
Secure Modules in TinyOS

Abstract— In this paper, we discuss TinyOS as a flexible
operating system that is suitable for wireless sensor networks.
It is a powerful tool that is capable of forming a strong
component of intelligent systems. Similarly, sensor networks
are composed of accurate, low levels of power nodes that
carry out simultaneous, reactive programs that operate within
the limitations of power and memory. As a solution, we
integrate components of the TinyOS with TinyHash or
modules for better operations. We also present more data
about four components based on our proposed protocol,
which includes hash function, module hash table, base station,
and algorithm chart.

Keywords— TinyOS, wireless sensor network, WSN,
hash function, module hash table, base station, and
algorithm chart.

I. INTRODUCTION

A sensor network is referred to as a network for the
succeeding generations as evidenced by numerous studies.
Today, many applications are now using the sensor network
for various purposes, such as collecting and managing
environment data, military service, emergency medical
system, tracing and managing of goods, and among different
fields across the globe. In relation, the sensor network has the
ability to organize wireless networks in addition to sensor
nodes. Likewise, these sensor nodes have certain limitations
with regards to bandwidth, electricity consumption, memory,
and ability to calculate. In general, sensor nodes can
efficiently transmit through short-range broadcast
communication. However, a wireless sensor network (WSN)
usually is at risk for security threats exposure because there is
the possibility for eavesdroppers, insertion of hateful
messages, and modification of communication messages. In
order to prevent such threats, communication data encryption
and common authentication between the sensor nodes are
necessary. On the other hand, majority of the risks concerning
online security originate from weakly programming code.
Therefore, it is a must to prevent the occurrence of such
events by acquiring trustworthy hardware and software. Since
software is prone to hacking activities, a fool-proof alert
system is a must. Similarly, this alarm system should
immediately notify the user of unauthorized alterations to
prevent security threats.

II. BACKGROUND

1 – TinyOS:

TinyOS are systems that dominate majority of programming
wireless sensor network devices. A TinyOS application is
defined as a series of mechanisms that offer limited runtime
support. A programmer usually documents a number of
custom components and links that are derived from the
TinyOS library. These components are written in nesC, which
is a dialect of C with component extensions, standard
programming, and concurrency. Afterwards, the nesC
compiler interprets component assemblies into a monolithic C
program that is gathered and enhanced by GCC.

In order to save energy, a TinyOS application usually sleeps
or functions with low duty cycle. Likewise, applications are
commonly interrupted and follow a limited two-level
concurrency model. Many codes operate in tasks and without
a preventive schedule. However, interruptions have the ability
to obstruct activities other than atomic sections, which are
executed by stopping interrupts.

Moreover, there are numerous reasons why TinyOS is famous
for. One of the reasons is because nesC is very comparable to
C, which is the embedded software’s principal language. Such
custom is significant for the user to adopt, however poses
various problems related to C code. Another reason why
TinyOS remains popular is because it offers a wide array of
prepared components of the library. This allows the
programmer to save their work for specific activities.
Furthermore, the nesC compiler is equipped with race
condition detector, which aids the developers in preventing
concurrency viruses or bugs. Lastly, the popularity of TinyOS
can be attributed to its design and overall static resource
allocation model that supports programmers to easily discover
dynamic allocation bugs. Additionally, static allocation aids
the programmer maintain time and space operating costs to be
at its lowest by surpassing the need for bookkeeping.

Therefore, we selected TinyOS as the foundation of our
method or approach for reliable software development
directed towards sensor networks. We have to work with a
legacy language as well as a legacy code. Nonetheless, we
discovered the advantage of using sensor network
applications’ properties along with TinyOS, in addition to its

Saeed Aldawsari Ahmed Alamri
 Department of Computer Science & Engineering Department of Computer Science & Engineering

 University of Bridgeport University of Bridgeport
 saldawsa@my.bridgeport.edu aalamri@my.bridgeport.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52956401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concurrency and allocation models so that Safe TinyOS can
be practically executed.

2 – TinyHASH:

Recently, there has been great interest over security
infrastructure made especially for sensor networks. Among
these proposals was made by Chris Kalof, and was called
TinySec. Another example is David Wagner’s Link layer
security structural design, which focused on sensor network-
related issues like energy, computation capability, bandwidth,
among others. Nevertheless, TinySec utilizes CBC_mode of
encryption and CBCMAC for the purpose of authenticating
via SkipJack Block Cipher. Today, TinySec is integrated in
the TinyOS to strengthen sensor network security. In this
paper, we present TinyHash according to the generalized hash
algorithm. Thus, TinyHash functions as the module used to
substitute authentication parts and the veracity of TinySec.
Meanwhile, TinyHash components are developed the same
way as TinySec in order to become compatible. Also,
TinyHash instigates the HMAC component for authenticity
and the Digest component for the accuracy of the messages.
In addition, we describe common interfaces used for service
related to hash algorithm.

III. THE PROPOSED PROTOCOL

Figure-A

Our procedure is to use a module code that we will upload on
an embedded memory, that doesn’t involve unauthorized
modifications. In order to accomplish this, we used both
TinyHash module and Modules Hash Table (MHT).

In addition, our protocol is designed to hash or include a
particular module code through TinyHash module, and
achieve the outcome as the answer to H-MAC. Afterwards,
we stored it in Modules Hash Table (MHT), which is a
memory space in WSN where the HMAC Keys and function
names are located. Out presentation is based on this protocol
plan that is reliant on TinyOS.

As per procedure, we offered a technique to aid in reducing
the consumption of battery life and hashing processes. Such
method requires calculating hash at a specific period of time.
For example, it can be set or scheduled four times or
numerous times every day with lesser hashing to limit the
process, depending on the security problem presented.

Moreover, we offer another method that will help reduce data
packet whenever TinyOS will send information to the base
station. The MHT will give the hash key module’s virtual
division in five parts, and out technique is to select a part of
the hash key arbitrarily. Afterwards, it will be attached to the
sensed information and sent to the base station in the end.
Below is an example whereby TinyOS sends 8 bytes of hash
key instead of 32 bytes. The main goal of 8 bytes sent by
TinyOS to the base station is to authenticate unauthorized
modification in module code. After the 8 bytes is received, the
base station will receive the information sent and will
determine its authenticity or lack thereof of the data received.
By this time, the base station will be protected against
unauthorized manipulation attempts with the module code.
See figure-B.
Also, we offer more information about this through the four
components of our proposed protocol: (A) Hash Function; (B)
Module Hash Table; (C) base station; and (D) Algorithm
Chart.

Figure-B

A. Hash Function

TinyHash applies the H-MAC scheme for authentication
purposes, and applies SHA-1 hash algorithm for digesting
messages. As Figure-A shows, we have two inputs, one of
which is the secret key while the other is the TinyOS module
code. After both inputs are entered to the TinyHash module,

the module will then calculate the H-MAC and give the result
as 32 bytes.
Below is an example of TinyOS’ AntiTheft module:

module AntiTheftRootC
{
 uses
 {
 interface Boot;
 interface SplitControl as SerialControl;
 interface SplitControl as RadioControl;
 interface LowPowerListening;
 interface DisseminationUpdate<settings_t> as SettingsUpdate;
 interface Receive as SettingsReceive;
 interface StdControl as CollectionControl;
 interface StdControl as DisseminationControl;
 interface RootControl;
 interface Receive as AlertsReceive;
 interface AMSend as AlertsForward;
 interface Leds;
 }
}
implementation
{
 event void Boot.booted()
 {
 call SerialControl.start();
 call RadioControl.start();
…..
……
……

As the above partial module code suggests, the module
conformed to the Hex file and is uploaded as binary to
embedded Memory (RAM) in WSN. After this, we begin to
operate our algorithm in order to calculate hash keys.

Meanwhile, here is the execution times and TelOS size
achieved after using the TinyHash module:

Algorithms	 Time	 Size	 of	 RAM	

SHA-1 35 ms 140 Bytes

H-MAC 71 ms 165 Bytes

B. Module Hash Table (MHT)

Through the utilization of the TinyOS, we will stock the H-
MAC key and the module stored in the memory after it has
been hashed. See Figure-A. After the MHT receives the hash
key, the option to divide the key into 5 parts will be available.
This is so that the TinyOS can randomly select one of these 5
parts to send to the base station.

De5c8b85 B8b91ba 6bc8a7c3 6f78a907 01c9db4d9

An example is when TinyOS sends information that randomly
attaches the key 6bc8a7c3 and sends it. Afterwards, it will
select another key randomly. The table presented above
presents the allocated free memory space in the
microcontroller. In addition, it will restart when the scheduled
time in the TinyHash arrives.

C. Base Station:

The base station refers to the location that receives all the data
originating from the WSN. It is powerful and offers more
resources, and is saved in a safe location. Among the
resources available, it is where overall WSN information is
stored and located. It has database involves 3 columns: the
WSN name; the module; and the key. First, the WSN name
contains the WSN number and the area number. Meanwhile,
the module is the same as the WSN modules. Lastly, the key
is the module’s hashed key. In the end, the database or base
station has all the WSN highly sensitive data prior to the time
the WSBN is used. An example of this is as follows:
WSNArea10-5, Antitheft,
de5c8b85b8b91ba6bc8a7c36f78a90701c9db4d9. As this code
suggests, the WSN is reserved in Area 10, which has a
number 5, antitheft module, and a hashed key. After the base
station received the data containing the 8 bytes, it will send an
inquiry to the database to authenticate the data that was
received. If it is proven that the data received is accurate and
correct, the base station will then accept the data from the
WSN. Otherwise, it will be rejected.

An example of a query is found below:

"SELECT wsnName,module,key FROM wsndb WHERE

Key LIKE %'de5c8b85'% ".

D. Algorithm Chart:

III. CONCLUSION

In conclusion, TinyOS is a crucial operating system that is
timely with present security risks like hacking. By using a
module code, unauthorized activities and alterations will
become preventable via the use of TinyHash module and
modules hash table. Similarly, the protocol we designed,
which includes hash function, module hash table, base station,
and algorithm chart, is a feasible method to help reduce
battery consumption (drainage) and assist in the hashing
process that could avoid security issues.

TinyOS is a promising operating system that is driven by
events and concurrency structured following a TinyHash
module. It not only helps manage concurrency better but also
proves to be a significant protocol targeting software and its
components. In the end, it must be remembered that TinyOS

is a continuous development of language tools, optimization,
software protocols, and algorithm.

REFERENCES

1. Cooprider, N., et al. Efficient memory safety for

TinyOS. in Proceedings of the 5th international
conference on Embedded networked sensor systems.
2007. ACM.

2. Kasture, A., A. Raut, and S. Thool. Visualization of

Wireless Sensor Network by a Java Framework for
Security in Defense Surveillance. in Electronic
Systems, Signal Processing and Computing
Technologies (ICESC), 2014 International Conference
on. 2014. IEEE.

3. Kazienko, J.F., et al., Practical evaluation of a secure

key-distribution and storage scheme for wireless
sensor networks using TinyOS. CLEI Electronic
Journal, 2011. 14(1): p. 8-8.

4. Lee, H., Y. Choi, and H. Kim. Implementation of

tinyhash based on hash algorithm for sensor network.
in Proceedings of world academy of science,
engineering and technology. 2005. Citeseer.

5. Lee, J., K. Kapitanova, and S.H. Son, The price of

security in wireless sensor networks. Computer
Networks, 2010. 54(17): p. 2967-2978.

6. Levis, P., et al., TinyOS: An operating system for

sensor networks, in Ambient intelligence. 2005,
Springer. p. 115-148.

7. Xiaoliang, Z. and C. Yunfang. Research of wireless

injection attacks based on TinyOS. in Consumer
Electronics, Communications and Networks (CECNet),
2013 3rd International Conference on. 2013.

