

The University of Manchester Research

Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology

DOI: 10.3847/1538-4365/ac0533

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Hydrogen Epoch of Reionization Array (HERA) (2021). Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology. *The Astrophysical Journal Supplement Series*, 255(2), 26. [26]. https://doi.org/10.3847/1538-4365/ac0533

Published in:

The Astrophysical Journal Supplement Series

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

 $_{1}$ \$ Draft version May 7, 2021 Typeset using IATEX twocolumn style in AASTeX631 \$

Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	 JIANRONG TAN ^(D),^{1,2} ADRIAN LIU ^(D),² NICHOLAS S. KERN ^(D),³ ZARA ABDURASHIDOVA,⁴ JAMES E. AGUIRRE,¹ PAUL ALEXANDER,⁵ ZAKI S. ALI,⁴ YANGA BALFOUR,⁶ ADAM P. BEARDSLEY,⁷ GIANNI BERNARDI,^{8,9,6} TASHALEE S. BILLINGS,¹ JUDD D. BOWMAN,⁷ RICHARD F. BRADLEY,¹⁰ PHILIP BULL,¹¹ JACOB BURBA,¹² STEVEN CAREY,⁵ CHRISTOPHER L. CARILLI,¹³ CARINA CHENG,⁴ DAVID R. DEBOER,⁴ MATT DEXTER,⁴ ELOY DE LERA ACEDO,⁵ JOSHUA S. DILLON ^(D),⁴ JOHN ELY,⁵ AARON EWALL-WICE,⁴ NICOLAS FAGNON,⁵ RANDALL FRITZ,⁶ STEVE R. FURLANETTO,¹⁴ KINGSLEY GALE-SIDES,⁵ BRIAN GLENDENNING,¹³ DEEPTHI GORTHI,⁴ BRADLEY GREIG,¹⁵ JASPER GROBBELAAR,⁶ ZIYAAD HALDAY,⁶ BRYNA J. HAZELTON,^{16,17} JACQUELINE N. HEWITT,¹⁸ JACK HICKISH,⁴ DANIEL C. JACOBS,⁷ AUSTIN JULIUS,⁶ JOSHUA KERRIGAN,¹² PIYANAT KITTIWISIT,¹⁹ SAUL A. KOHN,¹ MATTHEW KOLOPANIS,⁷ ADAM LANMAN,¹² PAUL LA PLANTE,⁴ TELALO LEKALAKE,⁶ DAVID MACMAHON,⁴ LOURENCE MALAN,⁶ CRESSHIM MALGAS,⁶ MATTHYS MAREE,⁶ ZACHARY E. MARTINOT,¹ EUNICE MATSETELA,⁶ ANDREI MESINGER,²⁰ MATHAKANE MOLEWA,⁶ MIGUEL F. MORALES,¹⁶ TSHEGOFALANG MOSIANE,⁶ STEVEN G. MURRAY,⁷ ABRAHAM R. NEBEN,³ BOJAN NIKOLC,⁵ CHUNEETA D. NUNHOKEE,⁴ AARON R. PARSONS,⁴ NIPANJANA PATRA,⁴ SAMANTHA PIETERSE,⁶ JONATHAN C. POBER,¹² NIMA RAZAVI-GHODS,⁵ JON RINGUETTE,¹⁶ JAMES ROBNETT,¹³ KATHRYN ROSIE,⁶ PETER SIMS,¹² SAURABH SINGH,² CRAIG SMITH,⁶ ANGELO SYCE,⁶ NITHYANANDAN THYAGARAJAN,^{7,13} PETER K. G. WILLIAMS,^{21,22} AND HAOXUAN ZHENG¹⁸
17	¹ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
18	² Department of Physics and McGill Space Institute, McGill University, Montreal, QC, Canada H3A 2T8
19	³ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
20	⁴ Department of Astronomy, University of California, Berkeley, CA
21	⁵ Cavendish Astrophysics, University of Cambridge, Cambridge, UK
22	⁶ SKA-SA, Cape Town, South Africa
23	⁷ School of Earth and Space Exploration, Arizona State University, Tempe, AZ
24	⁸ Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
25	⁹ INAF-Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy
26	¹⁰ National Radio Astronomy Observatory, Charlottesville, VA
27	¹¹ School of Physics & Astronomy, Queen Mary University of London, London, UK
28	¹² Department of Physics, Brown University, Providence, RI
29	¹³ National Radio Astronomy Observatory, Socorro, NM
30	¹⁴ Department of Physics and Astronomy, University of California, Los Angeles, CA
31	¹⁵ School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
32	¹⁶ Department of Physics, University of Washington, Seattle, WA
33	¹⁷ eScience Institute, University of Washington, Seattle, WA
34	¹⁸ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA
35	¹⁹ School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
36	²⁰ Scuola Normale Superiore, 56126 Pisa, PI, Italy
37	²¹ Center for Astrophysics, Harvard & Smithsonian, 60 Garden St., Cambridge, MA
38	²² American Astronomical Society, 1667 K Street NW, Suite 800, Washington, DC 20006
39	ABSTRACT
40	Precise measurements of the 21 cm power spectrum are crucial for understanding the physical pro-
	cesses of hydrogen reionization. Currently, this probe is being pursued by low-frequency radio inter-
41	
42	ferometer arrays. As these experiments come closer to making a first detection of the signal, error

estimation will play an increasingly important role in setting robust measurements. Using the delay
power spectrum approach, we have produced a critical examination of different ways that one can estimate error bars on the power spectrum. We do this through a synthesis of analytic work, simulations of

toy models, and tests on small amounts of real data. We find that, although computed independently,

Corresponding author: Jianrong Tan jianrong@sas.upenn.edu

52

the different error bar methodologies are in good agreement with each other in the noise-dominated regime of the power spectrum. For our preferred methodology, the predicted probability distribution function is consistent with the empirical noise power distributions from both simulated and real data.

⁵⁰ This diagnosis is mainly in support of the forthcoming HERA upper limit, and also is expected to be

⁵¹ more generally applicable.

1. INTRODUCTION

The Epoch of Reionization (EoR)—when neutral hy-53 54 drogen in the intergalactic medium (IGM) was ion-55 ized by photons from early galaxies and active galac-⁵⁶ tic nuclei—remains one of the most exciting frontiers in 57 modern astrophysics and cosmology. Precise measure-58 ments of this era will significantly enhance our under-⁵⁹ standing on the origin of very first stars, the process of 60 galaxy formation and the thermal history of the IGM 61 (Barkana & Loeb 2001; Dayal & Ferrara 2018). Some 62 measurements, such as those of the optical depth of 63 Cosmic Microwave Background (CMB) photons (Planck ⁶⁴ Collaboration et al. 2020), the Gunn-Peterson trough in 65 distant quasar spectra (Becker et al. 2001; Fan et al. 66 2006; Bolton et al. 2011; Becker et al. 2015), quasar 67 damping wings (Davies et al. 2018), and the decrease in $_{68}$ the number density and the clustering trends of Ly- α ⁶⁹ emitters at high redshifts (Stark et al. 2010; Ouchi et al. 70 2010; Bosman et al. 2018), have already established the ⁷¹ basic parameters of the EoR. Collectively, they suggest ⁷² that reionization is a process which probably began at $\gg 10$ and ended around $z \approx 6$. However, the afore-73 z74 mentioned probes paint an indirect and incomplete pic-⁷⁵ ture of the EoR. For example, CMB measurements are ⁷⁶ integral constraints over redshift, making the extraction 77 of detailed information technically difficult (often involv-78 ing subtle kinetic Sunyaev-Zel'dovich effect or polariza-⁷⁹ tion measurements); Ly α photons suffer from severely ⁸⁰ saturated absorption that makes it difficult for them to ⁸¹ probe earlier times than the end of reionization; and ⁸² low-mass galaxies (i.e., those thought to be responsi-⁸³ ble for supplying a large fraction of ionizing photons) ⁸⁴ are too faint to be directly detected. A complementary ⁸⁵ probe capable of making direct observations of the EoR ⁸⁶ is therefore desirable.

A strong candidate for a direct probe of reionization is the 21 cm line. Arising from the "spin flip" transition in the hyperfine structure of atomic hydrogen, the 21 cm ol line is a promising way to directly trace the evolution of HI regimes on different spatial scales and to eventually provide a comprehensive three-dimensional picture throughout the history of reionization (Furlanetto et al. 24 2006; Morales & Wyithe 2010; Pritchard & Loeb 2012; 25 Liu & Shaw 2020). Current experimental efforts are 26 focused on slightly more modest—but still ambitious— 27 observables. One example is the global 21 cm signal,

⁹⁸ which is a single spectrum of 21 cm absorption or emis-⁹⁹ sion averaged over the entire angular area of the sky 100 (Bowman et al. 2008; Singh et al. 2018). Recently, ¹⁰¹ the Experiment to Detect the Global Epoch of reioniza-¹⁰² tion Step team (EDGES) reported a tentative detection 103 of a 21 cm absorption signature at $z \sim 17$ (Bowman 104 et al. 2018a), although this result remains controver-¹⁰⁵ sial (Hills et al. 2018; Bowman et al. 2018b; Bradley 106 et al. 2019; Singh & Subrahmanyan 2019; Sims & Pober ¹⁰⁷ 2020). Global signal measurements are complemented ¹⁰⁸ by experimental efforts to map spatial fluctuations in the ¹⁰⁹ 21 cm brightness temperature field. Most such efforts ¹¹⁰ currently focus on a measurement of the power spec-¹¹¹ trum, i.e., the variance in Fourier space. Power spec-¹¹² trum measurements have the potential to significantly ¹¹³ improve constraints on cosmological and astrophysical 114 parameters of reionization models, and to potentially ¹¹⁵ even discover new fundamental physics (e.g., McQuinn ¹¹⁶ et al. 2006; Pober et al. 2014; Greig & Mesinger 2015; ¹¹⁷ Pober et al. 2015; Kern et al. 2017; Greig & Mesinger 118 2017; Hassan et al. 2017; Park et al. 2019; Ghara et al. ¹¹⁹ 2020). Typically, these measurements are pursued by 120 low-frequency radio interferometer arrays, such as the ¹²¹ Murchison Widefield Array¹ (MWA; Tingay et al. 2013; $_{122}$ Bowman et al. 2013), the Low Frequency Array² (LO-123 FAR; van Haarlem et al. 2013), the Donald C. Backer ¹²⁴ Precision Array for Probing the Epoch of Reionization³ 125 (PAPER; Parsons et al. 2010), the Hydrogen Epoch of ¹²⁶ Reionization Array⁴ (HERA; DeBoer et al. 2017), and ¹²⁷ the Square Kilometre Array⁵ (SKA; Mellema et al. 2013; 128 Koopmans et al. 2015). Although no experiment has ¹²⁹ yet to claim a detection of the 21 cm power spectrum at ¹³⁰ redshifts relevant to the EoR, steady progress has been ¹³¹ made in recent years in the form of increasingly strin-132 gent and robust upper limits(Dillon et al. 2014, 2015; 133 Beardsley et al. 2016; Patil et al. 2017; Barry et al. 2019; 134 Kolopanis et al. 2019; Li et al. 2019; Mertens et al. 2020; 135 Trott et al. 2020).

¹ http://www.mwatelescope.org

- ² http://www.lofar.org
- 3 http://eor.berkeley.edu
- ⁴ https://reionization.org
- ⁵ https://www.skatelescope.org

In this paper, we tackle the crucial problem of er-136 ¹³⁷ ror estimation in the context of 21 cm power spectrum ¹³⁸ measurements. While an extensive literature on power ¹³⁹ spectrum error estimation exists for CMB measurements ¹⁴⁰ and galaxy surveys, there are several challenges that are ¹⁴¹ unique to 21 cm cosmology. Chief amongst these is the ¹⁴² fact that any measured signals will be strongly contami-¹⁴³ nated by the foregrounds, which are generally 4 to 5 or-¹⁴⁴ ders of magnitude stronger in temperature (de Oliveira-¹⁴⁵ Costa et al. 2008; Jelić et al. 2008; Bernardi et al. 2009). ¹⁴⁶ To overcome this obstacle, some collaborations pursue strategy of foreground subtraction, where models of 147 a ¹⁴⁸ foreground emission are subtracted from the data (e.g., 149 Harker et al. 2009; Bernardi et al. 2011; Cho et al. 2012; ¹⁵⁰ Chapman et al. 2012; Shaw et al. 2015). Different ap-¹⁵¹ proaches to foreground subtraction make different as-¹⁵² sumptions (see Liu & Shaw 2020 for examples), but all ¹⁵³ face the same problem of attempting to subtract a large ¹⁵⁴ contaminant from a large raw signal to reveal a small ¹⁵⁵ cosmological signature. With empirical constraints on ¹⁵⁶ the low-frequency radio sky being relatively scarce and generally imprecise, the chances of mis-subtraction are 157 ¹⁵⁸ high. Errors in such a subtraction process as well as the effects of subtraction residuals must therefore be prop-159 ¹⁶⁰ agated through to a final power spectrum estimate.

In this paper, however, we do not tackle the problem of 161 ¹⁶² error propagation in the context of foreground subtrac-163 tion; instead, we consider error estimation in the con-164 text of foreground avoidance, where one aims to make ¹⁶⁵ cosmological measurements exclusively in Fourier modes where foregrounds are expected to be subdominant. Key 166 ¹⁶⁷ to this is the notion of the foreground wedge, a regime ¹⁶⁸ in Fourier space beyond which spectrally smooth fore-¹⁶⁹ grounds cannot extend if observed using an ideal in-¹⁷⁰ terferometer (Datta et al. 2010; Parsons et al. 2012b; ¹⁷¹ Vedantham et al. 2012; Morales et al. 2012; Trott et al. 172 2012; Thyagarajan et al. 2013; Hazelton et al. 2013; 173 Liu et al. 2014a). The limitation of foregrounds to 174 the wedge is a theoretically robust notion (Liu & Shaw 175 2020), and in principle one can make foreground-free ¹⁷⁶ measurements simply by avoiding the regime. In prac-177 tice, observations are never made using perfect interfer-178 ometers, and instrumental systematics such as having ¹⁷⁹ non-identical antenna elements, cable reflections, and ¹⁸⁰ cross couplings (e.g., Kern et al. 2019, 2020a) complicate one's foreground mitigation efforts. These complications 181 182 can result in the appearance of contaminants outside of ¹⁸³ the foreground wedge, and in this paper we define and ¹⁸⁴ tackle the problem of error estimation in two regimes: a ¹⁸⁵ noise-dominated regime and a signal-dominated regime 186 (whether these signals could be foregrounds, systemat-¹⁸⁷ ics, or any other coherent signals).

Through a combination of analytic work, simulations 188 189 of toy models, and tests on small amounts of real data, ¹⁹⁰ we critically examine different ways in which one can ¹⁹¹ place error bars on 21 cm delay power spectra. Our ¹⁹² goal is to produce a "buyer's guide" that enumerates ¹⁹³ the advantages and disadvantages of various error es-¹⁹⁴ timation methods. Understanding these strengths and ¹⁹⁵ weaknesses are crucial for setting upper limits, diagnos-¹⁹⁶ ing systematics, interpreting the results of null tests, ¹⁹⁷ and for the design and optimization of future telescopes 198 (Morales 2005; McQuinn et al. 2006; Parsons et al. ¹⁹⁹ 2012a). Although we will focus primarily on the de-²⁰⁰ lay power spectrum-style analysis (Parsons et al. 2012b) ²⁰¹ in support of recent HERA upper limits (HERA Collab-²⁰² oration 2021), we expect many of our results to be more ²⁰³ generally applicable.

This paper is organized as follows: in Section 2, we review the basics of power spectrum estimation using the delay spectrum technique, establishing our notation. In Section 3 we propose several methods for estimating errors in 21 cm delay power spectra. These approaches are then compared and contrasted using simulations and real data in Section 4. We then discuss the strengths and weaknesses of each error estimation method in Section 5 before summarizing our conclusions in Section 6. For readers' convenience, we provide dictionaries for a numtable of quantities defined in this paper in Tables 1 and 21.

216 2. POWER SPECTRUM ESTIMATION VIA THE 217 DELAY SPECTRUM

In this section we review the delay spectrum approach 219 to 21 cm power spectrum estimation (Parsons et al. 220 2012b) using the the language of the quadratic estimator 221 (QE) formalism (Liu & Tegmark 2011) that we adopt in 222 this paper.

The delay spectrum technique enables power spectra to be estimated using just a single baseline of a ration interferometer, with fluctuations in the 21 cm signal probed primarily in the line-of-sight direction via spectral information. The starting point is the visibility $V(\boldsymbol{b},\nu)$ measured by an interferometer's baseline \boldsymbol{b} at prequency ν . Under the flat-sky limit, it is given by

₂₃₀
$$V(\boldsymbol{b},\nu) = \int I(\boldsymbol{\theta},\nu)A(\boldsymbol{\theta},\nu)\exp\left(-i2\pi\frac{\nu}{c}\boldsymbol{b}\cdot\boldsymbol{\theta}\right)\mathrm{d}^{2}\boldsymbol{\theta},$$
 (1)

²³¹ where c is the speed of light, $\boldsymbol{\theta}$ is the angular sky posi-²³² tion, $I(\boldsymbol{\theta}, \nu)$ is the source intensity function, and $A(\boldsymbol{\theta}, \nu)$ ²³³ is the primary beam function. If we express $I(\boldsymbol{\theta}, \nu)$ in ²³⁴ terms of its Fourier transform $\tilde{I}(\boldsymbol{u}, \eta)$, i.e.,

$$I(\boldsymbol{\theta}, \nu) = \int \tilde{I}(\boldsymbol{u}, \eta) e^{i2\pi(\boldsymbol{u}\cdot\boldsymbol{\theta}+\eta\nu)} \mathrm{d}^2 u \mathrm{d}\eta, \qquad (2)$$

235

310

311

312

236 then our visibility equation becomes

²³⁷
$$V(\boldsymbol{b},\nu) = \int \tilde{I}(\boldsymbol{u},\eta) A(\boldsymbol{\theta},\nu) e^{i2\pi(\boldsymbol{u}\cdot\boldsymbol{\theta}+\eta\nu-\boldsymbol{b}_{\lambda}\cdot\boldsymbol{\theta})} \mathrm{d}^{2} u \mathrm{d}\eta \mathrm{d}^{2} \theta$$
²³⁸
$$= \int \tilde{I}(\boldsymbol{u},\eta) \tilde{A}(\boldsymbol{b}_{\lambda}-\boldsymbol{u},\nu) e^{i2\pi\eta\nu} \mathrm{d}^{2} u \mathrm{d}\eta, \quad (3)$$

238

$$= \int \tilde{I}(\boldsymbol{u},\eta) \tilde{A}(\boldsymbol{b}_{\lambda} - \boldsymbol{u},\nu) e^{i2\pi\eta\nu} \mathrm{d}^{2} u \mathrm{d}\eta,$$

²³⁹ where we have defined $b_{\lambda} \equiv \frac{\nu}{c} b$ as the normalized base- $_{240}$ line vector for baseline **b** in units of wavelength. In the ²⁴¹ angular directions, we see that a visibility has a response ²⁴² to \boldsymbol{u} modes centred around \boldsymbol{b}_{λ} . If the primary beam A is ²⁴³ fairly broad, A will be highly compact and the majority 244 of the integral will be sourced from $\boldsymbol{u} \approx \boldsymbol{b}_{\lambda}$. We will ²⁴⁵ use this fact later. From this, one sees that a visibility ²⁴⁶ $V(\boldsymbol{b},\nu)$ is a linear function of $I(\boldsymbol{u},\eta)$. This quantity is di-²⁴⁷ rectly related to the cylindrical power spectrum $P(\boldsymbol{u}, \eta)$, ²⁴⁸ which decomposes power into Fourier wavenumbers per-249 pendicular to the line of sight (u) and parallel to the line ₂₅₀ of sight (η) , and is formally defined as

₂₅₁
$$\langle \tilde{I}^*(\boldsymbol{u},\eta)\tilde{I}(\boldsymbol{u}',\eta')\rangle \equiv \delta^{\mathrm{D}}(\boldsymbol{u}-\boldsymbol{u}')\delta^{\mathrm{D}}(\eta-\eta')P(\boldsymbol{u},\eta).$$
 (4)

²⁵² Such a power spectrum can be recast into more conven-²⁵³ tional cosmological coordinates via the relations⁶

$$\mathbf{k}_{\perp} = \frac{2\pi \mathbf{u}}{D_c}; \quad k_{\parallel} = \frac{2\pi\nu_{21}H_0E(z)}{c(1+z)^2}\eta, \tag{5}$$

²⁵⁵ where $D_{\rm c}$ is the line-of-sight comoving distance, ν_{21} is 256 the rest frequency of the 21 cm line, H_0 is the Hubble ²⁵⁷ parameter today, and $E(z) \equiv \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$, with ²⁵⁸ Ω_{Λ} and Ω_m as the normalized dark energy and matter ²⁵⁹ density, respectively.

Since the power spectrum is a quadratic function of 260 the Fourier representation of the sky, we expect that 261 ²⁶² one should be able to estimate the power spectrum by ²⁶³ forming some quadratic function of visibilities. How-²⁶⁴ ever, directly squaring some functions of the visibili-²⁶⁵ ties will incur a noise bias because noise that is sym-²⁶⁶ metrically distributed about zero will have a positive ²⁶⁷ contribution that does not average down with cumula-²⁶⁸ tive samples. Fortunately, the noise bias can be avoided ²⁶⁹ by cross-multiplying nominally identical measurements 270 rather than by squaring a single measurement. For in-271 stance, one might choose to form quadratic combina-272 tions of data from adjacent time samples of a single ²⁷³ baseline's time stream, or perhaps to cross-multiply the 274 time streams from two redundant baselines that satisfy ${}_{275}$ $\boldsymbol{b}_1 = \boldsymbol{b}_2 = \boldsymbol{b}$ for some \boldsymbol{b} . In this paper, we will consider 276 power spectrum measurements that are formed from

277 cross-multiplications in *both* time and different copies 278 of an identical baseline. Utilizing both types of cross-²⁷⁹ multiplications has the advantage of avoiding skewness ²⁸⁰ in the probability distributions of the measured power 281 spectra, simplifying the interpretation of our results. ²⁸² This is discussed in Appendix A. In this section, how-²⁸³ ever, we will—for simplicity—suppress explicit reference 284 to the data time stream and use notation that explic-²⁸⁵ itly refers to cross-correlating different baselines. Given $_{286}$ a pair of redundant baselines b_1 and b_2 , we stack their ²⁸⁷ measuring visibilities at multiple frequencies $\nu_1, \nu_2...$ at 288 single time instants into two data vectors x_1 and x_2 , 289 such that

$$\mathbf{x}_{1} = \begin{pmatrix} V(\mathbf{b}_{1}, \nu_{1}) \\ V(\mathbf{b}_{1}, \nu_{2}) \\ \vdots \end{pmatrix}; \quad \mathbf{x}_{2} = \begin{pmatrix} V(\mathbf{b}_{2}, \nu_{1}) \\ V(\mathbf{b}_{2}, \nu_{2}) \\ \vdots \end{pmatrix}. \quad (6)$$

To make an explicit connection between visibilities 291 ²⁹² and power spectra, we must examine the statistical ²⁹³ properties of these data vectors. For quadratic statistics ²⁹⁴ the key quantity is the covariance matrix $C^{12} \equiv \langle x_1 x_2^{\dagger} \rangle$, ²⁹⁵ which can be written as

$$C_{ij}^{12} \equiv \langle V(\boldsymbol{b_1}, \nu_i) V^*(\boldsymbol{b_2}, \nu_j) \rangle$$

$$= \int P(\boldsymbol{u}, \eta) \tilde{A}(\boldsymbol{b_{\lambda 1i}} - \boldsymbol{u}, \nu_i) \tilde{A}^*(\boldsymbol{b_{\lambda 2j}} - \boldsymbol{u}, \nu_j)$$

$$\times e^{i2\pi\eta(\nu_i - \nu_j)} d^2 u d\eta$$

$$\approx \int P(\overline{\boldsymbol{b}}_{\lambda}, \eta) e^{i2\pi\eta(\nu_i - \nu_j)} d\eta$$

$$\approx \int P(\boldsymbol{b}_{\lambda},\eta) e^{i\boldsymbol{\lambda}\cdot\boldsymbol{\eta}(\boldsymbol{e}_{1}-\boldsymbol{b}_{j})} \mathrm{d}\eta$$

$$\times \int \tilde{A}^{*}(\boldsymbol{b}_{\lambda1i}-\boldsymbol{u},\nu_{i})\tilde{A}(\boldsymbol{b}_{\lambda2j}-\boldsymbol{u},\nu_{j}) \mathrm{d}^{2}\boldsymbol{u}, \quad (7)$$

³⁰¹ where $\boldsymbol{b}_{\lambda 1i}$ and $\boldsymbol{b}_{\lambda 2j}$ are the normalized baseline vectors ³⁰² for baseline b_1 and b_2 evaluated at frequencies ν_i and ν_j , ³⁰³ respectively, and \overline{b}_{λ} is the mean of the two. In deriving $_{304}$ Equation (7), we first substituted Equation (3) for the ³⁰⁵ expressions of visibilities in the angle bracket, and then 306 factored the evaluated cylindrical power spectrum out $_{307}$ of the integral over u. Next we replace the continuous ³⁰⁸ integral on power spectra with discrete sums over a series ³⁰⁹ of piecewise constant bandpowers $P(\boldsymbol{b}_{\lambda}, \eta_{\alpha})$, such that

$$C_{ij}^{12} \approx \sum_{\alpha} P(\overline{\boldsymbol{b}}_{\lambda}, \eta_{\alpha}) \int_{\eta_{\alpha}} e^{i2\pi\eta_{\alpha}(\nu_{j} - \nu_{i})} \mathrm{d}\eta$$

$$\times \int \tilde{A}(\boldsymbol{b}_{\lambda 1i} - \boldsymbol{u}, \nu_{i}) \tilde{A}^{*}(\boldsymbol{b}_{\lambda 2j} - \boldsymbol{u}, \nu_{j}) \mathrm{d}^{2}u$$

$$\approx \sum_{\alpha} P(\overline{\boldsymbol{b}}_{\lambda}, \eta_{\alpha}) e^{i2\pi\eta_{\alpha}(\nu_{i} - \nu_{j})} \Delta\eta$$

$$\times \int e^{-i2\pi(\boldsymbol{b}_{\lambda 1i} - \boldsymbol{b}_{\lambda 2j}) \cdot \boldsymbol{\theta}} A(\boldsymbol{\theta}, \nu_{i}) A^{*}(\boldsymbol{\theta}, \nu_{j}) \mathrm{d}^{2}\boldsymbol{\theta}$$

$$\equiv \sum_{\alpha} P(\overline{\boldsymbol{b}}_{\lambda}, \eta_{\alpha}) \boldsymbol{Q}_{ij}^{12,\alpha}, \qquad (8)$$

⁶ In addition to mapping the arguments of P, there is also an ad-³¹³ ditional multiplicative constant; see Liu et al. (2014a) for explicit expressions. 314

376

³¹⁵ Henceforth, we will adopt the notation $P_{\alpha} \equiv P(\bar{b}_{\lambda}, \eta_{\alpha})$ ³¹⁶ to mean the value of the cylindrical power spectrum ³¹⁷ $P(\boldsymbol{u}, \eta)$ evaluated at $\boldsymbol{u} = \bar{b}_{\lambda}$ and $\eta = \eta_{\alpha}$. The index ³¹⁸ α discretely runs over a series of bins in η , and as long ³¹⁹ as these bins are narrow compared to the scales over ³²⁰ which the power spectrum changes, a piecewise constant ³²¹ treatment is appropriate.

Equation (8) shows the cross-baseline covariance matrix of visibilities encodes information about the power spectrum bandpowers via a family of response matrices $Q^{12,\alpha}$ (with a different matrix for every value of the bandpower index α). Since the covariance is an ensemble-averaged quadratic function of the data, one might venture that estimators for the bandpowers can be constructed by forming quadratic combinations of the data, i.e.,

$$\hat{P}_{\alpha} = \boldsymbol{x}_{1}^{\dagger} \boldsymbol{E}^{12,\alpha} \boldsymbol{x}_{2} \,, \tag{9}$$

³³² where $E^{12,\alpha}$ is a matrix that can be chosen (within cer-³³³ tain limitations) by the data analyst. Taking the en-³³⁴ semble average on both sides and inserting Equation (8) ³³⁵ then yields

$$(\hat{P}_{\alpha}) = \sum_{\beta} \operatorname{tr} \left(\boldsymbol{E}^{12,\alpha} \boldsymbol{Q}^{21,\beta} \right) P_{\beta} \equiv \sum_{\beta} W_{\alpha\beta} P_{\beta}, \quad (10)$$

 $_{337}$ where \boldsymbol{W} is the window function matrix. To ensure that $_{338}$ our estimated bandpowers are correctly normalized, we $_{339}$ require that each row of \boldsymbol{W} sum to unity.

In the HERA power spectrum pipeline, we pick a fam- $_{341}$ ily of E^{12} matrices of the form

$$\boldsymbol{E}^{12,\alpha} \equiv M_{\alpha} \boldsymbol{R}_1 \boldsymbol{Q}^{\mathrm{DFT},\alpha} \boldsymbol{R}_2, \qquad (11)$$

³⁴³ where the matrix $Q_{ij}^{\text{DFT},\alpha} \equiv e^{i2\pi\eta_{\alpha}(\nu_i-\nu_j)}$ is responsible ³⁴⁴ for taking the Fourier transform of the two copies of the ³⁴⁵ data vectors in the quadratic estimator. The matrices ³⁴⁶ R_1 and R_2 are weighting matrices that act on visibilities ³⁴⁷ from b_1 and b_2 , respectively. In this paper, we use R =³⁴⁸ TY, where both T and Y are diagonal matrices. The ³⁴⁹ former is used to impose a Blackman-Harris tapering ³⁵⁰ function on the spectral data, and the latter propagates ³⁵¹ data flags. With a quadratic estimator of this form, the ³⁵² normalization scalar, M_{α} , should take the form

$$M_{\alpha} = \frac{1}{\sum_{\beta} \operatorname{tr}(\boldsymbol{R}_{1}\boldsymbol{Q}^{\mathrm{DFT},\alpha}\boldsymbol{R}_{2}\boldsymbol{Q}^{12,\beta})}$$
(12)

³⁵⁴ which ensures that the rows of **W** sum to unity, and ³⁵⁵ therefore that the bandpowers are properly normalized. ³⁵⁶ In our case, we do use this normalization, but we approx-³⁵⁷ imate the $Q^{12,\beta}$ term in the denominator. Rather than ³⁵⁸ evaluating the full integral in Equation (8), we make the ³⁵⁹ approximation that $\mathbf{b}_{\lambda 1i} \approx \mathbf{b}_{\lambda 2i}$. In fact, this is the mo-³⁶⁰ tivation for the use of $Q^{\text{DFT},\alpha}$ in Equation (11) rather ³⁶¹ than Q^{12} ; notice that if $\mathbf{b}_{\lambda 1i} = \mathbf{b}_{\lambda 2i}$, then $Q^{12} \propto Q^{\text{DFT}}$. ³⁶² Over large bandwidths, this will fail for long baselines, ³⁶³ since $\mathbf{b}_{\lambda} \equiv \nu \mathbf{b}/c$.

The approximation that we have just made is equivato the delay spectrum approximation (Parsons et al. 265 2012b; Liu et al. 2014a). To see this, we can write our 267 estimator in the continuous limit. Our current form for 268 $E^{12,\alpha}$ is separable into the product of two matrices that 269 each involve only one of the two baselines. In particu-270 lar, if $\gamma(\nu)$ is the functional form of the Blackman-Harris 271 taper, then we have $E_{ij}^{12,\alpha} = \gamma_1(\nu_i)e^{i2\pi\eta_\alpha(\nu_i-\nu_j)}\gamma_2(\nu_j)$, 272 and its action on each baseline's visibilities in Equation 273 (9) is to compute the quantity

$$\sum_{i} V(\boldsymbol{b}, \nu_i) \gamma(\nu_i) e^{-2\pi \eta \nu_i} \Delta \boldsymbol{\nu}, \qquad (13)$$

375 which is just a discrete approximation to

$$\tilde{V}(\boldsymbol{b},\eta) = \int V(\boldsymbol{b},\nu)\gamma(\nu)e^{-i2\pi\eta\nu}\mathrm{d}\nu\,. \tag{14}$$

³⁷⁷ Note Equation (14) is an equivalent expression of the ³⁷⁸ delay transform in Parsons et al. (2012b). Therefore

$$\hat{P}_{\alpha} = \boldsymbol{x}_{1}^{\dagger} \boldsymbol{E}^{12,\alpha} \boldsymbol{x}_{2}$$

$$\propto \sum_{ij} V^{*}(\boldsymbol{b}_{1},\nu_{i})\gamma_{1}(\nu_{i})V(\boldsymbol{b}_{2},\nu_{j})\gamma_{2}(\nu_{j})e^{i2\pi\eta_{\alpha}(\nu_{i}-\nu_{j})}$$

$$= \tilde{V}^{*}(\boldsymbol{b}_{1},\eta_{\alpha})\tilde{V}(\boldsymbol{b}_{2},\eta_{\alpha}). \qquad (15)$$

 $_{382}$ Equation (15) just indicates that the quadratic estima-³⁸³ tor is proportional to the product of delay-transformed ³⁸⁴ visibilities. This is an estimator that is based on Fourier ³⁸⁵ transforming the visibility spectra from individual base-386 lines, rather than combining information from different 387 baselines. In principle, only the latter can probe truly 388 rectilinear Fourier modes on the sky, since $k_{\perp} \propto b_{\lambda}$ ³⁸⁹ (which is a frequency-dependent quantity), and thus to 390 probe the same k_{\perp} at multiple frequencies—which is ³⁹¹ needed to perform the Fourier transform along the line-³⁹² of-sight direction—one needs multiple baselines. The ³⁹³ delay spectrum approach uses the fact that b_{λ} evolves ³⁹⁴ only slowly with frequency for short baselines to form ³⁹⁵ an approximate power spectrum estimator. We make ³⁹⁶ this approximation throughout this paper, as this is ³⁹⁷ the choice that has been made for the next iteration 398 of power spectrum upper limits from HERA observa-³⁹⁹ tions. In recognition of this, we will henceforth use τ 400 to index our line-of-sight Fourier modes (as is custom-401 ary for delay spectra) instead of η (which is generally 402 used to denote true rectilinear line-of-sight wavenum-403 bers) (Morales et al. 2012, 2019).

⁴⁰⁴ In the language of the delay spectrum, the foreground ⁴⁰⁵ wedge becomes particularly simple to describe: smooth

Quantity	Definition/Meaning	First Appearance
$oldsymbol{b};oldsymbol{b}_p$	Baseline vector; Vector of the p th index baseline	Equation (1)
heta	Angular sky position	Equation (1)
$ u; u_i$	Frequency; Frequency of the i th index channel	Equation (1)
$oldsymbol{b}_{\lambda};oldsymbol{b}_{\lambda pi}$	Normalized baseline vector in units of wavelength; Normalized vector for baseline \pmb{b}_p at frequency ν_i	Equation (3)
\boldsymbol{u}	Fourier dual to $\boldsymbol{\theta}$	Equation (2)
$\eta;\eta_{lpha}$	Fourier dual to ν ; the α th index η mode	Equation (2)
$ au; au_lpha$	Delay, i.e., Fourier dual to ν on a single baseline; the $\alpha {\rm th}$ index delay mode	Equation (16)
$A(\theta, \nu)$	Primary beam function at position θ and frequency ν	Equation (1)
$ ilde{A}(oldsymbol{u}, u)$	Spatial Fourier Transform Dual of primary beam function	Equation (3)
$\gamma(u)$	Spectral tapering function at frequency ν	Equation (14)
$N_{ m time}; N_{ m blp}$	Number of time instants; Number of baseline-pairs	Equation (18)
$N_{ m boot}$	Number of bootstrapping sample sets	Equation (24)
$I(oldsymbol{ heta}, u)$	Sky source intensity function at position θ and frequency ν	Equation (1)
$ ilde{I}(oldsymbol{u},\eta)$	Fourier transform of I at angular wavenumber \boldsymbol{u} and line-of-sight wavenumber η	Equation (2)
$V(oldsymbol{b}, u)$	Visibility measured by baseline \boldsymbol{b} at frequency ν	Equation (1)
$P(oldsymbol{u},\eta)$	Cylindrical power spectrum at angular wavenumber \boldsymbol{u} and line-of-sight wavenumber η	Equation (4)
P_{lpha}	The α th bandpower $P_{\alpha} \equiv P(\overline{\boldsymbol{b}}_{\lambda}, \eta_{\alpha})$	Equation (8)
\hat{P}_{lpha}	The estimator for the α th bandpower P_{α}	Equation (9)
M_{lpha}	The normalization scalar of the estimator for the α th bandpower	Equation (11)
$ ilde{V}(oldsymbol{b}_p, au_lpha), ilde{x}_p(au_lpha)$	Delay spectra of baseline \boldsymbol{b}_p at delay mode τ_{α}	Equation (15)
$ ilde{V}_{ ext{signal}}(oldsymbol{b}_p, au_lpha), ilde{s}_p(au_lpha)$	The signal component of \tilde{V} of baseline \boldsymbol{b}_p at delay mode τ_{α}	Equation (16)
$ ilde{V}_{ ext{noise}}(oldsymbol{b}_p, au_lpha), ilde{n}_p(au_lpha)$	The noise component of \tilde{V} of baseline \boldsymbol{b}_p at delay mode τ_{α}	Equation (16)
$P_{\tilde{x}_1 \tilde{x}_2}$	Power spectra formed from visbilities \boldsymbol{x}_1 and \boldsymbol{x}_2	Equation (30)

 Table 1. Dictionary of highlighted scalars and functions.

Quantity	Definition/Meaning	Size	First Appearance
$oldsymbol{x}_p$	Stacked visibilities at multiple frequencies of baseline \boldsymbol{b}_p	$N_{ m freq}$	Equation (6)
$oldsymbol{C}^{pq}$	Covariance matrices $oldsymbol{C}^{pq}\equiv \langle oldsymbol{x}_poldsymbol{x}_q^\dagger angle$	$N_{\rm freq} \times N_{\rm freq}$	Equation (7)
$oldsymbol{Q}^{pq,lpha}$	Response of covariance C^{pq} to the α th bandpower	$N_{\rm freq} imes N_{ m freq}$	Equation (8)
$oldsymbol{E}^{pq,lpha}$	Matrix for quadratic estimator of bandpower P_{α} , i.e., $\hat{P}_{\alpha} = \boldsymbol{x}_{p}^{\dagger} \boldsymbol{E}^{pq,\alpha} \boldsymbol{x}_{q}$	$N_{\rm freq} \times N_{\rm freq}$	Equation (9)
W	Window function matrix	$N_{\rm delay} \times N_{\rm delay}$	Equation (10)
$oldsymbol{R}_p$	Weighting matrix acting on \boldsymbol{x}_p	$N_{\rm freq} \times N_{\rm freq}$	Equation (11)
$oldsymbol{Q}^{\mathrm{DFT},lpha}$	Matrix taking Fourier Transform in the estimator	$N_{\rm freq} \times N_{\rm freq}$	Equation (11)
$oldsymbol{U}^{pq}$	two-point correlation matrices $oldsymbol{U}^{pq}\equiv \langle oldsymbol{x}_poldsymbol{x}_q^T angle$	$N_{\rm freq} imes N_{ m freq}$	Equation (33)
$oldsymbol{G}^{pq}$	two-point correlation matrices $m{G}^{pq}\equiv \langle m{x}_p^*m{x}_q^\dagger angle$	$N_{\rm freq} \times N_{\rm freq}$	Equation (33)

 Table 2. Dictionary of highlighted vectors and matrices.

489 490

492 493

(16)

⁴⁰⁶ spectrum foregrounds simply contaminate all modes be-⁴⁰⁷ low a particular delay, the value of which depends on the ⁴⁰⁸ baseline length (Parsons et al. 2012b; Liu et al. 2014a; ⁴⁰⁹ Liu & Shaw 2020). Suppose we decompose the delay ⁴¹⁰ transformed visibility into the signal component $\tilde{V}_{\text{signal}}$ ⁴¹¹ (mainly foregrounds, and we are neglecting the much ⁴¹² weaker EoR signal here) and the noise component \tilde{V}_{noise} , ⁴¹³ such that

414
$$\tilde{V}(\boldsymbol{b}_1, \tau_{\alpha}) \equiv \tilde{x}_1(\tau_{\alpha})$$

415 $\equiv \tilde{V}_{\text{signal}}(\boldsymbol{b}_1, \tau_{\alpha}) + \tilde{V}_{\text{noise}}(\boldsymbol{b}_1, \tau_{\alpha})$

$$= \tilde{s}_{\text{signal}}(\sigma_1, \tau_{\alpha}) + \tilde{v}_{\text{noise}}(\sigma_1, \tau_{\alpha})$$
$$\equiv \tilde{s}_1(\tau_{\alpha}) + \tilde{n}_1(\tau_{\alpha}).$$

⁴¹⁷ Since we are working on redundant baselines, we will ⁴¹⁸ henceforth drop the subscript on \tilde{s} , as the two baselines ⁴¹⁹ used in Equation (15) should measure identical signals. ⁴²⁰ Mathematically, then, the statement that the smooth ⁴²¹ spectrum foregrounds contaminate only low delay modes ⁴²² is given by

$${}^{_{423}} \qquad \hat{P}_{\alpha} \approx \begin{cases} \tilde{s}^* \tilde{s} + \tilde{s}^* \tilde{n}_2 + \tilde{n}_1^* \tilde{s} & \text{if } |\tau_{\alpha}| < \tau_0 \\ \tilde{n}_1^* \tilde{n}_2 & \text{otherwise,} \end{cases}$$
(17)

⁴²⁴ where τ_{α} is the delay corresponding to the α th band-⁴²⁵ power, and τ_0 is some critical delay value that sepa-⁴²⁶ rates parts of the power spectrum that are foreground-⁴²⁷ dominated from those that are not. In general, τ_0 will ⁴²⁸ depend on the properties of one's instrument as well ⁴²⁹ as the extent to which the assumption of smooth fore-⁴³⁰ grounds is good. At delays less than τ_0 , we have assumed ⁴³¹ that the foreground signal is so large that the noise-noise ⁴³²² cross term can be neglected.

Throughout the rest of this paper, we will appeal to 433 $_{434}$ Equation (17) for intuition when contemplating the be-435 haviour of our power spectrum estimates at different de-436 lays. For now, we note two of its important properties. ⁴³⁷ First, while the power spectrum of a signal $\tilde{s}^*\tilde{s}$ will be ⁴³⁸ always real valued, the overall estimator \hat{P}_{α} is complex. ⁴³⁹ It is possible to write down symmetrized estimators that ⁴⁴⁰ give real power spectra. However, since the imaginary ⁴⁴¹ part is sourced by noise, it is a useful diagnostic quantity 442 to examine. Second, even though the noise-noise terms ⁴⁴³ may be negligible in the signal dominated regimes, there will still be a considerable uncertainty here that enters 444 via the signal-noise cross terms. 445

⁴⁴⁶ Until now, we have focused on power spectra esti-⁴⁴⁷ mated from visibilities measured at single time instants. ⁴⁴⁸ Given data from multiple times, we can average the ⁴⁴⁹ power spectra estimated from individual measurements ⁴⁵⁰ together. For a drift scan telescope, this averaging of ⁴⁵¹ power spectra from different time samples is tantamount ⁴⁵² to invoking statistical isotropy to justify the spherical ⁴⁵³ averaging of power spectra over different wavevector **k** ⁴⁵⁴ directions. In addition to averaging in time, if we have
⁴⁵⁵ multiple pairs of baselines within the same redundant
⁴⁵⁶ group of baselines, we may average over the power spec⁴⁵⁷ trum estimates from multiple baseline pairs. The sim⁴⁵⁸ plest way to do this is to perform an unweighted average:
⁴⁵⁹

$$\overline{\hat{P}}_{\alpha} = \frac{1}{N_{\text{time}}N_{\text{blp}}} \sum_{\text{time,blp}} \hat{P}_{\alpha}(\text{time,blp}), \qquad (18)$$

 $_{\rm 461}$ where $N_{\rm time}$ is the number of time integrations, $N_{\rm blp}$ is ⁴⁶² the number of baseline pairs, P_{α} (time, blp) is the power ⁴⁶³ spectrum estimate (given by previous equations in this 464 section) at a time instant and a baseline pair ("blp"), 465 and \hat{P}_{α} is the average of estimates. The type of averag-466 ing performed here may be termed an "incoherent aver-467 age", to distinguish it from a "coherent average", where ⁴⁶⁸ one averages over visibilities (or converts them into a ⁴⁶⁹ single image) before squaring them in power spectrum 470 estimation. The latter provides greater sensitivity—if 471 calibration errors and other systematic effects can be ⁴⁷² brought under control (Morales et al. 2019). The for-⁴⁷³ mer retains the ability to inspect the contributions from 474 particular baseline pairs and time until right before the 475 final result, making some systematics easier to diagnose. ⁴⁷⁶ However, note that by employing a suitable fringe-rate 477 filtering of the time-stream data, it is in principle pos-478 sible to recover the lost sensitivity from a "square-then-479 add" approach (Parsons et al. 2016). In this paper, we 480 will focus on the error statistics of the incoherent aver-481 age approach, as this is what is currently used in the ⁴⁸² HERA pipeline (HERA Collaboration 2021).

⁴⁸³ Before we move into the discussion on error estima-⁴⁸⁴ tion methods in the next section, it is worth noting that ⁴⁸⁵ Equation (18) is not the optimal way to obtain average ⁴⁸⁶ power spectra with the least variance. Generally, given ⁴⁸⁷ a set of estimates \hat{P}_{α} for bandpower P_{α} with measure-⁴⁸⁸ ment errors σ , such that

$$\hat{\boldsymbol{P}}_{\alpha} = \boldsymbol{D}\boldsymbol{P}_{\alpha} + \boldsymbol{\epsilon} \,, \tag{19}$$

⁴⁹¹ an linear estimator of P_{α} is written as

$$\hat{P}_{\alpha} = \boldsymbol{K} \hat{\boldsymbol{P}}_{\alpha} \,. \tag{20}$$

⁴⁹⁴ Here D is a column vector of 1s. We need to select K⁴⁹⁵ such that KD = I in order to achieve an unbiased con-⁴⁹⁶ straint that satisfies $\langle \hat{P}_{\alpha} \rangle = P_{\alpha}$. For an arbitrary matrix ⁴⁹⁷ K, the error bar $\Sigma_{\alpha} \equiv \langle |\hat{P}_{\alpha} - P_{\alpha}|^2 \rangle = K \epsilon K^t$, where the ⁴⁹⁸ error covariance matrix $\epsilon \equiv \langle \sigma \sigma^t \rangle$. The superscript "t" ⁴⁹⁹ used here and along in this paper refers to the matrix ⁵⁰⁰ transposition. Note that Equation (18) is just a special ⁵⁰¹ case where $K = [D^t D]^{-1} D^t$. When Σ_{α} is minimized ⁵⁰² (optimal), \hat{P}_{α} and the corresponding Σ_{α} should take the 503 form of (Tegmark 1997; Dillon et al. 2014)

504
$$\overline{\hat{P}}_{\alpha} = [\boldsymbol{D}^t \boldsymbol{\epsilon}^{-1} \boldsymbol{D}]^{-1} \boldsymbol{D}^t \boldsymbol{\epsilon}^{-1} \hat{\boldsymbol{P}}_{\alpha}$$
(21)

$$\Sigma_{\alpha} = [\boldsymbol{D}^t \boldsymbol{\epsilon}^{-1} \boldsymbol{D}]^{-1}, \qquad (22)$$

⁵⁰⁷ which amounts to an inverse covariance weighting of ⁵⁰⁸ the data in averaging it down. Equation (21) brings ⁵⁰⁹ us the ability to propagate the full covariance informa-⁵¹⁰ tion over samples to obtain an least-variance average ⁵¹¹ result. The diagonal elements of $\boldsymbol{\epsilon}$ are easily interpreted ⁵¹² as the variance in each individual measurement, while ⁵¹³ the off-diagonal elements, reflected by the coherency be-⁵¹⁴ tween time samples and baseline-pair samples, are far ⁵¹⁵ more complicated. If estimating the covariance matrix ⁵¹⁶ $\boldsymbol{\epsilon}$ of the pre-averaged data is difficult, one may opt to ⁵¹⁷ weight the data using some other matrix $\boldsymbol{\Gamma}$ instead of ⁵¹⁸ $\boldsymbol{\epsilon}$ in Equation (21). In this case, the final variance Σ_{α} ⁵¹⁹ ends up being

$$\Sigma_{\alpha} = [\boldsymbol{D}^{t} \boldsymbol{\Gamma}^{-1} \boldsymbol{D}]^{-1} \boldsymbol{D}^{t} \boldsymbol{\Gamma}^{-1} \boldsymbol{\epsilon} \boldsymbol{\Gamma}^{-t} \boldsymbol{D} [\boldsymbol{D}^{t} \boldsymbol{\Gamma}^{-t} \boldsymbol{D}]^{-1}. \quad (23)$$

⁵²¹ In principle, one could model the off-diagonal elements ⁵²² of $\boldsymbol{\epsilon}$. This is particularly important in the cosmic-⁵²³ variance dominated regime where the sky signal—which ⁵²⁴ is what sources a cosmic variance error—is slowly drift-⁵²⁵ ing through HERA's field of view over the course of the ⁵²⁶ day, thus inducing strong correlations between different ⁵²⁷ time samples. In this paper we do not consider the mod-⁵²⁸ elling of off-diagonal covariances in $\boldsymbol{\epsilon}$ (or between differ-⁵²⁹ ent α values in \hat{P}_{α}). We assume diagonal covariance ⁵³⁰ matrices and set $\Gamma = \boldsymbol{I}$, i.e., we use Equation (18) when ⁵³¹ computing the "incoherently-averaged" power spectra, ⁵³² and here we are acknowledging other possibilities only ⁵³³ for completeness.

⁵³⁴ 3. ERROR ESTIMATION METHODOLOGY

Placing robust error bars on power spectra is crucial to our data analysis, whether it is for setting upper limtis, diagnosing experimental systematics, or eventually declaring a detection of the cosmological 21 cm signal. Generally, contributions to the error bars of observed power spectra come from three sources: the EoR sigrational, noise, and foregrounds (Thyagarajan et al. 2013; Trott 2014; Dillon et al. 2014, 2015; Lanman & Pober 2019). Of course, this is all complicated by the response reliable error bars rests on one's ability to place reliable error bars rests on one's ability to understand the behaviour of each data source in the context of the instrument.

The intrinsic variance of the EoR signal, also known s49 as "cosmic variance", is the ensemble covariance on all s50 possible realizations of the 21-cm temperature field. If ⁵⁵¹ the field is Gaussian, then its cosmic variance is pro-⁵⁵² portional to the square of the power spectrum ampli-⁵⁵³ tude over the number of independent modes. Lanman ⁵⁵⁴ & Pober (2019), for example, estimate the cosmic varis55 ance could go as high as $\sim 35\%$ of the EoR signal for ⁵⁵⁶ HERA-like fields of view with eight hours of local side-⁵⁵⁷ real time (LST) observations using only the shortest 558 (14.6-m) baselines of HERA. This uncertainty due to ⁵⁵⁹ cosmic variance is brought down to a few percent level 560 for the spherically averaged power spectrum when us-⁵⁶¹ ing all types of baselines. Importantly, as reionization ⁵⁶² evolves, the 21-cm temperature field is expected to be-⁵⁶³ come highly non-Gaussian, and the excess contribution ⁵⁶⁴ from the non-Gaussian component could lift the cosmic ⁵⁶⁵ variance in Gaussian part staggeringly, which is signifi-⁵⁶⁶ cant and should be considered for future high-sensitivity ⁵⁶⁷ measurements (Mondal et al. 2016, 2017; Shaw et al. ⁵⁶⁸ 2019). In this paper, however, we assume that at our 569 current levels of precision the cosmic variance is sub-570 dominant to noise and foregrounds.

For instrumental noise, we assume that the noise in 572 the visibility from each baseline is independent and 573 Gaussian-distributed. This is what one might expect 574 based on the statistics of correlator outputs in a radio 575 interferometer, but is also an assumption that we will 576 see borne out in our empirical data in Section 4. With 577 these well-understood statistical properties, the noise-578 dominated delays (recall Equation 17) are relatively easy 579 to model, at least in principle.

The low-delay, foreground-dominated regimes are 580 ⁵⁸¹ trickier to model. One key problem is that the statistics 582 of foregrounds are not well-understood, particularly at 583 the low frequencies relevant to us. There are different ⁵⁸⁴ approaches that one can take to this roadblock. The 585 first is where one attempts to make a measurement of ⁵⁸⁶ the cosmological 21 cm signal only, by proactively sub-⁵⁸⁷ tracting (or simultaneously fitting) a foreground model. ⁵⁸⁸ To properly set error bars on such a power spectrum, it is ⁵⁸⁹ necessary to propagate uncertainties (accounting for the ⁵⁹⁰ possibility of mis-subtractions) in the foreground model ⁵⁹¹ to the final errors (or in the case of a simultaneous fit-⁵⁹² ting, to allow the errors on the cosmological signal to ⁵⁹³ be appropriately inflated as one marginalizes over fore-⁵⁹⁴ ground uncertainties). While conceptually straightfor-⁵⁹⁵ ward, these steps are difficult to implement in practice ⁵⁹⁶ without a deep understanding of foreground statistics.

⁵⁹⁷ Instead, in this paper we treat foregrounds as addi-⁵⁹⁸ tive systematics on the total sky emission. Crucially, ⁵⁹⁹ this means we only require empirical knowledge of the ⁶⁰⁰ foregrounds themselves, and not their full probability ⁶⁰¹ distribution. We simply quantify the error bars on a ⁶⁰² measurement of total sky emission due to instrumental

METHODS OF ERROR ESTIMATION FOR 21 CM DELAY POWER SPECTRA

Name	Description	Definition
$\sigma_{ m bs}$	Error bar of the average power spectra by bootstrapping over the collection of samples	Equation (24)
$P_{\rm diff}$	Power spectra from differenced visibility used as a form of error bar	Equation (26)
$P_{\rm N}$	Analytic noise power spectrum	Equation (27)
$P_{\rm SN}$	Error bar based on $P_{\rm N}$ but including the extra signal-noise cross term	Equation (30)
$\sigma_{ m QE-N}$	Error bar from the output covariance in QE formalism including only noise-noise term	Equation (37)
$\sigma_{ m QE-SN}$	Error bar from the output covariance in QE formalism including noise-noise term and signal-noise term	Equation (38)
$\tilde{P}_{\rm SN}$	Same as $P_{\rm SN}$ but with an adjustment for noise double-counting	Equation (31)
$ ilde{\sigma}_{ ext{QE-SN}}$	Same as $\sigma_{\text{QE-SN}}$ but with an adjustment for noise double-counting	Equation (39)

Table 3. Dictionary of error bars.

⁶⁰³ noise, rather than what the error bars on the cosmo-⁶⁰⁴ logical signal due to foreground uncertainties and noise. ⁶⁰⁵ Some understanding of foregrounds is still needed for ⁶⁰⁶ setting our errors because of the signal-noise cross terms ⁶⁰⁷ in Equation (17). Implicit in this approach is a strat-⁶⁰⁸ egy of foreground avoidance in the hunt for a cosmo-⁶⁰⁹ logical signal detection, where it is hoped that the sep-⁶¹⁰ aration between foreground-dominated and foreground-⁶¹¹ negligible regimes in Equation (17) is a clean one. It ⁶¹² is important to note, however, that we seek to compute ⁶¹³ error bars that transition smoothly between the regimes ⁶¹⁴ and are valid even if the conceptual separation is not a ⁶¹⁵ clean one in practice.⁷

In addition to foregrounds, one can treat instrumental systematics in the same way. In other words, interpreting systematics as additive "signals", the signal-noise toross term in the variance of power spectra is sourced by not just foregrounds, but also other systematics such as cable reflections and cross couplings (Kern et al. 2019, 2020a). We can apply some models to remove systematics from the signal, but the residuals due to missubtraction will still increase the total uncertainties via the signal-noise cross term. Note, however, that in this paper we do not develop a comprehensive model to account for all systematics, which is particularly difficult when unknown modeling errors are present in compli-

⁷ We stress that our analysis does not cease to apply at a certain delay—it is simply the case that at high delays, there is less of a pressing need to construct detailed models for foreground subtraction, which to some extent mitigates the need to consider the complicated statistical properties of this subtraction. It is likely that our formalism can be generalized to encompass some foreground subtraction, but detailed work beyond the scope of this paper would be necessary. As an example, suppose one were to use information at $\tau = 0$ and an instrument model to subtract off leakage from other low (but non-zero) delay modes. In such a scenario, one would need to account for the fact that the noise contributions between different delay modes are now coupled. This can in principle be accommodated with appropriate covariance matrix modeling, but we leave this to future work.

⁶²⁹ cated effects (e.g. direction-dependent gains). We will ⁶³⁰ instead argue that a procedure of using the measured ⁶³¹ visibility itself to model the foregrounds and systematics ⁶³² allows us to set robust upper bounds, provided certain ⁶³³ safeguards are in place to avoid biases. We will leave ⁶³⁴ more exquisite *a priori* characterizations of foregrounds ⁶³⁵ and systematics in the signal-noise cross terms for the ⁶³⁶ future.

Finally, one might worry that the averaging of power 637 ⁶³⁸ spectra from multiple measurements together like Equa- $_{639}$ tion (18) might complicate the statistics. Appendix B ⁶⁴⁰ shows an example of this. There, we show that when 641 averaging over redundant baseline-pairs, the variance $_{\rm 642}$ of average power spectra in the foreground-dominated $_{\rm 643}$ regime goes down roughly with $N_{\rm blp}^{-1/2}$ and not $N_{\rm blp}^{-1}$ 644 because some baselines will appear in multiple base-645 line pairs. In other words, in foreground-dominated 646 (or systematics-dominated) regimes, one cannot assume 647 that baseline pairs average together in an independent 648 fashion. This has consequences for certain methods of 649 error bar computation, such as the bootstrapping ap-⁶⁵⁰ proach discussed in the next subsection, which will tend ⁶⁵¹ to underestimate error bars in these regimes. To avoid ⁶⁵² this, one might just use *pairs* in which each baseline 653 only appears once in all baseline *pairs*, or to compute 654 a correction factor on the final results. In contrast to ⁶⁵⁵ the foreground/signal-dominated regime, in the noise-656 dominated regime one obtains correct final error bars ⁶⁵⁷ by assuming that the baseline-pair samples are indepen-658 dent (even if they are not for the aforementioned rea-⁶⁵⁹ sons). In this paper, to avoid averaging power spectra 660 over correlated samples, we will concentrate on the av-⁶⁶¹ eraging of power spectra of a single baseline-pair over ₆₆₂ multiple time samples.

We will have a more extensive discussion of the meaning of our error bars in Section 5. For concreteness, however, we will now propose several different methods for generating error bars based on the HERA power spectrum pipeline before performing quantitative com-

728

729

730

731

735

⁶⁶⁸ parisons in Section 4. For the convenience of our readers, ⁶⁶⁹ we provide Table 3 as a quick preview.

3.1. Bootstrap

Bootstrapping is a natural method for computing the 671 672 error bars on the final averaged power spectrum with 673 only minimal *a priori* modeling assumptions. Within ⁶⁷⁴ the 21 cm cosmology literature, it has previously been 675 used to set error bars on power spectrum upper limits ⁶⁷⁶ (Parsons et al. 2014; Ali et al. 2015; although see Cheng 677 et al. 2018 for caveats on these limits). Bootstrapping 678 is a process that goes hand in hand with the averaging ⁶⁷⁹ step described in Equation (18). Rather than perform-680 ing a single average, we repeatedly form a new set of 681 pre-averaged data by resampling the original set with ⁶⁸² replacement (i.e., allowing repeated entries). A new es- $\overline{\hat{P}}^{(k)}$, can be produced from $_{684}$ the kth draw. The scatter in the realizations of the final ⁶⁸⁵ averaged power spectrum is then quoted as an error bar 686 $\sigma_{\rm bs}$, such that

$$\sigma_{\rm bs}^2 = \frac{1}{N_{\rm boot}} \sum_k \left[\overline{\hat{P}}^{(k)} - \frac{1}{N_{\rm boot}} \sum_l \overline{\hat{P}}^{(l)} \right]^2, \qquad (24)$$

where N_{boot} is the number of bootstrapping sample sets. In essence, one is using the data itself as an empirical estimate of the distribution from which the data is drawn (Efron & Tibshirani 1994; Press et al. 2007).

If the input data samples are independent and identi-692 ⁶⁹³ cally distributed, bootstrapping will give the same error ⁶⁹⁴ bars as the true ones from ensemble average. However, this assumption is likely to be violated with our data. 695 Consider the two axes that we have at our disposal. One 696 possibility is to bootstrap over different time samples. 697 ⁶⁹⁸ Over short timescales, different time integrations have ⁶⁹⁹ relatively uncorrelated noise realizations. However, as our drift scan telescope moves across different local side-700 ⁷⁰¹ real time (LST) values, the sky brightness seen by the ⁷⁰² telescope changes, leading to slow changes in the noise ⁷⁰³ level for a sky-noise dominated telescope. An alternative to bootstrapping over time is to bootstrap over differ-704 ⁷⁰⁵ ent copies of an identical ("redundant") baseline group. ⁷⁰⁶ Here, the downside is that it remains an open question ⁷⁰⁷ as to how truly redundant current interferometric arrays 708 are (Dillon et al. 2020), and precisely what the conse-⁷⁰⁹ quences of non-redundancy are (Choudhuri et al. 2021). With correlated data samples, bootstrapping tends 710 to underestimate the true error bars on a final aver-711 ⁷¹² aged power spectrum (Cheng et al. 2018). On the other 713 hand, non-stationary effects such as non-redundancy can 714 inflate bootstrap errors rather than revealing the fact 715 that the data in fact come from multiple distributions.

⁷¹⁶ In later sections, we will compute error bars that come
⁷¹⁷ from bootstrapping over different LSTs, but will inter⁷¹⁸ pret these results with caution given the caveats we have
⁷¹⁹ just outlined. Of course, these caveats by no means
⁷²⁰ diminish the value of bootstrap errors as yet another
⁷²¹ consistency check, particularly when one is diagnosing
⁷²² systematic effects (e.g., Kolopanis et al. 2019).

723 3.2. Direct Noise Estimation By Visibility Differencing

The foreground and EoR signal varies relatively slowly r25 in time (or frequency), such that after differencing the r26 integrated visibility between very close LSTs (or frer27 quencies), the normalized residual,

 $V_{\text{diff}} = \frac{V(\boldsymbol{b}, \nu, t_1) - V(\boldsymbol{b}, \nu, t_2)}{\sqrt{2}}$ or

$$V_{\rm diff} = \frac{V(\boldsymbol{b}, \nu_1, t) - V(\boldsymbol{b}, \nu_2, t)}{\sqrt{2}}, \qquad (25)$$

⁷³² is almost noise-like. We can propagate such V_{diff} ⁷³³ through power spectrum estimation pipelines to gener-⁷³⁴ ate a "noise-like" power spectrum P_{diff} , such that

$$P_{\rm diff} \propto V_{\rm diff}^* V_{\rm diff} \,,$$
 (26)

⁷³⁶ where appropriate proportionality/normalization con- $_{737}$ stants allow $P_{\rm diff}$ to have the same units as—and there-738 fore be directly comparable to—power spectra. This 739 quantity can be viewed as a random variable that rep-740 resents random realizations of the noise in the system, 741 which can be used to at least roughly estimate error 742 bars in noise-dominated regimes (see Appendix C for 743 more details). It can be computed from either time-744 differenced or frequency-differenced visibilities. How-⁷⁴⁵ ever, by differencing neighbouring points in frequency, 746 we are in fact applying a high-pass filter in the delay 747 space, which means that power is suppressed at low de-748 lay modes. This is illustrated in Figure 1, and for this 749 reason that the time-differencing method is preferred for 750 empirical noise uncertainty estimation. However, it is ⁷⁵¹ important to note that many correlators do not dump ⁷⁵² data to disk fast enough for this to be feasible, as the sky ⁷⁵³ changes non-negligibly on the timescale of a few seconds. ⁷⁵⁴ The maximum time length of a single integration before ⁷⁵⁵ reaching a decorrelation threshold depends on the base-⁷⁵⁶ line length, thus ones need particular simulations for 757 their instruments to determine the suitable time scale ⁷⁵⁸ (Wijnholds et al. 2018). For the upgraded HERA corre-759 lator, it will be able to produce time-differenced visibili-⁷⁶⁰ ties on the milli-second timescale for accurate, empirical 761 noise estimates.

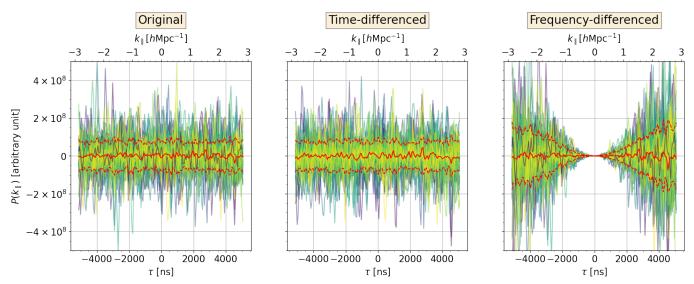


Figure 1. Here we generate ~ 60 realizations of time streams of white-Gaussian-noise visibilities, and compute the timedifferenced visibilities and frequency-differenced visibilities respectively. *Left*: Power spectra from the original visibilities. *Center*: Power spectra from time-differenced visibilities. *Right*: Power spectra from frequency-differenced visibilities. In each panel, we plot the power spectra from every realization, along with the mean (solid red) and the standard deviation (dashed red) of power spectra over all realizations. We see power spectra from frequency-differenced visibilities are highly suppressed at low delays.

762

3.3. Power Spectrum Method

⁷⁶³ With appropriate approximations (see Liu & Shaw ⁷⁶⁴ 2020 for details), it is possible to write down an ana-⁷⁶⁵ lytic expression for the noise power spectrum given a ⁷⁶⁶ system temperature, $T_{\rm sys}$ in units of Kelvin:

$$P_{\rm N} = \frac{X^2 Y \Omega_{\rm eff} T_{\rm sys}^2}{t_{\rm int} N_{\rm coherent} \sqrt{2N_{\rm incoherent}}} , \qquad (27)$$

⁷⁶⁸ where $X \equiv D_c$ and $Y \equiv \frac{c(1+z)^2}{\nu_{21}H_0E(z)}$ are conversion factors ⁷⁶⁹ from sky angles and frequencies to cosmological coordi- $_{\rm 770}$ nates, $\Omega_{\rm eff}$ is the effective beam area, $t_{\rm int}$ is the integra- $_{771}$ tion time, N_{coherent} is the number of samples averaged $_{772}$ at the level of visibility while $N_{\rm incoherent}$ is the num-773 bers of samples averaged at the level of power spectrum Zaldarriaga et al. 2004; Pober et al. 2013; Cheng et al. 774 2018; Kern et al. 2020a). This is an estimate of the 775 776 root-mean-square (RMS) of a power spectrum measure-777 ment in the limit that it is purely thermal noise dom-⁷⁷⁸ inated. The system temperature, $T_{\rm sys} = T_{\rm sky} + T_{\rm rcvr}$, 779 is the sum of the sky and receiver temperature and de-780 scribes the total noise content of the visibilities formed 781 between cross-correlating data from different antennas Thompson et al. 2017). 782

There are many ways in which the key quantity $T_{\rm sys}$ read can be estimated. For example, we can take advantage reso of the differenced visibilities discussed in the previous reso subsection. These differences can then be converted into $_{\rm 787}$ an estimate of $T_{\rm sys}$ via the relation

$$V_{\rm RMS}(\{p,q\}) = \frac{2k_b\nu^2\Omega_p}{c^2} \frac{T_{\rm sys,\{p,q\}}}{\sqrt{B\Delta t}}, \qquad (28)$$

⁷⁸⁹ where k_b is the Boltzmann constant, Ω_p is the integrated ⁷⁹⁰ beam area, B is the bandwidth, and Δt is the integration ⁷⁹¹ time at a single time sample. The "RMS" subscript ⁷⁹² signifies taking the root-mean-square of the differenced ⁷⁹³ visibilities and p and q are indices denoting two different ⁷⁹⁴ antennas that form a baseline $\{p, q\}$. This serves to ⁷⁹⁵ emphasize the fact that we can have a distinct system ⁷⁹⁶ temperature for every baseline.

⁷⁹⁷ Another way to estimate $T_{\rm sys}$ —which we use in this ⁷⁹⁸ paper—is to use auto-correlation visibilities, i.e., visibil-⁷⁹⁹ ities formed by correlating a single antenna's data with ⁸⁰⁰ itself. The system temperature on a non-auto correla-⁸⁰¹ tion baseline {p, q} is then related to the geometric mean ⁸⁰² of the auto-correlation visibilities of the two constituent ⁸⁰³ antennas as (Jacobs et al. 2015)

⁸⁰⁴
$$\sqrt{V(\{p,p\})V(\{q,q\})} = \frac{2k_b\nu^2\Omega_p}{c^2}T_{\text{sys},\{p,q\}}.$$
 (29)

⁸⁰⁵ In Figure 2 we plot the system temperatures predicted ⁸⁰⁶ using both methods for some HERA data. The lower ⁸⁰⁷ scatter with the second method is why we recommend ⁸⁰⁸ its usage.

The noise power spectrum $P_{\rm N}$ correctly describes the error bars assuming that our instrument measures nothing but noise. This may be a suitable approximation for noise-dominated delays. More generally, however,

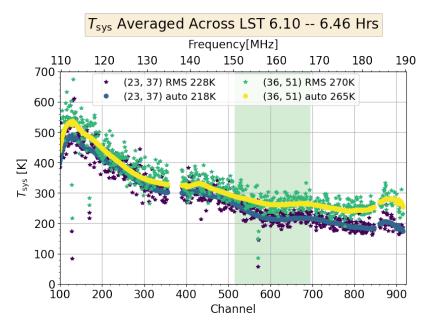


Figure 2. Comparison of two ways to estimate the system temperature based on HERA data. The system temperatures of cross-correlation visibilities on two 14.6 m baselines [indexed by HERA antenna numbers (23, 37) and (36, 51)] are averaged across the LST range of 6.10 to 6.46 hours. The green regime, from frequency channel number #515 to 695, show the HERA data band used for analysis in this paper. The label "autos" and "RMS" indicate the method (either from products of auto-visibilities or the RMS of differenced visibilities) by which the curves of system temperatures are calculated. And the values of temperatures shown in labels are the average values over the band specified by the green regime. We see the results from two methods are consistent to 5%, though the curves from auto-correlations are far less scattered.

when a signal (be it foregrounds or systematics) exists, the cross terms of Equation (17) provide an additional contribution to the noise scatter/error bars.⁸ This term exists regardless of whether one's foreground mitigation strategy is based on subtraction or avoidance. In the former case, the foreground residuals after subtracting a model from data enter into the final expression; in the latter case, the whole foreground contribution is propagated as a systematic signal in the data. We show how to take this into account in Appendix D, where we define P_{SN} as

$$P_{\rm SN}^2 \equiv \sqrt{2} {\rm Re}(P_{\tilde{x}_1 \tilde{x}_2}) P_{\rm N} + P_{\rm N}^2$$
 (30)

which serves as a characterization of the error bars on the total sky emission, consistent with the form derived ker in Kolopanis et al. (2019). Here, $\operatorname{Re}(P_{\tilde{x}_1\tilde{x}_2})$, the real part of power spectra formed from x_1 and x_2 , serves as a stand-in for a signal-only power spectrum P_{S} assuming that the signal dominates the noise (whether this signal" takes the form of foregrounds, systematics, or the cosmological signal).

Using real data helps us approximate the true $P_{\rm S}$ when ⁸³⁴ we do not possess good *a priori* models. However, by ⁸³⁵ using real data our estimate of the first term of Equaso tion (30) can in principle be negative because \tilde{x}_1 and \tilde{x}_2 contain different noise realizations. This can cause ⁸³⁸ problems, since the signal-only power spectrum is ex-⁸³⁹ pected to be non-negative. We thus enforce a hard prior ⁸⁴⁰ on this term and set negative values of $\operatorname{Re}(P_{\tilde{x}_1\tilde{x}_2})$ to $_{\rm 841}$ zero. In this way $P_{\rm SN}^2$ is always positive and the error $_{842}$ bar $P_{\rm SN}$ is at worst a conservative estimate. When we ⁸⁴³ average power spectra with error bars, this conservatism $_{844}$ leads to a substantial bias between $P_{\rm SN}$ and $P_{\rm N}$ in our fi-845 nal error estimates in the noise-dominated regime. This ⁸⁴⁶ is due to $\operatorname{Re}(P_{\tilde{x}_1\tilde{x}_2})$ in the first term of Equation (30) ⁸⁴⁷ is empirical—and therefore contains noise—which effec-848 tively yields a double-counting of the noise-noise term ⁸⁴⁹ in the variance. This double-counting does not result in ⁸⁵⁰ an average bias if one does not enforce our prior, since $_{\tt 851}$ in a noise-dominated regime ${\rm Re}(P_{\tilde{x}_1\tilde{x}_2})$ has zero mean. $_{\rm 852}$ Our prior ensures that $P_{\rm SN} > P_{\rm N}.$ Despite this, we ⁸⁵³ will show that Equation (30) is a reasonable approxima-⁸⁵⁴ tion over broad swaths of the power spectrum. More-855 over, if we understand the statistics of noise fluctuations, 856 one can simply predict—and correct for—the double- $_{857}$ counting bias in $P_{\rm SN}$. In the noise-dominated regime, ⁸⁵⁸ $P_{\rm N}$ characterizes the scatter in ${\rm Re}(P_{\tilde{x}_1\tilde{x}_2})$. Thus one can ⁸⁵⁹ estimate the expectation value of the extra noise contri-

⁸ We stress that this scatter/error is still due to instrumental noise and not the variance of the signal term. Even for a perfectly constant and known signal, the presence of the cross term alters the uncertainty, essentially having the signal term act as a multiplicative amplifier for noise fluctuations.

9

⁸⁶⁰ bution from the first term of Equation (30) by comput-⁸⁶¹ ing

$$= P_{\rm N}^2 / \sqrt{\pi} \,. \tag{31}$$

⁸⁶⁶ The integral runs over only positive values since we are ⁸⁶⁷ imposing a non-negative prior. Note that here where we ⁸⁶⁸ have neglected any complicated window function effects ⁸⁶⁹ in inserting the measured power spectrum, essentially ⁸⁷⁰ assuming that all power is locally sourced at the delay ⁸⁷¹ where it is measured. In principle, these effects can be ⁸⁷² taken into account in a more general derivation within ⁸⁷³ the quadratic estimator formalism, but we leave this for ⁸⁷⁴ future work.

⁸⁷⁵ We see from Equation (31) that the excess of $P_{\rm SN}$ ⁸⁷⁶ above $P_{\rm N}$ in the noise-dominated regime is proportional ⁸⁷⁷ to $P_{\rm N}$; thus, we can just subtract it from the initially ⁸⁷⁸ computed $P_{\rm SN}$. We then define a modified " $P_{\rm SN}$ " free ⁸⁷⁹ from the double-counting noise bias as⁹

880
$$\tilde{P}_{\rm SN} \equiv P_{\rm SN} - \left(\sqrt{1/\sqrt{\pi} + 1} - 1\right) P_{\rm N} \,.$$
 (32)

⁸⁸¹ The reduction of double-counting noise bias in this way ⁸⁸² also holds where signal dominates over noise. Since $P_{\rm N}$, ⁸⁸³ $P_{\rm SN}$, and $\tilde{P}_{\rm SN}$ are all either power spectra or constructed ⁸⁸⁴ from products of power spectra, we name this methodol-⁸⁸⁵ ogy of error estimation the "Power Spectrum Method".

886

3.4. Covariance Method

The quadratic estimator formalism leads to a natural way to write down an analytic form of error bars by propagating the input covariance matrices on visibilities into the output covariance matrices on bandpowers, which we name "Covariance Method" (see Appendix E for more details). Provided three set of matrices below containing the full frequency-frequency two-point corre⁸⁹⁴ lation information of complex visibilities

895

$$C_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* \rangle$$
,
 896

 $U_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j} \rangle$,
 $G_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i}^* \boldsymbol{x}_{2,j}^* \rangle$,

⁸⁹⁹ the variance in the real part of \hat{P}_{α} is

⁹⁰⁵ and the variance in the imaginary part of P_{α} is

$$\begin{aligned} & \operatorname{var}\left[\operatorname{Im}(\hat{P}_{\alpha})\right] \\ & _{907} = \frac{-1}{4} \left\{ \operatorname{tr}\left[(\boldsymbol{E}^{12,\alpha} \boldsymbol{U}^{22} \boldsymbol{E}^{21,\alpha*} \boldsymbol{G}^{11} + \boldsymbol{E}^{12,\alpha} \boldsymbol{C}^{21} \boldsymbol{E}^{12,\alpha} \boldsymbol{C}^{21} \right] \\ & _{908} = -2 \times (\boldsymbol{E}^{12,\alpha} \boldsymbol{U}^{21} \boldsymbol{E}^{12,\alpha*} \boldsymbol{G}^{21} + \boldsymbol{E}^{12,\alpha} \boldsymbol{C}^{22} \boldsymbol{E}^{21,\alpha} \boldsymbol{C}^{11} \right) \\ & _{909} = + (\boldsymbol{E}^{21,\alpha} \boldsymbol{U}^{11} \boldsymbol{E}^{12,\alpha*} \boldsymbol{G}^{22} + \boldsymbol{E}^{21,\alpha} \boldsymbol{C}^{12} \boldsymbol{E}^{21,\alpha} \boldsymbol{C}^{12} \right] \right\}, \\ & _{910} \end{aligned}$$

⁹¹¹ To get the final error bar on power spectra, we should ⁹¹² accurately model input covariance matrices on visibil-⁹¹³ ities and propagate them into output covariance ma-⁹¹⁴ trix on bandpowers. Generally, we assume that the ⁹¹⁵ input covariance matrices can be decomposed as $C \equiv$ ⁹¹⁶ $C_{\text{signal}} + C_{\text{noise}}$.

Assuming the distributions of the real and imaginary parts of noise in visibilities are independently and idenprovide the same frequency and are uncorrelated between different frequency channels, our expressions simplify considerably. With these assumptions, C_{noise}^{11} and C_{noise}^{22} are diagonal and C_{noise}^{12} , U_{noise}^{11} , U_{noise}^{22} , U_{noise}^{12} , G_{noise}^{11} , G_{noise}^{22} and G_{noise}^{12} are all zero. Analogous to Equation (29), one can estimate the digap and terms of C_{noise}^{11} and C_{noise}^{22} using the amplitudes of auto-correlation visibilities. For a baseline $\{p,q\}$ comgap posed by two antennas p and q, its C_{noise} is

$$C_{\text{noise},ii}^{\{p,q\},\{p,q\}}(t) \equiv \langle V_{\text{noise}}(\{p,q\},\nu_i,t)V_{\text{noise}}^*(\{p,q\},\nu_i,t)\rangle \\ \approx \left| \frac{V(\{p,p\},\nu_i,t)V(\{q,q\},\nu_i,t)}{N_{\text{nights}}B\Delta t} \right|,$$
(36)

(33)

⁹ Here we derived the correction factor $\sqrt{1/\sqrt{\pi}+1} - 1 \approx 0.251$ assuming $\operatorname{Re}(P_{\tilde{x}_1\tilde{x}_2})$ follows Gaussian distribution. This is appropriate assuming that enough power spectra formed from data at different times have been incoherently averaged together for the Central Limit Theorem to apply (we will examine this point further in Section 4.1). For a single snapshot in time, the measured power spectrum follows a Laplacian distribution (again, see Section 4.1) and the correction factor becomes $\sqrt{3/2} - 1 \approx 0.225$. Since the difference is small and in practice we operate in the Gaussianized regime anyway we use $\sqrt{1/\sqrt{\pi}+1} - 1$ in our definition.

994

1012

1021

Inserting only C_{noise} for C in Equations (34) and (35), 934 we have another estimate on the noise power variance 935 936 as

⁹³⁷
$$\operatorname{var}\left[\operatorname{Re}(\hat{P}_{\alpha})\right] = \operatorname{var}\left[\operatorname{Im}(\hat{P}_{\alpha})\right]$$
⁹³⁸
$$= \frac{1}{2}\left\{\operatorname{tr}\left[\boldsymbol{E}^{12,\alpha}\boldsymbol{C}_{\operatorname{noise}}^{22}\boldsymbol{E}^{21,\alpha}\boldsymbol{C}_{\operatorname{noise}}^{11}\right]\right\}$$
⁹³⁹
$$= \sigma_{\operatorname{QE-N}}^{2}.$$
(37)

⁹⁴¹ By taking the trace on the products of matrices, we have ⁹⁴² in fact taken a weighted average of covariance informa-⁹⁴³ tion over frequencies. The quantity σ_{QE-N} should be $_{944}$ equal to $P_{\rm N}$ from the previous subsection, provided that $_{945}$ in computing T_{sys} using Equation (27) we average over $_{\rm 946}$ frequencies to obtain an effective $T_{\rm sys}$ in the same way. ⁹⁴⁷ In this way, we see that the analytic noise power spec-⁹⁴⁸ trum essentially reduces to a special case of Equation (37).949

Of course, the fully covariant treatment here also im-950 ⁹⁵¹ plicitly includes the signal-noise cross terms discussed in $_{952}$ previous sections. Including both C_{signal} and C_{noise} in 953 C gives

$$\operatorname{var}\left[\operatorname{Re}(\hat{P}_{\alpha})\right] = \operatorname{var}\left[\operatorname{Im}(\hat{P}_{\alpha})\right]$$

$$= \frac{1}{2}\left\{\operatorname{tr}\left[\boldsymbol{E}^{12,\alpha}\boldsymbol{C}_{\operatorname{noise}}^{22}\boldsymbol{E}^{21,\alpha}\boldsymbol{C}_{\operatorname{noise}}^{11}\right] + \boldsymbol{E}^{12,\alpha}\boldsymbol{C}^{22} - \boldsymbol{E}^{21,\alpha}\boldsymbol{C}^{11}\right\}$$

$$+ E^{12,\alpha}C^{22}_{\text{signal}}E^{21,\alpha}C^{11}_{\text{noise}} \\ + E^{12,\alpha}C^{22}_{\text{noise}}E^{21,\alpha}C^{11}_{\text{signal}}] \Big\}$$

$$= \sigma_{\text{QE-SN}}^2 \,. \tag{38}$$

 $_{960}$ Since we have assumed only $C_{
m noise}^{11}$ and $C_{
m noise}^{22}$ are non-⁹⁶¹ zero, the extra signal-noise cross terms entering into the ⁹⁶² expression are just their couplings with the signal coun- $_{963}$ terparts. For that last contribution, we estimate $C_{
m signal}$ 964 as

$$C_{\text{signal},ij}^{165} \quad C_{\text{signal},ij}^{11} = C_{\text{signal},ij}^{22} = \frac{1}{2} \left[\boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* + \boldsymbol{x}_{2,i} \boldsymbol{x}_{1,j}^* \right].$$
(39)

 $_{
m 967}$ Note that this way of modelling $C_{
m signal}$ is Hermitian and ⁹⁶⁸ noise-bias free when taking the ensemble average, but ⁹⁶⁹ not positive definite. With a similar argument to $P_{\rm SN}$ ⁹⁷⁰ in subsection 3.3, we enact a hard non-negative prior $_{971}$ on C_{signal} , where rows and columns containing negative ⁹⁷² diagonal elements are set to zero. This procedure can be ⁹⁷³ shown to give signal-noise cross terms in Equation (38) 974 that are always non-negative. However, this means that $\sigma_{\rm QE-SN}$ suffers from the same double-counting noise bias $_{976}$ with $P_{\rm SN}$, and analogously we may construct a modified $\sigma_{\rm QE-SN}$ which is also free from the bias as

$$\sigma_{\text{QE-SN}} = \sigma_{\text{QE-SN}} - \left(\sqrt{1/\sqrt{\pi} + 1} - 1\right) \sigma_{\text{QE-N}} \,. \tag{40}$$

Generally speaking, the power spectrum method of 979 ⁹⁸⁰ the previous subsection is a special case of the covariance ⁹⁸¹ method of this subsection. For example, if we estimate $_{982}$ $P_{\rm N}$ in a way that carefully accounts for the frequency $_{993}$ dependence of $T_{\rm sys}$, we should find that when we in-⁹⁸⁴ sert it into the expression for $P_{\rm SN}$ that $P_{\rm SN} = \sigma_{\rm QE-SN}$. ⁹⁸⁵ The covariance method has the advantage of providing 986 off-diagonal covariances between different bandpowers 987 in addition to variances.

3.5. Summary

The methods of error bar estimation introduced in this 989 section can be categorized into two groups: 990

- $\sigma_{\rm bs}, P_{\rm SN}, \sigma_{\rm QE-SN}$: these estimate error bars on the 991 total emission, including both contributions from 992 signal-noise cross terms and noise-noise terms. 993
- P_{diff} , $P_{\text{N}}, \sigma_{\text{QE-N}}$: these estimate the error bar in the limit of noise-dominated (or noise level), only 995 including contributions from the noise-noise terms. 996

⁹⁹⁷ Before we jump into a quantitative discussion using the ⁹⁹⁸ HERA power spectrum pipeline to compute these error ⁹⁹⁹ bars in the next section, it is important to stress that 1000 there are other methods of error estimation that we do 1001 not cover in this paper. For example, LOFAR has used 1002 the Stokes V parameter as an estimator of noise level 1003 (Patil et al. 2017; Gehlot et al. 2019; Mertens et al. 2020) ¹⁰⁰⁴ since the astrophysical sky is expected to exhibit only ¹⁰⁰⁵ extremely weak circular polarization. However, reliably 1006 estimating Stokes V power requires more accurate po-¹⁰⁰⁷ larization calibration solutions than that are currently ¹⁰⁰⁸ available for HERA (Kohn et al. 2019). Since one of our 1009 goals is to test our error estimation methods on HERA 1010 data, we will omit discussion of Stokes V techniques in 1011 this paper.

4. TESTS

In this section, we quantitatively examine the error 1013 ¹⁰¹⁴ estimation methods introduced in Section 3. We apply ¹⁰¹⁵ them to 21 cm delay power spectra estimated from both ¹⁰¹⁶ simulated data and HERA Phase I data. We directly 1017 compare the relative amplitudes of the error bars pre-¹⁰¹⁸ dicted by each method, delay mode by delay mode. We 1019 also study how the error bars respond to systematics 1020 and foregrounds in different regimes of delay space.

4.1. Simulations from a Toy Model

We start with simulations from a toy model. This al-1022 1023 lows us to generate a large number of realizations, with ¹⁰²⁴ which we can numerically test the validity of our error ¹⁰²⁵ bars in the ensemble-averaged limit. Our simulated vis-1026 ibilities include only the foregrounds and noise. For the

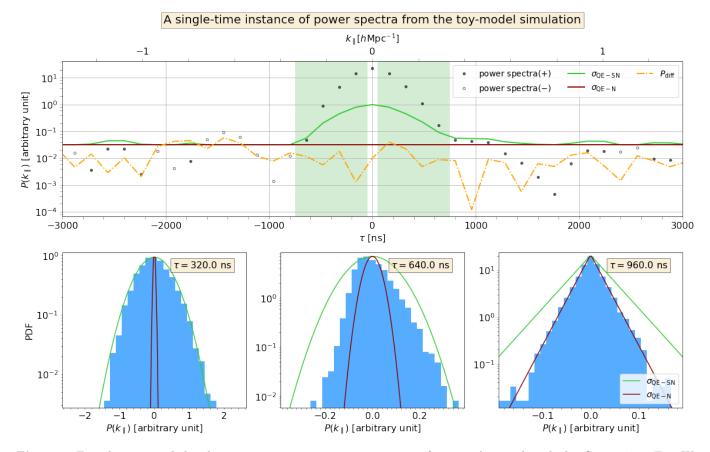


Figure 3. Error bars on single-baseline-pair power spectra at one timestamp from simulations described in Section 4.1. Top: We plot power spectra together with error bar types P_{diff} , $\sigma_{\text{QE-SN}}$ and $\sigma_{\text{QE-N}}$. The green shaded regime ranges from ± 50 ns to ± 750 ns, where the foreground power is dominant over the noise power. Bottom: We plot histograms of bandpowers from ~ 10000 realizations at $\tau = 320.0$ (strongly foreground-dominated regime), 640.0 (transition regime), 960.0 (noise-dominated regime) ns respectively, along with probability distribution function (PDF) curves predicted using the $\sigma_{\text{QE-SN}}$ and $\sigma_{\text{QE-N}}$ values at the same delay. At $\tau = 320.0, 640.0$ ns, the PDF takes a Gaussian form. At $\tau = 960.0$ ns, the PDF takes the form of a Laplacian. The $P(k_{\parallel})$ values used in the histograms have been subtracted from the mean value of all realizations. We can see error bars are roughly comparable to each other in amplitudes in the noise-dominated regime. At $\tau = 320.0$, the envelope of the histogram matches the PDF using $\sigma_{\text{QE-SN}}$. At $\tau = 960.0$, the envelope of the histogram matches the PDF using $\sigma_{\text{QE-N}}$, while we see the PDF using $\sigma_{\text{QE-SN}}$ is broader. Therefore, using $\sigma_{\text{QE-SN}}$ will lead to a more conservative estimate of errors in this delay regime.

1027 foreground portion of the visibilities we draw a random visibility from a frequency-frequency covariance matrix 1028 of the form $C_{ij} = A \exp\left[-(\nu_i - \nu_j)^2/l^2\right]$, where A and l 1029 characterize the amplitude and correlation length of the 1030 foreground signal, respectively. The adopted covariance 1031 ¹⁰³² model creates smoothly varying functions in frequency ¹⁰³³ space, which is roughly in accordance with the relatively ¹⁰³⁴ flat spectral structure of real foregrounds. Here we simulate visibilities on two redundant baselines for 20 con-1035 1036 secutive timestamps. We set A = 25 and l = 5MHz, 1037 and the foreground visibilities are kept the same on each ¹⁰³⁸ baseline and over all timestamps. The noise components of the visibilities on each baseline at each timestamp 1039 1040 are independently drawn from the same white Gaussian 1041 distribution $\mathcal{N}(0, \sigma^2 = 1)$. We produce ~ 10000 realiza¹⁰⁴² tions of such visibilities and then use hera_pspec code¹⁰ ¹⁰⁴³ to estimate the delay power spectra and to compute the ¹⁰⁴⁴ error bars discussed previously.

In Figure 3, we plot power spectra together with a 1045 In Figure 3, we plot power spectra together with a 1046 few of the error bar types computed from one times-1047 tamp of data from the simulations. We compute P_{diff} 1048 by differencing visibilities between the one timestamp 1049 and the next. We use Equation (37) and (38) to cal-1050 culate error bars of the "covariance method", while we 1051 evaluate C_{noise} using the exact covariance matrix from 1052 which noise visibilities are drawn, since we did not sim-1053 ulate visibilities on auto-correlation baselines. In the 1054 top panel of Figure 3, the green shaded regime (which

¹⁰ https://github.com/HERA-Team/hera_pspec

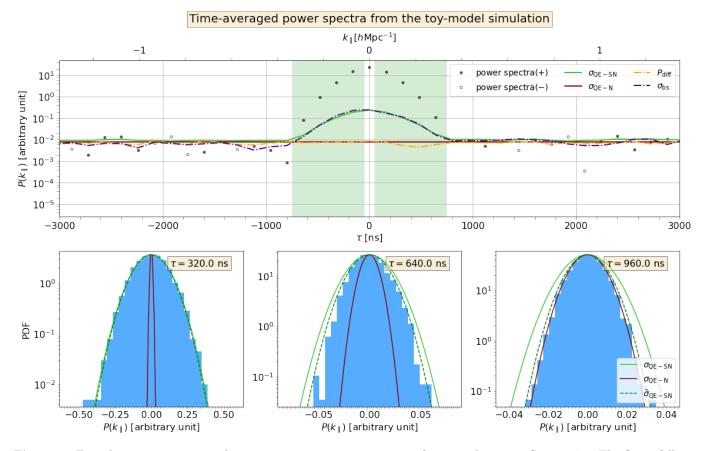


Figure 4. Error bars on time-averaged power spectra over 20 timestamps from simulations in Section 4.1. The figure follows similar conventions to Figure 3, except *Top*: $\sigma_{\rm bs}$ is added; *Bottom*: All PDFs take the forms of Gaussian and the ones specified by $\tilde{\sigma}_{\rm QE-SN}$ are appended. We observe good agreement between $\sigma_{\rm bs}$ and $\sigma_{\rm QE-SN}$ in the foreground-dominated regime, and the consistency of all types of labeled error bars in the noise-dominated regime. After the incoherent average, we see histograms at all delays become Gaussian. Additionally, $\tilde{\sigma}_{\rm QE-SN}$ is clearly different from $\sigma_{\rm QE-SN}$ where the signal is less dominant. Especially at $\tau = 960.0$ ns, the PDF using $\tilde{\sigma}_{\rm QE-SN}$ is closer to the exact noise-dominated version using $\sigma_{\rm QE-N}$.

1055 ranges from ± 50 ns to ± 750 ns) is where the foreground 1056 power is dominant over the noise power. We see that $_{1057}$ $P_{\rm diff}$ and $\sigma_{\rm QE-N}$ are insensitive to the foreground power 1058 in this regime, and when moving to higher delays, the ¹⁰⁵⁹ noise levels characterized by $P_{\text{diff}}, \sigma_{\text{QE-N}}$, and $\sigma_{\text{QE-SN}}$ are ¹⁰⁶⁰ very close to one another. Compared to the other two, P_{diff} shows much more scatter from delay to delay since 1061 it is a more empirical estimation of noise based on ex-1062 amining what amounts to noise *realizations*. Notice also 1063 that as expected by construction, the $\sigma_{\text{QE-SN}}$ curve al-1064 1065 ways lies above $\sigma_{\text{QE-N}}$, due to the fact we enforce a zero clipping on the signal-noise cross term. 1066

¹⁰⁶⁷ In the bottom panel of Figure 3, we plot histograms ¹⁰⁶⁸ of power spectra at three delays ($\tau = 320.0, 640.0$ and ¹⁰⁶⁹ 960.0 ns) by accumulating data points from ~ 10000 re-¹⁰⁷⁰ alizations. The results here are therefore representative ¹⁰⁷¹ of ensemble-averaged expectations. At each delay, we ¹⁰⁷² also plot theoretical predictions for the probability dis-¹⁰⁷³ tribution functions (PDFs). Precisely what form these ¹⁰⁷⁴ PDFs take will depend on the delay. In the low-delay ¹⁰⁷⁵ regime, Equation (17) shows the variation comes from 1076 single powers of visibility noise, which we assume is ¹⁰⁷⁷ Gaussian. (Recall that we are not modelling the signal 1078 as a random field, in the sense that it does not partici-¹⁰⁷⁹ pate in our ensemble average.) The result is a Gaussian ¹⁰⁸⁰ PDF. At high delays Equation (17) shows that the power ¹⁰⁸¹ spectrum is the cross-multiplication of two independent ¹⁰⁸² realization of noise. The resulting PDF is a Laplacian. ¹⁰⁸³ Both of these distributions take one free parameter (the ¹⁰⁸⁴ standard deviation of power) and we show predictions 1085 where this standard deviation is specified by $\sigma_{\rm QE-SN}$ and 1086 $\sigma_{\text{OE-N}}$. At $\tau = 320.0$ and 640.0 ns, we plot Gaussian ref-1087 erence PDFs. At $\tau = 960.0 \,\mathrm{ns}$, we plot a Laplacian 1088 reference PDF. We see at $\tau = 320.0 \,\mathrm{ns}$, where fore-¹⁰⁸⁹ ground power is overwhelmingly dominant, the shape of ¹⁰⁹⁰ the histogram is indeed Gaussian-like, and its envelope ¹⁰⁹¹ matches the PDF curves using $\sigma_{\text{QE-SN}}$. At $\tau = 960.0$ ¹⁰⁹² where noise is dominant, the shape of the histogram is ¹⁰⁹³ indeed Laplacian-like, and its envelope matches the PDF 1094 curves using $\sigma_{\text{QE-N}}$ (since $\sigma_{\text{QE-N}}$ does not suffer from

¹⁰⁹⁵ the conservatism of $\sigma_{\rm QE-SN}$ discussed in Section 3.3). ¹⁰⁹⁶ With $\tau = 640.0$ ns we have a transition case between ¹⁰⁹⁷ the two extremes. The distribution of power spectra ¹⁰⁹⁸ will be skewed since neither the signal nor the noise ¹⁰⁹⁹ dominates in this occasion (for a mathematical proof of ¹¹⁰⁰ the skewness see Appendix F). The histogram does not ¹¹⁰¹ match the PDF predicted by either standard deviation, ¹¹⁰² but note from the widths of the PDFs that an error bar ¹¹⁰³ given by $\sigma_{\rm QE-SN}$ is a conservative error, as we designed ¹¹⁰⁴ it to be.

In Figure 4, we present the same types of error bars 1105 1106 plus a bootstrapped one on power spectra which were formed by incoherently averaging over 20 timestamps. 1107 We see in the green regime that $\sigma_{\rm bs}$ agrees with $\sigma_{\rm QE-SN}$. 1108 1109 All the different kinds of error bars agree well with each other in the noise dominated regime, and with the ex-1110 tra time averaging step (compared to Figure 3) P_{diff} ex-1111 ¹¹¹² hibits less scatter. Again, we plot histograms of the ¹¹¹³ averaged power spectra from Monte-Carlo simulations 1114 against Gaussian PDF curves at $\tau = 320.0, 640.0$ and ¹¹¹⁵ 960.0 ns. One feature to note from the histogram is that 1116 each distribution has become nearly Gaussian. This is ¹¹¹⁷ simply due to the Central Limit Theorem as power spectra are averaged together incoherently. In addition to 1118 ¹¹¹⁹ $\sigma_{\text{OE-SN}}$ and $\sigma_{\text{OE-N}}$, we also plot the PDFs using $\tilde{\sigma}_{\text{OE-SN}}$ ¹¹²⁰ which eliminates the double-counting bias in $\sigma_{\text{QE-SN}}$. It ¹¹²¹ is as expected that the PDF using $\tilde{\sigma}_{\rm QE-SN}$ is more close ¹¹²² to the one using $\sigma_{\rm QE-N}$ at the noise-dominated delay 1123 mode.

1124 4.2. Application to HERA Phase I Data

The HERA Phase I data used for analysis in this pa-1125 per consists of 18 observing nights taken in the Karoo 1126 ¹¹²⁷ Desert, South Africa from December 10th to 28th, 2017. The HERA array consisted of ~ 40 functional anten-1128 ¹¹²⁹ nas during observations, which were taken across a 100 1130 to 200 MHz band comprised of 1024 channels and dual polarization "X" and "Y" feeds. [See Table 1 of Kern 1131 1132 et al. (2020b) for more details on the array and correlator specifications during the observations.] The data 1133 used in this work were first preprocessed with the HERA 1134 ¹¹³⁵ analysis pipeline (internally called H1C IDR2.2¹¹). This 1136 includes automated metric evaluation and data flag-¹¹³⁷ ging for faulty antennas and radio frequency interference (RFI). In addition, the data are redundantly calibrated 1138 (Dillon et al. 2020), absolutely calibrated (Kern et al. 1139 1140 2020b), binned and averaged across observing nights, ¹¹⁴¹ in-painted over RFI gaps in frequency and then treated ¹¹⁴² for known instrumental systematics (Kern et al. 2020a).

¹¹⁴³ We pick a slice of HERA Phase I visibilities taken from ¹¹⁴⁴ a 14.6-m redundant baseline group during an LST range ¹¹⁴⁵ of 5.75 to 6.10 hours. The visibilities in each timestamp ¹¹⁴⁶ are integrated over ~ 10 seconds. We select visibilities ¹¹⁴⁷ falling within a 150.3 to 167.8 MHz band to compute ¹¹⁴⁸ power spectra. We use pseudo-Stokes I visibilities $V_{\rm pI}$, ¹¹⁴⁹ which are constructed by combining the visibilities from ¹¹⁵⁰ a cross correlation of two X feeds ("XX") and a cross-¹¹⁵¹ correlation two Y feeds ("YY") as follows:

$$V_{\rm pI} = \frac{1}{2} \left(V_{\rm XX} + V_{\rm YY} \right) \,. \tag{41}$$

¹¹⁵³ In forming the delay power spectra we cross correlate ¹¹⁵⁴ visibilities from different baselines (e.g., b_1 - b_2 , b_1 - b_3 , b_2 -¹¹⁵⁵ b_3 , etc.) and between odd and even timestamps (e.g., ¹¹⁵⁶ t_1 - t_2 , t_3 - t_4 , t_5 - t_6 , etc.) to form delay power spectra. In ¹¹⁵⁷ this way, we obtain power spectra on 253 baseline-pairs ¹¹⁵⁸ at 30 timestamps.

¹¹⁵⁹ We show the power spectra from one baseline-pair ¹¹⁶⁰ at one timestamp in Figure 5, together with error bar ¹¹⁶¹ types P_{diff} , $\sigma_{\text{QE-SN}}$, $\sigma_{\text{QE-N}}$, P_{SN} , and P_{N} . The P_{diff} errors ¹¹⁶² are computed from time-differenced visibilities, e.g., for ¹¹⁶³ power spectra at the cross timestamp $t_1 - t_2$ we form ¹¹⁶⁴ $V_{\text{diff}} \propto V(t_2) - V(t_1)$ and then we cross multiply V_{diff} ¹¹⁶⁵ from two different baselines to obtain the correspond-¹¹⁶⁶ ing P_{diff} for that baseline pair. We calculate $\sigma_{\text{QE-SN}}$ ¹¹⁶⁷ and $\sigma_{\text{QE-N}}$ using Equations (38) and (37) with $\mathbf{C}_{\text{signal}}$ ¹¹⁶⁸ and $\mathbf{C}_{\text{noise}}$ specified by Equation (39) and (36). Equa-¹¹⁶⁹ tions (30) and (27) give the expressions for P_{SN} and P_{N} . ¹¹⁷⁰ See hera_pspec for detailed implementation.

In the top panel of Figure 5, we see all error bars agree well with each other in the noise-dominated regime (the red curve for $P_{\rm N}$ is almost exactly underneath the brown curve for $\sigma_{\rm QE-N}$, making the former difficult to bright green curve for the teal curve for $P_{\rm SN}$ versus the bright green curve for $\sigma_{\rm QE-SN}$). The green shaded regime transing from $\pm 20 \,\mathrm{ns}$ to $\pm 200 \,\mathrm{ns}$ is where foregrounds are expected to dominate. Here we see that $P_{\rm diff}$ also $\sigma_{\rm QE-SN}$. This tells us that the time-differenced visibilties contain non-negligible foreground residuals, which negligibly over the ~ 10 seconds of difference between negligibly our time samples.

In Section 3, we argued that the "covariance method" and the "power spectrum method" should be equivalent the "power spectrum method" should be equivalent use to each other. In the middle and bottom panels of Figure 5, we compute the relative difference in magnitudes between error bars, setting $\sigma_{\text{QE-SN}}$ and $\sigma_{\text{QE-N}}$ as the benchmarks respectively. We see that P_{SN} differs from $\sigma_{\text{QE-SN}}$ and P_{N} from $\sigma_{\text{QE-N}}$ by less than 1%, so they are essentially equivalent in our pipeline. On the other hand, P_{diff} can differ from $\sigma_{\text{QE-N}}$ at more than the 10%-

¹¹ http://reionization.org/manual_uploads/HERA069_IDR2. 2_Memo_v3.html

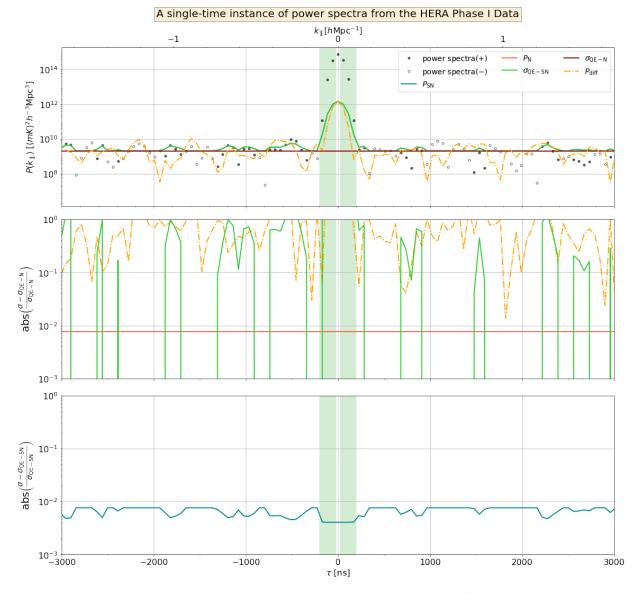


Figure 5. Error bars on single-baseline-pair power spectra at one timestamp from HERA Phase I data. The visibilities are selected from a band spanning 150.3 to 167.8 MHz. *Top*: Power spectra with error bars. The green shaded regime ranging from ± 20 ns to ± 200 ns is expected to be foreground dominated. *Middle*: Absolute relative difference between selected error bars with $\sigma_{\text{QE-N}}$. *Bottom*: Absolute relative difference between selected error bars with $\sigma_{\text{QE-SN}}$. We see numerically that P_{SN} differs from $\sigma_{\text{QE-SN}}$ by less than 1% and that the same is true for P_{N} and $\sigma_{\text{QE-N}}$.

¹¹⁹⁴ level due to the fact that it is highly scattered. Note ¹¹⁹⁵ that $\sigma_{\text{QE-SN}}$ and P_{SN} are also scattered at some delays, ¹¹⁹⁶ whereas they are equal to $\sigma_{\text{QE-N}}$ and P_{N} at other delays. ¹¹⁹⁷ This is due to our imposition of a non-negative prior on ¹¹⁹⁸ the signal-noise cross term.

¹¹⁹⁹ In Figure 6, we show the power spectra with error bars ¹²⁰⁰ on the same baseline-pair as Figure 5, but with the fur-¹²⁰¹ ther step of incoherently averaging over 30 time samples. ¹²⁰² We still see that all error bars (with bootstrap errors $\sigma_{\rm bs}$ ¹²⁰³ added) agree well in the noise-dominated regime. At low ¹²⁰⁴ delays, $\sigma_{\rm bs}$ peaks at an even higher value than $\sigma_{\rm QE-SN}$. ¹²⁰⁵ This is because the sky is not unchanged over different ¹²⁰⁶ timestamps, so the bootstrapped error bars over time ¹²⁰⁷ samples are inflated. After incoherently averaging, we ¹²⁰⁸ still see $P_{\rm SN}$ differing from $\sigma_{\rm QE-SN}$ and $P_{\rm N}$ differing from ¹²⁰⁹ $\sigma_{\rm QE-N}$ by less than 1%. On the other hand, $P_{\rm diff}$ and $\sigma_{\rm bs}$ ¹²¹⁰ differ from $\sigma_{\rm QE-N}$ at roughly the 10% level in the noise-¹²¹¹ dominated regime. We also see that in the limit of noise ¹²¹² domination, $\sigma_{\rm QE-SN}$ has a relative bias over $\sigma_{\rm QE-SN}$ by ¹²¹³ about 30%. Therefore, using $\sigma_{\rm QE-SN}$ or $P_{\rm SN}$ leads to ¹²¹⁴ a conservative estimate of one's errors, as we expected. ¹²¹⁵ For comparing, we also plot results of $\tilde{\sigma}_{\rm QE-SN}$, which ¹²¹⁶ eliminates the double-counting noise bias in $\sigma_{\rm QE-SN}$. ¹²¹⁷ The relative difference between $\tilde{\sigma}_{\rm QE-SN}$ and $\sigma_{\rm QE-N}$ is re-

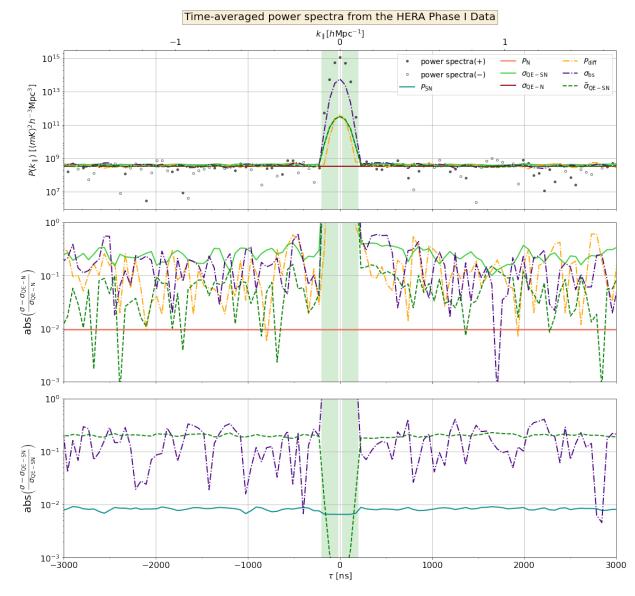


Figure 6. Error bars on single-baseline-pair power spectra incoherently averaged over 30 time samples from the same slice of HERA Phase I data as Figure 5. Our plotting conventions also follow those of Figure 5 for other conventions. We add results from $\tilde{\sigma}_{QE-SN}$ in each panel. In the center panel we see the relative difference between $\tilde{\sigma}_{QE-SN}$ and σ_{QE-N} drops remarkably from $\sim 30\%$ to a few percent compared to the σ_{QE-SN} , demonstrating the effectiveness of our noise-double-counting bias removal. On the other hand, in the bottom panel we see that going from σ_{QE-SN} to $\tilde{\sigma}_{QE-SN}$ results in significant changes only at the noise-dominated delays, and thus there one can always elect to use $\tilde{\sigma}_{QE-SN}$ even in foreground-dominated regimes.

¹²¹⁸ duced to a few percents in the noise-dominated regime. ¹²¹⁹ While $\tilde{\sigma}_{\text{QE-SN}}$ is not significantly modified from $\sigma_{\text{QE-SN}}$ ¹²²⁰ in the foreground-dominated regime. Thus if we want ¹²²¹ a compromise on reflecting the properties of the signal-¹²²² noise cross term while not introducing noise bias, $\tilde{\sigma}_{\text{QE-SN}}$ ¹²²³ might be our choice.

¹²²⁴ What we have established so far is the *relative* agree-¹²²⁵ ment (or lack thereof) between different types of error ¹²²⁶ bars in different regimes. However, we have not yet es-¹²²⁷ tablished the *absolute* validity of these error bars on real ¹²²⁸ data (i.e., we have not ruled out the possibility that they ¹²²⁹ are all incorrect in the same way). For simulated power ¹²³⁰ spectra we were able to compare the Monte-Carlo his-¹²³¹ tograms with the PDF curves predicted from the error ¹²³² bars. The good match between the two gave us confi-¹²³³ dence in applying our error estimation methods. Might ¹²³⁴ we perform similar analyses for power spectra from real ¹²³⁵ data? Unfortunately, in real observations we only have ¹²³⁶ one realization of the sky so that we cannot reach en-¹²³⁷ semble average limit by accumulating data points from ¹²³⁸ a large number of realizations. Also, unlike simulated ¹²³⁹ data with understood statistics, real data will contain

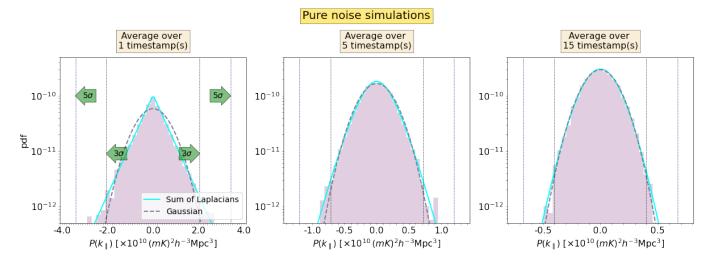


Figure 7. We plot the histograms of incoherently averaged power spectra over certain timestamps from pure noise simulations. The histogram in each column contains ~ 10000 data points. We compute σ_{QE-N} and refer to Equation (G33) to evaluate the "Sum of Laplacians" PDF. Data points have been subtracted from the mean over all realizations. We also plot the equivalent Gaussian PDF with the same variance as the "Sum of Laplacians" PDF. The green arrows point to the dotted vertical lines representing " 3σ " and " 5σ ", where σ is the square root of the variance of the predicted PDF. We see the envelopes of the histograms match the PDFs predicted using (G33) very well. As a check, the fractions of outliers beyond 3σ in each histogram are (1.27%, 0.57%, 0.25%), while the corresponding values from the predicted PDFs are (1.34%, 0.58%, 0.22%)—a very close agreement. And with more time samples to be incoherently averaged, the shape of the histogram becomes increasingly Gaussian, which is a consequence of the central-limit theorem. As expected, we also see the distribution get narrower with more samples averaged together.

¹²⁴⁰ systematics that make their statistics more complicated ¹²⁴¹ and difficult to understand (although this may change ¹²⁴² as the field of 21 cm cosmology continues to mature).

For now, we may partially achieve our goal by checking 1243 the distributions of noise-like modes in our power spec-1244 tra of real data. The noise-like modes refer to power 1245 spectra at higher delays where noise power is thought to 1246 be dominant and systematics are negligible. As we dis-1247 cussed in Section 3, we expect the noise visibilities to be 1248 Gaussian-distributed. This makes it possible to analyt-1249 ically compute the resultant statistics of power spectra. 1250 In Appendix G, we derive the mathematical form of the 1251 PDF of incoherently averaged noise-dominated power 1252 ¹²⁵³ spectra. The final result, Equation (G33), shows that the correct PDF is a weighted sum of a series of Lapla-1254 cian distributions. As a numeric test of the derivation, 1255 we produce Monte-Carlo histograms of incoherently av-1256 eraged power spectra from pure Gaussian noise visibil-1257 ities with an increasing number of averaged samples in 1258 Figure 7. We generate ~ 10000 realizations of power 1259 1260 spectra with multiple time samples, and evaluate the power spectra at a single timestamp, as well as what it 1261 would be if incoherently averaged over 5 or 15 times-1262 tamps. For realizations at each time sample, we can 1263 $_{\rm ^{1264}}$ calculate the error bar $\sigma_{\rm QE-N}$ of the power spectra and ¹²⁶⁵ substitute them into Equation (G33). It is clear that the ¹²⁶⁶ predicted PDF matches the envelope of the histograms 1267 and that the shape of the histograms of averaged power

¹²⁶⁸ spectra become increasingly Gaussian when averaging ¹²⁶⁹ is over more timestamps. This is again a result of the ¹²⁷⁰ Central Limit Theorem.

Confronting our results with real data, we use the 1271 1272 power spectra from the same HERA Phase I data set 1273 as Figures 5 and 6 to generate the histograms. To ac-1274 cumulate sufficient data points for a histogram, we view 1275 all noise-like modes in power spectra over different re-1276 dundant baseline-pairs as independent realizations. And 1277 we carry out the incoherent average over the time axis. 1278 Because the noise level at different baseline pairs may 1279 differ, all power spectra are first normalized by being 1280 divided over their corresponding $\sigma_{\text{QE-N}}$ and then sub-1281 tracted from the mean of all data points. After the 1282 normalization, we have a uniform error bar $\sigma_{\text{QE-N}}$ for 1283 all data points at each time sample. We then make his-1284 tograms and compare their envelopes with the PDF of "Sum of Laplacians" predicted using Equation (G33). 1285

Before we jump to the results, we first take a look take a look at the data set which includes RFI gap inpainting but without the removal of systematics. For histograms drawn in Figure 8, we evaluate the distributions of power spectra at delays larger than 2000 ns and at delays between 500 and 1500 ns, respectively. In the former case, we see the shape of histograms are perfectly consistent with the predicted PDF, and the distributions become more Gaussian and narrower with increasing number of averaged samples, similar to what we saw in Fig-

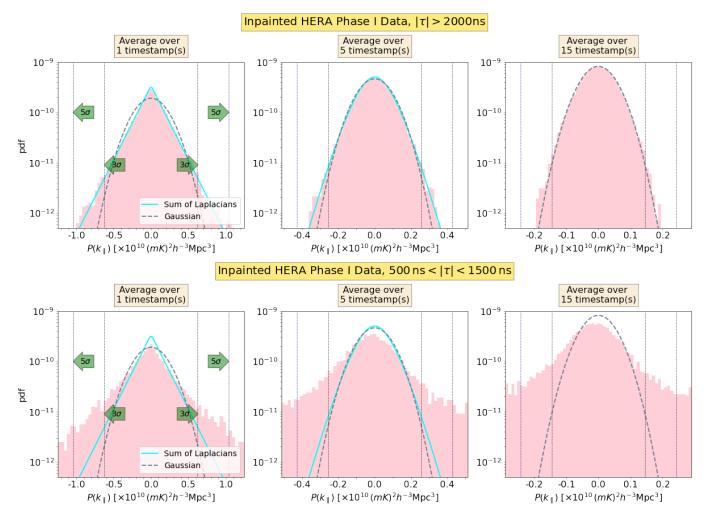


Figure 8. Histograms of power spectra at noise-like modes from the same HERA Phase I data used in Figure 5 and 6, including RFI gap inpainting, but without the removal of systematics. The data points are accumulated from power spectra at the same delays from different redundant baseline-pairs. Because their noise levels may differ, they are first normalized by dividing out their corresponding σ_{QE-N} and then having the mean of all data points subtracted off. In this way we have a uniform σ_{QE-N} for all points, and we use Equation (G33) to compute the "Sum of Laplacians" PDF. Refer to Figure 7 for other plotting conventions. *Top*: histograms from power spectra at all delays larger than 2000 ns, where there are ~ 27000 points in each column. *Bottom*: histograms from power spectra at delays between 500 and 1500 ns, where there are ~ 9000 points in each column. As a check, in the top panel, the fractions of outliers beyond 3σ in each histogram are (1.49%, 0.65%, 0.40%), which are close to the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%). In the bottom panel, the fractions of outliers beyond 3σ in each histogram are (7.95%, 10.70%, 11.46%), which greatly exceed corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%).

¹²⁹⁶ ure 7. While in the latter case, we observe the his-¹²⁹⁷ tograms are flattened and much wider compared to the ¹²⁹⁸ predicted PDF and there exist evidently hefty wings on ¹²⁹⁹ either ends. Numerically, the fractions of outliers be-¹³⁰⁰ youd 3σ in each histogram are (7.95%, 10.70%, 11.46%), ¹³⁰¹ which greatly exceed corresponding values from pre-¹³⁰² dicted PDFs (1.36%, 0.57%, 0.24%). This is a remark-¹³⁰³ able proof that significant systematics exist at lower de-¹³⁰⁴ lays in inpainted only data, as we expect.

¹³⁰⁵ We produce histograms for the systematics-removed ¹³⁰⁶ data, as we used for Figures 5 and 6, in Figure 9. At ¹³⁰⁷ delays larger than 2000 ns, we still see a good match between the Monte-Carlo histograms with the predicted PDFs. While at delays between 500 and 1500 ns, we see the deviations between histograms and PDFs are highly use the deviations between histograms and PDFs are highly in suppressed, compared to Figure 8. This is not surprising since we have exerted systematics removal. Though there is still a little excess above PDFs in histograms bars that one might quote on a power spectrum meanual surement (which serve as a summary statistic for the main bulk of the PDF rather than its wings). However, use the deviations are worth keeping an eye on, especially use when performing rigorous jackknife or null tests in an

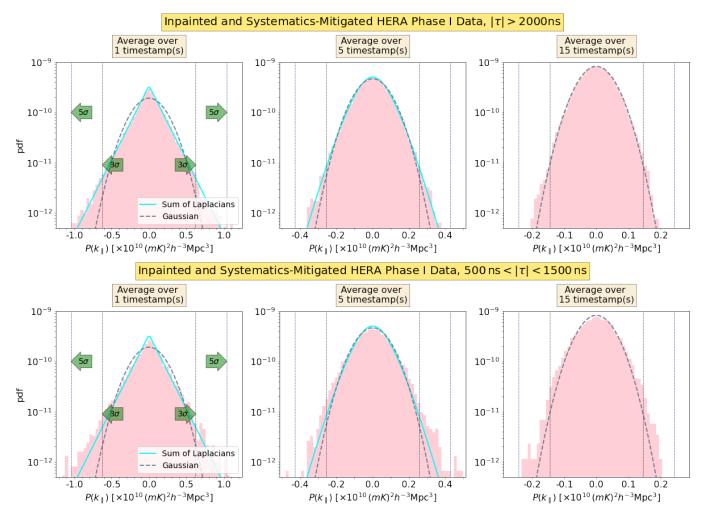


Figure 9. Histograms of power spectra at noise-like modes from inpainted and systematics-mitigated HERA Phase I data. The power spectra used here come from exactly the same data set as Figure 5 and 6. As a check, in the top panel the fractions of outliers beyond 3σ in each histogram are (1.48%, 0.63%, 0.39%), which are close to the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%). And in the bottom panel, the fractions of outliers beyond 3σ in each histogram are (2.19%, 1.32%, 0.80%), which slightly exceed the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%), but at a much lower level than the disagreement seen in Figure 8.

1320 attempt to understand the systematics in one's instru-¹³²¹ ment. As noted above, the excessive wings of the his-1322 tograms in the bottom panel of Figure 8 can serve as 1323 a diagnostic tool for systematics that lead to deviations from Gaussian noise-like visibilities. They may also be 1324 used to investigate the related question of how instru-1325 ¹³²⁶ mental systematics (e.g., Kern et al. 2019, 2020a) might affect the validity of one's error bars. There are of course 1327 limitations of this analysis, but we show the systematics 1328 does not effectively change the noise properties of power 1329 1330 spectra at high delays. Readers should interpret Figure ¹³³¹ 8 and 9 as a quality check of HERA Phase I data, which 1332 shows the power spectra at high delays (> 2000 ns) and 1333 at middle delays (500-1500 ns) after systematics miti-1334 gation are close to the predicted behaviors of Gaussian 1335 noise visibilities. Thus $\sigma_{\rm OF-N}$ (along with other equivalate that not all systematics can be cleanly corrected much more complicated than the simple Gaussian distrito always perform consistency checks on the data, intake the data in the simple data distrito always perform consistency checks on the data, intake the data distributed to the ones we have performed the data distributed to the data distributed di

5. DISCUSSION

¹³⁴⁸ In previous sections, we have examined a number of ¹³⁴⁹ different methods for assigning error bars to a HERA ¹³⁵⁰ power spectrum. Here, we perform a comparison of the

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

¹³⁵¹ different types of error bars, highlighting the advantages¹³⁵² and disadvantages of each.

¹³⁵³ We first consider the error bars using the "covariance ¹³⁵⁴ method" ($\sigma_{\text{QE-N}}$ and $\sigma_{\text{QE-SN}}$) to those computed using ¹³⁵⁵ the "power spectrum method" (P_{N} and P_{SN}).

• The "covariance method" error bars analytically 1356 take the covariance of the input visibilities and 1357 propagate them through to the output covariance 1358 of the bandpowers, via general formulae given by 1359 Equations (34) and (35). There are two weak-1360 nesses to this approach. First, the output errors 1361 will only be as good as the modeling of the input 1362 covariances. This modeling is particularly difficult 1363 for foregrounds and systematics, which can have 1364 statistical properties that are not entirely under-1365 stood. In this paper, we adopt a strategy where 1366 we view systematics as non-random, and empiri-1367 cally estimate them from the real data. The other 1368 weakness of our "covariance method" is that our 1369 derivations rely on Gaussianity (Indeed, it would 1370 be strange for this method to only require an input 1371 covariance—a two-point function—if it were capa-1372 ble of capturing the effects of non-Gaussianity). 1373 This assumption will also be violated by fore-1374 grounds and systematics as well the cosmological 1375 signal (which is an effect that was modeled in Mon-1376 dal et al. 2016, 2017; Shaw et al. 2019). 1377

Sidestepping these modeling restrictions on the 1378 "covariance method" are the noise-dominated 1379 bandpowers at high delays. In this regime, we use 1380 an input covariance matrix that is C_{noise} that is 1381 diagonal, with the diagonal elements set by the 1382 auto-correlation visibilities as Equation (36). The 1383 resulting error bars we call $\sigma_{\text{QE-N}}$ (see Table 3 for 1384 a reminder of our notation). These error bars are 1385 confirmed by tests on simulations and real data in 1386 Figure 7 and Figure 9, which verify that the error 1387 bars do properly account for the spread seen in 1388 an ensemble of Monte Carlo simulations. Further 1389 bolstering our confidence in using the "covariance 1390 method" are their agreement with other error met-1391 rics at our disposal. Figures 5 and 6 show that in 1392 the noise-dominated regime, the error bars using 1393 the "covariance method" are in excellent agree-1394 ment with the bootstrap errors $\sigma_{\rm bs}$, error bars us-1395 ing the 'power spectrum method', and the power 1396 spectrum of differenced data P_{diff} . 1397

• The agreement between these different error estimation methods raises the question of why one might favour the "covariance method" over others. Consider first a comparison between $\sigma_{\rm QE-N}$ and

 $P_{\rm N}$ from the "power spectrum method". These two methods are in fact quite similar, because $P_{\rm N}$ is also an analytically propagated measurement of error, as one can see for instance in the derivation of Zaldarriaga et al. (2004). The difference is one of generality, whether in the inputs, the intermediate steps, and the outputs. On the input side, $P_{\rm N}$ assumes uncorrelated noise between visibilities whose amplitude is governed by the radiometer equation; $\sigma_{\text{QE-N}}$ can accept an arbitrary input covariance (even though in our tests we take it to be diagonal). During the actual propagation of errors, the derivation of $P_{\rm N}$ assumes that fluctuations in $uv\nu$ space are uncorrelated; σ_{QE-N} makes no such approximations. Finally, on the output side, the "power spectrum method" returns a single error bar; the 'covariance method' provides a full bandpower covariance matrix.

Of course, in reality not all delay modes are noise-1421 dominated, and reliable error bars need to be placed 1422 even in signal-dominated regimes (whether this sig-1423 nal comes in the form of instrument systematics, fore-1424 grounds, or—ultimately—the cosmological signal). It is 1425 difficult to place rigorous error bars on bandpowers in 1426 these regimes: unless one has a physical model for all the 1427 systematics involved (with knowledge of their probabil-1428 ity distributions), it is an ill-defined problem to ask how 1429 errors propagate. Unfortunately, the presence of unex-1430 plained (or at least not fully explained) systematics is 1431 the current state of affairs in 21 cm cosmology, and truly 1432 rigorous error bars will need to wait for future work on 1433 the modeling of systematics.

Even with well-defined (if not perfectly characterized) 1434 1435 systematics, the meaning of one's error bars is subtle. ¹⁴³⁶ For instance, foregrounds such as a continuum of unre-1437 solved point sources can be appropriately treated as a 1438 random field. Given this, one's approach might be to say 1439 that the unresolved point sources contribute some effec-1440 tive power spectrum to the measurement. With such 1441 a formalism, there is a fundamental limit to how well 1442 these foregrounds can be characterized, since they come 1443 with their own form of cosmic variance. In other words, ¹⁴⁴⁴ if one is trying to place constraints on foregrounds, one ¹⁴⁴⁵ must account for the fact that the particular realization $_{\tt 1446}$ of foregrounds that we see may not be representative 1447 of foregrounds in general. This sort of error is diffi-1448 cult to compute in general, as the squared nature of 1449 the power spectrum means that the non-Gaussian—and 1450 therefore non-trivial—four-point function of the fore-1451 grounds needs to be known.

A goal of characterizing the general statistical proptional statistical statistical statistical proptional statistical statisti

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1454 necessarily ambitious. In particular, for a cosmological measurement one is not particularly concerned with the 1456 behaviour of a "typical" foreground; one is primarily 1457 concerned with how our particular realization of fore-1458 grounds affect our observations. As a concrete exam-¹⁴⁵⁹ ple, if our Galaxy's synchrotron emission happens to be ¹⁴⁶⁰ anomalously bright compared to a typical galaxy's synchrotron emission, it is our own brighter foregrounds 1461 1462 that we need to deal with! With such a mindset, it 1463 is more appropriate to consider all foregrounds as nonrandom components of our data. By this, we do not 1464 mean that the foregrounds need to be spatially or spec-1465 trally constant; rather, we mean that in hypothetical 1466 1467 random draws for taking ensemble averages, the cosmo-1468 logical signal and the instrumental noise change with each new realization, but the foregrounds remain the 1469 1470 same. If the foregrounds are not formally random, our error bars are the result of instrumental noise (and in 1471 principle cosmic variance of the cosmological signal, al-1472 1473 though this contribution is small for current upper lim-1474 its).

It is important to stress, however, that even if our er-1475 1476 ror bars are due to the randomness of instrumental noise, the resulting error bars are *not* simply what one obtains 1477 1478 from imagining a noise-only measurement and propa-¹⁴⁷⁹ gating the noise fluctuations through to a power spectrum. This is because the power spectrum is a squared 1480 statistic. Thus, in the squaring of a measurement that 1481 contains both noise and a (non-random) signal, there 1482 are signal-noise cross-terms to contend with. These 1483 terms are zero in expectation, but do not have non-1484 1485 zero variance. This means that knowledge of the signal (whether from systematics or foregrounds) is needed to 1486 1487 correctly account for instrumental noise errors in non-1488 noise-dominated regimes.

- In short, even if we lower our ambitions and forgo incorporating knowledge about signal *statistics* into our error calculations, understanding the signal itself is necessary for computing noise-sourced error bars. This requirement is where noise-only computations like $P_{\rm N}$ and $\sigma_{\rm QE-N}$ fall short.
- This shortcoming is remedied by generalized ver-1495 sions of $P_{\rm N}$ and $\sigma_{\rm QE-N}$, which we dub $P_{\rm SN}$ and 1496 $\sigma_{\text{QE-SN}}$. These are given by Equations (30) and 1497 (38). The key idea is that in signal dominated 1498 regimes, the measured data itself can be a good 1499 approximation to the signal. Thus, we may rein-1500 sert the data in an appropriate way to capture 1501 signal terms in our general expressions. Figures 3 1502 and 4 show that these error bars work well in both 1503 signal-dominated and noise-dominated regimes. 1504

- Although we treat foregrounds and systematics as a single signal term that is directly estimated from measured data in this paper, we note that for future high-sensitivity detections, more elaborate modeling of both are needed. Of course, there is also the possibility of unknown systematic effects, which our formalism does not account for.
- However Moreover, two cautionary warnings are in order when applying Equations (30) and (38). The first is that because the measured data are now part of the error bars themselves, it can be dangerous to use these error bars to inform data weightings for downstream averages in one's pipeline (e.g., in further incoherent time averaging of power spectra or in incoherent averaging of power spectra from different baselines). If the data weightings are coupled to the data themselves, our so-called quadratic estimators are no longer quadratic. As shown in Cheng et al. (2018), a blind application of the usual methods for normalizing quadratic estimators leads to power spectrum estimates that are biased low ("signal loss"). For this reason, while $P_{\rm SN}$ and $\sigma_{\rm QE-SN}$ are fine ways to compute error bars, we recommend that any error-motivated data weightings be based on $P_{\rm N}$ and $\sigma_{\rm QE-N}$ instead.
- The second warning is that there almost certainly exist regimes that are neither signal- nor noisedominated, where signal and noise are comparable in magnitude. Here, it becomes necessary to contend with the fact that a noisy measurement of the signal can be unphysically negative. Said differently, if our estimate of the signal itself contains noise, we are in effect double counting the noise in our error computations. One approach is to enact a hard prior on the positivity of the signal. This is what was done in all computations of $P_{\rm SN}$ and $\sigma_{\rm OE-SN}$ in this paper. However, Figures 3 and 4 show that this has the effect of inflating the error bars. Given that this is a conservative bias on the errors, this may or may not be appropriate depending on one's application.
- A slightly more accurate approach is to assume that instrumental noise is Gaussian distributed and to quantitatively predict and correct the noise bias in the errors. Implementing this correction gives $\tilde{P}_{\rm SN}$ and $\tilde{\sigma}_{\rm QE-SN}$, which are given by Equations (32) and (40) respectively. Figures 3 and 4 show that this corrects the bias and gives error bars that are no longer overly conservative. However, because this correction is designed to give

Error Bar Type	Pros	Cons
Bootstrap $(\sigma_{\rm bs})$	Easy to implement with minimal <i>a priori</i> assumptions; can be useful as a reference statistics in diagnosis of systematics	Not strictly applicable in the presence of non-independent and non-statistically sta- tionary data samples
Power spectra from differ- enced visibilities (P_{diff})	Data product close to raw data	Provides noise <i>realizations</i> rather than di- rect error bars, resulting in considerable scatter
Power spectrum method $(P_{\rm N} \text{ and } P_{\rm SN})$	Accurately captures variances/error bars in noise-dominated regimes (both $P_{\rm N}$ and $P_{\rm SN}$) and signal-dominated regimes ($P_{\rm SN}$)	Does not contain covariance information between different bandpowers; $P_{\rm SN}$ re- quires non-negativity prior on the signal, which slightly inflates errors; downstream data weightings using $P_{\rm SN}$ at risk of signal loss
Covariance method ($\sigma_{\rm QE-N}$ and $\sigma_{\rm QE-SN}$)	Same accuracy as $P_{\rm N}$ and $P_{\rm SN}$ for variance information and additionally provides full covariance information	Derivation assumes data is Gaussian; $\sigma_{\text{QE-SN}}$ requires non-negativity prior on the signal, which slightly inflates errors; downstream data weightings using $\sigma_{\text{QE-SN}}$ at risk of signal loss
Modified covariance method $(\tilde{\sigma}_{\text{QE-SN}})$ and modified power spectrum method \tilde{P}_{SN}	Eliminates conservative double counting of noise in noisy estimates of the signal	Occasional error predictions that are slightly smaller than instrumental noise expectations from $\sigma_{\rm QE-N}$ and $P_{\rm N}$

Table 4. A summary of the advantages and disadvantages of different error estimation methods in 21 cm power spectrum estimation.

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

unbiased errors in expectation, it will occasionally give error bars that are slightly smaller than the error predicted by noise-only estimators such as $P_{\rm N}$. In practice, however, we find that this is a reasonably rare occurence.

¹⁵⁶¹ With the aforementioned difficulties with error esti¹⁵⁶² mation in the presence of poorly characterized signals,
¹⁵⁶³ one may be tempted to make use of more empirically
¹⁵⁶⁴ based error estimates. These estimates also come with
¹⁵⁶⁵ their strengths and weaknesses:

• As discussed in Section 3.2, P_{diff} from frequency-1566 differenced data suffers from a bias at low delays. 1567 Figure 1 shows that even at reasonably high de-1568 lays ~ 1500 ns, the bias can be significant. Thus, 1569 while P_{diff} from frequency-differenced data is a 1570 useful asymptotic check at high delays, it is not 1571 a robust estimator of our errors. Implementing 1572 $P_{\rm diff}$ using time-differenced data does not have the 1573 delay-dependent bias, as one can also see in Figure 1574 1. However, care must be taken to ensure that the 1575 time differencing is small enough to suppress any 1576 sky signal that is coherent between adjacent time 1577 samples (Dillon et al. 2015). In addition, with a 1578 differencing scheme one is ultimately constructing 1579 noise *realizations*, not noise statistics. The result-1580 ing error bars thus show considerable scatter. In 1581 that sense, the analytically propagated error bars 1582

vary in a more physically plausible—smoother way with time and frequency.

• The problem of a noisy error bar estimate persists with $\sigma_{\rm bs}$. However, bootstrapping has several appealing features that makes it a crucial check on the analytically propagated error bars. First, no assumptions are made regarding Gaussianity of the input data. Thus, the fact that our $\sigma_{\rm bs}$ agree with our analytically propagated errors-which assumed the input noise in the visibilities—is an essential validation of our assumptions. In a similar way, $\sigma_{\rm bs}$ may potentially capture increased variance due to systematics since it is a measure of uncertainties of total sky emission. However, the bootstrap method is known to suffer from some important limitations. For example, as noted in Appendix B, if systematics are correlated between samples, the bootstrap method tends to underestimate errors. Also, bootstrapped error bars will be inflated from non-stationary effects such as sky brightness changes and non-redundancies between nominally identical baselines. Precisely how these non-stationary effects should be folded into one's error estimation is reserved for future work, but the correct approach will certainly be more sophisticated than a simple inflation of errors. That said, this increase in bootstrap errors due to non-

1660

1661

1662

1663

1664

stationarity can serve as a useful diagnostic forfurther examination of unexpected systematics.

¹⁶¹² In Table 4 we summarize the discussion in this section ¹⁶¹³ with an succinct listing of the pros and cons of each error ¹⁶¹⁴ estimation method.

1615 6. CONCLUSIONS

¹⁶¹⁶ In this paper, we have systematically studied a va-¹⁶¹⁷ riety of error bar methodologies in 21 cm power spec-¹⁶¹⁸ trum estimation. We have synthesized some of the com-¹⁶¹⁹ mon techniques in the literature, outlining their relative ¹⁶²⁰ strengths and weaknesses in quantifying noise levels and ¹⁶²¹ in accounting for residual systematics. Specifically, we ¹⁶²² considered a variety of types of error estimators, includ-¹⁶²³ ing

• Power spectrum methods. This includes the stan-1624 dard $P_{\rm N}$ estimator for the noise power spectrum 1625 found in the literature (Zaldarriaga et al. 2004; 1626 Parsons et al. 2012a; Pober et al. 2013; Cheng 1627 et al. 2018; Kern et al. 2020b) and the $P_{\rm SN}$ es-1628 timator that involves cross products with signal 1629 power spectrum $P_{\rm S}$, as detailed in Kolopanis et al. 1630 (2019). Here we set $P_{\rm S}$ to be the real values of ex-1631 perimentally observed power spectrum, which is 1632 a good approximation when the signal dominates 1633 the noise. Our implementation of $P_{\rm SN}$ leads to 1634 a double-counting bias compared to $P_{\rm N}$ which is 1635 considerable in noise-dominated regimes, and we 1636 show how a modified form $P_{\rm SN}$ can eliminate this 1637 bias. 1638

• Covariance methods. This consists of propagat-1639 ing a data covariance matrix between frequencies 1640 per timestamp and per baseline-pair through the 1641 quadratic estimator (QE) formalism to the band-1642 power covariance matrix (Liu & Tegmark 2011; 1643 Dillon et al. 2014; Liu et al. 2014a,b), includ-1644 ing error metrics described here: $\sigma_{\rm QE-N}$ for noise-1645 dominated spectra and $\sigma_{\text{OE-SN}}$ that include signal-1646 noise terms. These have identical variance pre-1647 dictions as $P_{\rm N}$ and $P_{\rm SN}$ by construction but also 1648 provide bandpower covariance information. 1649

• Other methods. Other methods studied in this 1650 work includes the bootstrapping method that can 1651 lead to misreported errors when not handled care-1652 fully (Cheng et al. 2018), as well as the method 1653 of using differenced visibilities as noise realiza-1654 tions propagated through a power spectrum esti-1655 mator. We show that differencing in frequency 1656 is ill-advised for this approach. Differencing in 1657 time avoids some problems, but either differencing 1658

scheme generates error estimates that are rather scattered. However, we stress the importance of these more empirically based methods are useful cross-checks (e.g., in the manner performed in this paper) that can also be helpful diagnostics for systematics (e.g., Kolopanis et al. 2019).

Using simulations and real HERA Phase I data, we 1665 1666 show that these methods are generally in agreement with each other, demonstrating their robustness and 1667 1668 their applicability to future delay power spectrum mea-¹⁶⁶⁹ surements from HERA. Importantly, we show that for ¹⁶⁷⁰ bandpowers that are not completely dominated by noise. ¹⁶⁷¹ one needs to go beyond the standard thermal noise esti-1672 mates and account for signal-noise cross terms in order ¹⁶⁷³ to fully describe the uncertainty on the band power. In ¹⁶⁷⁴ a series of Appendices, we also examine sources of skew-1675 ness in probability distributions of measured power spec-¹⁶⁷⁶ trum bandpowers (Appendices A and F), derive exact 1677 expressions for the probability distributions of incoher-¹⁶⁷⁸ ently summed delay power spectra (Appendix G), and 1679 examine whether common baselines in the cross multi-¹⁶⁸⁰ plication of multiple baseline *pairs* affects assumptions ¹⁶⁸¹ about error independence (Appendix B). The insights 1682 gained in this paper regarding error estimation are appli-¹⁶⁸³ cable in 21 cm cosmology beyond HERA. They provide ¹⁶⁸⁴ a foundation upon which to develop rigorous error esti-¹⁶⁸⁵ mation methods which will prove to be key in unlocking 1686 the potential of the 21 cm line as a powerful probe of 1687 our high redshift universe.

¹⁶⁸⁸ This material is based upon work supported by the Na-¹⁶⁸⁹ tional Science Foundation under Grant Nos. 1636646 ¹⁶⁹⁰ and 1836019 and institutional support from the HERA ¹⁶⁹¹ collaboration partners. This research is funded in part 1692 by the Gordon and Betty Moore Foundation. HERA ¹⁶⁹³ is hosted by the South African Radio Astronomy Ob-¹⁶⁹⁴ servatory, which is a facility of the National Research ¹⁶⁹⁵ Foundation, an agency of the Department of Science 1696 and Innovation. Parts of this research were sup-¹⁶⁹⁷ ported by the Australian Research Council Centre of 1698 Excellence for All Sky Astrophysics in 3 Dimensions 1699 (ASTRO 3D), through project number CE170100013. 1700 G. Bernardi acknowledges funding from the INAF 1701 PRIN-SKA 2017 project 1.05.01.88.04 (FORECaST), ¹⁷⁰² support from the Ministero degli Affari Esteri della Co-1703 operazione Internazionale - Direzione Generale per la 1704 Promozione del Sistema Paese Progetto di Grande Ril-1705 evanza ZA18GR02 and the National Research Founda-¹⁷⁰⁶ tion of South Africa (Grant Number 113121) as part ¹⁷⁰⁷ of the ISARP RADIOSKY2020 Joint Research Scheme, 1708 from the Royal Society and the Newton Fund under 1709 grant NA150184 and from the National Research Foun-1710 dation of South Africa (grant No. 103424). P. Bull 1711 acknowledges funding for part of this research from ¹⁷¹² the European Research Council (ERC) under the Eu-1713 ropean Union's Horizon 2020 research and innovation ¹⁷¹⁴ programme (Grant agreement No. 948764), and from ¹⁷¹⁵ STFC Grant ST/T000341/1. J.S. Dillon gratefully 1716 acknowledges the support of the NSF AAPF award ¹⁷¹⁷ #1701536. N. Kern acknowledges support from the MIT 1718 Pappalardo fellowship. A. Liu acknowledges support 1719 from the New Frontiers in Research Fund Exploration 1720 grant program, the Canadian Institute for Advanced ¹⁷²¹ Research (CIFAR) Azrieli Global Scholars program, a 1722 Natural Sciences and Engineering Research Council of 1723 Canada (NSERC) Discovery Grant and a Discovery 1724 Launch Supplement, the Sloan Research Fellowship, and 1725 the William Dawson Scholarship at McGill.

APPENDIX

A. SKEWNESS IN POWER SPECTRA ESTIMATED FROM MULTIPLE IDENTICAL BASELINES

In this Appendix, we consider a source of skewness in probability distributions of delay spectra. In particular, we represent the noise properties of power spectra formed from a set of identical ("redundant") baselines. We show that represent the noise properties of power spectra formed from a set of identical ("redundant") baselines. We show that represent the set of the resulting power spectra will exhibit some represent the set of identical ("redundant") baselines. We show that this skewness with mean zero, the resulting power spectra will exhibit some represent the data into two distinct set represent the samples (e.g., even and odd time stamps) and estimates power spectra that are not only cross-baselines but also cross-times. As a concrete example, suppose that on the *i*th copy of a particular baseline we measure $\tilde{x}_i \equiv c_i + id_i$ after taking the delay transform, where c_i and d_i are independently Gaussian distributed random variables with variance $\sigma^2/2$. This represents the behavior of \tilde{x}_i at noise-dominated delays. If only two identical baselines were available, cross multiplying them to obtain a power spectrum would yield

$$\tilde{x}_1 \tilde{x}_2^* = (c_1 + id_1)(c_2 - id_2) = (c_1 c_2 + d_1 d_2) + i(d_1 c_2 - c_1 d_2).$$
(A1)

¹⁷³⁹ Consider the real part. Since c_1 and c_2 are independent random variables, c_1c_2 is a symmetric distribution about zero ¹⁷⁴⁰ (and in fact is given by K_0 , the zeroth modified Bessel function of the second kind). The same reasoning holds for the ¹⁷⁴¹ d_1d_2 term. Since $\{c_i\}$ and $\{d_i\}$ are independent, it follows that c_1c_2 and d_1d_2 are also independent. The result is that ¹⁷⁴² the probability distribution for $c_1c_2 + d_1d_2$ is given by the convolution of the distributions for the individual terms. ¹⁷⁴³ With the two contributing distributions both symmetric about zero, their convolution inherits this property, and is in ¹⁷⁴⁴ fact given by the Laplacian distribution discussed in Section 4.1.

¹⁷⁴⁵ The situation is different when we have more than two baselines. Taking all possible pairwise combinations (excluding ¹⁷⁴⁶ the multiplication of a baseline with itself to eliminate noise bias), we obtain

$$\operatorname{Re}[\tilde{x}_1\tilde{x}_2^* + \tilde{x}_1\tilde{x}_3^* + \tilde{x}_2\tilde{x}_3^*] = (c_1c_2 + c_1c_3 + c_2c_3) + (d_1d_2 + d_1d_3 + d_2d_3),$$
(A2)

¹⁷⁴⁸ where we have grouped our result into two terms that can be considered separately because $\{c_i\}$ and $\{d_i\}$ are inde-¹⁷⁴⁹ pendent. Consider the first term. It has zero mean:

$$\langle c_1 c_2 + c_1 c_3 + c_2 c_3 \rangle = \langle c_1 \rangle \langle c_2 \rangle + \langle c_1 \rangle \langle c_3 \rangle + \langle c_2 \rangle \langle c_3 \rangle = 0 \tag{A3}$$

¹⁷⁵¹ because the different $\{c_i\}$ are independent. However, the resulting distribution has a skewness to it, which can be seen ¹⁷⁵² by the fact that the third moment is non-zero:

$$\begin{array}{ll} & 1753 & \langle (c_1c_2 + c_1c_3 + c_2c_3)^3 \rangle = \langle c_2^3c_1^3 + c_3^3c_1^3 + 3c_2c_3^2c_1^3 + 3c_2^2c_3c_1^3 + 3c_2c_3^3c_1^2 + 6c_2^2c_3^2c_1^2 + 3c_2^2c_3c_1^2 + 3c_2^2c_3^3c_1 + 3c_2^2c_3^2c_1 + c_2^3c_3^3 \rangle \\ & 1754 & = 6\langle c_2^2c_3^2c_1^2 \rangle = 6\langle c_2^2 \rangle \langle c_3^2 \rangle \langle c_1^2 \rangle \neq 0 \end{array}$$

¹⁷⁵⁵ [Of course, in principle we should be taking the cube of Equation (A2) in its entirety, not just the first term. However, ¹⁷⁵⁶ the independence of $\{c_i\}$ and $\{d_i\}$ means we reach the same conclusion.] The non-zero third moment shown here ¹⁷⁵⁷ arises because the three terms that make up the sum are correlated as a triplet, even though each pair has no average ¹⁷⁵⁸ covariance. For instance, the covariance between c_1c_2 and c_1c_3 is

$$\langle c_1 c_2 c_1 c_3 \rangle - \langle c_1 c_2 \rangle \langle c_1 c_3 \rangle = \langle c_1^2 \rangle \langle c_2 \rangle \langle c_3 \rangle = 0.$$
(A5)

¹⁷⁶⁰ This implies that even though c_1c_2 , c_1c_3 , and c_2c_3 are not independent, for the purposes of computing the variance of ¹⁷⁶¹ the final result, one obtains the same result even if one pretends that these contributions are independent. This result ¹⁷⁶² is explored in more detail in the first half of Appendix B

To summarize, the different moments of the distribution provide different insights into power spectrum estimation with different baseline pair combinations. The mean of the distribution is zero, indicating that there is no bias (as one might expect for cross-correlation spectra). The variance turns out to be the same expression as if we had completely independent baseline pairs, so the noise averages down with the number of baseline pairs as one might naively have expected them to (without worrying about correlations). However, the skewness is non-zero. This complicates the interpretation of null tests that implicitly assume that the probability distributions of noise-dominated delays are symmetric.

¹⁷⁷⁰ Importantly, these considerations do not apply when we consider the imaginary part, which is given by

$$\operatorname{Im}[\tilde{x}_1\tilde{x}_2^* + \tilde{x}_1\tilde{x}_3^* + \tilde{x}_2\tilde{x}_3^*] = c_2d_1 + c_3d_1 - c_1d_2 + c_3d_2 - c_1d_3 - c_2d_3.$$
(A6)

¹⁷⁷² This has a third moment given by $\langle (c_2d_1 + c_3d_1 - c_1d_2 + c_3d_2 - c_1d_3 - c_2d_3)^3 \rangle$. To get terms that are non-zero ¹⁷⁷³ under the expectation value, we require terms that contain *squares* of the random variables when we multiply out the ¹⁷⁷⁴ polynomial. For example, the first term c_2d_1 must be multiplied onto c_2d_3 , because there is no other c_2 term in the ¹⁷⁷⁵ expression to pair to. This gives us $c_2^2d_1d_3$. However, we now need to multiply this onto d_1d_3 , or we end up with a ¹⁷⁷⁶ stray d_1 and a stray d_3 . But none of the terms are the product of two $\{d_i\}$, so no matter what terms we pair this up

1738

174

1750

1759

1777 with, it will average to zero. This logic applies to any of the terms, so the distribution of the imaginary part will not 1778 be skewed. Because of this, statistical tests involving the imaginary part of a power spectrum estimator can be more easily interpreted using symmetric distributions. 1779

Our result here has implications for how one should avoid the noise bias in power spectrum measurements. Two 1780 commonly used methods for doing so are to cross-multiply either different identical baselines together or different time 1781 ¹⁷⁸² stamps together. Here we have shown that employing only one of these will incur a skewness. (While our discussion above focused on cross multiplying different baselines, the same conclusions hold if we consider cross multiplying more 1783 than two groups in time—after all, the indices in our mathematical expressions can simply be considered timestamp 1784 ¹⁷⁸⁵ indices instead of baseline indices.) However, if we perform cross-multiplications across both time and baseline axes, 1786 the skewness vanishes. To see this, imagine that we split our data into odd and even time samples, labeled with superscripts "o" and "e" respectively. Equation (A2) then becomes 1787

 $\operatorname{Re}[\tilde{x}_{1}^{e}\tilde{x}_{2}^{o*} + \tilde{x}_{1}^{e}\tilde{x}_{3}^{o*} + \tilde{x}_{2}^{e}\tilde{x}_{3}^{o*}] = (c_{1}^{e}c_{2}^{o} + c_{1}^{e}c_{3}^{o} + c_{2}^{e}c_{3}^{o}) + (d_{1}^{e}d_{2}^{o} + d_{1}^{e}d_{3}^{o} + d_{2}^{e}d_{3}^{o}),$ (A7)1788

1789 and cubing this expression as before to compute the third moment, one finds no non-zero terms after taking the 1790 ensemble average.

B. VARIANCE OF AVERAGED POWER SPECTRA FROM DEPENDENT BASELINE-PAIR SAMPLES 1791

In this Appendix, we consider the effect of having common baselines between different baseline *pairs* used to form 1792 $_{1793}$ power spectra. Inside a redundant baseline group consisting of $N_{\rm bl}$ different baselines, then we can construct up to $_{1794} N_{\rm blp} = \frac{1}{2} N_{\rm bl} (N_{\rm bl} - 1)$ different baseline pairs and we can form a power spectrum using each pair. Consider the averaged 1795 power spectrum over these baseline pairs and the variance of this average. The form of the averaged power spectrum 1796 is

$$\overline{P} = \frac{\sum_{(p,q>p)} P_{pq}}{\frac{1}{2}N_{\rm bl}(N_{\rm bl}-1)},\tag{B8}$$

1798 where the sum is over all possible (p,q) pairs of baselines. The variance of the averaged power spectrum does not $_{1799}$ simply go down with $N_{\rm blp}^{-1}$ because the data being averaged together are not fully independent of each other. For example, P_{12} and P_{13} both carry information from baseline #1. 1800

Let the signal be $\tilde{s} \equiv a + bi$, and $\tilde{n}_p \equiv c_p + d_p i$ and $\tilde{n}_q \equiv c_q + d_q i$ be the noise realizations in the *p*th and *q*th 1801 $_{1802}$ baselines. The signal \tilde{s} is identical in each baseline, since we are assuming that we are combining data from identical ("redundant") baselines. The random variables c_p, d_p, c_q, d_q ... are IID normal variables with variance σ^2 . In the 1803 foreground-negligible regime, recall from Equation (17) that the average power spectrum is given by 1804

$$\overline{P} = \frac{\sum_{(p,q>p)} n_p^* n_q}{\frac{1}{2} N_{\rm bl}(N_{\rm bl}-1)} = \frac{\sum_{(p,q>p)} c_p c_q + d_p d_q}{\frac{1}{2} N_{\rm bl}(N_{\rm bl}-1)} + i \frac{\sum_{(p,q>p)} c_p d_q - c_q d_p}{\frac{1}{2} N_{\rm bl}(N_{\rm bl}-1)} \,. \tag{B9}$$

1806 We notice

$$\operatorname{Var}\left(\sum_{(p,q>p)} c_p c_q\right) = \left\langle \sum_{(p,q>p)} c_p c_q \sum_{(r,t>r)} c_r c_t \right\rangle - \left[\left\langle \sum_{(p,q>p)} c_p c_q \right\rangle\right]^2 = \left\langle \sum_{(p,q>p)} c_p c_q \sum_{(r,t>r)} c_r c_t \right\rangle$$

$$= \sigma^4 \left[\sum_{(p,q>p,r,t>r)} (\delta_{pr} \delta_{qt} + \delta_{pt} \delta_{qr})\right] = \frac{N_{\mathrm{bl}}(N_{\mathrm{bl}} - 1)}{2} \sigma^4, \quad (B10)$$

1810 which means that the variance in the real part of \overline{P} is $\frac{4\sigma^4}{N_{\rm bl}(N_{\rm bl}-1)}$. For the imaginary part we compute

$$\begin{aligned}
& \operatorname{Var}\left(\sum_{(p,q>p)} c_p d_q - c_q d_p\right) = \left\langle \sum_{(p,q>p)} \{c_p d_q - c_q d_p\} \sum_{(r,t>r)} \{c_r d_t - c_t d_r\} \right\rangle - \left[\left\langle \sum_{(p,q>p)} \{c_p d_q - c_q d_p\} \right\rangle \right]^2 \\
& = \left\langle \sum_{(p,q>p)} \{c_p d_q - c_q d_p\} \sum_{(r,t>r)} \{c_r d_t - c_t d_r\} \right\rangle = \sigma^4 \left[\sum_{(p,q>p,r,t>r)} (2\delta_{pr}\delta_{qt} - 2\delta_{pt}\delta_{qr}) \right] \\
& = N_{\operatorname{bl}}(N_{\operatorname{bl}} - 1)\sigma^4, \end{aligned}$$
(B11)

1813 1814

TAN ET AL.

¹⁸¹⁵ so that the variance of the imaginary part of \overline{P} is also $\frac{4\sigma^4}{N_{\rm bl}(N_{\rm bl}-1)}$. Since the number of baseline pairs is given by ¹⁸¹⁶ $N_{\rm bl}(N_{\rm bl}-1)/2$ and $2\sigma^4$ is the variance we would expect to get from a single baseline pair, we can see that \overline{P} averages ¹⁸¹⁷ down in a manner that is identical to the scenario where the baseline pairs are independent.

¹⁸¹⁸ In foreground-dominant regimes, the average power spectrum goes to

$$\overline{P} = \frac{\sum_{(p,q>p)} s^* s + s^* n_q + n_p^* s}{\frac{1}{2} N_{\rm bl}(N_{\rm bl} - 1)} = \frac{\sum_{(p,q>p)} a^2 + b^2 + a(c_p + c_q) + b(d_p + d_q)}{\frac{1}{2} N_{\rm bl}(N_{\rm bl} - 1)} + i \frac{\sum_{(p,q>p)} a(d_q - d_p) + b(c_p - c_q)}{\frac{1}{2} N_{\rm bl}(N_{\rm bl} - 1)}.$$
(B12)

¹⁸²⁰ The variance in the real part is $\frac{4(a^2+b^2)\sigma^2}{N_{\rm bl}}$ and the variance in the imaginary part is $\frac{4(N_{\rm bl}+1)(a^2+b^2)\sigma^2}{3N_{\rm bl}(N_{\rm bl}-1)}$. They now ¹⁸²¹ go down roughly as $N_{\rm blp}^{-1/2}$ and are larger than the variance from independent samples by factors of $(N_{\rm bl}-1)$ and ¹⁸²² $(N_{\rm bl}+1)/3$ respectively.

1823

1819

C. TIME-DIFFERENCED VISIBILITIES AS NOISE ESTIMATORS

In this Appendix, we establish the validity of using time-differenced visibilities as a way to estimate noise error bars. The key idea is that if we form residuals of data vectors $x_p(\nu, t)$ by subtracting data from the *p*th baseline in adjacent time bins $(t_1 \text{ and } t_2)$ from each other, the result should be noise dominated. The same holds true for delay-transformed visibilities, where the residual can be written as $\tilde{n}_p(\tau, t_2) - \tilde{n}_p(\tau, t_1)$. Suppressing τ and demoting the time variable to a subscript for notational brevity, we write $\tilde{n}_{p,t} = c_{p,t} + d_{p,t}i$, where $c_p, d_p...$ are IID normal variables with variance $1829 \sigma^2$. The power spectra constructed from such residuals are

$$P_{\text{diff}} = \frac{(\tilde{n}_{1,t2} - \tilde{n}_{1,t_1})^*}{\sqrt{2}} \frac{(\tilde{n}_{2,t2} - \tilde{n}_{2,t_1})}{\sqrt{2}}$$

1831

1832 1833

183

$$P_{\text{diff}} = \frac{(-4)t^2}{\sqrt{2}} \frac{(-4)t^2}{\sqrt{2}} \frac{(-4)t^2}{\sqrt{2}} = \left[\frac{(c_{1,t2} - c_{1,t1})}{\sqrt{2}} \frac{(c_{2,t2} - c_{2,t1})}{\sqrt{2}} + \frac{(d_{1,t2} - d_{1,t1})}{\sqrt{2}} \frac{(d_{2,t2} - d_{2,t1})}{\sqrt{2}} \right] \\ + \left[\frac{(c_{1,t2} - c_{1,t1})}{\sqrt{2}} \frac{(d_{2,t2} - d_{2,t1})}{\sqrt{2}} - \frac{(c_{2,t2} - c_{2,t1})}{\sqrt{2}} \frac{(d_{1,t2} - d_{1,t1})}{\sqrt{2}} \right] i.$$
(C13)

1834 From this, we see that

$$\left\langle \left[\operatorname{Re}(P_{\operatorname{diff}}) \right]^2 \right\rangle = \left\langle \left[\frac{(c_{1,t2} - c_{1,t1})}{\sqrt{2}} \frac{(c_{2,t2} - c_{2,t1})}{\sqrt{2}} + \frac{(d_{1,t2} - d_{1,t1})}{\sqrt{2}} \frac{(d_{2,t2} - d_{2,t1})}{\sqrt{2}} \right]^2 \right\rangle = \langle c_1^2 \rangle \langle c_2^2 \rangle + \langle d_1^2 \rangle \langle d_2^2 \rangle = 2\sigma^4.$$
(C14)

1835

¹⁸³⁶ This is again the variance expected for a noise-dominated power spectrum. Therefore, what we have shown is that ¹⁸³⁷ $|\text{Re}(P_{\text{diff}})|$ can serve as an estimator that *in expectation* is equal to the correct noise errors for the measured power ¹⁸³⁸ spectrum $P_{\tilde{x}_1\tilde{x}_2}$ in noise-dominated regimes. However, since this result only holds in expectation, we expect that in ¹⁸³⁹ practice it will exhibit considerable scatter as an error estimate.

1840

D. SIGNAL DEPENDENT ERROR BAR FROM POWER SPECTRUM METHOD

In this Appendix we derive an expression for the variance on the power spectrum in the presence of foregrounds or 1842 systematics (or any "signal"). A similar derivation is presented in Kolopanis et al. (2019). Given two delay spectra 1843 $\tilde{x}_1 = \tilde{s} + \tilde{n}_1$ and $\tilde{x}_2 = \tilde{s} + \tilde{n}_2$, the power spectra formed from $\tilde{x}_1^* \tilde{x}_2$ is

1844
$$P_{\tilde{x}_1\tilde{x}_2} = \tilde{s}^*\tilde{s} + \tilde{s}^*\tilde{n}_2 + \tilde{n}_1^*\tilde{s} + \tilde{n}_1^*\tilde{n}_2$$

$$= \left[a^2 + b^2 + a(c_1 + c_2) + b(d_1 + d_2) + c_1c_2 + d_1d_2\right] + \left[a(d_2 - d_1) + b(c_1 - c_2) + d_2c_1 - d_1c_2\right]i, \quad (D15)$$

1847 where we have written $\tilde{s} = a + bi$, $\tilde{n}_1 = c_1 + d_1 i$ and $\tilde{n}_2 = c_2 + d_2 i$.

¹⁸⁴⁸ Consistent with the rest of the paper, we assume that a and b are not random variables, so that $\langle s \rangle = s$. The ¹⁸⁴⁹ true sky power spectrum is then given by $P_{\tilde{s}\tilde{s}} = a^2 + b^2$, and c_1 , d_1 , c_2 and d_2 in noise parts are IID random normal ¹⁸⁵⁰ variables. We then have

¹⁸⁵¹
$$\operatorname{Var}\left[\operatorname{Re}(P_{\tilde{x}_{1}\tilde{x}_{2}})\right] = \operatorname{Var}\left[a^{2} + b^{2} + a(c_{1} + c_{2}) + b(d_{1} + d_{2}) + c_{1}c_{2} + d_{1}d_{2}\right]$$

¹⁸⁵²
$$= 2(a^{2} + b^{2})\langle c_{1}^{2} \rangle + 2\langle c_{1}^{2} \rangle^{2} = \sqrt{2}P_{\tilde{s}\tilde{s}}P_{\mathrm{N}} + P_{\mathrm{N}}^{2} = \sqrt{2}\langle \operatorname{Re}(P_{\tilde{x}_{1}\tilde{x}_{2}})\rangle P_{\mathrm{N}} + P_{\mathrm{N}}^{2} = P_{\mathrm{SN}}^{2}. \tag{D16}$$

In the above we have used the relation $\operatorname{var}(c_1c_2 + d_1d_2) = 2\langle c_1^2 \rangle^2 = P_N^2$, where P_N is the analytic noise power spectrum. We have also used $P_{\tilde{s}\tilde{s}} = \langle \operatorname{Re}(P_{\tilde{x}_1\tilde{x}_2}) \rangle$. This shows that P_{SN} is a general form for error bars in the existence of foregrounds or systematics (or again, any "signal").

1860

E. COVARIANCE METHOD

¹⁸⁵⁸ In this Appendix we provide more explicit derivations of the expressions quoted in Section 3.4 for the covariance ¹⁸⁵⁹ method of error estimation.

If \hat{P}_{α} is a complex number representing a power spectrum estimate of the α th bandpower, its real part and imaginary part are given by $\frac{1}{2}(\hat{P}_{\alpha} + \hat{P}_{\alpha}^*)$ and \hat{P}_{α} is $\frac{1}{2i}(\hat{P}_{\alpha} - \hat{P}_{\alpha}^*)$ respectively. The variance in the real part of \hat{P}_{α} is

$$\frac{1}{4} \left\{ \left(\langle \hat{P}_{\alpha} \hat{P}_{\alpha} \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\alpha} \rangle \right) + 2\left(\langle \hat{P}_{\alpha} \hat{P}_{\alpha}^* \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\alpha}^* \rangle \right) + \left(\langle \hat{P}_{\alpha}^* \hat{P}_{\alpha}^* \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\alpha}^* \rangle \right) \right\},$$
(E17)

1864 while the variance in the imaginary part of \hat{P}_{α} is

$$-\frac{1}{4}\left\{\left(\langle\hat{P}_{\alpha}\hat{P}_{\alpha}\rangle-\langle\hat{P}_{\alpha}\rangle\langle\hat{P}_{\alpha}\rangle\right)-2\left(\langle\hat{P}_{\alpha}\hat{P}_{\alpha}^{*}\rangle-\langle\hat{P}_{\alpha}\rangle\langle\hat{P}_{\alpha}^{*}\rangle\right)+\left(\langle\hat{P}_{\alpha}^{*}\hat{P}_{\alpha}^{*}\rangle-\langle\hat{P}_{\alpha}^{*}\rangle\langle\hat{P}_{\alpha}^{*}\rangle\right)\right\}.$$
(E18)

Recall that \hat{P}_{α} is defined as $\hat{P}_{\alpha} = \boldsymbol{x}_{1}^{\dagger} \boldsymbol{E}^{12,\alpha} \boldsymbol{x}_{2} = \sum_{ij} \boldsymbol{x}_{1,i}^{*} \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{x}_{2,j}$. We define three set of matrices containing the whole two-point correlation information for the complex estimator \boldsymbol{C}^{12} , \boldsymbol{U}^{12} and \boldsymbol{G}^{12} , such that

$$C_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* \rangle; \qquad U_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* \rangle; \qquad G_{ij}^{12} \equiv \langle \boldsymbol{x}_{1,i}^* \boldsymbol{x}_{2,j}^* \rangle, \tag{E19}$$

1870 Equipped with these definitions, we can generate the following equations

$$\langle \hat{P}_{\alpha}\hat{P}_{\beta}\rangle - \langle \hat{P}_{\alpha}\rangle\langle \hat{P}_{\beta}\rangle = \sum_{ijkl} \langle \boldsymbol{x}_{1,i}^{*}\boldsymbol{E}_{ij}^{12,\alpha}\boldsymbol{x}_{2,j}\boldsymbol{x}_{1,k}^{*}\boldsymbol{E}_{kl}^{12,\beta}\boldsymbol{x}_{2,l}\rangle - \langle \boldsymbol{x}_{1,i}^{*}\boldsymbol{E}_{ij}^{12,\alpha}\boldsymbol{x}_{2,j}\rangle\langle \boldsymbol{x}_{1,k}^{*}\boldsymbol{E}_{kl}^{12,\beta}\boldsymbol{x}_{2,l}\rangle$$

$$= \sum_{ijkl} E_{ij}^{12,\alpha} E_{kl}^{12,\beta} (\langle \bm{x}_{1,i}^* \bm{x}_{2,j} \bm{x}_{1,k}^* \bm{x}_{2,l} \rangle - \langle \bm{x}_{1,i}^* \bm{x}_{2,j} \rangle \langle \bm{x}_{1,k}^* \bm{x}_{2,l} \rangle)$$

$$= \sum_{ijkl} E_{ij}^{12,\alpha} E_{kl}^{12,\beta} (\langle \boldsymbol{x}_{1,i}^* \boldsymbol{x}_{1,k}^* \rangle \langle \boldsymbol{x}_{2,j} \boldsymbol{x}_{2,l} \rangle + \langle \boldsymbol{x}_{1,i}^* \boldsymbol{x}_{2,l} \rangle \langle \boldsymbol{x}_{1,k}^* \boldsymbol{x}_{2,j} \rangle)$$

1874
$$=\sum_{ijkl}E_{ij}^{12,lpha}E_{kl}^{12,eta}(G_{ik}^{11}U_{jl}^{22}+C_{li}^{21}C_{jk}^{21})$$

$$= \sum_{ijkl} (\boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{U}_{jl}^{22} \boldsymbol{E}_{lk}^{21,\beta*} \boldsymbol{G}_{ki}^{11} + \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{C}_{jk}^{21} \boldsymbol{E}_{kl}^{12,\beta} \boldsymbol{C}_{li}^{21})$$

$$= \operatorname{tr}(\boldsymbol{E}^{12,\alpha}\boldsymbol{U}^{22}\boldsymbol{E}^{21,\beta*}\boldsymbol{G}^{11} + \boldsymbol{E}^{12,\alpha}\boldsymbol{C}^{21}\boldsymbol{E}^{12,\beta}\boldsymbol{C}^{21}), \qquad (E20)$$

1011

$$\langle \hat{P}_{\alpha} \hat{P}_{\beta}^{*} \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\beta}^{*} \rangle = \sum_{ijkl} \langle \boldsymbol{x}_{1,i}^{*} \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{x}_{2,j} \boldsymbol{x}_{1,k} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle - \langle \boldsymbol{x}_{1,i}^{*} \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{x}_{2,j} \rangle \langle \boldsymbol{x}_{1,k} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle$$

$$\sum_{ijkl} \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{E}_{ij}^{12,\beta*} \langle \boldsymbol{x}_{1,k}^{*} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle - \langle \boldsymbol{x}_{1,i}^{*} \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{x}_{2,j} \rangle \langle \boldsymbol{x}_{1,k} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle$$

$$= \sum_{ijkl} E_{ij} + E_{kl} + \langle (x_{1,i}x_{2,j}x_{1,k}x_{2,l}) - \langle x_{1,i}x_{2,j}\rangle\langle x_{1,k}x_{2,l}\rangle \rangle$$

$$= \sum E_{ij}^{12,\alpha} E_{kl}^{12,\beta*} (\langle x_{1,i}^*x_{2,l}^*\rangle\langle x_{1,k}x_{2,j}\rangle + \langle x_{1,i}^*x_{1,k}\rangle\langle x_{2,j}x_{2,l}^*\rangle)$$
1880

$$= \sum_{ijkl} E_{ij} \cdot E_{kl} \cdot (\langle w_{1,i}w_{2,l} \rangle \langle w_{1,k}w_{2,j} \rangle + \langle w_{1,k}w_{2,l} \rangle \langle w_{1,k}w_{2,l} \rangle)$$

1881
$$= \sum_{ijkl} E_{ij}^{12,\alpha} E_{kl}^{12,\beta*} (G_{il}^{12} U_{kj}^{12} + C_{ki}^{11} C_{jl}^{22})$$

$$= \sum_{ijkl} (\boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{U}_{jk}^{21} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{G}_{li}^{21} + \boldsymbol{E}_{ij}^{12,\alpha} \boldsymbol{C}_{jl}^{22} \boldsymbol{E}_{lk}^{21,\beta} \boldsymbol{C}_{ki}^{11})$$

$$= \operatorname{tr}(\boldsymbol{E}^{12,\alpha}\boldsymbol{U}^{21}\boldsymbol{E}^{12,\beta*}\boldsymbol{G}^{21} + \boldsymbol{E}^{12,\alpha}\boldsymbol{C}^{22}\boldsymbol{E}^{21,\beta}\boldsymbol{C}^{11}), \qquad (E21)$$

1885 and

1

1894

1900

1909

$$\langle \hat{P}_{\alpha}^{*} \hat{P}_{\beta}^{*} \rangle - \langle \hat{P}_{\alpha}^{*} \rangle \langle \hat{P}_{\beta}^{*} \rangle = \sum_{ijkl} \langle \boldsymbol{x}_{1,i} \boldsymbol{E}_{ij}^{12,\alpha*} \boldsymbol{x}_{2,j}^{*} \boldsymbol{x}_{1,k} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle - \langle \boldsymbol{x}_{1,i} \boldsymbol{E}_{ij}^{12,\alpha*} \boldsymbol{x}_{2,j}^{*} \rangle \langle \boldsymbol{x}_{1,k} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{x}_{2,l}^{*} \rangle$$

$$= \sum_{ijkl} E_{ij}^{i,j,k} E_{kl}^{i,j,k} \langle \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* \boldsymbol{x}_{1,k} \boldsymbol{x}_{2,l}^* \rangle - \langle \boldsymbol{x}_{1,i} \boldsymbol{x}_{2,j}^* \rangle \langle \boldsymbol{x}_{1,k} \boldsymbol{x}_{2,l}^* \rangle)$$

$$= \sum_{ijkl} E_{ij}^{12,\alpha*} E_{kl}^{12,\beta*} (\langle x_{1,i} x_{1,k} \rangle \langle x_{2,j}^* x_{2,l}^* \rangle + \langle x_{1,i} x_{2,l}^* \rangle \langle x_{2,j}^* x_{1,k} \rangle)$$

1889
$$= \sum_{ijkl} E_{ij}^{12,lpha*} E_{kl}^{12,eta*} (G_{jl}^{22} U_{ik}^{11} + C_{il}^{12} C_{kj}^{12})$$

$$= \sum_{ijkl} (\boldsymbol{E}_{ji}^{21,\alpha} \boldsymbol{U}_{ik}^{11} \boldsymbol{E}_{kl}^{12,\beta*} \boldsymbol{G}_{lj}^{22} + \boldsymbol{E}_{ji}^{21,\alpha} \boldsymbol{C}_{il}^{12} \boldsymbol{E}_{lk}^{21,\beta} \boldsymbol{C}_{kj}^{12})$$

$$= \operatorname{tr}(\boldsymbol{E}^{21,\alpha}\boldsymbol{U}^{11}\boldsymbol{E}^{12,\beta*}\boldsymbol{G}^{22} + \boldsymbol{E}^{21,\alpha}\boldsymbol{C}^{12}\boldsymbol{E}^{21,\beta}\boldsymbol{C}^{12}), \qquad (E22)$$

¹⁸⁹³ where $E_{ij}^{12,\alpha*} = E_{ji}^{21,\alpha}$. Setting $\alpha = \beta$ in these equations then allows us to evaluate Equations (E17) and (E18).

E.2. Covariance

¹⁸⁹⁵ The covariance between the real part of \hat{P}_{α} and the real part of \hat{P}_{β} is

$$\frac{1}{4} \left\{ \left(\langle \hat{P}_{\alpha} \hat{P}_{\beta} \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\beta} \rangle \right) + \left(\langle \hat{P}_{\alpha} \hat{P}_{\beta}^* \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\beta}^* \rangle \right) + \left(\langle \hat{P}_{\alpha}^* \hat{P}_{\beta} \rangle - \langle \hat{P}_{\alpha}^* \rangle \langle \hat{P}_{\beta} \rangle \right) + \left(\langle \hat{P}_{\alpha}^* \hat{P}_{\beta}^* \rangle - \langle \hat{P}_{\alpha}^* \rangle \langle \hat{P}_{\beta}^* \rangle \right) \right\}, \quad (E23)$$

1897 and the covariance between the imaginary part of \hat{P}_{α} and the imaginary part of \hat{P}_{β} is

$$\frac{1}{4} \left\{ \left(\langle \hat{P}_{\alpha} \hat{P}_{\beta} \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\beta} \rangle \right) - \left(\langle \hat{P}_{\alpha} \hat{P}_{\beta}^{*} \rangle - \langle \hat{P}_{\alpha} \rangle \langle \hat{P}_{\beta}^{*} \rangle \right) - \left(\langle \hat{P}_{\alpha}^{*} \hat{P}_{\beta} \rangle - \langle \hat{P}_{\alpha}^{*} \rangle \langle \hat{P}_{\beta} \rangle \right) + \left(\langle \hat{P}_{\alpha}^{*} \hat{P}_{\beta}^{*} \rangle - \langle \hat{P}_{\alpha}^{*} \rangle \langle \hat{P}_{\beta}^{*} \rangle \right) \right\}.$$
(E24)

1899 These can be evaluted in the same way as the variances above.

F. SKEWNESS IN DISTRIBUTIONS OF POWER SPECTRA AT INTERMEDIATE DELAYS

In this Appendix, we consider the probability distribution functions of power spectra where neither signals (e.g., 1902 foregrounds) or noise are dominant and both must be considered. Using the same notation as Appendix D, the power 1903 spectra formed from $\tilde{x}_1 = \tilde{s} + \tilde{n}_1$ and $\tilde{x}_2 = \tilde{s} + \tilde{n}_2$ is

$$P_{\tilde{x}_{1}\tilde{x}_{2}} = \tilde{s}^{*}\tilde{s} + \tilde{s}^{*}\tilde{n}_{2} + \tilde{n}_{1}^{*}\tilde{s} + \tilde{n}_{1}^{*}\tilde{n}_{2}$$

$$= \left[a^{2} + b^{2} + a(c_{1} + c_{2}) + b(d_{1} + d_{2}) + c_{1}c_{2} + d_{1}d_{2}\right] + \left[a(d_{2} - d_{1}) + b(c_{1} - c_{2}) + d_{2}c_{1} - d_{1}c_{2}\right]i. \quad (F25)$$

Note that a and b are constants and c_1 , d_1 , c_2 and d_2 are IID randomly normal variables. For the real part of $P_{\tilde{x}_1\tilde{x}_2}$, we have

$$\left\langle \operatorname{Re}(P_{\tilde{x}_1 \tilde{x}_2}) \right\rangle = a^2 + b^2 \,. \tag{F26}$$

¹⁹¹⁰ After subtracting from the mean, its third moment is

$$\left\langle \left[\operatorname{Re}(P_{\tilde{x}_{1}\tilde{x}_{2}}) - (a^{2} + b^{2}) \right]^{3} \right\rangle = \left\langle \left[a(c_{1} + c_{2}) + b(d_{1} + d_{2}) + c_{1}c_{2} + d_{1}d_{2} \right]^{3} \right\rangle = 6 \left\langle a^{2}c_{1}^{2}c_{2}^{2} + b^{2}d_{1}^{2}d_{2}^{2} \right\rangle > 0.$$
 (F27)

¹⁹¹³ This non-vanishing third moment implies that the probability distribution of power spectra is skewed. This skewness ¹⁹¹⁴ disappears for either signal-dominated or noise-dominated cases. These results are evident in the histograms shown in ¹⁹¹⁵ Figure 3.

1916 G. PROBABILITY DISTRIBUTION FOR AN INCOHERENT SUM OF DELAY TRANSFORM-ESTIMATED 1917 POWER SPECTRA

¹⁹¹⁸ In this Appendix, we derive the probability distribution for noise in a power spectrum that has been formed by the ¹⁹¹⁹ incoherent (i.e., after squaring) averaging of power spectra from individual time integrations. The resulting probability ¹⁹²⁰ distribution is used in Figures 7, 8, and 9 to validate our error bar methodology.

32

For a noise-dominated delay power spectrum estimate, the power spectrum value u measured at one instant in time ¹⁹²¹ is distributed as a double exponential:

 $p(x) = \frac{1}{\sigma\sqrt{2}} \exp\left(-\frac{\sqrt{2}|u|}{\sigma}\right),\tag{G28}$

¹⁹²⁴ where it is assumed that the power spectra are estimated by cross-correlation—thus eliminating noise bias—and where ¹⁹²⁵ σ is the standard deviation on the resulting power spectrum.

Now suppose we average together a number of these power spectra. Let the power spectrum value at the *i*th time 1927 step be given by u_i . The average value is then

$$z \equiv \sum_{i} w_{i} u_{i}, \tag{G29}$$

¹⁹²⁹ where $\{w_i\}$ are a set of weights. Note that the error on each x_i may be different, so we define

1923

1928

1930

1932

1939

$$p_i(u_i) = \frac{1}{\sigma_i \sqrt{2}} \exp\left(-\frac{\sqrt{2}|u_i|}{\sigma_i}\right). \tag{G30}$$

¹⁹³¹ We now write down the probability distribution $p_+(z)$ for z. First we define $y_i \equiv w_i u_i$, such that

$$p_i(y_i) = \frac{1}{w_i \sigma_i \sqrt{2}} \exp\left(-\frac{\sqrt{2}|y_i|}{w_i \sigma_i}\right).$$
(G31)

¹⁹³³ With this notation, $z = \sum_i y_i$, and we can write down z by using the fact that the probability distribution of a ¹⁹³⁴ sum of two random variables is the convolution of their individual distributions. By the convolution theorem, this is ¹⁹³⁵ equivalent to multiplying the Fourier transforms of the individual probability distributions $\tilde{p}_i(k)$, and thus

$$p_{+}(z) = \int \frac{dk}{2\pi} e^{ikz} \prod_{i} \widetilde{p}_{i}(k) = \int \frac{dk}{2\pi} e^{ikz} \prod_{i} \frac{1}{1 + w_{i}^{2} \sigma_{i}^{2} k^{2}/2},$$
 (G32)

¹⁹³⁷ where we have used the fact that in our case, $\tilde{p}_i(k) = (1 + w_i^2 \sigma_i^2 k^2/2)^{-1}$. This integral can be evaluated by contour ¹⁹³⁸ integration, giving

$$p_{+}(z) = \sum_{j} \frac{e^{-|z|\sqrt{2}/w_{j}\sigma_{j}}}{w_{j}\sigma_{j}\sqrt{2}} \prod_{i \neq j} \frac{1}{1 - w_{i}^{2}\sigma_{i}^{2}/w_{j}^{2}\sigma_{j}^{2}}.$$
 (G33)

¹⁹⁴⁰ This is a weighted sum of double exponential distributions, and the curves in Figures 7, 8, and 9 labeled "Sum of ¹⁹⁴¹ Laplacians" are plots of this formula.

In closing, we note one peculiarity about this derivation—our contour integration assumed that none of the $w_i \sigma_i$ ¹⁹⁴³ values were exactly equal. In principle, this is a reasonable assumption, since for a drift scan telescope that is sky ¹⁹⁴⁴ noise dominated the noise power is continually changing from one time integration to the next. In practice, however, ¹⁹⁴⁵ if this change is happening slowly, two adjacent time integrations may have similar enough noise properties to make ¹⁹⁴⁶ Equation (G33) numerically problematic. If this is indeed the regime that one is in, it is advisable to instead use an ¹⁹⁴⁷ approximate expression by letting $\sqrt{2}/w_i\sigma_i \equiv \kappa + \varepsilon_i$ and then Taylor expanding to leading order in ε_i .

REFERENCES

¹⁹⁴⁸ Ali, Z. S., Parsons, A. R., Zheng, H., et al. 2015, ApJ, 809,	¹⁹⁵⁶ Becker, G. D., Bolton, J. S., Madau, P., et al. 2015,
1949 61, doi: 10.1088/0004-637X/809/1/61	¹⁹⁵⁷ MNRAS, 447, 3402, doi: 10.1093/mnras/stu2646
¹⁹⁵⁰ Barkana, R., & Loeb, A. 2001, PhR, 349, 125,	¹⁹⁵⁸ Becker, R. H., Fan, X., White, R. L., et al. 2001, AJ, 122,
doi: 10.1016/S0370-1573(01)00019-9	¹⁹⁵⁹ 2850, doi: 10.1086/324231
¹⁹⁵² Barry, N., Wilensky, M., Trott, C. M., et al. 2019, ApJ,	¹⁹⁶⁰ Bernardi, G., Mitchell, D. A., Ord, S. M., et al. 2011,
1953 884, 1, doi: 10.3847/1538-4357/ab40a8	¹⁹⁶¹ MNRAS, 413, 411, doi: 10.1111/j.1365-2966.2010.18145.x
¹⁹⁵⁴ Beardsley, A. P., Hazelton, B. J., Sullivan, I. S., et al. 2016,	1962 Bernardi, G., de Bruyn, A. G., Brentjens, M. A., et al.
ApJ, 833, 102, doi: 10.3847/1538-4357/833/1/102	¹⁹⁶³ 2009, A&A, 500, 965, doi: 10.1051/0004-6361/200911627

- $_{1964}$ Bolton, J. S., Haehnelt, M. G., Warren, S. J., et al. 2011,
- ¹⁹⁶⁵ MNRAS, 416, L70, doi: 10.1111/j.1745-3933.2011.01100.x
- ¹⁹⁶⁶ Bosman, S. E. I., Fan, X., Jiang, L., et al. 2018, MNRAS,
 ¹⁹⁶⁷ 479, 1055, doi: 10.1093/mnras/sty1344
- Bowman, J. D., Rogers, A. E. E., & Hewitt, J. N. 2008,
 ApJ, 676, 1, doi: 10.1086/528675
- 1970 Bowman, J. D., Rogers, A. E. E., Monsalve, R. A.,
- ¹⁹⁷¹ Mozdzen, T. J., & Mahesh, N. 2018a, Nature, 555, 67,
- 1972 doi: 10.1038/nature25792
- 1973 —. 2018b, Nature, 564, E35,
- 1974 doi: 10.1038/s41586-018-0797-4
- ¹⁹⁷⁵ Bowman, J. D., Cairns, I., Kaplan, D. L., et al. 2013,
- 1976 PASA, 30, e031, doi: 10.1017/pas.2013.009
- 1977 Bradley, R. F., Tauscher, K., Rapetti, D., & Burns, J. O.
- ¹⁹⁷⁸ 2019, ApJ, 874, 153, doi: 10.3847/1538-4357/ab0d8b
- 1979 Chapman, E., Abdalla, F. B., Harker, G., et al. 2012,
- ¹⁹⁸⁰ MNRAS, 423, 2518,
- 1981 doi: 10.1111/j.1365-2966.2012.21065.x
- ¹⁹⁸² Cheng, C., Parsons, A. R., Kolopanis, M., et al. 2018, ApJ,
 ¹⁹⁸³ 868, 26, doi: 10.3847/1538-4357/aae833
- ¹⁹⁸⁴ Cho, J., Lazarian, A., & Timbie, P. T. 2012, ApJ, 749, 164,
 ¹⁹⁸⁵ doi: 10.1088/0004-637X/749/2/164
- ¹⁹⁸⁶ Choudhuri, S., Bull, P., & Garsden, H. 2021, arXiv e-prints,
 ¹⁹⁸⁷ arXiv:2101.02684. https://arxiv.org/abs/2101.02684
- 1988 Datta, A., Bowman, J. D., & Carilli, C. L. 2010, ApJ, 724,
 1989 526, doi: 10.1088/0004-637X/724/1/526
- ¹⁹⁹⁰ Davies, F. B., Hennawi, J. F., Bañados, E., et al. 2018,
 ¹⁹⁹¹ ApJ, 864, 142, doi: 10.3847/1538-4357/aad6dc
- 1992 Dayal, P., & Ferrara, A. 2018, PhR, 780, 1,
- doi: 10.1016/j.physrep.2018.10.002
- ¹⁹⁹⁴ de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M., et al.
 ¹⁹⁹⁵ 2008, MNRAS, 388, 247,
- 1996 doi: 10.1111/j.1365-2966.2008.13376.x
- 1997 DeBoer, D. R., Parsons, A. R., Aguirre, J. E., et al. 2017,
- 1998 PASP, 129, 045001,
- 1999 doi: 10.1088/1538-3873/129/974/045001
- ²⁰⁰⁰ Dillon, J. S., Liu, A., Williams, C. L., et al. 2014, PhRvD,
 ²⁰⁰¹ 89, 023002, doi: 10.1103/PhysRevD.89.023002
- 2002 Dillon, J. S., Neben, A. R., Hewitt, J. N., et al. 2015,
- 2003 PhRvD, 91, 123011, doi: 10.1103/PhysRevD.91.123011
- 2004 Dillon, J. S., Lee, M., Ali, Z. S., et al. 2020, MNRAS,
- 2005 doi: 10.1093/mnras/staa3001
- 2006 Efron, B., & Tibshirani, R. J. 1994, An introduction to the 2007 bootstrap (CRC press)
- Fan, X., Carilli, C. L., & Keating, B. 2006, ARA&A, 44,
 415, doi: 10.1146/annurev.astro.44.051905.092514
- ²⁰¹⁰ Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, PhR,
 ²⁰¹¹ 433, 181, doi: 10.1016/j.physrep.2006.08.002
- 2012 Gehlot, B. K., Mertens, F. G., Koopmans, L. V. E., et al.
- 2013 2019, MNRAS, 488, 4271, doi: 10.1093/mnras/stz1937

- 2014 Ghara, R., Giri, S. K., Mellema, G., et al. 2020, MNRAS,
- ²⁰¹⁵ 493, 4728, doi: 10.1093/mnras/staa487
- ²⁰¹⁶ Greig, B., & Mesinger, A. 2015, MNRAS, 449, 4246,
 ²⁰¹⁷ doi: 10.1093/mnras/stv571
- 2018 —. 2017, MNRAS, 472, 2651, doi: 10.1093/mnras/stx2118
- ²⁰¹⁹ Harker, G., Zaroubi, S., Bernardi, G., et al. 2009, MNRAS,
 ²⁰²⁰ 397, 1138, doi: 10.1111/j.1365-2966.2009.15081.x
- 2021 Hassan, S., Davé, R., Finlator, K., & Santos, M. G. 2017,
- 2022 MNRAS, 468, 122, doi: 10.1093/mnras/stx420
- 2023 Hazelton, B. J., Morales, M. F., & Sullivan, I. S. 2013, ApJ,
- 2024 770, 156, doi: 10.1088/0004-637X/770/2/156
- 2025 HERA Collaboration. 2021
- 2026 Hills, R., Kulkarni, G., Meerburg, P. D., & Puchwein, E.
- 2027 2018, Nature, 564, E32, doi: 10.1038/s41586-018-0796-5
- 2028 Jacobs, D. C., Pober, J. C., Parsons, A. R., et al. 2015,
- 2029 ApJ, 801, 51, doi: 10.1088/0004-637X/801/1/51
- Jelić, V., Zaroubi, S., Labropoulos, P., et al. 2008, MNRAS,
 389, 1319, doi: 10.1111/j.1365-2966.2008.13634.x
- ²⁰³² Kern, N. S., Liu, A., Parsons, A. R., Mesinger, A., & Greig,
 ²⁰³³ B. 2017, ApJ, 848, 23, doi: 10.3847/1538-4357/aa8bb4
- ²⁰³⁴ Kern, N. S., Parsons, A. R., Dillon, J. S., et al. 2019, ApJ,
 ²⁰³⁵ 884, 105, doi: 10.3847/1538-4357/ab3e73
- 2036 —. 2020a, ApJ, 888, 70, doi: 10.3847/1538-4357/ab5e8a
- ²⁰³⁷ Kern, N. S., Dillon, J. S., Parsons, A. R., et al. 2020b, ApJ,
 ²⁰³⁸ 890, 122, doi: 10.3847/1538-4357/ab67bc
- Kohn, S. A., Aguirre, J. E., La Plante, P., et al. 2019, ApJ,
 882, 58, doi: 10.3847/1538-4357/ab2f72
- ²⁰⁴¹ Kolopanis, M., Jacobs, D. C., Cheng, C., et al. 2019, ApJ,
 ²⁰⁴² 883, 133, doi: 10.3847/1538-4357/ab3e3a
- ²⁰⁴³ Koopmans, L., Pritchard, J., Mellema, G., et al. 2015, in
 ²⁰⁴⁴ Advancing Astrophysics with the Square Kilometre
- 2045 Array (AASKA14), 1. https://arxiv.org/abs/1505.07568
- Lanman, A. E., & Pober, J. C. 2019, MNRAS, 487, 5840,
 doi: 10.1093/mnras/stz1639
- Li, W., Pober, J. C., Barry, N., et al. 2019, ApJ, 887, 141,
 doi: 10.3847/1538-4357/ab55e4
- Liu, A., Parsons, A. R., & Trott, C. M. 2014a, PhRvD, 90,
 023018, doi: 10.1103/PhysRevD.90.023018
- 2052 —. 2014b, PhRvD, 90, 023019,
- 2053 doi: 10.1103/PhysRevD.90.023019
- 2054 Liu, A., & Shaw, J. R. 2020, PASP, 132, 062001,
- 2055 doi: 10.1088/1538-3873/ab5bfd
- ²⁰⁵⁶ Liu, A., & Tegmark, M. 2011, PhRvD, 83, 103006,
- 2057 doi: 10.1103/PhysRevD.83.103006
- ²⁰⁵⁸ McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., &
 ²⁰⁵⁹ Furlanetto, S. R. 2006, ApJ, 653, 815,
- 2060 doi: 10.1086/505167
- 2061 Mellema, G., Koopmans, L. V. E., Abdalla, F. A., et al.
- 2062 2013, Experimental Astronomy, 36, 235,
- 2063 doi: 10.1007/s10686-013-9334-5

- 2064 Mertens, F. G., Mevius, M., Koopmans, L. V. E., et al.
- 2065 2020, MNRAS, 493, 1662, doi: 10.1093/mnras/staa327
- 2066 Mondal, R., Bharadwaj, S., & Majumdar, S. 2016,
- MNRAS, 456, 1936, doi: 10.1093/mnras/stv2772
 2068 —. 2017, MNRAS, 464, 2992, doi: 10.1093/mnras/stw2599
- ²⁰⁶⁹ Morales, M. F. 2005, ApJ, 619, 678, doi: 10.1086/426730
- ²⁰⁷⁰ Morales, M. F., Beardsley, A., Pober, J., et al. 2019,
- 2071 MNRAS, 483, 2207, doi: 10.1093/mnras/sty2844
- 2072 Morales, M. F., Hazelton, B., Sullivan, I., & Beardsley, A.
- 2073 2012, ApJ, 752, 137, doi: 10.1088/0004-637X/752/2/137
- 2074 Morales, M. F., & Wyithe, J. S. B. 2010, ARA&A, 48, 127,
- 2075 doi: 10.1146/annurev-astro-081309-130936
- ²⁰⁷⁶ Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ,
 ²⁰⁷⁷ 723, 869, doi: 10.1088/0004-637X/723/1/869
- 2078 Park, J., Mesinger, A., Greig, B., & Gillet, N. 2019,
- 2079 MNRAS, 484, 933, doi: 10.1093/mnras/stz032
- 2080 Parsons, A., Pober, J., McQuinn, M., Jacobs, D., &
- ²⁰⁸¹ Aguirre, J. 2012a, ApJ, 753, 81,
- 2082 doi: 10.1088/0004-637X/753/1/81
- ²⁰⁸³ Parsons, A. R., Liu, A., Ali, Z. S., & Cheng, C. 2016, ApJ,
 ²⁰⁸⁴ 820, 51, doi: 10.3847/0004-637X/820/1/51
- 2085 Parsons, A. R., Pober, J. C., Aguirre, J. E., et al. 2012b,
- 2086 ApJ, 756, 165, doi: 10.1088/0004-637X/756/2/165
- ²⁰⁸⁷ Parsons, A. R., Backer, D. C., Foster, G. S., et al. 2010, AJ,
 ²⁰⁸⁸ 139, 1468, doi: 10.1088/0004-6256/139/4/1468
- ²⁰⁸⁹ Parsons, A. R., Liu, A., Aguirre, J. E., et al. 2014, ApJ,
 ²⁰⁹⁰ 788, 106, doi: 10.1088/0004-637X/788/2/106
- 2091 Patil, A. H., Yatawatta, S., Koopmans, L. V. E., et al.
- 2092 2017, ApJ, 838, 65, doi: 10.3847/1538-4357/aa63e7
- 2093 Planck Collaboration, Aghanim, N., Akrami, Y., et al.
- 2094 2020, A&A, 641, A6, doi: 10.1051/0004-6361/201833910
- Pober, J. C., Parsons, A. R., DeBoer, D. R., et al. 2013,
 AJ, 145, 65, doi: 10.1088/0004-6256/145/3/65
- 2097 Pober, J. C., Liu, A., Dillon, J. S., et al. 2014, ApJ, 782,
- 2098 66, doi: 10.1088/0004-637X/782/2/66
- Pober, J. C., Ali, Z. S., Parsons, A. R., et al. 2015, ApJ,
 809, 62, doi: 10.1088/0004-637X/809/1/62
- 2101 Press, W. H., Teukolsky, S. A., Vetterling, W. T., &
- ²¹⁰² Flannery, B. P. 2007, Numerical recipes 3rd edition: The
- ²¹⁰³ art of scientific computing (Cambridge university press)
- 2104 Pritchard, J. R., & Loeb, A. 2012, Reports on Progress in
- 2105 Physics, 75, 086901, doi: 10.1088/0034-4885/75/8/086901

- 2106 Shaw, A. K., Bharadwaj, S., & Mondal, R. 2019, MNRAS,
 2107 487, 4951, doi: 10.1093/mnras/stz1561
- 2108 Shaw, J. R., Sigurdson, K., Sitwell, M., Stebbins, A., &
- ²¹⁰⁹ Pen, U.-L. 2015, PhRvD, 91, 083514,
- 2110 doi: 10.1103/PhysRevD.91.083514
- ²¹¹¹ Sims, P. H., & Pober, J. C. 2020, MNRAS, 492, 22,
- 2112 doi: 10.1093/mnras/stz3388
- ²¹¹³ Singh, S., & Subrahmanyan, R. 2019, ApJ, 880, 26,
- 2114 doi: 10.3847/1538-4357/ab2879
- ²¹¹⁵ Singh, S., Subrahmanyan, R., Shankar, N. U., et al. 2018,²¹¹⁶ Experimental Astronomy, 45, 269,
- 2117 doi: 10.1007/s10686-018-9584-3
- 2118 Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M., & Bunker,
- ²¹¹⁹ A. 2010, MNRAS, 408, 1628,
- 2120 doi: 10.1111/j.1365-2966.2010.17227.x
- ²¹²¹ Tegmark, M. 1997, ApJL, 480, L87, doi: 10.1086/310631
- 2122 Thompson, A. R., Moran, J. M., & Swenson, Jr., G. W.
- 2123 2017, Interferometry and Synthesis in Radio Astronomy,
- ²¹²⁴ 3rd Edition (Springer International Publishing),
- 2125 doi: 10.1007/978-3-319-44431-4
- 2126 Thyagarajan, N., Udaya Shankar, N., Subrahmanyan, R.,
- et al. 2013, ApJ, 776, 6, doi: 10.1088/0004-637X/776/1/6
- ²¹²⁸ Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013,
- 2129 PASA, 30, e007, doi: 10.1017/pasa.2012.007
- ²¹³⁰ Trott, C. M. 2014, PASA, 31, e026,
- 2131 doi: 10.1017/pasa.2014.23
- ²¹³² Trott, C. M., Wayth, R. B., & Tingay, S. J. 2012, ApJ, 757,
 ²¹³³ 101, doi: 10.1088/0004-637X/757/1/101
- 2134 Trott, C. M., Jordan, C. H., Midgley, S., et al. 2020,
- 2135 MNRAS, 493, 4711, doi: 10.1093/mnras/staa414
- 2136 van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al.
- 2137 2013, A&A, 556, A2, doi: 10.1051/0004-6361/201220873
- ²¹³⁸ Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R.
 ²¹³⁹ 2012, ApJ, 745, 176, doi: 10.1088/0004-637X/745/2/176
- 2140 Wijnholds, S. J., Willis, A. G., & Salvini, S. 2018, MNRAS,
- 2141 476, 2029, doi: 10.1093/mnras/sty360
- 2142 Zaldarriaga, M., Furlanetto, S. R., & Hernquist, L. 2004,
- 2143 ApJ, 608, 622, doi: 10.1086/386327