

o∗
3 + x̃e2x̃

o∗
3 ] = (ce1c

o
2 + ce1c

o
3 + ce2c

o
3) + (de1d

o
2 + de1d

o
3 + de2d

o
3), (A7)1788

and cubing this expression as before to compute the third moment, one finds no non-zero terms after taking the1789

ensemble average.1790

B. VARIANCE OF AVERAGED POWER SPECTRA FROM DEPENDENT BASELINE-PAIR SAMPLES1791

In this Appendix, we consider the effect of having common baselines between different baseline pairs used to form1792

power spectra. Inside a redundant baseline group consisting of Nbl different baselines, then we can construct up to1793

Nblp = 1
2Nbl(Nbl−1) different baseline pairs and we can form a power spectrum using each pair. Consider the averaged1794

power spectrum over these baseline pairs and the variance of this average. The form of the averaged power spectrum1795

is1796

P =

∑
(p,q>p) Ppq

1
2Nbl(Nbl − 1)

, (B8)1797

where the sum is over all possible (p, q) pairs of baselines. The variance of the averaged power spectrum does not1798

simply go down with N−1
blp because the data being averaged together are not fully independent of each other. For1799

example, P12 and P13 both carry information from baseline #1.1800

Let the signal be s̃ ≡ a + bi, and ñp ≡ cp + dpi and ñq ≡ cq + dqi be the noise realizations in the pth and qth1801

baselines. The signal s̃ is identical in each baseline, since we are assuming that we are combining data from identical1802

(“redundant”) baselines. The random variables cp, dp, cq, dq... are IID normal variables with variance σ2. In the1803

foreground-negligible regime, recall from Equation (17) that the average power spectrum is given by1804

P =

∑
(p,q>p) n

∗
pnq

1
2Nbl(Nbl − 1)

=

∑
(p,q>p) cpcq + dpdq
1
2Nbl(Nbl − 1)

+ i

∑
(p,q>p) cpdq − cqdp
1
2Nbl(Nbl − 1)

. (B9)1805

We notice1806

Var

 ∑
(p,q>p)

cpcq

 =

〈 ∑
(p,q>p)

cpcq
∑

(r,t>r)

crct

〉
−

〈 ∑
(p,q>p)

cpcq

〉2

=

〈 ∑
(p,q>p)

cpcq
∑

(r,t>r)

crct

〉
1807

=σ4

 ∑
(p,q>p,r,t>r)

(δprδqt + δptδqr)

 =
Nbl(Nbl − 1)

2
σ4 , (B10)1808

1809

which means that the variance in the real part of P is 4σ4

Nbl(Nbl−1) . For the imaginary part we compute1810

Var

 ∑
(p,q>p)

cpdq − cqdp

 =

〈 ∑
(p,q>p)

{cpdq − cqdp}
∑

(r,t>r)

{crdt − ctdr}

〉
−

〈 ∑
(p,q>p)

{cpdq − cqdp}

〉2

1811

=

〈 ∑
(p,q>p)

{cpdq − cqdp}
∑

(r,t>r)

{crdt − ctdr}

〉
= σ4

 ∑
(p,q>p,r,t>r)

(2δprδqt − 2δptδqr)

1812

=Nbl(Nbl − 1)σ4 , (B11)1813
1814
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so that the variance of the imaginary part of P is also 4σ4

Nbl(Nbl−1) . Since the number of baseline pairs is given by1815

Nbl(Nbl − 1)/2 and 2σ4 is the variance we would expect to get from a single baseline pair, we can see that P averages1816

down in a manner that is identical to the scenario where the baseline pairs are independent.1817

In foreground-dominant regimes, the average power spectrum goes to1818

P =

∑
(p,q>p) s

∗s+ s∗nq + n∗ps
1
2Nbl(Nbl − 1)

=

∑
(p,q>p) a

2 + b2 + a(cp + cq) + b(dp + dq)
1
2Nbl(Nbl − 1)

+ i

∑
(p,q>p) a(dq − dp) + b(cp − cq)

1
2Nbl(Nbl − 1)

.

(B12)1819

The variance in the real part is 4(a2+b2)σ2

Nbl
and the variance in the imaginary part is 4(Nbl+1)(a2+b2)σ2

3Nbl(Nbl−1) . They now1820

go down roughly as N
−1/2
blp and are larger than the variance from independent samples by factors of (Nbl − 1) and1821

(Nbl + 1)/3 respectively.1822

C. TIME-DIFFERENCED VISIBILITIES AS NOISE ESTIMATORS1823

In this Appendix, we establish the validity of using time-differenced visibilities as a way to estimate noise error bars.1824

The key idea is that if we form residuals of data vectors xp(ν, t) by subtracting data from the pth baseline in adjacent1825

time bins (t1 and t2) from each other, the result should be noise dominated. The same holds true for delay-transformed1826

visibilities, where the residual can be written as ñp(τ, t2) − ñp(τ, t1). Suppressing τ and demoting the time variable1827

to a subscript for notational brevity, we write ñp,t = cp,t + dp,ti, where cp, dp... are IID normal variables with variance1828

σ2. The power spectra constructed from such residuals are1829

Pdiff =
(ñ1,t2 − ñ1,t1)∗√

2

(ñ2,t2 − ñ2,t1)√
2

1830

=

[
(c1,t2 − c1,t1)√

2

(c2,t2 − c2,t1)√
2

+
(d1,t2 − d1,t1)√

2

(d2,t2 − d2,t1)√
2

]
1831

+

[
(c1,t2 − c1,t1)√

2

(d2,t2 − d2,t1)√
2

− (c2,t2 − c2,t1)√
2

(d1,t2 − d1,t1)√
2

]
i . (C13)1832

1833

From this, we see that1834 〈
[Re(Pdiff)]

2

〉
=

〈[
(c1,t2 − c1,t1)√

2

(c2,t2 − c2,t1)√
2

+
(d1,t2 − d1,t1)√

2

(d2,t2 − d2,t1)√
2

]2〉
= 〈c21〉〈c22〉+ 〈d2

1〉〈d2
2〉 = 2σ4.

(C14)1835

This is again the variance expected for a noise-dominated power spectrum. Therefore, what we have shown is that1836

|Re(Pdiff)| can serve as an estimator that in expectation is equal to the correct noise errors for the measured power1837

spectrum Px̃1x̃2 in noise-dominated regimes. However, since this result only holds in expectation, we expect that in1838

practice it will exhibit considerable scatter as an error estimate.1839

D. SIGNAL DEPENDENT ERROR BAR FROM POWER SPECTRUM METHOD1840

In this Appendix we derive an expression for the variance on the power spectrum in the presence of foregrounds or1841

systematics (or any “signal”). A similar derivation is presented in Kolopanis et al. (2019). Given two delay spectra1842

x̃1 = s̃+ ñ1 and x̃2 = s̃+ ñ2, the power spectra formed from x̃∗1x̃2 is1843

Px̃1x̃2
= s̃∗s̃+ s̃∗ñ2 + ñ∗1s̃+ ñ∗1ñ21844

=
[
a2 + b2 + a(c1 + c2) + b(d1 + d2) + c1c2 + d1d2

]
+ [a(d2 − d1) + b(c1 − c2) + d2c1 − d1c2] i , (D15)1845

1846

where we have written s̃ = a+ bi, ñ1 = c1 + d1i and ñ2 = c2 + d2i.1847

Consistent with the rest of the paper, we assume that a and b are not random variables, so that 〈s〉 = s. The1848

true sky power spectrum is then given by Ps̃s̃ = a2 + b2, and c1, d1, c2 and d2 in noise parts are IID random normal1849

variables. We then have1850

Var [Re(Px̃1x̃2)] = Var
[
a2 + b2 + a(c1 + c2) + b(d1 + d2) + c1c2 + d1d2

]
1851

= 2(a2 + b2)〈c21〉+ 2〈c21〉2 =
√

2Ps̃s̃PN + P 2
N =
√

2〈Re(Px̃1x̃2
)〉PN + P 2

N = P 2
SN . (D16)1852

1853

In the above we have used the relation var(c1c2 +d1d2) = 2〈c21〉2 = P 2
N, where PN is the analytic noise power spectrum.1854

We have also used Ps̃s̃ = 〈Re(Px̃1x̃2)〉. This shows that PSN is a general form for error bars in the existence of1855

foregrounds or systematics (or again, any “signal”).1856
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E. COVARIANCE METHOD1857

In this Appendix we provide more explicit derivations of the expressions quoted in Section 3.4 for the covariance1858

method of error estimation.1859

E.1. Variance1860

If P̂α is a complex number representing a power spectrum estimate of the αth bandpower, its real part and imaginary1861

part are given by 1
2 (P̂α + P̂ ∗α) and P̂α is 1

2i (P̂α − P̂
∗
α) respectively. The variance in the real part of P̂α is1862

1

4

{
(〈P̂αP̂α〉 − 〈P̂α〉〈P̂α〉) + 2(〈P̂αP̂ ∗α〉 − 〈P̂α〉〈P̂ ∗α〉) + (〈P̂ ∗αP̂ ∗α〉 − 〈P̂ ∗α〉〈P̂ ∗α〉)

}
, (E17)1863

while the variance in the imaginary part of P̂α is1864

−1

4

{
(〈P̂αP̂α〉 − 〈P̂α〉〈P̂α〉)− 2(〈P̂αP̂ ∗α〉 − 〈P̂α〉〈P̂ ∗α〉) + (〈P̂ ∗αP̂ ∗α〉 − 〈P̂ ∗α〉〈P̂ ∗α〉)

}
. (E18)1865

Recall that P̂α is defined as P̂α = x†1E
12,αx2 =

∑
ij x
∗
1,iE

12,α
ij x2,j . We define three set of matrices containing the1866

whole two-point correlation information for the complex estimator C12, U12 and G12, such that1867

C12
ij ≡ 〈x1,ix

∗
2,j〉; U12

ij ≡ 〈x1,ix2,j〉; G12
ij ≡ 〈x∗1,ix∗2,j〉 , (E19)1868

1869

Equipped with these definitions, we can generate the following equations1870

〈P̂αP̂β〉 − 〈P̂α〉〈P̂β〉 =
∑
ijkl

〈x∗1,iE
12,α
ij x2,jx

∗
1,kE

12,β
kl x2,l〉 − 〈x∗1,iE

12,α
ij x2,j〉〈x∗1,kE

12,β
kl x2,l〉1871

=
∑
ijkl

E12,α
ij E12,β

kl (〈x∗1,ix2,jx
∗
1,kx2,l〉 − 〈x∗1,ix2,j〉〈x∗1,kx2,l〉)1872

=
∑
ijkl

E12,α
ij E12,β

kl (〈x∗1,ix∗1,k〉〈x2,jx2,l〉+ 〈x∗1,ix2,l〉〈x∗1,kx2,j〉)1873

=
∑
ijkl

E12,α
ij E12,β

kl (G11
ikU

22
jl +C21

li C
21
jk )1874

=
∑
ijkl

(E12,α
ij U22

jl E
21,β∗
lk G11

ki +E12,α
ij C21

jkE
12,β
kl C21

li )1875

=tr(E12,αU22E21,β∗G11 +E12,αC21E12,βC21) , (E20)1876
1877

〈P̂αP̂ ∗β 〉 − 〈P̂α〉〈P̂ ∗β 〉 =
∑
ijkl

〈x∗1,iE
12,α
ij x2,jx1,kE

12,β∗
kl x∗2,l〉 − 〈x∗1,iE

12,α
ij x2,j〉〈x1,kE

12,β∗
kl x∗2,l〉1878

=
∑
ijkl

E12,α
ij E12,β∗

kl (〈x∗1,ix2,jx1,kx
∗
2,l〉 − 〈x∗1,ix2,j〉〈x1,kx

∗
2,l〉)1879

=
∑
ijkl

E12,α
ij E12,β∗

kl (〈x∗1,ix∗2,l〉〈x1,kx2,j〉+ 〈x∗1,ix1,k〉〈x2,jx
∗
2,l〉)1880

=
∑
ijkl

E12,α
ij E12,β∗

kl (G12
il U

12
kj +C11

kiC
22
jl )1881

=
∑
ijkl

(E12,α
ij U21

jkE
12,β∗
kl G21

li +E12,α
ij C22

jl E
21,β
lk C11

ki )1882

=tr(E12,αU21E12,β∗G21 +E12,αC22E21,βC11) , (E21)1883
1884
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and1885

〈P̂ ∗αP̂ ∗β 〉 − 〈P̂ ∗α〉〈P̂ ∗β 〉 =
∑
ijkl

〈x1,iE
12,α∗
ij x∗2,jx1,kE

12,β∗
kl x∗2,l〉 − 〈x1,iE

12,α∗
ij x∗2,j〉〈x1,kE

12,β∗
kl x∗2,l〉1886

=
∑
ijkl

E12,α∗
ij E12,β∗

kl (〈x1,ix
∗
2,jx1,kx

∗
2,l〉 − 〈x1,ix

∗
2,j〉〈x1,kx

∗
2,l〉)1887

=
∑
ijkl

E12,α∗
ij E12,β∗

kl (〈x1,ix1,k〉〈x∗2,jx∗2,l〉+ 〈x1,ix
∗
2,l〉〈x∗2,jx1,k〉)1888

=
∑
ijkl

E12,α∗
ij E12,β∗

kl (G22
jlU

11
ik +C12

il C
12
kj )1889

=
∑
ijkl

(E21,α
ji U11

ik E
12,β∗
kl G22

lj +E21,α
ji C12

il E
21,β
lk C12

kj )1890

=tr(E21,αU11E12,β∗G22 +E21,αC12E21,βC12) , (E22)1891
1892

where E12,α∗
ij = E21,α

ji . Setting α = β in these equations then allows us to evaluate Equations (E17) and (E18).1893

E.2. Covariance1894

The covariance between the real part of P̂α and the real part of P̂β is1895

1

4

{
(〈P̂αP̂β〉 − 〈P̂α〉〈P̂β〉) + (〈P̂αP̂ ∗β 〉 − 〈P̂α〉〈P̂ ∗β 〉) + (〈P̂ ∗αP̂β〉 − 〈P̂ ∗α〉〈P̂β〉) + (〈P̂ ∗αP̂ ∗β 〉 − 〈P̂ ∗α〉〈P̂ ∗β 〉)

}
, (E23)1896

and the covariance between the imaginary part of P̂α and the imaginary part of P̂β is1897

1

4

{
(〈P̂αP̂β〉 − 〈P̂α〉〈P̂β〉)− (〈P̂αP̂ ∗β 〉 − 〈P̂α〉〈P̂ ∗β 〉)− (〈P̂ ∗αP̂β〉 − 〈P̂ ∗α〉〈P̂β〉) + (〈P̂ ∗αP̂ ∗β 〉 − 〈P̂ ∗α〉〈P̂ ∗β 〉)

}
. (E24)1898

These can be evaluted in the same way as the variances above.1899

F. SKEWNESS IN DISTRIBUTIONS OF POWER SPECTRA AT INTERMEDIATE DELAYS1900

In this Appendix, we consider the probability distribution functions of power spectra where neither signals (e.g.,1901

foregrounds) or noise are dominant and both must be considered. Using the same notation as Appendix D, the power1902

spectra formed from x̃1 = s̃+ ñ1 and x̃2 = s̃+ ñ2 is1903

Px̃1x̃2 = s̃∗s̃+ s̃∗ñ2 + ñ∗1s̃+ ñ∗1ñ21904

=
[
a2 + b2 + a(c1 + c2) + b(d1 + d2) + c1c2 + d1d2

]
+ [a(d2 − d1) + b(c1 − c2) + d2c1 − d1c2] i . (F25)1905

1906

Note that a and b are constants and c1, d1, c2 and d2 are IID randomly normal variables. For the real part of Px̃1x̃2 ,1907

we have1908

〈Re(Px̃1x̃2
)〉 = a2 + b2 . (F26)1909

After subtracting from the mean, its third moment is1910 〈[
Re(Px̃1x̃2

)− (a2 + b2)
]3〉

=

〈
[a(c1 + c2) + b(d1 + d2) + c1c2 + d1d2]

3

〉
= 6〈a2c21c

2
2 + b2d2

1d
2
2〉 > 0 . (F27)1911

1912

This non-vanishing third moment implies that the probability distribution of power spectra is skewed. This skewness1913

disappears for either signal-dominated or noise-dominated cases. These results are evident in the histograms shown in1914

Figure 3.1915

G. PROBABILITY DISTRIBUTION FOR AN INCOHERENT SUM OF DELAY TRANSFORM-ESTIMATED1916

POWER SPECTRA1917

In this Appendix, we derive the probability distribution for noise in a power spectrum that has been formed by the1918

incoherent (i.e., after squaring) averaging of power spectra from individual time integrations. The resulting probability1919

distribution is used in Figures 7, 8, and 9 to validate our error bar methodology.1920
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For a noise-dominated delay power spectrum estimate, the power spectrum value u measured at one instant in time1921

is distributed as a double exponential:1922

p(x) =
1

σ
√

2
exp

(
−
√

2|u|
σ

)
, (G28)1923

where it is assumed that the power spectra are estimated by cross-correlation—thus eliminating noise bias—and where1924

σ is the standard deviation on the resulting power spectrum.1925

Now suppose we average together a number of these power spectra. Let the power spectrum value at the ith time1926

step be given by ui. The average value is then1927

z ≡
∑
i

wiui, (G29)1928

where {wi} are a set of weights. Note that the error on each xi may be different, so we define1929

pi(ui) =
1

σi
√

2
exp

(
−
√

2|ui|
σi

)
. (G30)1930

We now write down the probability distribution p+(z) for z. First we define yi ≡ wiui, such that1931

pi(yi) =
1

wiσi
√

2
exp

(
−
√

2|yi|
wiσi

)
. (G31)1932

With this notation, z =
∑
i yi, and we can write down z by using the fact that the probability distribution of a1933

sum of two random variables is the convolution of their individual distributions. By the convolution theorem, this is1934

equivalent to multiplying the Fourier transforms of the individual probability distributions p̃i(k), and thus1935

p+(z) =

∫
dk

2π
eikz

∏
i

p̃i(k) =

∫
dk

2π
eikz

∏
i

1

1 + w2
i σ

2
i k

2/2
, (G32)1936

where we have used the fact that in our case, p̃i(k) = (1 + w2
i σ

2
i k

2/2)−1.This integral can be evaluated by contour1937

integration, giving1938

p+(z) =
∑
j

e−|z|
√

2/wjσj

wjσj
√

2

∏
i 6=j

1

1− w2
i σ

2
i /w

2
jσ

2
j

. (G33)1939

This is a weighted sum of double exponential distributions, and the curves in Figures 7, 8, and 9 labeled “Sum of1940

Laplacians” are plots of this formula.1941

In closing, we note one peculiarity about this derivation—our contour integration assumed that none of the wiσi1942

values were exactly equal. In principle, this is a reasonable assumption, since for a drift scan telescope that is sky1943

noise dominated the noise power is continually changing from one time integration to the next. In practice, however,1944

if this change is happening slowly, two adjacent time integrations may have similar enough noise properties to make1945

Equation (G33) numerically problematic. If this is indeed the regime that one is in, it is advisable to instead use an1946

approximate expression by letting
√

2/wiσi ≡ κ+ εi and then Taylor expanding to leading order in εi.1947
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