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Abstract

Biomedical research is growing at such an exponential pace that scientists, researchers, and practi-
tioners are no more able to cope with the amount of published literature in the domain. The knowl-
edge presented in the literature needs to be systematized in such a way that claims and hypotheses
can be easily found, accessed, and validated. Knowledge graphs can provide such a framework
for semantic knowledge representation from literature. However, in order to build a knowledge
graph, it is necessary to extract knowledge as relationships between biomedical entities and nor-
malize both entities and relationship types. In this paper, we present and compare a few rule-based
and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine
learning methods and DistilBERT and T5-based models as examples of modern deep learning
transformers) methods for scalable relationship extraction from biomedical literature, and for the
integration into the knowledge graphs. We examine how resilient are these various methods to un-
balanced and fairly small datasets. Our experiments show that transformer-based models handle
well both small (due to pre-training on a large dataset) and unbalanced datasets. The best perform-
ing model was the DistilBERT-based model fine-tuned on balanced data, with a reported F1-score
of 0.89.

Keywords:
knowledge graphs, information extraction, machine learning, natural language processing, text
mining, text-to-text model, linked data

1. Introduction

The amount of published scientific, espe-
cially biomedical literature is growing expo-
nentially. In 2020, over 950,000 articles
were added to Medline (National Library of
Medicine, 2020), a repository of biomedical
literature, meaning that on average, over 2600
biomedical articles were published daily. Sci-

entists, researchers and professionals are not
able to cope with the amount of published re-
search in their area and are in need of tools that
would help them find relevant articles and re-
view and validate claims and hypothesis.

Finding relevant articles is the task ad-
dressed by the information retrieval sub-field
of natural language processing. A number
of information retrieval approaches have been
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examined and several domain-specific infor-
mation retrieval applications for bio-medicine
have been built, such as PubMed, PubMed-
Central, Quertle, Embase, etc. (Canese and
Weis, 2013; Roberts, 2001; Coppernoll-Blach,
2011). Information retrieval engines can use
named entity recognition algorithms and entity
normalization techniques (often using dictio-
naries or terminologies) to improve the search
results by returning semantically the most rel-
evant articles for the searched concept regard-
less of the form or a synonym used for the
searched entity (Jonnalagadda and Topham,
2010; Jonnagaddala et al., 2015; Hakala et al.,
2016). However, information retrieval only
offers a list of relevant articles for searched
terms or concepts. In order to validate a hy-
pothesis or claim, a researcher still needs to
read through a significant amount of literature,
which may be time-consuming.

The hypothesis and claims, that researchers
often would like to validate, can be summa-
rized in a simple sentence with two interacting
concepts and a predicate describing their inter-
action (e.g. Aspirin treats pain). Hypothesis
and claims are named relationships between
concepts. These named relationships can be
extracted with evidence (sentences from arti-
cles, stating them) from biomedical literature.
Also, entities may be connected with many
other entities in relationships, finally gener-
ating a large knowledge graph. This knowl-
edge graph can be later utilized to infer knowl-
edge by following connections (A → B, B →
C, there f oreA → C), and even applications
of graph machine learning to find potentially
missing edges (relationships), or discover po-
tential leads and targets in the drug discovery
process.

The ways of validating claims, and in-
ferring new knowledge from the statements
in the knowledge graphs have been exam-
ined in areas of knowledge graph databases

(Messina et al., 2017; Miller, 2013), seman-
tic web (McGuinness et al., 2004; Parsia and
Sirin, 2004; Sirin et al., 2007; Shearer et al.,
2008) and graph machine learning (Scarselli
et al., 2008; Veličković et al., 2017; Qu et al.,
2019). However, in order to perform infer-
ence and validation over a knowledge graph,
the knowledge needs to be extracted from the
text and normalized. Most of the normaliza-
tion research in the biomedical domain consid-
ers the normalization of named entities, such
as diseases, genes, and compounds (Cho et al.,
2017; Ji et al., 2020; Zhou et al., 2020). On the
other hand, it was not given much attention to
the normalization of biomedical relationships.
Relationship extraction research in biomedi-
cal domain is often limited on a certain do-
main (e.g. cancer or cardiovascular domain),
and considers limited set of possible relation-
ship entity pairs and relationship types (Rind-
flesch et al., 1999; Yang et al., 2021). Normal-
ized relationships (graph edges) are the pillar
of successful systematization of knowledge in
knowledge graphs.

As part of the R&D organization within
Bayer pharmaceuticals, we focus on generat-
ing knowledge graphs relevant to drug discov-
ery, target identification, and indication expan-
sion. As well, most of the use-cases we are
dealing with are related to humans. There-
fore, the defined relationship model and meth-
ods for relationship extraction, described in
this paper, will have a focus on the stated use-
cases.

In this paper, we propose a data model for
relationship normalization between drugs, tar-
gets, and diseases. We also examine and com-
pare several rule-based and machine learning-
based approaches. Using proposed methods,
we generated a knowledge graph with links to
the evidence sentences, based on the extracted
and normalized relationships from PubMed.
At the end, we discuss the results of our
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knowledge graph creation method.

2. Background

Knowledge graphs have a long history span-
ning to the 1970s (Schneider, 1973). Knowl-
edge graphs are a flexible knowledge rep-
resentation framework, where knowledge is
represented as a graph of inter-related con-
cepts. Representing knowledge in a graph
has a number of practical benefits in scenar-
ios that involve integrating, managing, and
extracting value from diverse and heteroge-
neous data sources. The idea of representing
knowledge in graphs, particularly gained influ-
ence with Semantic Web, and lately with the
development of knowledge graph announced
in 2012 by Google, followed by other ma-
jor tech industry players (Hogan et al., 2021).
Lately, we could see applications of knowl-
edge graphs in question answering products in
wider use, such as Alexa, Google Assistant, or
Siri (Zhang et al., 2018). Likewise, the phar-
maceutical industry identified potential bene-
fits knowledge graphs can bring in accelerat-
ing drug discovery, drug development, indica-
tion expansion of existing drugs, and pharma-
covigilance.

In order to extract information and structure
them for entry into the knowledge graph, it
is necessary to perform named entity recogni-
tion of relevant entities (for bio-medicine these
could be genes/targets, compounds, diseases,
cell lines, pathways, organs, etc.), normalize
all the possible synonyms to agreed terminol-
ogy and at the end find relationships between
co-mentioned entities and normalize the rela-
tionships to the agreed data model or ontology.

Biomedical named entity recognition and
named entity normalization have had a long
tradition of research since the late 1990s
(Fukuda et al., 1998; Collier et al., 2000). A
number of approaches were developed that can

be classified into dictionary-based, machine
learning-based using usually hidden Markov
models or Conditional Random Fields and
Deep Learning-based, often using language
models, such as word2vec, ELMo (Milosevic
et al., 2020), BERT, and others, with trans-
formers (Khan et al., 2020) or recurrent neural
networks (Belousov et al., 2019).

In order to systematize extracted entities and
input them into the knowledge graph, they
need to be normalized. Normalization is a pro-
cess of mapping all possible terms and vari-
ants that represent one concept to one unique
entity id or preferred term (for example the
concept of cancer can be stated using various
expressions, such as neoplasms, tumor, can-
cer, malignity, etc.). For a long time, named
entity normalization relied on good dictionar-
ies and rule-based approaches (Leaman et al.,
2015; Cohen, 2005). However, in recent years,
there have been several deep learning-based
approaches for ranking candidate entities for
normalization using convolutional neural net-
works (Li et al., 2017; Deng et al., 2019)
or language models such as Word2Vec (Cho
et al., 2017) or BERT (Ji et al., 2020).

The extraction of the actual relationship
comes as the final step of structuring informa-
tion from a sentence. One of the first systems
to attempt relationship extraction in biomed-
ical domain was EDGAR (Rindflesch et al.,
1999), that was extracting relationships be-
tween drugs and genes in cancer domain, us-
ing a set of rules based on syntactic analysis.
Since then, several approaches to structuring
relationships were explored:

• Existence of relationship between enti-
ties - classifies whether there is an actual
semantic relationship between two enti-
ties, or the entities are co-mentioned, but
there is no actual named relationship be-
tween them. This approach of extracting
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general existence of the relationship is of-
ten applied for protein-protein interaction
extraction (Zitnik et al., 2018; Szklarczyk
et al., 2019) or gene-disease interactions
(Becker et al., 2004).

• Extracting predicate verb as relation-
ship type - predicate is not a closed set
of possible classes. Rather any predicate
verb appearing in a sentence indicating a
relationship between entities is taken as
the relationship type. Normalization of
relationship types is left for further pro-
cessing or analysis. Some of the research
databases, such as Open Targets use this
approach (Carvalho-Silva et al., 2019), as
well as some of the commercial tools that
allow relationship extraction (e.g. Lin-
guamatics I2E).

• Normalizing relationship types - pred-
icate is normalized into the set of well-
defined types. This approach needs a
carefully crafted data model of possible
relationships, as well as a carefully de-
veloped dataset for machine learning or
extraction rules. In semantic web com-
munity, there have been research on nor-
malizing a basic set of relationships in
general domain, such as is-a, part-of,
equal (Arnold and Rahm, 2015; Speer
and Havasi, 2013; Speer et al., 2017).
Domain specific and more granular data
models and datasets for this approach
are rare. BioCreative VI and BioCre-
ative VII provided data and organized
shared tasks on chemical-protein interac-
tions (Krallinger et al., 2017, 2020)

From the methodological perspective, re-
lationship extraction can be performed using
machine learning or rule-based approaches.
Rule-based approaches range from using lists
of relationship-related keywords and distances

between concepts and keywords (Abacha and
Zweigenbaum, 2011; Ravikumar et al., 2017)
to using dependency parsers and evaluating
whether concepts are related in grammatical
sense (Erkan et al., 2007; Goertzel et al.,
2006). On the other hand, machine learn-
ing approaches can be classified into two
groups: (1) supervised learning, using crafted
datasets (Peng et al., 2018; Liu et al., 2017)
and (2) semi-supervised or distant learning ap-
proaches, where a dataset is expanded based
on known relationships assuming that men-
tions of the same entities would entail the same
relationship (Mintz et al., 2009). Since 2009,
distant learning approaches have gained pop-
ularity and proved to be effective in relation-
ship extraction, despite the assumption that all
co-mentions of the same entities would entail
the same relationship is not always correct and
adds noise. In addition to these two general ap-
proaches, hybrid approaches, combining rules,
dependency trees, and machine learning ap-
proaches have been popular for relationship
extraction (Erkan et al., 2007; Muzaffar et al.,
2015).

3. Method

In this paper, we compare methods for rela-
tionship extraction. All of our methods use in-
house modified Linnaeus (Gerner et al., 2010)
tool for named entity recognition and nor-
malization. For relationship extraction, we
present and compare three methods: (1) a rule-
based method, based on sentence patterns and
dictionaries of trigger verbs and phrases, (2)
a machine learning method, based on tradi-
tional machine learning models (i.e. Naive
Bayes, Random Forests), and (3) a deep learn-
ing method based on transformer architec-
tures, such as DistilBERT (Sanh et al., 2019)
and text to text T5 transformer (Raffel et al.,
2020).
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3.1. Named entity recognition and normaliza-
tion (modification of Linnaeus)

Named entity recognition was done by an
internally modified version of the Linnaeus
tool (Gerner et al., 2010). We have added a
number of features that would allow us to per-
form more flexible entity matching while re-
lying on the Linnaeus algorithm which is fast
and reliable with good dictionaries. The added
features include:

• Handling defined a set of characters like
white spaces and treating multiple se-
quential white space characters as a sin-
gle white space character.

• Implementing a global flag that allows
ignoring cases of letters in matches if
needed

• A flag for automatic pluralization (adding
-s and -es suffixes) of dictionary terms

• A functionality that can handle and
transliterate Greek characters (e.g. beta
- β) as well as functionality that can
handle the variation of the position of
Greek characters (e.g. Interferon-α vs α
-interferon).

• Removing or ignoring diacritics

• Synonym level exact, case sensitive, and
regular expression matching

• Flag to match only the longest match

The dictionaries used for named entity
recognition and normalization into entities
have been carefully internally developed, ex-
panded, and refined over the past fifteen years
by our internal information scientists. We have
used dictionaries for human genes, diseases,
and approved drugs.

3.2. Relationship data model

Relationships of interest are relationships
between drug, gene, and disease entities. The
three pairs of relationships of interest are: (1)
Drug-Gene, (2) Drug-Disease, and (3) Gene-
Disease. Each of these pairs may have sev-
eral distinct relationship types. In order to de-
velop the relationship model, we have orga-
nized two workshops guided by the authors
with the internal experts from the Bayer R&D
department. Eighteen people participated in
these workshops and in the effort to create the
data model. They are members of following
teams within Bayer R&D department: scien-
tific and competitive intelligence (12 people),
semantics and knowledge graph technologies
(3 people, including authors), research and
early development, kidney disease (2 people),
bioinformatics (1 person). Experts from these
teams have advanced degrees in pharmacol-
ogy, biology, or medicine and often substantial
working experience in academia and within
the pharmaceutical industry. They have helped
us identify the possible relationship types for
the entities we focused on and validate our
model. We have also organized a meeting with
one bioinformatics expert, who helped us ad-
ditionally expand and validate Gene-Disease
relationships and possible modes of action.
Furthermore, we scouted available commer-
cial solutions that provide knowledge graph
solutions with the entities we were looking for.
We have identified two companies which pro-
vide data that is close to our needs - Causally1

and Biorelate2. The model that we have cre-
ated contained more comprehensive and more
detailed relationship types (more relationship
types, relationship attributes, such as modes of
action for genetic relationships) for the rele-

1https://www.causaly.com/
2https://www.biorelate.com/
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vant entity pairs, at the time of writing this pa-
per.

3.2.1. Drug-Gene relationships

CPR GROUP TYPE
CPR:1 Part of
CPR:2 Regulator
CPR:3 Up-regulator, Activator
CPR:4 Down-regulator, Inhibitor
CPR:5 Agonist
CPR:6 Antagonist
CPR:7 Modulator
CPR:8 Co-factor
CPR:9 Substrate, Product of
CPR:10 Not

Table 1: Chemical-Protein relationship as defined by
BioCreative shared task

The relationships between chemical and
proteins were subject of last two BioCreative
shared tasks in 2017 3 and 2020 4. Both of the
tasks defined the same interaction types. These
can be seen in Table 1. However, for the ma-
jority of purposes, some of the defined types
may be redundant. Therefore, we have sim-
plified the data model by merging some of the
classes and excluding ones that are rarely men-
tioned in the text. In the end, our Drug-Gene
model had the following relationship classes:

• Up-regulator/activator

• Down-regulator/inhibitor

• Regulator

• Part of

• Modulator

3https://biocreative.bioinformatics.

udel.edu/tasks/biocreative-vi/track-5/
4https://biocreative.bioinformatics.

udel.edu/tasks/biocreative-vii/track-1/

• Co-factor

• Substrate or product of

Note that Regulator is a type of relationship
in which it is not possible to determine the di-
rection of regulation from the sentence.

3.2.2. Drug-Disease relationships
Relationships between drugs and diseases

do not have any gold standard data model that
was used in previous shared tasks. Therefore
a new model was proposed containing the fol-
lowing relationship classes:

• Therapeutic use/Treatment

• Cause/Adverse event

• Decrease Disease

• Increase Disease

• Effect on

• Biomarker

It may seem that there is redundancy be-
tween Therapeutic use and Decrease Disease
classes, or between Cause and Increase Dis-
ease classes. However, Therapeutic use and
Cause indicate relationships where disease is
indication or counter indication for a given
drug. Increase and Decrease disease may re-
fer to any finding that a given drug improved
or worsened the state of disease, and therefore
is a weaker relationship. The weakest relation-
ship is Effect on, because, in this case, only the
fact that there is some effect of a drug on dis-
ease is known, without any additional details
(e.g. whether it improves disease or makes it
worse).

The chemical compound can be a biomarker
for some diseases. In medicine and drug dis-
covery, it is important to have a picture of
biomarkers, and therefore it is included in the
model.
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3.2.3. Gene-Disease relationships
The relationship between genes and dis-

eases is the most complex one among the three
types in scope. This is because a single gene
can improve, worsen or even cause a certain
disease. Therefore, it is often not enough to
classify the type of the relationship, the algo-
rithm needs to extract also a mode of action
on the gene. In terms of possible relationship
types, we have identified the following ones:

• Plays a role – From the sentence can be
concluded clearly that there is a connec-
tion between the gene and the disease,
however, it is not clear what kind of role
the gene plays in the disease, only that it
plays some role.

• Target

– General – The gene or protein can
be considered a target for the given
disease, with no more specific infor-
mation on the modulation of the dis-
ease.

– Cause – The sentence indicates that
activation, mutation or inhibition, or
any other action over a gene is caus-
ing a given disease.

– Modulator

* Decrease disease – There is a
clear indication that gene is re-
sponsible for decreasing and al-
leviating the disease.

* Increase Disease - There is a
clear indication that gene is
responsible for increasing and
worsening the disease.

• Biomarker – The presence or lack of a
given gene/protein is an indicator for the
diagnosis of disease or pathology.

3.2.4. Mode of action
Together with the relationship classes, if

available, mode of action is an important mod-
ifier for Gene-Disease relationships. It estab-
lishes the action taken on a gene in order for
the relationship to take place. For example, a
gene may both decrease and cause disease, de-
pending on whether the gene was activated or
inhibited. Possible modes of action are (1) in-
hibition or down-regulation, (2) activation or
up-regulation, (3) mutation or modification.

3.2.5. Negation and speculation
The relationship between entities in a sen-

tence may be negated, which reverses the se-
mantics of the relationship. Therefore, it is
important to detect whether the relationship is
negated.

Likewise, statements in the text can be fac-
tual, stated as well-known facts, or specula-
tive. Speculative claims need to be taken with
more caution and therefore, speculation detec-
tion is included in our model.

3.3. Relationship extraction using rule-based
method

Based on the previously described rela-
tionship model, we have developed a rule-
based method for relationship extraction. The
method relies on vocabularies for relationship
trigger words, negation cues, speculation cues,
mode of action (MoA) cues, and grammar pat-
tern rule set. An example of vocabularies and
patterns in the ruleset with an example sen-
tence from which a relationship is extracted
using given rules and vocabularies is presented
in Figure 1.

The trigger word vocabulary contains a list
of relationship trigger words and phrases, with
metadata, such as to which relationship given
word or phrase maps, between which entities,
whether entities have to be in a given order
of mentioning or can be in reverse order (e.g.
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Figure 1: Example of dictionaries, rules set and an example of sentence annotations in order to match relationship in
a sentence

for Drug-Disease relationship whether it is al-
lowed for the drug to be after disease in the
sentence) and whether the phrase should be in-
terpreted as a regular expression.

Mode of action cues has a mapping to the
mode of action type (i.e. Inhibition, Activa-
tion, Mutation). The vocabularies for negation
and speculation cues are simple lists of words
(e.g. no, not for negation; hypothesise, may for
speculative).

Grammar patterns define sequences that
need to be matched in order to extract relation-
ships. This grammar has several keywords,
such as Subject, which refers to the subject en-
tity, Predicate, which refers to predicate en-
tity, Trigger, referring to trigger cue, Specu-
lation, referring to Speculation, Negation, re-
ferring to negation cue, Subject type, referring
to entity that is not subject in current evalua-
tion pair of entities, but has same type as Sub-
ject entity (i.e. Drug or Gene), Predicate type,
referring to entity having same type as pred-
icate, but not evaluated in current pair. Ad-

ditionally, there may be defined a number of
words that are between labeled entities, trig-
ger words, negations, and speculative phrases.
For example the following pattern:

Speculation W3 Subject W3 Trigger
W3 Predicate

would match sequences where the specu-
lative cue is followed by up to three tokens,
followed by Subject, followed by up to three
tokens, followed by trigger phrase, followed
by another three tokens and predicate. This
means it would match sentences such as ”We
hypothesize that aspirin can alleviate most
cases of headache”, if the token ”hypothesize”
is in the list of speculative cues, ”aspirin” is
marked as a drug and is subject, ”headache”
is a disease and predicate, and ”alleviate” is a
trigger word.

The matching algorithm iterates over la-
beled entities in each sentence and finds
all pairs that may constitute relationships.
It annotates sentences with potential trigger
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phrases, speculative cues, and negations. Fi-
nally, the algorithm tries to match any pattern
from the grammar to the sequence in a sen-
tence. If the matching is successful, the rela-
tionship is extracted and mapped to the rela-
tionship type and metadata, such as mode of
action, negation, and speculation cues are ex-
tracted.

The confidence score is calculated as a
proportion of words in sentences that ex-
actly match named phrases (Subject, Predi-
cate, Trigger, Speculation, Negation), divided
by all the words in the pattern (this includes
named phrases and tokens that were matched
as part of allowed distance tokens, e.g. up to
three words for each W3 statement in gram-
mar). The rationale for this calculation is
based on the assumption that additional words
may change the semantics of the sentence and
therefore confidence about the existence of the
relationship should be lower.

In addition, the method also extracts co-
occurrences, giving them fixed confidence
of 0.0001, and labeling them with a ”Co-
occurrence” label.

Each extracted relationship contains infor-
mation about entities (entity string, type, pre-
ferred term, internal ID), relationship type,
whether it is negated, whether it is speculative,
and confidence score. Also, the evidence sen-
tence and Medline ID of the article where the
evidence was found are recorded.

3.4. Machine learning
We have developed machine learning meth-

ods for classifying relationship types. The task
was modeled as a sentence-level classification
task. The initial method is based on sentence
classification using traditional machine learn-
ing algorithms, such as Random Forests, Naive
Bayes. We have then advanced the method
by using fine-tuned transformer-based archi-
tectures for sentence classification for relation-

ship type, such as DistilBERT (Sanh et al.,
2019), and a text-to-text transformer called T5
(Raffel et al., 2020). We report here results
from all of the mentioned experiments.

3.4.1. Training and testing data
The data are collected by using a rule-based

relationship extractor previously described for
the Gene-Disease relationship. We are evalu-
ating our approach to Gene-Disease data, as it
proved to have the most complex data model
and therefore is the most complex to correctly
extract relationships. Also, this relationship
type is important from a biomedical perspec-
tive, as it may give insights on potential tar-
gets for treating respective diseases. Out of
this dataset, 2000 sentences were reviewed and
corrected by human annotators. For this task,
a company called Molecular Connections was
contracted. Other 10 000 sentences were ob-
tained from the rule-based method, with confi-
dence 1. These sentences would match cor-
rect sentences, as they do not allow for any
tokens that may change context, apart from
named phrases. Therefore, the dataset con-
tained about 12 000 sentences. The data was
split as 90% training and 10% testing data for
training and testing of machine learning ap-
proaches.

In order to create a more balanced dataset,
we have generated the second dataset by tak-
ing 2000 manually annotated sentences, but
then adding sentences from the rule-based
method with confidence 1 in such a way that
each relationship class had at least 1400 sen-
tences (for biomarkers, we could obtain 1243
sentences with confidence 1 from a processed
portion of the data we had at the time of build-
ing the dataset). The statistics about the num-
ber of sentences per relationship class in our
datasets are presented in Table 2.

We have also created a dataset for the classi-
fication of a mode of action. We created again

9



Relationship type Unbalanced dataset Balanced dataset
Biomarker 198 1243
No Explicit Relationship 446 446
Plays a role 7393 1532
Target->Causative 1460 1508
Target->General 656 1414
Target->Modulator->Decrease Disease 1108 1450
Target->Modulator->Increase Disease 720 1422

Table 2: Number of sentences for each relationship type in our balanced and unbalanced data sets

one unbalanced and balanced dataset. Since
for the mutation class we had only 140 exam-
ples, we initially balanced the dataset by tak-
ing 140 examples from each class. This is a
fairly small dataset and may be improved by
adding examples. We have created an addi-
tional dataset taking 300 data samples from
each class, allowing duplication for classes
that did not have enough samples (e.g. mu-
tation). The access to the generated datasets
can be requested at https://zenodo.org/

record/6466316#.Ylw3T-dS9Ea.

3.4.2. Initial experiments using Random for-
est and Naive Bayes classifiers

Initially, we attempted to use traditional
machine learning algorithms, such as Naive
Bayes and Random Forests. For both of them,
sentences were tokenized and stemmed us-
ing Porter Stemmer (Porter, 1980). Since for
relationship extraction, it is important to ex-
amine the sequences of words, the features
for our classifiers were uni-grams, bi-grams,
tri-grams, and four-grams. Finally, data was
trained using Random Forest and Naive Bayes
Classifier.

3.4.3. Transformer based architectures: Dis-
tilBERT and T5 Text-to-text model

Transformer-based models are currently the
state-of-the-art machine learning methods that
perform well on a variety of tasks, ranging

from classification to summarization and ques-
tion answering (Devlin et al., 2018; Raffel
et al., 2020). In the past few years, a num-
ber of language models were developed and
pre-trained on datasets such as common crawl.
Many of these models are based on the BERT
model, with various modifications to reduce
the size of the model or increase speed (Sanh
et al., 2019; Liu et al., 2019; Lan et al., 2019).
These models can be used for classification by
using and training head - a feed-forward neu-
ral network on top of the transformer network
that outputs word embeddings. We will use
a BERT-based model that was optimized for
size and speed, called DistilBERT (Sanh et al.,
2019), whose authors claimed that has 40%
fewer parameters, runs 60% faster while pre-
serving over 97% of BERT’s performances as
measured on the GLUE language understand-
ing benchmark. In 2020, Google released a
text-to-text transformer called T5. This model
is generating textual output and a single model
can be trained to perform multiple tasks (spec-
ifying task in the prefix of the input). In
the original paper, the authors of T5 claimed
that the model exhibits state-of-the-art perfor-
mance and on most of the tasks it outper-
formed BERT. In this paper, we will evaluate
that claim on the sentence-level classification
of biomedical relationships (gene-disease).

The learning task was defined as a sentence
classification task. For a given sentence, con-
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taining entities, the model is supposed to pro-
vide a normalized relationship type from our
data model. In the training and testing sen-
tences, the text was pre-prepared in such a way
that subject of the relationship (e.g. gene) was
masked with the keyword SUBJECT and the
predicated of the relationship (e.g. disease)
was masked with the keyword PREDICATE.
In this way, we hypothesized that the internal
attention mechanism of the model would be
able to learn how to treat the vicinity of sub-
jects and the predicates of the relationships.

The DistilBERT model was based on the
DistilBERT base uncased model available on
HuggingFace5. This model was fine-tuned for
the classification task, and trained on our un-
balanced and balanced datasets for 5 epochs
(learning rate=0.00002). DistilBERT is an en-
coder model, to which a decoder can be cre-
ated using a pooling and feed-forward network
whose output layers dimension is equal to the
number of classes (in our case 8).

On the other hand, the T5 model has
encoder-decoder architecture, and therefore
we do not define additional layers. We have
fine-tuned the T5 model that is readily avail-
able on HuggingFace6. T5 is a multi-task
model that can be fine-tuned and new tasks
can be added during the fine-tuning of the
model. The multi-tasking nature of T5 is con-
venient, since the same model can be deployed
once performing multiple tasks (e.g. question-
answering, summarization, translation, and re-
lationship extraction within the same API).
During the fine-tuning of the model, we have
added new prefixes for gene-disease relation-
ship classification and gene mode-of-action
classification (with four classes - activation,
inhibition, mutation, and not reported). We
have fine-tuned the model on our dataset us-

5https://huggingface.co/distilbert-base-uncased
6https://huggingface.co/t5-base

ing Adafactor optimizer (Shazeer and Stern,
2018). The model was trained for 5 epochs
(learning rate=0.00002).

Encoder layers of T5 have a size of 512 to-
kens, while DistilBERT has an encoder size of
728 tokens. Both of the sizes are longer than
the longest sentence in our dataset, therefore
the size difference should not affect the train-
ing and we used padding to fill the sequence
with special padding tokens.

4. Results

4.1. Rule-based relationship extraction

We have processed base Medline data un-
til January 2021, containing about 35 mil-
lion abstracts. The processing with both Lin-
naeus and the relationship extraction engine
took about 7 days on a single machine. We
managed to extract in total 4,784,985 rela-
tionships (with co-occurrences 35,900,521).
There were 631,573 named relationships
found between Drug-Genes (6,885,810 includ-
ing co-occurrences), 1,468,639 relationships
between Drug-Diseases (8,378,599 including
co-occurrences), and 2,684,742 relationships
between Genes and Diseases (20,065,385 in-
cluding co-occurrences).

Extracted relationships can be loaded into a
graph or relational database, where these re-
lationships can answer complex medical ques-
tions with evidence. By summing confidence
scores, it is possible to retrieve genes interact-
ing with a given drug (e.g. top results for drug
Tolvaptan was inhibition of AVPR2, while the
second one was inhibition of vasopressin re-
ceptor family), drugs that have an effect on
certain disease (e.g. for autosomal dominant
polycystic kidney disease retrieved Tolvaptan,
which is approved for autosomal dominant
polycystic kidney disease, Sirolimus, which
inhibits mTOR and as well have been often
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Figure 2: Section of knowledge graph showing nodes that are in relationship with autosomal dominant polycys-
tic kidney disease (ADPKD). Orange entities are diseases (ADPKD), entities in blue are drugs and in green are
genes/proteins. Label on edges present relationship type, number of mentions and cumulative confidence score for
the given relationship between two entities.

used in polycystic kidney disease, and So-
matostatin, which was published as a hormone
having a potential role in the treatment of au-
tosomal dominant polycystic kidney disease
(Messchendorp et al., 2020)), or what genes
are important for a given disease (e.g. for auto-
somal dominant polycystic kidney disease re-
trieved PKD1 and PKD2 as targets that both
play a role and have a causative relationship
with disease, as well as mTOR, REN, CCL2).
We evaluated a case study related to autoso-
mal dominant polycystic kidney disease. We

created a graph whose edges end in autosomal
dominant polycystic kidney disease. In order
to reduce noise, we consider only edges that
represent the relationship that was mentioned
at least 5 times in PubMed. We have then eval-
uated the graph and all entities were indeed
known from the literature to experts in the kid-
ney disease team. A portion of the knowledge
graph with relationships ending in ADPKD is
presented in Figure 2.

We have evaluated 100 abstracts containing
at least one relationship manually and calcu-
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lated precision, recall, and F1-score. The eval-
uation is depending on the extent of trigger
phrases and completeness of grammar, which
is overtime improving. The measured perfor-
mance was 0,88 precision, 0,74 recall and 0,80
F1-score. It is expected that the rule-based ap-
proach would have high precision and lower
recall, as it would miss some of the relation-
ships, but annotate relatively few false pos-
itives. Despite making some false positive
relationships, generated data perform well in
answering relevant biomedical questions be-
tween genes, drugs, and disease. The cumu-
lative effect is that noise can be ignored by
setting a threshold and manually validating re-
sults below the given threshold if necessary.

4.2. Naive Bayes and Random Forests-based
Relationship extraction

The machine learning method was evaluated
on two sets (2000 manually annotated rela-
tionships + 10,000 random relationships with
confidence 1 - unbalanced set, and 2000 man-
ually annotated relationships + random rela-
tionships with confidence 1, so there are at
least 1,500 examples for each class - balanced
set). For both data sets, 90% of data was
used as training data, while 10% of data (about
1200 sentences) was used as a testing set. The
results of our evaluation can be seen in the ta-
ble 3.

Balancing data significantly improves pre-
cision and recall in both classifiers. With un-
balanced data, Naive Bayes learned to always
pick the most probable class - the class with
the most results. The random forest classi-
fier was better at learning how to recognize
classes. However, balancing data, gained 26%
in F1-score for Naive Bayes and 14% for over-
all results in Random Forests. The worst per-
formance has a class which we were unable
to balance due to the lack of annotated exam-
ples - No Explicit relationships (477 sentences

in the unbalanced set, that was annotated by
annotators). Other classes performed with an
F1-score over 70%.

4.3. Transformer-based relationship extrac-
tion

We have fine-tuned base T5 for relationship
extraction by adding a new prefix (”Relation-
ship extraction:”) on both unbalanced and bal-
anced data. We have monitored the perfor-
mance of the algorithm over epochs. The re-
sults can be seen in Figure 3.

Likewise, we have trained the DistilBERT
model on both datasets.

Balancing data improves the T5 model, al-
though the increase in performance is just 2%
(F1-score increase from 0.86 to 0.88 after five
epochs). However, certain relationship types
in the unbalanced dataset had a large gap be-
tween precision and recall (e.g. ”No Ex-
plicit relationship” in unbalanced had P=0.88,
R=0.26), while in the balanced dataset preci-
sion and recall were closer (for the same class
P=0.88, R=0.72).

We present the results of relationship clas-
sification after five epochs in Table 4. Over-
all, the DistilBERT model performed better
on both data sets, even though the perfor-
mance difference was just 2%. Also, the
model performed better on the majority of re-
lationship types (apart from Increase Disease
and Biomarker types on both datasets). The
stronger performance of DistilBERT is sur-
prising and interesting due to its much smaller
nature (66 million parameters in DistilBERT
base compared to 220 million parameters in
T5 base). This may be due to the multi-task
and text-to-text nature of the T5 model, as a
number of parameters need to be retained for
other tasks and prefixes, as well as encoding to
textual output.

We have added prefix into the T5 model
and trained it for the classification of gene-
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Class Precision Recall F1-score
Unbalanced dataset

Naive Bayes 0.39 0.62 0.48
Biomarker 0 0 0
No Explicit Relationship 0 0 0
Plays a role 0.62 1 0.77
Target->Causative 0 0 0
Target->General 0 0 0
Target->Modulator->Decrease Disease 0 0 0
Target->Modulator->Increase Disease 0 0 0

Random Forests 0.74 0.71 0.66
Biomarker 0.80 0.16 0.27
No Explicit Relationship 0.89 0.30 0.45
Plays a role 0.70 0.99 0.82
Target->Causative 0.81 0.34 0.48
Target->General 0.75 0.24 0.37
Target->Modulator->Decrease Disease 0.76 0.31 044
Target->Modulator->Increase Disease 0.81 0.17 0.28

Balanced dataset
Naive Bayes 0.73 0.75 0.74

Biomarker 0.94 0.91 0.92
No Explicit Relationship 0 0 0
Plays a role 0.66 0.75 0.70
Target->Causative 0.66 0.89 0.76
Target->General 0.83 0.73 0.78
Target->Modulator->Decrease Disease 0.74 0.72 0.73
Target->Modulator->Increase Disease 0.84 0.76 0.80

Random Forests 0.79 0.79 0.78
Biomarker 0.97 0.85 0.91
No Explicit Relationship 0.64 0.15 0.24
Plays a role 0.65 0.80 0.72
Target->Causative 0.81 0.87 0.84
Target->General 0.76 0.84 0.80
Target->Modulator->Decrease Disease 0.75 0.81 0.78
Target->Modulator->Increase Disease 0.91 0.81 0.86

Table 3: Results of Naive Bayes and Random Forests classifiers
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Figure 3: F1-score by epoch in fine-tuned DistilBERT and T5 models on both unbalanced and balanced datasets

T5 DistilBERT
Class Precision Recall F1-score Precision Recall F1-score
Unbalanced dataset
Overall (weighted average) 0.87 0.87 0.86 0.89 0.89 0.89

Biomarker 1.00 0.52 0.69 0.75 0.63 0.69
No Explicit Relationship 0.88 0.26 0.40 0.57 0.52 0.54
Plays a role 0.91 0.95 0.93 0.96 0.95 0.95
Target->Causative 0.84 0.90 0.87 0.89 0.94 0.91
Target->General 0.75 0.79 0.77 0.72 0.75 0.74
Target->Decrease Disease 0.77 0.79 0.78 0.74 0.82 0.78
Target->Increase Disease 0.85 0.82 0.83 0.78 0.79 0.79

Balanced dataset
Overall (weighted average) 0.88 0.88 0.88 0.91 0.91 0.91

Biomarker 0.97 0.95 0.96 0.91 0.93 0.92
No Explicit Relationship 0.88 0.72 0.79 0.92 0.86 0.89
Plays a role 0.86 0.80 0.83 0.86 .0.82 0.84
Target->Causative 0.90 0.96 0.93 0.97 0.95 0.96
Target->General 0.83 0.87 0.85 0.92 0.93 0.93
Target->Decrease Disease 0.83 0.91 0.87 0.84 0.93 0.88
Target->Increase Disease 0.91 0.95 0.93 0.91 0.91 0.91

Table 4: Results of the best performing fine-tuned T5 and DistilBERT models (after 5 epochs)
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associated modes of action into four possible
classes: (1) activation, (2) inhibition, (3) mu-
tation, and (4) not reported. The utility of the
T5 model is that a single model can perform
both classifications of sentences by relation-
ship type as well as the mode of action, for
which we would need separate DistilBERT-
based models. The model was trained on the
unbalanced and balanced dataset (each class
containing 300 examples of each class). The
model was trained for 5 epochs. The results
are presented in Table 5.

Mode-of-action detection performs well
with quite a small amount of data. This is be-
cause terms used for mode-of-action are in a
relatively closed set (activation, inhibition, in-
hibitor, agonist, antagonist, mutation, modula-
tion, etc.), and the language model is able to
transfer and infer them from the time model
was pre-trained on the C4 dataset. However,
adding data helps improve it.

5. Discussion

The presented rule-based methodology is
currently the base of the developed knowledge
graph. With about 5 million typed relation-
ships and over 30 million co-occurrences, it
presents a powerful tool for drug discovery,
target identification, indication expansion, and
even pharmacovigilance. The graph structure
allows for analysis over multiple hops. This
will be further improved by adding protein-
protein, drug-drug, and disease-disease inter-
actions, on which we are working. It allows
visualization of interaction pathways for dis-
eases and graph learning for finding poten-
tially missing relationships and validating hy-
potheses about weak relationships.

The current number of relationships in our
graph is comparable with other state-of-the-art
databases and graphs that consider the same or
similar relationships. (Yang et al., 2021) de-

veloped a method for creating a stroke knowl-
edge graph using PKDE4J based on 9 en-
tity types and 30 relation types. The rela-
tionship extraction method based on BioBERT
performed with an F1-score or 84.26% and
they managed to extract 157 000 relationships
based on stroke only papers in Pubmed (about
130 000 abstracts). (Lee et al., 2022) devel-
oped likewise a method based on PKDE4J for
entity identification and SciBERT for classi-
fication of relationships between genes, dis-
eases, and compounds. The data model had
8 relationship types based on whether the rela-
tionship is directed, undirected, positive, neg-
ative, and has an increasing or decreasing ef-
fect on the object entity. The best performance
of their model is an F1-score of 81.7%. We
believe that our model performed better (91%
F1-score), because the data model is more
granular and crafted for particular entity pair
relationships, therefore easier to learn than re-
lationship types generic for any biomedical en-
tity pair.

Kim et al. (2017) focused on extracting
gene-disease evidence sentences, using exist-
ing tools extracting genetic events, but did not
classify the relationship between gene and dis-
ease. They managed to extract about 7.3 mil-
lion evidence sentences from PubMed. Our
system is extracting mode of action, which
partially compares to biological events, on
top of which it also extracts typed relation-
ships. Our system extracted 2.7 million typed
relationships and 20 million co-occurrences,
therefore both wider (co-occurrences) and
more detailed (typed relationships with modes
of action) evidence.

Bhasuran and Natarajan (2018) used SVM
on word embeddings to classify the existence
of gene-disease relationships. The method was
evaluated with an F1-score of about 83%-87%.
RENET2 achieved 72.13% F1-score for ex-
tracting gene-disease relationships from Pub-
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Class Precision Recall F1-score
Unbalanced dataset

Overall (weighted average) 0.95 0.95 0.94
Activation 1.00 1.00 1.00
Inhibition 0.87 1.00 0.93
Mutation 1.00 0.77 0.87
Not reported 0.94 1.00 0.97

Balanced dataset (300 examples per class)
Overall (weighted average) 0.98 0.97 0.97

Activation 1.00 1.00 1.00
Inhibition 0.93 1.00 0.96
Mutation 0.97 1.00 0.99
Not reported 1.00 0.90 0.95

Table 5: Results of the best performing mode-of-action T5 model

MedCentral articles (Su et al., 2021). How-
ever, genes-disease association types were not
classified, only the existence of the associa-
tion was annotated. A number of methods
were proposed for similar gene-disease as-
sociation extraction without naming the re-
lationship type based on DisGeNet dataset
(Piñero et al., 2016; Hebbar and Xie, 2021;
Parmar et al., 2020).Since the publication of
DisGeNet, the research in this area acceler-
ated. Publicly available datasets with anno-
tated biomedical relationship types are rare.
Therefore, there was a need for the creation
of new gene-disease relationship data set with
our described data model.

Our method based on DistilBERT is report-
ing better results than most methods reported
in the literature. However, the model relies on
the relationship types, consistency of annota-
tors, and size of the dataset.

6. Future work

The creation of a comprehensive biomedical
knowledge graph for target identification, indi-
cation expansion, and drug discovery is a long-
term task. Some of the future activities on

utilizing and improving our knowledge graph
will involve:

• Develop machine learning,
transformer-based models for other
relationship types (drug-gene, drug-
disease, drug-drug, gene-gene, disease-
disease). This may involve further
annotation of data for other relationship
pairs and creating a model based on these
annotations.

• Unifying relationships obtained from
unstructured (literature, clinical tri-
als, expert reports, grant proposals)
and structured data sources - Combin-
ing structured and unstructured data pro-
vides better quality of results and opens
the possibility for a more detailed and
comprehensive evaluation of links in the
graph.

• Developing an interface for explor-
ing relationships and their evidence -
graphical user interface would enable a
wider scientific audience to utilize the
graph. This is especially important due to
the fact that the majority of pharmacolo-
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gists and biologists working in the phar-
maceutical industry do not have an ex-
tensive computational background. This
would allow them to be more efficient in
generating and evaluating hypotheses be-
fore going to the laboratory.

• Predicting novel target candidates us-
ing graph and temporal graph learn-
ing methods - based on the chronology
of the appearance of relationships in the
graph, it may be possible to learn patterns
and predict relationships between entities
that would be identified in future. There-
fore, it would be possible to automati-
cally generate a hypothesis about the ex-
istence of yet undiscovered biological re-
lationships using temporal graph neural
networks (Wang et al., 2020).

7. Conclusions

In this paper, we have presented one rule-
based approach, that mainly served as a start-
ing point for obtaining biomedical relation-
ship data. Further, we have compared tra-
ditional machine learning approaches, with
modern, state-of-the-art language models and
transformer approaches (DistilBERT and T5
models).

In all approaches, it was visible improve-
ment when we used balanced datasets, how-
ever, fine-tuned DistilBERT and T5 models
were more resilient and did not depend so
much on balanced data sets as some older
and traditional approaches would. Also,
transformer-based models, due to their pre-
training on larger data, are able to generalize
well from a fairly small amount of data. Dis-
tilBERT performed slightly better than the T5
model, which was a surprising finding since
T5 has about 4 times more parameters than
DistilBERT. However, this may be due to the

multi-task nature of T5, as well as the fact that
part of the model has to be used for text-to-text
generation.

Developing machine learning data sets for
tasks such as relationship extraction can be
quite expensive. On the market, the pricing of
a single annotated sentence can range between
1-3 euros, depending on the complexity of the
task. However, this quickly scales, once the
data set has 7 annotation classes and there is
a need for over 1000 examples per annotation
class in the data set. The commissioned man-
ual annotations of our data set (around 7,000
sentences in total) cost 16,200 euros. The fur-
ther cost comes from cloud infrastructure and
machine learning engineering. Costs in devel-
oping relationship extraction models and ap-
proaches remain one of the main challenges.

Nevertheless, fine-tuning transformer mod-
els proved to be a promising approach. First
of all, the performance of the model outper-
formed all other approaches, with over 91%
F1-score overall, and with the majority of an-
notation classes breaching 85% F1-score. A
review of the literature showed that the model
performance is state-of-the-art for biomedical
typed relationship extraction. Also, the model
showed stability in terms of both precision
and recall, where both were for the majority
of classes similar (unlike the rule-based ap-
proach, where there is high precision but fairly
low recall). On the other hand, T5 models are
multi-task models, where it is possible to suc-
cessfully address multiple problems with a sin-
gle model, which makes valuable savings in
terms of managing and updating the models.
Lastly, fine-tuned T5 models, as they are text-
to-text models, are easy to use and data prepa-
ration is kept simple.

In terms of limitation, T5 models are large,
multi-task models, whose base model contains
220 million parameters. This is, for exam-
ple, twice the size of the BERT base and over
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four times the size of the DistilBERT model,
and it contributes heavily to the speed of fine-
tuning and execution, making the processing
slow. Despite the fact that DistilBERT can be
trained only on a single task and there is a need
for post-processing of outputs, the model has
both performance and speed advantages com-
pared to the T5 model.
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