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ABSTRACT

Data mining techniques have been applied in video databases to identify various patterns or groups. Clustering
analysis is used to find the patterns and groups of moving objects in video surveillance systems. Most existing
methods for the clustering focus on finding the optimum of overall partitioning. However, these approaches cannot
provide meaningful descriptions of the clusters. Also, they are not very suitable for moving object databases
since video data have spatial and temporal characteristics, and high-dimensional attributes. In this paper, we
propose a model-based conceptual clustering (MCC) of moving objects in video surveillance based on a formal
concept analysis. Our proposed MCC consists of three steps: ‘model formation’, ‘model-based concept analysis’,
and ‘concept graph generation’. The generated concept graph provides conceptual descriptions of moving objects.
In order to assess the proposed approach, we conduct comprehensive experiments with artificial and real video
surveillance data sets. The experimental results indicate that our MCC dominates two other methods, i.e.,
generality-based and error-based conceptual clustering algorithms, in terms of quality of concepts.
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1. INTRODUCTION

The use of data mining techniques in many applications has increased enormously with the recent advances in
computer power. Much of data collected in diverse areas of the industrial and scientific world contains valuable
knowledge that is not easily retrievable. The knowledge identified by data mining may take form of predictive
rules, clusters, patterns, and conceptual descriptions. To take this advantage into video content analysis, several
studies have proposed the video data mining.'*

Clustering analysis, or simply clustering, is one of popular data mining techniques used to find the patterns
and groups in video data.>* Most existing methods for the clustering focus on finding the optimum of overall
partitioning. However, these approaches cannot provide any descriptions of the clusters. Conceptual clustering
not only partitions the data, but generates resulting clusters that can be summarized by a conceptual description.
For example, COBWEB?® is an incremental clustering algorithm based on probabilistic categorization trees.
However, pure COBWEB only supports nominal attributes. In other words, it cannot be used for abstracting
numeric data. To incorporate numeric values, some extensions of the COBWEB system are proposed, such as
COBWEB/3, ECOBWEB,” AUTOCLASS,?® Generality-based conceptual clustering (GCC), and Error-based
conceptual clustering (ECC).10

However, all of the methods mentioned above do not represent the relations among the clusters or the
appropriate meaning of each cluster. Also, they are not very suitable for moving object databases since video
data have spatial and temporal characteristics, and high-dimensional attributes. To address these, we propose
a model-based conceptual clustering algorithm (MCC) of moving objects in video surveillance systems. The
proposed MCC differs from existing methods as follows: (1) it utilizes a formal concept analysis to generate
concepts, (2) it uses models instead of individual data objects to handle complicated moving objects, and (3) it
provides conceptual descriptions of moving object databases such as significant features and relationships.

The rest of the paper is organized as follows. In Section 2, we present a model-based conceptual clustering
algorithm of moving objects in video surveillance systems. The performance study is reported in Section 3.
Finally, Section 4 presents some concluding remarks.

*E-mail: {jelee, prajauri, subodhs}@bridgeport.edu



2. MODEL-BASED CONCEPTUAL CLUSTERING

In this section, we propose a model-based conceptual clustering (MCC) of moving objects, which is based on a
formal concept analysis.'' 14 Figure 1 shows the process of MCC of moving objects. As seen in the figure, MCC
consists of three steps. Step 1 is a ‘model formation’. We form a set of models from moving object database by
using a clustering analysis. Among existing clustering techniques, we choose Expectation Maximization (EM)
algorithm since we can use the byproducts of EM, i.e., the extracted model parameters and the expectation
values in the following steps. Each model, i.e., cluster, is characterized by a set of parameters used for computing
significance values of features. Step 2 is a ‘model-based concept analysis’. In order to extract formal concepts
from the models formed in Step 1, we propose a model-based formal concept analysis (MFCA) by applying
the models to a formal concept analysis. Step 3 is a ‘concept graph generation’. This step refines the formal
concepts and relations obtained in Step 2. MFCA typically produces a large number of concepts. There exist
some number of similar concepts that need to be merged into a single concept. The final result of MCC is a
concept graph that includes a set of conceptual nodes and relational edges. From the concept graph we can
generate conceptual descriptions of moving object data.

—— Model-based Conceptua Clustering —

Step 1 Step 2 ep3
Moving object . model-based concept graph
database modef formation concept analysis generation

Figure 1. The process of model-based conceptual clustering of moving objects

2.1. Model Formation

In this subsection, we first introduce a distance function STED (Spatio-Temporal Edit Distance) that measures
the dissimilarity between two moving objects. Then, we describe a model formation based on EM clustering
with STED.

2.1.1. Spatio-Temporal Edit Distance

In order to cluster moving objects, we need an appropriate distance function that can measure the dissimilarity
between two moving objects considering their spatial and temporal characteristic. Let MOZ, and MO! be the
st" and the t** moving objects with time m and n, respectively.

MO;, =< ¥5,..., 05, >, MOL =<oi,... o >

rm n

where ¥; is a feature vector of dimension d, which has the observed values of a moving object at time slot . The
distance function STED between MO$, and MO}, is defined as follows:

DEFINITION 1. The spatio-temporal edit distance (STED) between two moving objects MO3, and MO}, is:

STED(MOS,, MO) = min[STED(MOS, |, MO.) + dg (75, §),
STED(MOS,, MO? ) + dg (g, %),
STED(MOm 17M0n 1) +d6t( v, fL)]

TYL )

. . o Tt . , d
where § is an edited vector with g§; = * 1;” , and the cost function ds (05, 05) = 32— wilvi, — V5,




In the cost function dg; of Definition 1, w; is a weight of the I feature of MO where Zle w; = 1, and Vi

indicates a value of the I*" component of . The weight of the [*" feature, w; is selected based on the variance
(07) of its feature as follows:

B log(1 —oy)
ZZ=1 109(1 - Uk)’

wy (1<1<d) (1)

If a certain feature has a higher value of variance, it is considered as less important feature than others, i.e.,
a lower value of weight.

2.1.2. EM Clustering of Moving Objects

The process of model formation is the same as a model-based clustering, since the clustering conducts unsuper-
vised learning to find models of moving objects, which are characterized by a set of parameters. In order to find
the models of moving objects, we employ a model-based EM clustering® '° with STED in Definition 1. Given M
mutually independent sample MOs, Y = {y1,...,yum}, the d-dimensional Gaussian mixture density with STED

is given by
K

W — L STED(y;,uk)?
p(yj|®) - Z m@ 202 (vj15) (2)
k=1

where K is the number of models, and wy, (Zle wy, = 1) is the membership probability of the k" model. The
log-likelihood (£) of K mixture model is

M

M K
L(©1Y) =log [] p(y;10) = log > wipk(y;|6x) (3)
k=1

Jj=1 Jj=1

where each 6, is the set of parameters of the k** model. In order to find appropriate models, we estimate the
optimal values of the parameters () and the weights (wy) in Equation (3) using EM algorithm, which is a
common procedure used to find the Maximum Likelihood Estimates (MLE) of the parameters iteratively. The
EM algorithm produces the MLE of the unknown parameters using two alternating steps:

E-step: It evaluates the posterior probability of y;, belonging to each model k. Let hj; be the probability of
the j** MO for a model k, then it can be defined as follows:
wy

hii = P(kly;,0,) = ———
jk ( |YJ k) pk(}’ka)

(4)

M-step: It computes the new parameter value that maximizes the probability using h;i in E-step as follows:

w 1 i/[: b . Zjlvil hjky; ” Zﬁl hiSTED(yj, pur)?
k= o gy Mk = o Ok = 7
M j=1 Zj:l hiji Zj:l hijk

The iteration of E and M steps is stopped when wy is converged for all k. After the maximum likelihood

model parameters (0) in Equation (3) are decided, each MO is assigned to a model.

The benefits of model formation in the proposed conceptual clustering are as follows: (1) it simplifies the
computation of a conceptual clustering algorithm since the number of objects is reduced to the number of
models that represent their specific patterns, and (2) byproducts of the EM algorithm, i.e., the extracted model
parameters (O) and the expectation (k) play an important role in conceptual clustering since they provide the
relationships between models and features.



2.2. Model-based Concept Analysis

The second step of MCC is a model-based concept analysis to find formal concepts of modelled moving object
data. Although the model formation in Step 1 provides a set of models where similar moving objects are grouped,
it does not consider interpreting the obtained models. In other words, it is hard to understand what the meaning
of each model is, and how the models are formed. In order to address these, we employ a formal concept analysis
(FCA) that was introduced by Wille.!1:'2 FCA has been used for data analysis and knowledge representation.
We propose a model-based concept analysis (MFCA), which incorporates a model-based statistical data analysis
with FCA to represent conceptual meaning of moving object data. The MFCA starts with a model-based formal
context that is defined as:

DEFINITION 2. A model-based formal context is a triple K = (G, F, 1), where

o G is a set of models characterized by O,
o Fis a set of features, and

e [ is a set of relations between G and F (i.e. I C G x F). Each relation (g, f) € I has a significance value

g, f)-

In the model-based formal context, G consists of the models determined in Step 1 instead of all data objects.
Each model is characterized by a set of parameters (0). A set of features (F') consists of d number of observed
features in M O. A set of relations I indicates how much each feature is relevant to each model. The relevance
between the k® model g;, and the I*" feature f; is represented as the significance value (g, fi), which is
computed by exploiting a feature selection technique in data mining.'6

Let yr and yp_yy,y be the full feature vector, and the feature vector without the It" feature, respectively.
Consider two posterior probabilities (P k7, P r—{s}) of the k" model based on the full feature vector (yr),
and the feature vector without f; feature (yp_{y,y) as follows.

Pirr = P(yirlOer), Piwr—{ny = PEir—is0r—111)

where 7" P p = 1and Y./" ) P, g3 = 1 with m number of objects in the &' model. If f; is a completely
insignificant feature in the £** model, then P k.r is equal to Py p_(y). Otherwise, the difference between two
probabilities provides a significance value of f; in the model. In order to measure a difference between two
probabilities, we use the Kullback-Leibler divergence (KLD).!” The significance value of the I*" feature (f;) in

the kKt cluster is defined as: .

NUSIEDY

i=1

P
P, y.r log _ Ok E (5)
Pk, r—13

The higher the value of A, the more significance of the feature in a model. Then, we determine all relations
between a set of models G and a set of features F'.

A model-based formal context K can be represented as a cross-table as shown in Table 1 (a). The context in
Table 1 (a) has four models (i.e. g1,92,93 and g4 € G), and three features (i.e. fi, fo and f3 € F'). The relation
(I) between a model and a feature is measured by A in Equation (5).

To remove relations that have very low significance values, we set a predetermined threshold e. Table 1 (b)
shows the cross-table of the model-based formal context with € = 0.01.

According to a formal concept analysis, we can consider the features of a formal context as the description
of the concept.'12 Therefore, we can derive a model-based formal concept from a model-based formal context
as follows (Definitions 3 and 4).

DEFINITION 3. For a set of models A C G, we define A" = {f € F|\(g, f) > € for all g € A}, and a set of
features B C F, we define B' = {g € G|\(g, f) > € for all f € B}



Table 1. Example of model-based formal context

(@) Without threshold (b) With threshold ( & = 0.01)
L h 6 |6 | L h |6 |6 |
g, 0.583 | 0.004 | 0.431 g, 0.583 - 0431
g, 0.840 | 0.002 | 0.003 g, 0.840 - -
O, 0.002 | 0.454 | 0.623 0, - 0.454 | 0.623
g, 0.000 | 0.517 | 0.833 g, - 0.517 | 0.833

DEFINITION 4. A model-based formal concept of the context K = (G, F, I) with a threshold value € is a pair (A,
B) where AC G, BC F, A/ =B, and B' = A. We call A the extent, and B the intent of the formal concept
(A, B).

The extent covers all models belonging to the formal concept, while the intent comprises all features valid
for all those models. Table 2 shows the complete list of concepts for the context in Table 1 (b). For example, a
concept Cy has the extent A = {gs, g4}, and the intent B = {f3, f3} (see highlighted cells in Table 1 (b)). The
extent A and the intent B of the formal concept (A, B) are closely related by the relation I. In other words, the
concept (A, B) means the models determined by features fo and fs.

Table 2. Formal concepts for context in Table 1(b)

Concept Extent (A) Intent (B)
G {91 9, 93, 9} %)
C, {9, 9} {f.}
C, {9, 95 94} {f}
C3 { gl} { fl, f3}
C, {95 0} {f f3}
C, %) {f, £, £}

It is natural to have a hierarchical order between the model-based formal concepts of the context, i.e. sub-
concept or superconcept relation. In order to represent the relation, we exploit lattice theory'? since it offers a
natural way to formalize the ordering of objects. A model-based concept lattice is defined in Definition 5 and 6.

DEFINITION 5. If (A1, B1) and (A, Bs) are formal concepts of a model-based formal context, then (A1, By) is
the subconcept of (As, Bs) such that Ay C Ay (i.e., Bo C Bi), denoted as (A1, B1) < (Ag, Bs). In this case,
(Ag, Bs) is superconcept of (A1, B1).

DEFINITION 6. A model-based concept lattice of the model-based formal context K = (G, F,I) is a set of all
model-based formal concepts of K with the order <, denoted by B(K, <).

For the purpose of visualization of the lattice, we use a line diagram consisting of circles and lines for all
models and features, respectively. Each circle represents a formal concept, and each line indicates a relation,
i.e. subconcept (downward) or superconcept (upward) in Definition 5. Figure 2 shows the line diagram of the
model-based concept lattice B(K, <) generated from the model-based formal context K = (G, F,I) in Table 1.

2.3. Concept Graph Generation

Although the generated formal concepts using MFCA provide formal descriptions of models, MFCA typically
produces a high number of formal concepts. Among them there exist some similar formal concepts that need to
be merged into a single concept. In order to compact the formal concepts, we first propose a similarity measure
ConSim between two formal concepts.
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Figure 2. A model-based concept lattice B for the context K in Table 1 (b)

To measure a similarity between two concepts generated by MFCA, we exploit the similarity of FOGA
framework,'? then extend it to a model-based formal concept. In FOGA, the similarity between two formal
concepts C1 = (p(A41),B1) and C2 = (¢(Asz), B2), where ¢ is a fuzzy membership function, is defined as
E(Cy,C)) = %. However, this similarity measure is not enough for our model-based formal concepts
since it considers only a fuzzy membership for the similarity, i.e., ¢(A1) and ¢(Az), but the proposed concept
consists of the extent and the intent. We extend it to handle both the extent and the intent of model-based
formal concepts for the similarity. Let C; = (A1, B1) and Cy = (Asg, Bs) be two model-based formal concepts in
B(K, <). The similarity measure ConSim between C7 and Cs is defined as follows.

DEFINITION 7. Given two model-based formal concepts Cy1 and Ca, a concept similarity (ConSim) between Cq
and Cy is defined as:
AT As |B1 N By

~ A, U A 1B, U Bs|

where |set| is the number of elements in set, and v is a predefined weight of the extent concept such that
0<~y< 1.

ConSim(C’l, CQ) + (1 - ’Y)

The concept similarity ConSim in Definition 7 ranges 0 to 1. The higher the value of ConSim is, the more
similar two concepts are. The predefined weight (y) plays a role to decide a priority between the extent and
intent of the concept. For example, if a user has more confidence to the extent of concept (i.e., a set of models)
than the intent (i.e. a set of features), -y is greater than 0.5. Otherwise, «y is set to less than 0.5. Throughout
this paper, we set v = 0.5, which means the extent and intent have the same priority for ConSim. Figure 3
shows the computed ConSim with v = 0.5 of Figure 2.

Since the MFCA uses a statistical approach for the significance values between features and models, even
a small difference of the significance values may cause similar concepts to be separated into different concepts.
Moreover, the number of generated formal concepts is usually large since the MFCA allows a model to belong
to more than one concept. Such a large number of formal concepts prevent a user from interpreting them easily.
In order to address this, we introduce a technique of merging two similar formal concepts into a single formal
concept, and a concept graph where the merged concepts are represented.

Let C; = (A1, B1) and Cy = (Ag, B2) be two model-based formal concepts in B(K, <). The criteria of
merging two concept (C7 and Cy) are defined as follows:

DEFINITION 8. Given two model-based formal concepts Cy and Ca, C1 Uy Co = (A1 U Ag, By U Bs) is a merged
concept if Cy and Cs satisfy

o (A3, Bs) < (A1, By) Cy is superconcept of Ca, and
e ConSim(C1,C2) > Tgim-
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Figure 3. Concept similarities between two concepts of B (K, <) in Figure 2

where Ty, is a predefined threshold value for the concept similarity. For an example of Figure 3, C; and
C4 can be merged into a single concept Cy Ups Cy with Ty;p, = 0.5. Since Cy < Cy and ConSim(Csa, Cy) = 0.58
(> Tsim), they satisfy the merging criteria in Definition 8.

However, if two formal concepts are merged into a single concept in B(K, <), the set of merged concepts is
no longer model-based concept lattice. Therefore, we cannot use a model-based concept lattice after merging
concepts. In order to address this, we propose a concept graph to maintain the merged concepts and their
relations, which is defined as follows:

DEFINITION 9. A concept graph, G, is a four-tuple G = {V, E,v,£}, where

o Vs a finite set of conceptual nodes,
o FCV XV isa finite set of relational edges between two concept nodes,
o v:V — Ay is a function generating the conceptual node attributes, and

o £ E— Ag is a function generating the relational edge attributes.

A concept graph G is a directed graph whose edges are ordered pairs of node and attribute. A conceptual
node (v € V') corresponds to a (merged) concept where the node attributes (Ay ) are sets of models and features.
A relational edge (e(v,v’) € E) represents a relation between two concepts, i.e., superconcept or subconcept for
the edge attributes (Ag). For example, e(v,v’) indicates that v is a superconcept of v’ (i.e. v’ is a subconcept of
v). The relational edge is weighted by the similarity between two conceptual nodes using ConSim in Definition
7. The benefit of using the concept graph is that it is more flexible to maintain the merged concepts and their
relations without loss of their semantics than a model-based concept lattice in Definition 6.

Figure 4 (a) is the result of concept merging of Figure 3 with T;,, = 0.5. We can observe that two formal
concepts Cy and C4 can be merged into a single concept, since ConSim(Csy, Cy) > 0.5. Figure 4 (b) shows the
concept graph of Figure 4 (a) in which a set of nodes represents concepts of MOs, and a set of edges represents
relations between two corresponding concepts.

3. EXPERIMENTAL RESULTS

In order to assess the proposed schemes, we have conducted several experiments with a synthesized data set
and a real data set. Using these data sets, we evaluate the performances of our proposed approach, and demon-
strate that the quality of generated concepts based on MCC outperforms those of existing conceptual clustering
algorithms.

We ran a generality-based conceptual clustering (GCC),” and an error-based conceptual clustering (ECC)!0
for comparison purposes. To be fair, we replace the similarity measure (Sim) used in GCC? with STED. ECC
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Figure 4. Result of model-based conceptual clustering

uses BinaryCut(C) algorithm to find the best cut of the input cluster.!® However, BinaryCut(C) can handle
only ordered data, which is not applicable to MOs. To address this, we replace BinaryCut(C) with k-Means
algorithm (k = 2) to find the best cut of MOs without losing its originality.

3.1. Evaluation Metrics

In order to evaluate the concept graph of MCC, we employ two evaluation metrics: the relazation error,'® and

F-measure.'® The relaxation error (RE) measures the goodness of the generated concepts, which is a popular
criterion of evaluating conceptual clustering algorithm. On the other hand, since the concept graph has a
hierarchical tree structure, we need a specific metric that can analyze the entire hierarchical tree. On such a
metric, we also use F-measure (F},) that combines the precision and recall ideas from information retrieval.

Given a particular concept of d-dimensional feature ST's, i.e., Cy = {y1,...,Vm}, the relaxation error (RE¢, )
for the concept C} is defined as the average pair-wise distance using ST ED in Definition 1 among ST's in Cj.

1 m m
REc, = —3 > > P(yi)P(y;)STED(yi,y;)

i=1 j=1

where P(y;) and P(y;) are the probabilities of y; and y; occurring in Cj, respectively. REc, implies the
dissimilarities of data objects (ST's) in a concept Cy based on the distance function STED. Therefore, the
relaxation error (RE(C)) for entire concepts can be computed as follows:

1 K
RE(C) = = REc, (6)
k=1

where K is the total number of concepts. A smaller value of RE(C) corresponds to a higher quality of the
concepts.

In addition to the relaxation error, we use F-measure for the evaluation metric. In F-measure, we consider
each concept as if it were the result of a query, and each class as if it were the desired set of ST's for the query.
Given a particular concept Cj, of size my, and a particular class R; of size m;, the precision (p) and recall ()
for each C} and R; are

mi;
pkj = rk}j =
mi m;

M

where my; is the number of data items that are correctly clustered from R; in Cj. The F-measure of concept
C}, and class R; is computed as follows:

2 Thj - Phj
F(Ck, Rj) = W (7)



Table 3. The results of concepts generated by conceptual clusterings on synthesized data sets

Algorithm Dgse Dsy, Digss Dis, Do Doss D
C(Ri60) |C(R:60) |C(R.60) C(R,60) C(R60R,5R7) |C,(R:60R,;7R9) |C,(Ri57.R;2R:2)
CR,y60) |C,R;:60)  |C,(R,:60) C,(R,:60) C,(R,60), C,(R.'55) |C,(R,60R:3R:8) |C,(R,:60,R;1R.:2)
MoC SRS [CURiED [C(Ry60) C,(R,:60) C,(R;:60), C,(R:53) |Cy(R.:50), C,(R,'60), |C,(R;:56), C,(R,:60)
C,(R;60) |C,(R,:60) C,(R,:60) C,(R,:60) C4(R;:60) C(R.51), Cy(Ry52) |C.(R,:3,R;:1,R58)
C(R60) |C.(R:60)  |Cy(R.60) C4(R.:60) Co(R.:59)
C(R;60)  |C,(R.60) C.(R.:60) C(R.:60)
C(R;60) |C,(R;:60R4 |C,(R:60,R;12, |C,(R,41) C(RiBR:12)  |C(R33R18  |C(R:3LR:1)
C,(R,:60) R.5) R.9) C,(R,:35) C,(R,:35) C,(R,:31R,:16) C,(R,:29)
C,R;60) |C,R:60),  |C,(R,60R;5, |CyR;33) C.(R;:27, R13) C(R;27,R.13) C(R;:21R;:32,R:28)
EcC  |CiR:60)  |CR;56) Re:11) C,(R,:60) C,(R,:48) C,(R;:26) C,(R;10R,:33)
C(R;60) |C,(R:60), [C,R;43) Co(Ry:44) C(R;:37) C(R4:20) C(R,:14,R:28 R :34)
Cy(Ri60)  |Cy(Ry55) C,(R,:60) CR,8R,5R:47) |C(R,;8R,;8R.38) |CAR,12R,9,R:38) |C,(R.:32)
C,(R.:60) C.(R;51) C,(R;19R;14R.116) [C(R;:22,R,:15,R:10) | C,(R,:27,R,:14,R,:27) | C,(R,: 26)
Cy(Rs:49) Cy(R,:17,R;:8,R;13) |Cy(R,:17,R;:10,R;:22) | C4(R,:17,R;:10,R,:22) | C4(R;:15, R,:26)
C(Ri60) |C(R:60) |C,R.60) C(R60R;5R:3) |C(R,5LR,10R.8) |C,(R42,R;20R.:34)|C,(R 31 R,22,R60)
C,(R,60)  |C,(R:60) C,(R,:60) CRy60R;AR,T)  [Cy(R,49,R,7.R:26) |C,(R,:39,R;:37.R,:24) | C(R,:34,R:28,R_:60)
oo |GRE)  |CyRi60) C,(R;:60) C4(R;51) CyR:8R,6,R;39) [Cy(R,:15R,:18R,:32)|Cy(R,:27,R,:22,R,:60)
C,(R;60) |C,(R,:60) C,(R,:60) C,(R,:60) C,(R;LR,;3R60) |C,(R:3R,3R.:26) |C,(R,2R,4R;10)
C(R60) |C.(R.60)  |Ci(R.:60) Cy(R.:57) CyRy4R.52) CyR,:3R,:28,R:36)
C(Ri60)  |C,(R.60) C.(R.:60) C(Ry:53) C(R;2,R,:34)

Consequently, the F-measure for an entire hierarchy of any concepts (F,,(C)) is computed by taking the
weighted average of all values for F/(Cy, R;) in Equation (7) as follows:

Fu(C) = ™

Jj=1

max F(Cy, Rj) (8)

where ¢ and m is the total number of classes and ST's, respectively. The values of F,,(C) range from 0 to 1.
The higher the F-measure is, the better the quality of concept is. We use both RE(C) in Equation (6) and
F,,(C) in Equation (8) to compare the quality of generated concepts C' with those of other conceptual clustering
algorithms in the following subsection.

3.2. Synthesized data set

We first generate a synthesized data set for ST's, then present the results of MCC comparing with GCC and
ECC in terms of a quality of concepts.

3.2.1. Data Description

In order to evaluate the proposed MCC algorithm, an synthesized data set for moving objects is generated
and used for the experiments. The synthesized data set consists of 6 classes, i.e., {Ry,...,Rs}, and each class
contains 60 moving objects (MOs)that are distributed by Gaussian with ¢ = 5 from a seed MO. Each MO
is described by three features, i.e., spatial location (z,y) and its size (z), and has various time lengths ranging
from 10 to 20. We generate 7 data sets that have different amounts of noise ranging from 0% to 30%, denoted
by Doy, - .., D3gy, respectively.

3.2.2. Results

Using the seven artificial data sets (Dgg, . .., D3gy), we ran three conceptual clustering algorithms, i.e., MCC,
ECC, and GCC, to generate concepts. The results of concepts generated by the three methods on the seven data
sets are listed in Table 3. In Table 3, C}, is the k" concept that is generated by the corresponding clustering
algorithm. R; and the number in parentheses indicate the jt" class that is a true concept, and the number of
data in each of class, respectively. The subscript k of C}, is selected by the majority class of data. If two concepts
share the same majority class, the concept whose class is larger than the other takes the class as the majority.
For the other concept, we select the next majority class in the concept. For example, suppose that two concepts
Cr(Ry : 35, Ry : 20) and Cy/ (Ry : 25, Rz : 20) are generated. Since the number of data of Ry in Cy is larger



than that of Ry in Cj/, we choose k = 1 and k' = 3 for C} and Cj/, respectively. By comparing the subscripts
of the concept and class, we evaluate the number of data that are classified correctly or incorrectly.

First, we evaluate the quality of concepts in Table 3 using the relaxation error (RE). The RESs computed
by Equation (6) for the generated concepts are plotted in Figure 5(a). As shown in the figure, the proposed
MCC outperforms ECC and GCC methods in terms of the goodness of clusters, i.e., our MCC is around 30%
better than ECC. This demonstrates the advantage of using the significance value A in the model-based concept
analysis in Section 2. Figure 5(a) also shows the robustness of MCC to noise. However, RE metric is not enough
to measure the hierarchical structures since it considers only the overall goodness measure of concepts. In order
to address this, we evaluate the quality of concepts using F-measure that analyzes the entire hierarchical tree.'®
Figure 5(b) gives the quality of each method using F,,, in Equation (8). From the figure, it is observed that the
quality of ECC using F;, is decreasing significantly as the variance of noise gets larger unlike using RE. However,
MCC is still the most robust conceptual clustering to the noise. Overall, the quality of the MCC proposed in
this paper is superior to ECC and GCC in terms of the quality measured by a relaxation error and F-measure.
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Figure 5. Quality of generated concepts using RE and F-measure

3.3. Real data sets
We apply the proposed method to a real video data set.

3.3.1. Data Description

The real video data set are obtained from video streams captured by a video camera inside of building. The main
moving objects in the captured video are persons who are entering door and walking in the room. We extract
total 297 moving objects by using the techniques that is based on spatio-temporal region graph.* We take 4
spatio-temporal information of moving object that are z-coordinate (x, horizontal), y-coordinate (y, vertical),
size (s, number of pixels), and color (¢, average color). In this experiment, we will find their patterns, and the
concepts that describe the meanings of the patterns.

3.3.2. Results

In order to generate the concepts, we apply the proposed MCC method to the real data set. For the distance
measure STED, we compute the weight of each feature by using Equation (1). The computed weights used for
STED are w, = 0.34, w, = 0.26, wy = 0.24, and w. = 0.16. The model formation that is the first step of MCC
generates 6 models, which are seen in Figure 6(a). Each model is visualized by using (x,y) in the figure, and the
number in a parenthesis is the number of data belonging to the corresponding model. However, it is still hard
to find the meaning of each model from Figure 6(a). To address it, we perform a model-based concept analysis,
and generate the concept graph of the real video data set. Figure 6(b) gives the generated concept graph of



real data set. During the process of MCC, we use T, = 0.5 for the concept merging. Each circle and each
arrow represent a conceptual node and a relational edge of the concept graph, respectively. The conceptual node
includes a set of models for the extent (upper set), and a set of feature for the intent (lower set). The number
on a relational edge indicates the concept similarity between two corresponding conceptual nodes computed by
ConSim in Definition 7.
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(a) Results of model formation of real data set (b) Generated concept graph of real data set

Figure 6. Results of model-based conceptual clustering of real video data set

From the concept graph, we extract concept for the video data set. Table 7 summarizes the generated concept
(10) and relations (13). Using the extent and intent, we can describe meanings of the concepts. For example,
Cy is a concept that is formed by two significant features, i.e., x-coordinate (z) and color (¢). Cj includes a
model g, whose member data are the instances of Cy. Unlike existing conceptual clustering algorithms,? 10 the
proposed MCC provides the relationships between two concepts. The superconcepts and subconcepts of Cy are
{C1,Cs}, and {Cy}, respectively.

# of - -
Concept | Extent | Intent |indaices c%urﬁ:%rpt coSnuc%pt

Co {9506t | {V} 34 - C:, Cs
C {91, 0s} {x 153 - Cr, C4, Cs
C, {90} | {c} 84 - Cs4, Cs
Cs {91, 94} {s} 167 - Cs, Cs
Cs {9} {x c} 51 C, C Gy

Cs {94} {c. s 33 Gy, C3 Cs, Co
Cs {91} {X, S} 134 C, G Cy

G {gs} | {x ¥} 19 Co, C1 -
Cs {ge} | {ycst 15 Co, Cs -
Cg {93} {X,C,S} 45 C4, C5, Ce -

Figure 7. Summary of generated concepts and relations

4. CONCLUDING REMARKS

In this paper, we study the problem of conceptual clustering of moving objects in video surveillance systems.
A model-based conceptual clustering (MCC) using a formal concept analysis is developed. MCC consists of
the following steps: ‘model formation’, ‘model-based concept analysis’, and ‘concept graph generation’. We then



generate concepts and relations for moving objects from the concept graph. Unlike existing conceptual clustering
algorithms that provide only the descriptions of clusters, MCC provides not only the meanings of the generated
concepts, but also the relations between two concepts. Obviously, our proposed MCC algorithm may be very
attractive for other data domains, such as time-series data and spatio-temporal data. Our future work is directed
towards applying the proposed schemes to real-life systems, and developing conceptual query processing.
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