
  

 

Abstract—Wireless Multiuser receivers suffer from their 

relatively higher computational complexity that prevents 

widespread use of this technique. In addition, one of the main 

characteristics of multi-channel communications that can 

severely degrade the performance is the inconsistent and low 

values of SNR that result in high BER and poor channel 

capacity. It has been shown that the computational complexity 

of a multiuser receiver can be reduced by using the 

transformation matrix (TM) algorithm [4]. In this paper, we 

provide quantification of SNR based on the computational 

complexity of TM algorithm. We show that the reduction of 

complexity results high and consistent values of SNR that can 

consequently be used to achieve a desirable BER 

performance. In addition, our simulation results suggest that 

the high and consistent values of SNR can be achieved for a 

desirable BER performance. The performance measure 

adopted in this paper is the consistent values of SNR.  

 

Keywords—Computational complexity, DS-CDMA, 

wireless multiuser receivers, signal to noise ratio  

I. INTRODUCTION 

From the design standpoint, for a given modulation and 

the coding scheme there is a one to one correspondence 

between the bit error rate (BER) and the signal-to-noise 

ratio (SNR). From the user standpoint, SNR is not the 

favorite criterion for the performance evaluation of digital 

communication links, because the user measures the quality 

of a system by the number of errors in the received bits and 

prefers to avoid the technical detail of modulation or 

coding.  However, using received SNR rather than BER 

will allow us to relate our performance criteria to the 

required transmitted power, which is very important for 

battery-operated wireless operations. Using SNR rather 

than BER has two advantages. First, SNR is the criterion 

used for accessing both digital and analog modulation 

techniques. Second, SNR is directly related to the 

transmitted power, which is an important design parameter.  

 A significant amount of efforts have been made in order 

to achieve high values of SNR [3, 5]. However, none of 

these methods relate the complexity of multiuser receivers 

for achieving high SNR values. On the other hand, the TM 

algorithm is a low complexity, but synchronous 

transmission technique that is able to reduce the number of 

computations performs by a multiuser receiver for signal 

detection [4]. The TM algorithm therefore provides fast 

multiuser signal detection which can be further used to 

achieve high SNR values. The contribution of this research 

work is the quantification of SNR using the TM algorithm 

proposed by Rizvi et. [4]. At high SNR values, the error 

rate for multi channel can be reduced as well the capacity of 

the channel can be well approximated.  

Multiuser receivers can be categorized in the following 

two forms: optimal maximum likelihood sequence 

estimation (MLSE) receivers and suboptimal linear and 

nonlinear receivers. Non-linear multiuser receiver involves 

the estimation and reconstruction of MAI [6] seen by each 

user with the objective of canceling it from the received 

signal. The two well known implementations of this 

mechanism are SIC and PIC.  In interference cancellation, 

MAI is first estimated and then subtracted from the 

received signal [1, 7]. On the other hand, linear multiuser 

receivers apply a linear transformation to an observation 

vector, which serves as soft decision for the transmitted 

data. Recently, Ottosson and Agrell [2] proposed a new ML 

receiver that uses the neighbor descent (ND) algorithm. 

They implemented a linear iterative approach using the ND 

algorithm to locate the region where the actual observations 

belong. The linearity of their iterative approach increases 

noise components at the receiving end. Due to the 

enhancement in the noise components, the SNR and BER 

of ND algorithm is more affected by the MAI. Table 1, 

reported from [8], highlights the assumed knowledge for 

the computational complexity of a CDMA based multiuser 

receiver. Table I shows that different receivers distinguish 

themselves with respect to the requirement of the desired 

knowledge as well as the implementation complexity.  

 Verdu [1] proposed the optimum multiuser detector for 

asynchronous systems. The complexity of multiuser 
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receiver grows exponentially in an order of O (2)K, where K 

is the number of active users. Recently, [2] proposed a ML 

receiver that uses the neighboring decent (ND) algorithm 

with an iterative approach to locate the regions. The 

linearity of the iterative approach increases noise 

components at the receiving end. The TM algorithm [4] 

observes the coordinates of the constellation diagram to 

determine the location of the transformation points. Since 

most of the decisions are correct, the TM algorithm can 

reduce the number of computations by using the 

transformation matrices only on those coordinates which 

are most likely to lead to an incorrect decision.  

II. PROPOSED TRANSFORMATION MATRIX ALGORITHM 

We consider a synchronous DS-CDMA system as a linear 

time invariant (LTI) channel. In a LTI channel, the 

probability of variations in the interference parameters, 

such as the timing of all users, amplitude variation, phase 

shift, and frequency shift, is extremely low. This property 

makes it possible to reduce the overall computational 

complexity at the receiving end. Our TM technique utilizes 

the complex properties of the existing inverse matrix 

algorithms to construct the transformation matrices and to 

determine the location of the TPs that may occur in any 

coordinate of the constellation diagram. The individual TPs 

can be used to determine the average computational 

complexity.  

The system may consist of K users. User k can transmit a 

signal at any given time with the power of Wk. With the 

binary phase shift keying (BPSK) modulation technique, 

the transmitted bits belong to either +1 or -1, (i.e., 

{ 1}
k

b ∈ ± ). The cross correlation can be reduced by 

neglecting the variable delay spreads, since these delays are 

relatively small as compared to the symbol transmission 

time. In order to detect signals from any user, the 

demodulated output of the low pass filter is multiplied by a 

unique signature waveform assigned by a pseudo random 

number generator. It should be noted that we extract the 

signal using the match filter followed by a Viterbi 

algorithm. The optimum multiuser receiver exists and 

permits to relax the constraints of choosing the spreading 

sequences with good correlation properties at a cost of 

increased receiver complexity.  

A. Description of Transformation Matrix Algorithm  

According to original Verdu’s algorithm, the outputs of 

the matched filter 1( )y m and 2 ( )y m can be considered as a 

single output ( )y m . In order to minimize the noise 

components and to maximize the received demodulated 

bits, we can transform the output of the matched filter, and 

this transformation can be expressed as 

follows: ( )y m Tb η= + where T  represents the 

TM, { 1}
k

b ∈ ±  andη represents the noise components. In 

addition, if the vectors are regarded as points in K-

dimensional space, then the vectors constitute a 

constellation diagram that has K total points. 

The constellation diagram can be mathematically 

expressed as: { }bX = Τ where { }1, 1b ∈ − + and X  represents 

the collective computational complexity of a multiuser 

receiver.  

The preceding equation is fundamental to the proposed 

algorithm. According to the detection rule, the constellation 

diagram can be partitioned into 2K lines (where the total 

possible lines in the constellation diagram can be 

represented as ſ) that can only intersect each other at the 

following points: X  = {Tb} b ∈{-1, 1}
K \ ſ .  

Fig. 1 shows the constellation diagram that consists of 

three different vectors (lines) with the original vector ‘ X ’ 

that represents the collective complexity of the receiver. Q, 

R, and S represent vectors or TP within the coverage area of 

a cellular network (see Fig. 1). In addition, Q¬, R¬, and S¬ 

represent the computational complexity of each individual 

TP. In order to compute the collective computational 

complexity of the optimum receiver, it is essential to 

determine the complexity of each individual TP.  

TABLE I. COMPLEXITY REQUIREMENTS OF DETECTION ALGORITHMS FOR DS-CDMA SYSTEMS 

Receivers Signature of 

Desired User 

Signature of 

Interference 

Timing of 

Desired User 

Timing of 

Interferers 

Relative 

Amplitude 

Training 

Sequence 

Conventional and Rake YES NO YES NO YES NO 

Linear ZF YES YES YES YES NO NO 

Linear MMSE YES YES YES YES YES NO 

SIC and PIC YES YES YES YES YES NO 

Trained Adaptive 

MMSE 

NO NO YES NO NO YES 

Blind Adaptive MMSE YES NO YES NO NO NO 
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The computational complexity of each individual TP is 

represented by X¬ of the TP which is equal to the collective 

complexity of Q¬, R¬, and S¬.  In order to derive the value 

of the original vector X, we need to perform the following 

derivations. We consider the original vector with respect to 

each transmitted symbol or bit. 

 

i j K

i j K

X Q Xi XQ XR XS i

XQ i XR i XS i

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +
 

i j K

i j K

X R Xj XQ XR XS j

XQ j XR j XS j

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +
 

i j K

i j K

X S Xk XQ XR XS k

XQ k XR k XS k

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +
 

The following equation can be derived from the above 

system: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

X Q i i i j i k i XQ

X R j i j j j k j XR

i k j k k k XSX S k

¬ ¬ ¬ ¬ ¬

¬ ¬ ¬ ¬ ¬

¬ ¬ ¬¬ ¬

   
   

=    
     

 (1) 

 
Equation (1) represents the following: QRS with the unit 

vectors ,  ,  and i j k , and , ,  a n d  X Q X R X S
¬ ¬ ¬  

with the inverse of the unit vectors  and , ,i j k¬ ¬ ¬
. The 

second matrix on the right hand side of (1) represents b, 

where as the first matrix on the right hand side of (1) 

represents the actual TM. The TM from the global 

reference points to a particular local reference point can 

now be derived from (1): 

 

/L G

X Q i XQ

X R j T XR

XSX S k

¬ ¬

¬ ¬

¬ ¬

 
 

=  
  

    (2) 

 

Equation (2) can also be written as: 

/L G

ii ji ki

T ij jj kj

ik jk kk

¬ ¬ ¬

¬ ¬ ¬

¬ ¬ ¬

 
 

=  
 
 

      (3) 

 

In (3), the dot products of the unit vectors of the two 

reference points are in fact the same as the unit vector of 

the inverse TM of (2). We need to compute the locations of 

the actual TP described in (2) and (3). Let the unit vectors 

for the local reference point be: 

 

[ ]
[ ]
[ ]

11 12 13

21 22 23

31 32 33

, ,

, ,

, ,

i T i T j T k

j T i T j T k

k T i T j T k

¬

¬

¬

=

=

=

       (4) 

 

Since, ( )i i j k i
¬ ¬

+ + = , where ( ) 1i j k+ + = . The same 

argument is true for the rest of the unit vectors. Therefore, 

(4) can be rewritten as:  

[ ]
[ ]
[ ]

11 12 13

21 22 23

31 32 33

, ,

, ,

, ,

i T T T

j T T T

k T T T

¬

¬

¬
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        (5) 

 

 

X 
S 

Q 

R¬ 

R 

S¬ 

Q
¬
 

X 
S 

Q 

R¬ 

R 

S¬ 

Q¬ 

 
Figure 1.  A constellation diagram consisting of three different vectors 
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By substituting the values of  and , ,i j k¬ ¬ ¬
from (5) into 

(3), we obtain 

 

11 11 12 13 11 12 13

21 21 22 23 21 22 23

31 31 32 33 31 32 33

/

, , , , , ,12 13

, , , , , ,22 23

, , , , , ,32 33

L G

i T i T j T k j T i T j T k k T i T j T k

i T i T j T k j T i T j T k k T i T j T k

i T i T j T k j T i T j T k k T i T j T k

T
 

=  
  

 

 

11 12 13
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31 32 33

/

, ,

, ,

, ,
L G

T T T

T T T

T T T

T
 

=  
  

        (6) 

 

Substituting TL/G from (6) into (2), yields 

 

11 12 13

21 22 23

31 32 33

X Q T T T XQ

X R T T T XR

X S T T T XS

¬

¬

¬

   
   

=    
      

             (7)                     

 

Equation (7) corresponds to the following standard 

equation that used for computing the computational 

complexity at the receiving end: X= Tb where { }b 1, 1
k

∈ − + .  

If the target of one transformation ( ):U Q R→ is the same 

as the source of other transformation ( ):T R S→ , then we 

can combine two or more transformations and form the 

following composition: TU: Q�S, TU(Q)=T[U(Q)].This 

composition can be used to derive the collective 

computational complexity at the receiving end using (7). 

Since we assumed that the transmitted signals are 

modulated using BPSK which can at most use 1 bit out of 

two bits (i.e., { 1}b
k

∈ ± ), consider the following set of TP to 

approximate the number of demodulated received bits that 

need to search out by decision algorithm: 

 

( ) (0) ( 1) 0 0 ( )
( 1) (1) (0) ( 1) 0 ( 1)

0 (1) (0) 0

( )0 (1) (0)( )

y m Tb Tb m
y m Tb Tb Tb m

Tb Tb

m kTb Tby K

η

η

η

=

     −     +  −  +                +                           +     

�

�

�

� � �
�

�
� � � �

… …

  (8) 

 

Equation (8) is derived using our fundamental equation 

of TM (i.e., y Tb η= + ). Our approach is to assume 

terms ( )mη and ( )m kη + in (7) not equal to zero. This 

condition is fulfilled by periodically inserting a nonzero-

energy bit in the information bit sequence. Therefore, the 

interference due to the cross-correlation of the actual 

symbols with the past and future symbols in the 

asynchronous channels can be accounted. 

Using (7), a simple matrix addition of the received 

demodulated bits can be used to approximate the number of 

most correlated TP. The entire procedure for computing the 

number of demodulated bits that need to be searched out by 

the decision algorithm can be used to approximate the 

number of most correlated signals for any given set of TP.  

This is because we need to check whether or not the TP are 

closest to either (+1, +1) or (-1, -1). The decision regions or 

the coordinates where the TP lie for (+1, +1) and (-1, -1) 

are simply the corresponding transformation matrices that 

store the patterns of their occurrences. If the TP do not exist 

in the region of either (+1, +1) or (-1, -1), then it is just a 

matter of checking whether the TP are closest to (+1, -1) or 

to (-1, +1).  

The minimum search performed by the decision 

algorithm is conducted if the TP exist within the incorrect 

region. Since the minimum search saves computation by 

one degree, the decision algorithm has to search at least 4k 

demodulated bits. This implies that the total number of 

demodulated bits that need to be searched out by the 

decision algorithm can not exceed by 5K - 4K. Thus, the total 

number of most correlated pairs has an upper bound of 5K - 

4K.  

Since most of the decisions are correct, we can reduce the 

number of computations by using the transformation 

matrices only on those coordinates that are most likely to 

lead to an incorrect decision. Thus, this greatly reduces the 

unnecessary processing required to make a decision about 

the correct region. Thus, the number of received 

demodulated bits that need to be searched out can be 

approximated as 5K - 4K.  

The computational complexity of any multiuser receiver 

can be quantified by its time complexity per bit [6]. The 

collective computational complexity of the proposed 

algorithm is achieved after performing the TM sum. This 

implies that both quantities T and b from our fundamental 

equation can be computed together and the generation of all 

the values of the demodulated received bits b can be done 

through the sum of the actual TM T that approximately 

takes О (5/4)k operations with an asymptotic constant. 

Using the Newton approximation method given in 

MATLAB, we can directly come to an approximation of О 

(5/4)k. The computational complexity of the proposed 

algorithm is not polynomial in the number of users, instead 

the number of operations required to maximize the 

demodulation of the transmitted bits and to choose an 

optimal value of b is О (5/4)k, and therefore the time 

complexity per bit is О (5/4)k. 
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III. PROPOSED QUANTIFICATION OF SIGNAL-TO-NOISE 

RATION (SNR) 

 In this section, we derive an expression to provide 

quantification of SNR for the signals received at the DS-

CDMA multiuser receiver. The reduced complexity of the 

TM algorithm provides faster detection rate. The faster 

detection rate results high and consistent values of SNR. 

Once we determine the values of SNR, we can relate them 

to the BER performance and the channel capacity 

approximation for a wireless multiuser receiver.  

MAI causes the SNR degradation resulting in a degraded 

SNR performance for a particular value of Eb/No. We 

present that due to the reduced complexity, the SNR 

performance of the TM algorithm would remain consistent 

in terms of the desired values even for a large value of K. 

This consistency in SNR performance yields an optimal 

BER performance. 

A. System Model and Key Assumptions  

Our fundamental assumption is that the system is linear 

time invariant (LTI) which leads us to the fact that the 

transmitted signals experience no deep fades. Due to the 

linearity and time invariant properties of the system, we can 

ignore the phase shift, and deep fades. In other words, the 

overall SNR of the received signals has a slow convergence 

rate compared to the convergence rate of the BER. 

B. Proposed Formulization for SNR 

Consider the following assumptions for an AWGN 

channel:  

(a) ℵ  represents the computational complexity that 

belongs to a certain coverage area.  

(b) SNR (we represent SNR byγ ) is uniformly 

distributed among all the active user’s signals with respect 

to computational complexity.  

(c) A certain cellular coverage area has K users.  

Based on these above assumptions, we can give the 

following hypothesis: 

 

{ }1 2 3 , , ,.................,
i K

ℵ ℵ ℵ ℵ ℵ∈      (9) 

 

where  1, 2, 3, .................... K
ℵ ℵ ℵ ℵ  indicates the indicates 

the computational complexity-domain and 

 

{ }1 2 3 , , ,................,
i K

h h h h h∈      (10) 

 

where 1 2 3, , ,................,
K

h h h h  indicates the user-

domain.  

 Complexity-domain can be considered as a simple data 

structure for storing the patterns of occurrences of all active 

users. User-Domain is the number of active users present in 

the certain coverage area of a cellular network. The 

collective computational complexity can be expressed as:  

 

1

  1, 2,.....,
K

i
i

where i K
=

ℵ = ℵ =∑      (11) 

 

 Since each user has 
th

h  part of the computational 

complexity such as: 1 1 2 2, ,......,
K K

h h hℵ ℵ ℵ∈ ∈ ∈ . 

 This implies that each active user in a certain area of a 

cellular network has an average of Kℵ  computational 

complexity. Since SNR is uniformly distributed among all 

the user’s signals at the receiving end, each user 

experiences an average of Kγ SNR. Therefore, this 

argument leads us to:  

 

( ) ( )1 1 1
1K C C Cγ γ− − − ℵ = − ℵ = − ℵ     (12) 

 

where C in (12) represents the normalization factor, K ℵ  

is the inverse of the computational complexity, and γ ℵ  

represents the SNR with respect to average computational 

complexity.  

Equation (12) can be interpreted that the inverse of 

computational complexity equals to the difference between 

the inverse-normalization factor and the product of the 

inverse-normalization factor and SNR with respect to the 

collective computational complexity. The main objective of 

(12) is to make sure that we should get maximum positive 

values of SNR for most of the values of K.  

C. Proof forγ ℵ   

If the previous assumptions are valid for an AWGN 

channel, the following approximation must be true for both 

the complexity and the user domains:  

 
approximationK C Kγℵ → +      (13) 

 

 We present our hypothesis that the difference between 

the average computational complexity and the average SNR 

should equal to the normalization factor. The main 

objective of (13) is to get maximum positive values of SNR 

for most of the values of K.  Equation (5) can also be 

written as: 

 

( ) ( )K K Cγℵ − =          (14) 

 

Based on (14), we can write the following equation:  
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( )1 KC
γ

= −
ℵ ℵ

         (15) 

 

 Since the right hand side of (15) represents the inverse of 

the average computational complexity with the 

normalization factor, the number of required operations can 

not be less than zero. It should be noted that the right hand 

side of (15) always gives us a positive value of SNR for any 

value of K which is greater than 10. Equation (15) can also 

be rewritten as: 

 
( ) [ ]1

1K C γ
−

ℵ = − ℵ        (16) 

 

 Using the complexity and the user domain, we can make 

an argument that the inverse of an average SNR should be 

at least greater than zero. This argument guarantees that 

the system does not work with a non positive value of SNR. 

In other words, the inverse of the average SNR should 

equal to the difference of the normalization factor and the 

inverse of the average computational complexity. Recall 

(12): 

 

( ) ( )1
K C CKγ γ−

ℵ = ℵ− ℵ = ℵ−   �     (17)  

 

 Equation (17) represents SNR by determining the 

difference between the power of the transmitted signal from 

the computational complexity-domain and the number of 

users from the user-domain. Equation (17) can also be used 

to compute the values of SNR in an ideal situation only if 

MAI does not affect the received signals by K-1 users. 

However, in a practical DS-CDMA system, this assumption 

does not exist. Therefore, we should consider that the 

variations in the network load for an AWGN channel 

introduces the presence of variance (we represent variance 

by
2

Φ ) that represents MAI.  

The selection of variance is entirely dependent on the 

network load. The variance is a linear function of the active 

users (K) and it should increase as we increase the value of 

K. In order to compute the values of SNR, we need to 

change the linear quantity into decibels (dB) by multiplying 

it to the base-10 logarithmic function as well as with the 

variance. This leads us to the following expression for 

SNR:  

 

 ( )2

1010 log CKγ = Φ ℵ−       (18) 

 

 We use the values of variance in our simulation that 

represents MAI with respect to K.  

IV. EXPERIMENTAL VERIFICATION AND SIMULATION 

RESULTS 

Fig. 2 shows the logical diagram of a cellular system that 

uses synchronous DS-CDMA system. We assume that all 

the users among the cellular area communicate using 

AWGN channels through one or more base stations. 

Because of AWGN multiple channels, the symbol duration 

of the transmitted signal is much larger than the delay 

spread which avoid inter-symbol interference. Therefore the 

uplink (from user to BS) model is based on synchronous DS 

CDMA system with multiple path channels and the 

presence of AWGN with zero mean and a varying amount 

of variance.  

The choice of variance depends on the number of active 

users present in the coverage area of a cellular network. 

Furthermore, we assume that the transmission power of 

each user is tightly controlled (which is a usual thing for 

wireless applications) by the central entity of a coverage 

area such as a central base station (BS) or an access point 

(AP). This implies that the central entity (BS/AP) of a 

coverage area receives uniform-power-signals and they 

remain same throughout the total communication time. 

It has been shown that the SNR degradation depends on 

the number of users, K, [4]. An increase in K would 

degrade the performance because it would increase the 

cross correlation between the received signals from all the 

users (i.e., K-1 users). Mathematically, we can express this 

as: K ∝  MAI ∝  high BER ∝ 1/SNR. This shows that a 

slight increase in K would degrade the SNR performance 

that consequently increases the BER. However, a large 

increase in value of K forces MAI to reach its peak value 

that limits the divergence of SNR for the TM algorithm. 

Three different types of detection algorithms are 

investigated, which are the original ML algorithm, reduced 

ND algorithm, and the proposed TM algorithm [4]. The 

following is the description of the parameters that we use 

for two different scenarios: (i) lightly-loaded network where 

K starts from 2 to 50 and (ii) heavily-loaded network where 

K starts from 2 to 100.  LTI synchronous DS-CDMA over 

an AWGN channel with small variation in 
2

Φ  are used.  

In order to compare the SNR performance of the 

proposed algorithm with the other multiuser detection 

algorithms, we use a same constant value with their 

asymptotic computational complexities that does not make 

an exception for any one of the investigated algorithms. In 

our simulation for both scenarios, we use one (i.e., 1C = ) 

as a normalization factor that remains same for all the 

investigated algorithms. 

The choice of a small value of 
2

Φ  is entirely based on 

the load of the coverage area (K) and it is selected through 

a random process for a certain range of users. For a lightly 

loaded network, we expect that the value of variance (
2

Φ ) 
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may vary from 0.6 to 0.9 and for a heavily-loaded network; 

the value of variance may vary from 0.1 to 1. Since the 

proposed algorithm detects transmitted signals by using 

complex properties of inverse matrix algorithm that 

observes the coordinates of the constellation diagram to 

determine the location of the corresponding transformation 

points, it is more likely that the value of variance is 

extremely small for both lightly-loaded as well as heavily-

loaded networks. Furthermore, all signals transmit at the 

same bit rate and all signals receive with the same power 

(i.e., perfect power control). 

For lightly-loaded network, (2<K<50) whereas for 

heavily-loaded network (2<K<100). LTI synchronous DS-

CDMA over an AWGN channel with small variation in 
2

Φ  are used. The choice of a small value of variance is 

entirely based on the value of K and it is selected through a 

random process. 

A. Performance Evaluation for Lightly Loaded Networks 

Fig. 3 shows one of the possible cases of a lightly-loaded 

network where 22 active users transmit BPSK modulated 

signals. For a small value of K, the proposed TM algorithm 
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Figure 3. Approximate values of SNR (dB) versus number of users (K=22) 

with a random amount of variance for a synchronous system in an AWGN 

channel. 
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achieves approximately 6.5 dB of SNR where as the ND 

and the ML algorithms give 5.8 and 5.5 dB, respectively. 

This implies that a slight increase in the value of K forces 

the TM algorithm to give an acceptable value of SNR that 

can be used to achieve a satisfactory BER performance at 

least for a voice communication network. This can be seen 

in Fig. 4 that the TM algorithm has more rapid divergence 

with respect to the number of users than the ND and the 

ML algorithms. The divergence in SNR is directly 

proportional to the convergence in BER performance. In 

addition, it can be clearly observed in Fig. 4 that the linear 

increase in SNR for the TM algorithm is more uniform and 

smoother over the ND and the ML algorithms.  

Furthermore, the importance of variance can not be 

ignored, since Figures 3 and 4 clearly depict that a random 

amount of variance is more affected on the ND and the ML 

algorithms than on the proposed algorithm. This is because 

both ML and ND algorithms have comparatively larger 

complexity-domains which take more time to perform 

required iterations to detect the received signals and thus 

give more time to variance to effect comprehensively on the 

received SNR. The degradation in SNR due to variance can 

be seen in Figures 5 and 6 when K = 42 and K = 52, 

respectively. Moreover, for a lightly-loaded network, it can 

be expected that the selection of variance within the 

specified range does not meet the threshold value. In other 

words, the random amount of variance is more likely 

unstable for a lightly-loaded network than in a heavily-

loaded network and thus may cause a serious degradation in 

the values of SNR. 

B. Performance Evaluation for Heavily Loaded Networks 

For heavily-loaded case, we consider a cellular network 

that consists of approximately 2 to 100 active users. Fig. 7 

and 8 is one of the examples of a heavily-loaded case where 

72 to 102 active users transmit signals through the central 

entity of the network.  

Fig. 7 shows that the linear increase in SNR is consistent 

not only for a lightly-loaded network but also for a heavily-
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Figure 6. Approximate value of SNR (dB) versus number of users (K =52) 

with a random amount of variance for a synchronous DS-CDMA system in a 

Gaussian channel. 
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Figure 4. Approximate value of SNR (dB) versus number of users (K =32) 

with a random amount of variance for a synchronous system in an AWGN 

channel. 
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Figure 5. Approximate value of SNR (dB) versus number of users (K =42) with 

a random amount of variance for a synchronous DS-CDMA system in a 

Gaussian channel. 
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loaded network. However, this can also be noticed from 

Figures 7 and 8 that as the number of users increase in the 

system, the differences between the SNR values for the 

proposed algorithm and the other two ML and the ND 

algorithms become wider. From Fig. 7, the proposed 

algorithm gives approximately 36 dB for K = 72 which is 

more than what we expect to achieve for an optimal BER 

performance. In addition to that, the random amount of 

variance is more affected on the SNR values in a heavily-

loaded case than in a lightly-loaded case. 

In Fig. 8, it can be seen that the ND algorithm 

comparatively gets high values of SNR than the ML 

algorithm in a heavily-loaded network (typically when K > 

55) when compare to a lightly-loaded network. This is 

because the computational complexity for a heavily-loaded 

case is much greater than the computational complexity for 

a lightly-loaded case that forces both ML and ND 

algorithms to minimize the factor of divergence and hence 

maximize the factor of convergence. Since we assume that 

the selection of variance is random within the specified 

range, it remains stable after a certain value of K that limits 

the divergence of SNR.  

Another important point that can be observed from Fig. 8 

is that the graph for the proposed algorithm converges to 

approximately 45 dB after 100 users and only a slight 

increase in the value of SNR can be expected for very large 

values of K.  This is also essential for achieving an 

acceptable performance, since crossing the threshold value 

of SNR might degrade the overall system performance.  In 

other words, after a certain value of K, the MAI reaches to 

its peak value that limits the divergence of the SNR curve 

for the proposed algorithm. 

V. CONCLUSION 

In this paper, we presented the quantification of SNR 

based on the TM algorithm. We have shown that the 

reduction in the computational complexity of a multiuser 

receiver can be used to achieve high and consistent values 

of SNR. The simulation results suggest that due to a low 

complexity domain, the SNR performance of the TM 

algorithm is more uniform and smoother over the other 

well known algorithms. For the future work, it will be 

interesting to implement the proposed approach for 

asynchronous systems to achieve desirable BER 

performance and approximate the capacity of a multi 

channel. 
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