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ROBUST TEXT STEGANOGRAPHY ALGORITHMS 

FOR SECURE DATA COMMUNICATIONS 

ABSTRACT 

In the era of information technology, a large amount of digital information is 

distributed over the Internet in the form of videos, images, text, and audio. The main 

purpose of widespread distribution enables users to share knowledge between one 

another. As a result, data transmission and information sharing are effected due to 

malicious activities. Different techniques exist to protect user authentication, data 

privacy, and copyrights. Two main techniques that improve security and data protection 

are Cryptography and Steganography. Cryptographic algorithms convert the secret 

message from plain text into cipher text. Then the message is sent over the 

communication channel. Steganography hides a secret message inside the carrier media. 

This proposal will investigate different Steganography algorithms and present 

novel algorithms employing text file as a carrier file. The proposed model hides secret 

data in the text file by applying various properties into file font format by inserting 

special symbols in the text file. In addition, the suggested model can be applied in both 

Unicode and ASCII code languages, regardless of the text file format. The proposed 

system achieves a high degree of the main Steganography attributes like hidden ratio, 

robustness, and transparency. In addition, this proposal provides guidance for other 

researchers in text Steganography algorithms. 
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CHAPTER 1 : INTRODUCTION 

The massive amount of information is transferred over public channels; some 

sensitive data and information pass through un-trusted communication channels. 

Attackers and hackers attempt to break security over the sensitive data, thus exposing 

the actual information. As a result, various security mechanisms have been applied to 

improve data integrity and privacy. Security techniques are divided into three 

categories:  

1.1 Cryptography 

Cryptography is the method of protecting data by encoding and transferring 

sensitive information. Cryptography refers to scrambling up sensitive messages so no 

one can read it. Only intended users can decrypt and read the message [1]. A major 

disadvantage of Cryptography exists when the sensitive messages are transferred from 

plain text into a cipher text. Hacker focus on the sensitive data in formation and, thus, 

may compromise secure for involved parties [2].  

Early Cryptography techniques relied upon simple ideas to encrypt data. Today, 

modern Cryptography techniques use complicated mathematical formulation to encrypt 

secret messages, such as the public key encryption algorithm Ron Rivest, Adi Shamir 

and Leonard Adleman (RSA). As an example, Figure 1.1 shows general components of 
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Cryptography.  

Modern science classifies Cryptography into two categories; symmetric key 

encryption and public key encryption. In symmetric key encryption, the sender and 

receiver use the same key to decrypt and encrypt data. In public key encryption, two 

different keys are used; one for encryption and the another for decryption [3]. Early 

Cryptography techniques depended upon simple ideas to encrypt data.  

 
Figure 1.1 General Form of Cryptography 

1.2 Steganography  

The Steganography method hides sensitive messages inside another carrier file. 

The object file is sent over a public channel enabling all users to see the carrier file. 

However, only trusted users can extract the hidden message [4]. Methods that are more 

complicated were introduced on different digital files. Some Steganography techniques 

use images to hide data by using image properties, such as image resolution and pixel 

depth. Other strategies use the audio file frequency to hide data. In addition, the use of 

video hides data by using both image and audio characteristics. Text files were also, used 

as a carrier file [5].  Steganography components are defined in Figure 1.2, the output file 

called Stego Object, which represents the result of merging between the secret message 

and the Stegano key using specific algorithms to insert sensitive data inside the carrier 

file. 
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Figure 1.2 General Form of Steganography 

1.3 Combining Cryptography with Steganography 

By combining the benefits of Cryptographic methods and hiding techniques, 

novel techniques were introduced to transmit secure data by encrypting the secret 

message, and then hiding the encrypted secret message inside another carrier file. This 

combination represents the most secure and intricate system untrusted channels [5, 6]. 

 
Figure 1.3. Merge Between Cryptography and Steganography 

 

Figure 1.3 represents the main idea of merging between Steganography and 

Cryptography techniques. Once the secret message is detected, the attacker still needs to 

solve a Cryptographic problem. 
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1.4 Research Problem and Scope 

Due to the rapid growth of emerging technologies and information broadcasting 

techniques are introduced to protect sensitive information from plagiarism. A common 

secure technique is data hiding. Data hiding is classified into three main categories: 

a. Digital watermarking is the process of inserting owner identification inside the 

carrier file to improve copyright protection, 

b. Fingerprinting is the process of tracing unauthorized copy, 

c. Steganography hosting the secret data inside a carrier object to pass sensitive 

information.  

Various methods of Steganography involve the use of images, audio, and video as 

carrier files. Some scientific research indicates several methods exist that utilize text files 

as Steganography carrier media. 

This proposal will introduce a new model utilizing text Steganography to improve 

the reliability of communications between network users. The end result is to hide the 

secret data in the text file without raising attacker suspicions. The proposed model 

demonstrates a new hardware text Steganography engine with a high hidden data rate. 

1.5 Motivation behind the Research 

Significant amounts of information are shared over public Internet channels to 

enable authorized customers to read and process their sensitive data. For example, 

medical reports, expression of political opinions and other records are remotely 

accessible. In the United States, this information is protected under data privacy acts 

such as The Health Insurance Portability and Accountability Act of 1996 (HIPAA). 
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This proposal can help government, companies, and organizations protect the privacy of 

their users from the malicious intent of hackers. In addition, the proposal can be used by 

authorized users to enhance authentication over the networks.  

The novel algorithms presented in this proposal provide the necessary protection 

for communicating sensitive data. The variation and randomization processes, increase 

the degree of complexity against attackers. The suggested system prevents infringing 

copyright material, by hiding sensitive data and keeping it undetectable. Moreover, the 

implementation of these novel algorithms enables the broadcasting industries, 

multimedia and publishing to produce products without concern about the attackers’ 

ability to read information.  

The implementation of the software and the hardware of this proposal to provide 

a valuable and vital tool for people to establish safe communication, protect their 

privacy, securely share data, and protect copyrighted products. 

1.6 Potential Contributions of the Proposed Research 

Three potential contributions are recognized in this proposal. The first 

contribution focuses on safe communication. The proposed system enables users to send 

sensitive information through public channels. The suggested model uses text files as 

carrier media. Text files are less suspicious; and have the flexibility to change size, 

various file formats, and font format. These features enhance the hiding data capability. 

As a result, the possibility for attackers to access the transmitted data is minimized. 

The second contribution of this proposal is that it introduces several text 

Steganography algorithms offering multiple options for users. Some algorithms can be 
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applied over Unicode language, while others can be used in both Unicode and ASCII 

code systems. In addition, the proposed algorithms can be applied in the different text 

file format such as doc and html files. 

The third contribution of this proposal is a real time hardware system. This 

proposal is the first real-time hardware implementation presented in research for Text 

Steganography. Previous implementations provided efficient hardware implementations 

over other carriers such as image, video and audio files.  

In conclusion, this proposal presents the mathematical and statistical analysis of 

the presented techniques in terms of transparency, robustness, and data hiding capacity. 

The final results demonstrate that the presented algorithms outperform the algorithms 

introduced in previous scientific research. 
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CHAPTER 2 : LITERATURE SURVEY 

This section focuses on Text Steganography algorithms, and discusses 34 

different techniques that use text files as the carrier to hide sensitive information. Text 

files represent the most complicated carrier media; due largely to the relative lack of 

redundant information, when compared to images and audio files. So, one can classify 

text Steganography in different categories depending on the hiding purpose: 

Protection against detection (Data hiding) 

Protection against removal (Document marking) 

Watermarking (All objects have same mark) 

Fingerprinting (Each object has special mark) 

2.1 Short Message Services (SMS) 

SMS is a global and common service in messaging systems; especially after the 

use of cell phones became popular. Via mobile phone, SMS allows users to write and 

exchange information among each other.  [7] introduced one interesting hiding algorithm 

using Short Message Services. Usually mobile users create some abbreviations for their 

messages to be easier and simpler; Table 2.1 shows a number of such abbreviations 

commonly used in SMS. By creating an abbreviation dictionary, the sender and the 

receiver can send their abbreviations through mobile phones without any attention from 
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middle attackers. One of the advantages of SMS is popularity. This represents an issue to 

the Stegoanalyzer in following messages around the world, as well as its ability to update. 

In other words, the sender and the receiver may use their own abbreviations to hide data, 

which also disables attackers from performing statistical analysis on messages. Moreover, 

large amount of hidden data can be passed through the message, which improves the 

hiding capacity. In addition, this algorithm is language independent. On the other hand, 

the SMS-based algorithm creates heavy network traffic, where a high volume of 

messages transferred between a sender and a receiver may attract an intruder’s attention. 

Also, there are some abbreviations that are very clear, for example UNIV which means 

University. So, anyone who reads it can discern the meaning of the hidden message. 

Table 2.1 Short Message Meaning 

Acronym Meaning 
ASAP Immediately 

ZZZZ I'm tired 

F2F Face to face 

URW You are welcome 

ILY I love you 

EOL End of lecture 

AYS Are you serious? 

 

2.2 Text Steganography on Online Chat 

Authors presented a novel Steganography method [8]. It is considered an 

interesting technique to hide data inside text. Online chatting is a very popular application 

over the internet, especially after social networks and smart phone applications were 

introduced. All of these factors attracted the authors to employ online chatting as 

Steganography techniques. Changing the interior orders of adjacent letters was employed 
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to hide data inside the message.  Figure 2.1 represents one of the message transfers 

between trusted users.  

Figure 2.1. Exchange Order Interior Letters Order 

Authors presented properties of online chat messages such as sending speed and 

spelling correction. In addition, the online chatting method can be applied in any 

language. The main drawback of this strategy is low hiding capacity; the amount of 

hidden data inside the message in Figure 2.1 is only 1 bit; while the number of characters 

is 149. In addition, most of the chat editors correct the spelling mistakes or highlight 

them. The third gap in the online chatting method is that it is completely dependent on 

one strategy to hide data by swapping the letters. So, if the attacker notes this exchanging 

of letters, it can easily reveal the hidden data and this breaks Steganography transparency. 

2.3 Text Steganography by Changing Spelling of Words 

Another method of Steganography was introduced in [9] and was applied in the 

English language only, between US and UK spellings of words. In this method, authors 

created a dictionary of corresponding words, as shown in Table 2.2. 

Table 2.2. Sample Word Dictionary between British and American 

 British English American English 

Colour Color 

Flavour Flavor 

Harbour Harbor 

Honour Honor 

Advice Advise 

Licence License 

  

Switching between two words enables us to hide one bit per word. The main 

advantage of this algorithm is that it is easy to be applied regardless of which editing 



10 

 

program is used; chatting programs or word editors. Besides being widely used, word 

editors usually support British English and American English, and this reduces attacker's 

attention. However, the changing spelling algorithm faces a low hidden data ratio, since 

each word only passes one bit. Moreover, during the message transfer, if a middle system 

does not support both format (British and American English), it can lead to breaking 

system robustness by changing the whole British text to American text or vice versa. The 

produced text (Stego object) has only one format so the receiver may translate the whole 

hiding data as zeros and ones. Furthermore, if the attacker follows more than one 

message, it can note the repeated words which have a different spelling. Therefore, the 

intruder may suspect hidden data and this breaks the algorithm transparency. 

2.4 Synonym Text Steganography British and American English 

One interesting method was presented in [9]. The authors have suggested a new 

synonym scenario between British English and American English by creating a 

dictionary for some words as shown in Table 2.3. An agreement should be made between 

trusted parties. For example, Candy in American English represents one corresponding to 

Sweets in British English to represent zero. 

Table 2.3. Synonyms in American and British English 

American English British English 

Vacation  Holiday 

Fall  Autumn 

Movie  Film 

Gas Petrol 

Line  Queue 

 

Different advantages were provided by this algorithm such as simplicity, where 

most words have a synonym, and this supports the success of this algorithm. Moreover, 
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changing the word form will not motivate hackers to analyze the message. For example, 

“Call me as soon as you get there” to hide zero and “Ring me (phone me) as soon as you 

get there” to hide one. In addition, this algorithm is not limited only to electronic 

documents but also to printed ones and this prevents attackers to removing the hidden 

data. On the other hand, the synonym method provides a low hiding data rate, where each 

word passes one bit only. The average number of bits in each word is 63 bits. So, the 

hidden rate is 1/63. Besides the hiding data ratio problem, any change in the text may 

remove the hidden data and this threatens the algorithm robustness. 

2.5 Linguistic Steganography over Chinese Text 

In [10], the authors utilize a synonym substitution technique in Chinese language. 

In this technique, the authors reduce the interaction between sounded words without 

affecting the sentence semantics. The first step of this algorithm is that it creates a 

substitution set and divides it into three categories: the first one is broad synonyms, the 

second one is variant synonyms, and the last one is interchangeable synonyms. The 

system creates a table for each group before it combines the three tables to produce a 

crude lexical substitution set. Afterwards, the algorithm removes unfamiliar words and 

keeps common words, which depend on some statistical information. There is the 

problem of how to do word change without changing the semantics of the sentence. This 

is possible by using ICTCLAS software, which is developed for that purpose, and also 

creates a dynamic library. The main advantage of linguistics is the file size, where the 

interchange process does not change the file size, therefore enhancing the cover file to be 

imperceptible. Moreover, this method does not depend on the file format, which enhances 
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robustness, so that data will not change during travel. On the other hand, this algorithm is 

language-dependent. In other words, it is applied to a Chinese text. In addition, the 

amount of data that can be hidden in the carrier object is limited, and it depends on the 

dictionary. 

2.6 Linguistic Steganography over Malay Text 

In [11], the authors have presented a new linguistic method for the Malay 

language. This method creates a dictionary containing synonym words.  The Malay 

Linguistic algorithm consists of two main steps: the first one is converting the secret 

message into binary form. Each character is represented by seven bits depending on 

ASCII code. The next step is to find out how to substitute words with synonyms. For the 

substitution comparison purposes, the authors developed the My Stega Link software to 

hide data by choosing the best word without changing the semantics or syntax of the 

sentence. This software keeps the file size unchanged, which avoids any suspicion from 

unintended users. It also maintains the semantics and syntax of the sentence, which 

improves the system’s efficiency. However, the system gets complicated and time 

consuming during the search for suitable words given that Stegoanalyzer requires time to 

read and identify hidden messages. Another drawback is the hidden capacity, where each 

word synonym can pass only one bit. Besides, message repetition with different 

synonyms may attract unwanted users to read transferred data between the sender and the 

receiver and analyze it, which leads to discerning the hidden information. In addition, the 

introduced algorithm only supports the Malay language, which is relatively less common 

compared to English. 
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2.7 Steganography in TeX Documents 

In [9], the authors choose text format techniques to hide data without changing the 

meaning, like other methods which uses TeX to hide data. TeX is a type-setting system 

that merges with METAFONT to create books of high quality and keeps them robust now 

and in the future. So, to hide data inside a text; the authors first try to find what is called 

ligatures in the file, then decide which bit {0,1} will be passed as secure information. 

Therefore, there are usually five common ligatures "fi","fl", ff","ffl", ffi". In Computer 

Modern Roman, we can use {} to separate any joined letters by using the separator 

command {} and can pass 1; otherwise, pass 0. The main advantage of this scenario is 

that it is not limited to electronic documents, and it can also be applied to other document 

types. In addition, the ligatures method will not affect the file size and thus, will avoid 

attacker suspicions. On the other hand, the low rate of hidden data can be embedded in 

the carrier file, where the secret data can only be inserted if there is a ligatures letter; 

otherwise, no data can be inserted. Moreover, the algorithm faces retyping problem, 

where reprinting text removes the whole hidden data, and this violates robustness. In 

addition, ligatures techniques are limited to TXT for editing books. 

2.8 Emoticon-based Text Steganography in Chat 

In [12], a novel text hiding algorithm is introduced by using special chat 

properties, as chatting rooms have become very popular. The main idea in this research 

employed emoticons to hide data and tremendous number of those symbols allows for 

hiding data inside the file. Nowadays, most of chat users use emoticons instead of words, 

so the first step of this algorithm classifies symbols by semantics and then controls the 
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symbols order by using a secret key. In this work, the authors have created four sets for 

emoticons to hide data. After ordering symbols, it will hide data by using the symbol 

order. For instance, if the symbol is inserted at the beginning of the sentence, it means 

users pass 0; otherwise, the secret bit is 1. Another procedure used in this work is the 

symbol order so that system can extract data from the symbol depending on the symbol 

order number in its set. Therefore, if it is set 4 and order 3, secret data is then 0011, and 

so on. Many advantages can be acquired from this method, which explains why chatting 

programs are popular, and most of chatting applications support emoticons. So a huge 

variety of software can be used to apply emoticon algorithms. Moreover, some chatting 

programs enable users to create their own customized symbols, in this way increasing the 

size of the sets, assisting users to hide more secure data and avoid attacker suspicions. 

2.9 An Evolution of Hindi Text Steganography 

In [13], the authors introduced  a novel Hindi text Steganography by using Hindi 

letters, numbers, and diacritics. In this paper, two scenarios were introduced to hide data. 

The first one is by using letters and diacritics, as Hindi scripts contain letter and 

diacritics. If we want to hide data such as “UB,” which consist of two letters and 16 bits, 

we will represent it by zeroes and ones. The authors suggested adding the encryption 

algorithm like Data Encryption Standard (DES) to improve security over the proposed 

algorithm. Then, each one is represented by an Indian diacritic letter, and zero is 

represented by letter only without diacritics, as shown in Figure 2.2. The main advantage 

of this algorithm is simplicity. However, the hidden data rate is very low compared to 

other algorithms. In addition, the algorithm concentrates on the Indian Language, and is 
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difficult to be applied on the English language. Any further retyping of the message 

removes the whole hidden data, resulting in eliminating the algorithm robustness. The 

second Hindi algorithm introduced in [13] is a numerical code converting a secret 

message into a binary form, and choosing which numerical code fits with vowels and 

consonants in a four bits binary number. Numerical algorithms have the same properties 

as the first one, whereas the second one employs some numerical table to hide data. 

However, the same advantages and disadvantages exist in both methods.  

 
Figure 2.2. Hindi Text Hidden Algorithm 

2.10 Steganography Using Matraye 

In [14], three scenarios were applied in Hindi. The first method transfers a plain 

secret message into ASCII code. Then, the authors used an encoding table to convert each 

bit into top and lower Hindi modifiers. The second method employed an open header, 

bar, no bar, and special characters in order to hide data inside Hindi. The first step creates 

tables, classifying the position of the Matraye of Hindi letters, as Hindi letters are 

classified into top, core, and bottom. Optimal Characters Reorganization (OCR) can 

easily identify top and bottom letters. The second table is for the encoding scheme. Each 
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letter has 0 or 1, so, the message can be embedded. The last algorithm introduced in [14] 

was based on matrix characters to create vowels and numbers relation by matrix. Each 

letter is represented by a Hexadecimal code and the message is encoded inside it. The 

main advantage of these algorithms is knowledge. In other words, only those who know 

the properties of Hindi can classify it. Contra what has previously been stated that the 

message will be passed without any suspicion, these algorithms can be applied on Hindi, 

and can be extended to English or other languages, as each language has its own 

properties. However, the hidden rate ratio is very small, since each symbol has only one 

bit. Also, the algorithm does not support robustness, since retyping may remove the 

whole hidden message. 

2.11 Telugu Punctuation Marks 

[15] introduced two linguistic methods by using Telugu language (spoken 

language in the state of Andhra and other states). The first method uses one of Telugu 

characteristics by classifying characters into two groups. Then, it hides secret data in 

language symbols and passes it inside cover media. The first group to pass was 0 and the 

other group to hide was 1.  The other method was applied by using Telugu language 

punctuation marks by distributing them into four groups as shown in Table 2.4. Each 

group was used to pass two bits. 

Table 2.4.Telugu Language Punctuation Marks 

Symbol Hidden Bits 

/            ! 00 

◌ం      ◌ం      ,    ; 01 

|    ||      .       : 10 
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The main advantage of Telugu algorithm is the hidden capacity where each 

symbol in the first algorithm can pass one bit, which depends on language letters. 

Moreover, the algorithm’s simplicity makes it more applicable for different document 

formats. The punctuation algorithm enables the user to hide two bits in each symbol, but 

the symbols limitation reduces the hidden data rate inside it. Moreover, both introduced 

algorithms are language dependent, which will minimize its application range. 

2.12 Telugu Inherent Vowel Shifting Technique 

[16] introduced a method to hide data inside Telugu text by horizontally shifting 

inherent vowel signs. Unlike the English language, the Telugu alphabet is composed of 

syllables; each of them consists of two main components: the non-core component and 

the core component.  The non-core component can be classified into two categories, the 

upper noncore, and the lower noncore. So, by horizontally shifting in very low 

percentage, a hidden bit can be inserted depending on left or right shifting. High hidden 

ratio represents the main advantage, as each letter may have two non-core symbols 

enabling it to hide two bits in each letter. On the other hand, retyping can remove the 

whole hidden data inside the carrier file. Moreover, this algorithm is suitable only for 

Telugu language and cannot be extended to English or any other language. 

2.13 HTML Tag Attributes Technique 

HTML or Hyper Text Markup Language is the basic programming language in a 

web page, and can be mixed with other languages like Macromedia Flash, Java Script for 

animation goals [17]. Moreover, HTML does not need any special software to program it. 

Most of new web programming languages are based on HTML concepts. Usually HTML 
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is used to create the static part of websites. HTML code consists of two parts.  The first is 

a tag which is surrounded by angle parentheses (<>), and the second is the information 

between tags. Internet browser displays the content without tags, where tags control the 

appearance of web page content.  So, the tag’s order represents page organization and 

design, which is non-case sensitive. In other words, uppercase letters are like lower case 

letters. Therefore, HTML represents the source code of a webpage. Internet users are 

concerned only with page content and not the programming page.  Based on these 

hypotheses, most of Steganography algorithms over the WebPages are interested in the 

coding of page and not the page information. Authors classify HTML code into two 

categories, primary attributes and secondary attributes. If secondary attributes are 

followed by primary attributes, then a bit 0 is detected, otherwise a 1 is detected. The 

authors suggested two steps to pass sensitive data. The first step is an encrypted process 

to scramble message content; the second step is applying HTML Steganography scenario 

in order to hide bits [18]. 

2.14 HTML Comment Technique 

Usually HTML files support inclusion of comments by adding “<! – –” at the 

beginning of the comments and “– –>” at the end of the comments [19]. Moreover, 

comments do not appear in the internet browser. So, the Internet users will not be notified 

by any changes in website appearance. By applying this scenario, huge amount of data 

can be hidden inside webpage files without any notice. In addition, comments can be 

added in any location inside the file. The main advantage of this method is that huge 

amount of data can be inserted in the carrier file, and that the hidden data can be inserted 
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anywhere in the HTML document. The hidden data is usually readable, but average 

Internet users rarely explore the page code. Only programmers are concerned about 

comments to understand programming methods. Most of the comments algorithms 

provide the same advantages and disadvantages of primary and secondary tags [20]. 

2.15 HTML Tag Letters Format Technique  

Another HTML Steganography algorithm was presented by using one of the 

characteristics of the HTML file. This has been possible by changing tag’s letter case to 

hide data 1 for uppercase, and 0 for lowercase. There is no difference between upper and 

lower case letters in HTML coding. The advantages of this method are similar to the 

other scenarios where the hidden data does not appear in the web browser. Moreover, 

huge amount of data can be hidden inside HTML files, achieving a high percentage of 

hidden data. However, reprinting the carrier file will remove the whole hidden data, 

leading to the violation of robustness [21] [22]. 

2.16 HTML Open and Close Tags technique 

Another HTML algorithm was proposed by using HTML tags, which employs 

some varying combinations or gaps to hide data [22].  

Example  

<img></img>   to hide 0 

<img/>              to hide 1 

By using this method, each tag can pass one bit by adding “\” to the end of tag. 

The main point of this method is non-suspicion, as “\” is usually used in most of the 

HTML tags without any change in the output file.  
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 2.17 HTML Tags 

Usually HTML files start with an <html > tag and end with an </html> tag [23]. 

The simplest method to hide data inside HTML is to insert the hidden data after the 

closed HTML tag </html>. The secret data will not appear in the browser output. But the 

whole hidden data can be read from the end of the HTML code file. The main problem 

with this method is the degree of simplicity. If someone explores the source code, the 

whole hidden data can be read. However, a huge amount of secret data can be hidden 

inside an HTML file. 

2.18 HTML Properties 

Authors use one of HTML properties In [23]; the ID attribute of each tag on an 

HTML page. Each ID tag consists of three parts: the object name, the title of HTML 

page, and the four coded characters. The authors discussed the main advantages and 

disadvantages of the ID attribute algorithm. The main advantage of the suggested 

algorithm is the massive number of HTML files over the Internet.  Moreover, the ID 

attribute is a common way used to compress HTML files. Also, this method can be 

applied over similar web coded languages like XML, and ASP. However the fact that this 

technique can only be applied over HTML represents the main drawback.   

2.19 Chinese Language Steganography using Arabic Diacritics  

Another algorithm, introduced in [24], suggested to combine among three 

languages: Chinese, Arabic, and English. At the beginning, the authors created two 

tables; the first one was for Arabic diacritics and the second table was to store English 
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letters. The Chinese text was translated into English text, and then each English letter was 

converted to two Arabic diacritics. The system then creates Arabic text which contains 

selected diacritics.  High data hiding rate was introduced in the three languages 

algorithm. Diacritics are used over each Arabic character to hide one bit in each letter. 

However, Arabic diacritics are rarely used today. Usage of these diacritics may attract 

unintended users to read and analyze the carrier file. Moreover, any reprinting process for 

the whole file without diacritics will remove the whole hidden secret data and this 

threatens the algorithm’s robustness. The complexity of the suggested scenario represents 

an advantage to defeat against attackers. On the other hand, the algorithm may produce 

some ambiguity in translation from Chinese language to English language. 

 2.20 Sharp-Edges Method in Arabic Text Steganography 

Author introduced a new method to hide bits inside an Arabic text by using one of 

Arabic characteristics [25]. That is done by using Sharpe edges and classify letters into 

four categories depends on edges. 

 
Figure 2.3. Sharp-Edges Method in Arabic Text Steganography 

Figure 2.3 shows steps to insert the secret data by employing edges properties. 
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The authors reported that using this method, huge amount of data can be hidden inside an 

Arabic file. Moreover, a high degree of invisibility is supported by this scenario. In 

addition, the Arabic language supports a wide range of font formats. So, Stegoanalyzer 

cannot distinguish between the different files. However, re-editing of the Stego-object 

removes the hidden data.  

2.21 An Improved Version of Persian/Arabic Text Steganography 

Using" La" Word 

[26] introduced another method to hide data by using Arabic/Persian language 

properties, where the letters shape depends on the letters position in the word. "La" has 

two shapes “لا” or “ال ” and they have the same meaning. The main advantage of this 

method is that there is no change on the file semantics, and everyone can read the file and 

process it. On the other hand, the “La” algorithm suffers from different problems: the first 

one is low hiding data rate, where the secret bit is inserted in the text if the text contains 

“La” character, otherwise, nothing is inserted. Moreover, reprinting the message deletes 

the whole secret data. Other problems that the “La” algorithm faces are that the file size 

will be increased and the letters may have abnormal shapes. 

2.22 Pseudo-Space Persian/Arabic Text Steganography (pseudo-

space character) 

In [27], the authors used one of Persian/Arabic text characteristics, which is call 

pseudo-space character (200C). The suggested system can add this code to hide 1, 

otherwise 0.  Pseudo-Space algorithm has many advantages. The suggested algorithm can 
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be applied in different file extensions like HTML and document files. Also, the copy and 

paste operation does not affect on the hidden bits. In addition, the carrier file size and 

format does not change. Moreover, the suggested algorithm can be used in different 

Steganography systems which provide Unicode system. Furthermore, the algorithm can 

be applied in other languages like Pashto (the official language of Afghanistan) and Urdu 

(the official language of Pakistan). However, retyping of text can remove the hidden data. 

It is important to mention that the repetition of a unique character like pseudo-space may 

enable the attacker to analyze the carrier file and read the hidden data. 

2.23 Persian/Arabic Unicode Text Steganography (Letter Shapes) 

[27] introduced a Steganography algorithm that use interesting features of Persian 

and Arabic languages. Most of the letters have four different shapes depending on their 

positions in the word, as can be seen in Figure 2.4 .So, each word in the text file can be 

saved in two ways: the first one is by saving representative letters and second is by   

saving the word by saving the code of the correct shape of each letter. The authors 

suggest hiding 0 in the first case and one in second cases. The main advantages of this 

method are that the hidden rate capacity does not change the size of the text and it can be 

applied on different file formats like HTML documents. The text format will also not be 

changed. 
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Figure 2.4. Letter Position Shapes 

2.24 Arabic Diacritics based Steganography 

In [28], the authors presented another text Steganography technique for the Arabic 

language, by using one of Arabic characteristics; diacritics (As shown in Table 5). 

Diacritics represent vowel sounds in Arabic language. Nowadays, diacritics are rarely 

used. On the other hand, any religious documents must have it. Arabic language has nine 

diacritics; the most frequently one is Fatha. Therefore, the proposed algorithm uses Fatha 

to represent one and zero can be represented by any of the remaining eight diacritics. If 

the first hidden bit is one, then diacritics system finds the first Fatha and removes any 

other diacritics before it. One of the advantages of this method is its reusability, as the 

same cover can be used for more than one hidden message. Moreover, this technique 

does not need complex software. However, currently diacritics are rarely used; the 

existence of diacritics in normal text may tempt the attacker to analyze the carrier file and 

compare it with the original one.  

2.25 High Capacity Diacritics-based Method for Information 

Hiding in Arabic Text 

Another promising technique was introduced in [29], where it also used the 

diacritics; one of the optional characters in Arabic language. If the Steganography system 

wants to pass one, the system keeps the diacritic character, otherwise removes it to pass 
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zero. In contrast, diacritics existence represents a hidden bit, and this enables users to 

employ the same carrier text more than once. On the other hand, any comparison between 

two consecutive sending packets leads to the exclusion of hidden data. 

Table 2.5. Arabic Diacritics 

Diacritic Diacritic Shape 

Tanween Dammah   ـ 

Dammah   ـ 

Tanween Fateh   ـ 

Sokon   ْ  

Fateh   ْ  

 

2.26 Improved Method of Arabic Text Steganography using the 

Extension “Kashida‟ Character 

In Arabic, the Kashida character represents an extension letter which does not 

affect the meaning of the word. Usually, it is used to justify the text. In [30], the authors 

suggested to add one Kashida to hide zero and two consecutive Kashida when the hidden 

bit is one.  

2.27 Improving Security and Capacity Hiding of Arabic Text 

Steganography Using 'Kashida' Extensions 

In [31], the authors introduced another text Steganography method to hide the 

sensitive data inside Arabic text. The main idea in the algorithm depends on one special 

merit of the Arabic language, the Kashida character. The authors discussed a maximum 

number of Kashida letters that can be added to the word. Moreover, three scenarios were 

tested to use Kashida character. The authors evaluated the number of hidden bits that can 

be embedded in the carrier file and compared the results with diacritics, and Kashida 

methods. 
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2.28 Exploit Kashida Adding to Arabic e-Text for High Capacity 

Steganography 

In [32], the authors introduced a text Steganography approach to maximize 

Kashida to hide data inside e-texts by using Maximizing Steganography Capacity Using 

Kashida in Arabic Text (MSCUKAT). The first part of this algorithm specified which 

Arabic letter can be extended by using Kashida either before or after that letter, but not at 

the beginning of the word. Furthermore, one must note that not all letters can be 

extended. 

2.29 Arabic/Persian Text Steganography Utilizing Similar Letters 

with Different Codes 

Another text Steganography method was introduced  in [33] by merging Arabic 

and Persian languages using this characteristic that these languages include some letters 

having the same pronunciation but with a little different shape.  In this algorithm, the 

authors are only concerned with two letters format to hide data. For example, to hide one 

the system can use Arabic letter, and Persian to hide zero. 

2.30 Text Steganography in Arabic Language by Reverse Fatha 

Authors in [34] presented a novel Steganography method was applied in Arabic 

language by using Fatha and its inverse. In other words, the Steganography system uses 

regular Fatha to pass one; otherwise, zero is passed. By installing new font properties that 

can accept inverse Fatha, this task can be facilitated. In this technique, reading hidden file 

bits to format file depends on hidden bits. Reverse Fatha performs a high hidden bit ratio, 
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and it is not a noticeable direction if it changes. However, the main problem is that if the 

carrier file is reused, the attackers may notice the change between them. Moreover, 

retyping can reduce the algorithm robustness. 

2.31 Arabic Text Steganography Using Kashida Extension with 

Huffman Code 

Authors employed the Huffman code by using Kashida Steganography to hide a 

huge amount of secret data inside text file [35]. Kashida inserted after connected letters is 

used to pass one as a secret bit, and its absence is used to pass zero. Authors suggested to 

compress Stego file by using Huffman code to minimize file size and avoid attacker 

suspicions. Moreover, the proposed algorithm can be applied to other languages like 

Urdu and Persian. Also, the algorithm can be simulated to different document formats 

such as: *.doc,*.txt, and *.html. 

2.32 Secret Steganography Code for Embedding 

In this technique, the authors suggested a special code called Secret 

Steganography Code for Embedding (SSCE) to embed the secret data inside text file. 

This is done by selecting the message and then converting it into ASCII code. The ASCII 

code is converted into SSCE code by using a conversion table. After that, the produced 

code is translated into characters. Then, the encrypted message can be embedded into the 

carrier file. This embedding process depends on Table 2.6 to insert the secret data inside 

the carrier file [36]. 

For example, if the encrypted hidden message is (10), it would find out the word 

(an) from the carrier file and the next character is a vowel. The same scenario can be 
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applied to the remaining document. Hiding bit ratio represents the main weak point of the 

SSCE algorithm, as one bit can be embedded if the carrier document contains articles, 

otherwise secret data cannot be passed. Moreover, the proposed system needs to use a 

text generator to hide the intended data.  

Table 2.6. SSCE Articles 

Articles First letter of Word Hidden data 

A Consonant 00 

A Vowel 10 

An Consonant 01 

An Vowel 11 

2.33 Extra Blank 

Another algorithm introduced was in [22], where the authors suggested hiding the 

secret data inside the carrier file by inserting an extra blank after words. The first step in 

null space algorithm is encrypting the secret message. The first bit from the encrypted 

secret message is ready to start the inserting process into the carrier file. If the hidden bits 

are 00, then the embedded function starts to search for even word lengths and adds two 

blank spaces after it. The procedure will be continuously repeated based on Table 2.7. 

Table 2.7. Relation between Word Length and Space to Hide Bits 

Word length Number of space Hidden bits 

Even 1 01 

Even 2 00 

Odd 1 10 

Odd 2 11 

 

A huge amount of data can be inserted by using the null space algorithm. 

However, there are some text editors that highlight double space and convert it to single 

space. In addition, the algorithm can affect the transparency, since Stegoanalyzer can 

follow the number of blank spaces and extract data line and word shifting.  
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2.34 Line and Word Shifting Algorithms 

Different papers discussed the ability of vertical shifting for lines or for words. 

Shifting by an amount of 1/300 inches is non-notable for attackers. Simplicity is the main 

advantage of shifting algorithms but the hidden data ratio is very low compared to other 

algorithms [37].  

2.35 Summary 

Table 2.8 represents a comprehensive comparisons and classification for various 

hidden data files on Text Steganography algorithms. Furthermore, Table 2.8 categorizes 

each algorithm and its applied technique. More importantly, Table 2.8 highlights the 

algorithm’s satisfaction of Steganography criteria that includes robustness, hidden 

capacity and transparency. 
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Table 22.8. Classification of Hidden Data inside Text File 

  

  General Categories Text Methods Criteria 

  Method 

S
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jectio
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ag

atio
n
 

F
o

rm
at 

Random and 

statistical 

generation  

 L
in

g
u

istic 

H
id

in
g

  C
ap

acity
 

T
ran

sp
aren

cy
 

R
o

b
u

stn
ess 

1 Short Message services (SMS)  √         √ High 0.3-1.00 Low 

2 Text Steganography on Online Chat √         √ 0.54% 0.2-1.00 Low 

3 Text Steganography by Changing Words Spelling  √         √ Low 0.1-1.00 Low 

4 Synonym Text Steganography over British and American English  √         √ Low 0.5-1.00 Low 

5 Linguistic Steganography over Chinese text  √         √ 3.59% 0.3-1.00 High 

6 Linguistic Steganography over Malay text  √         √ Low 0.2-1.00 High 

7 Steganography in TeX Documents    √   √     (0.5-1.51)% 0.1-1.00 Low 

8  Emoticon-based Text Steganography in Chat  √    

 

  √   High 0.5-1.00 Low 

9  An Evolution of Hindi Text Steganography  √     √     High 0.3-1.00 Low 

10 Steganography Using Marty    √   √     High 0.2-1.00 Low 

11 A New Approach to Telugu Text Steganography √     √     High 0.1-1.00 Low 

12 A new approach to Telugu text Steganography by shifting inherent vowel  √     √     Low 0.2-1.00 Low 

13 A novel text Steganography presented by using html files    √  

 

  √   Low 0.1-1.00 Low 

14  HTML comments   √         High 0.5-1.00 Low 

15 of HTML characteristics by change tags letter case to hide data    √   √     High 0.6-1.00 Low 

16 HTML Open and Close Tags technique  √  √   High 0.6-1.00 Low 

17 Other HTML algorithm proposed by using HTML tags   √   √     High 06-1.00 Low 

18 HTML page is the ID attribute   √    

 

     √ High 0.5-1.00 High 

19 Chinese Language Steganography using the Arabic Diacritics as a Covered 

Media     √    √     
High 

0.5-1.00 

Low 

20 Sharp-Edges Method in Arabic Text Steganography √     √     Low 0.1-1.00 Low 

21  An Improved Version of Persian/Arabic Text Steganography Using" La" 

Word   √   √      
Low 

0.1-1.00 

Low 

22 Pseudo-Space Persian/Arabic Text Steganography    √   √       (3.7-4.66)% 0.1-1.00 Low 

23 Persian/Arabic Unicode Text Steganography  √     √     (89-109)% 0.5-1.00 Low 

24 Arabic diacritics based Steganography     √ 

 

√     0.0327% 0.5-1.00 Low 

25 High Capacity Diacritics-based Method For Information Hiding in Arabic 

Text √   

 

√     
6.79% 

0.2-1.00 

Low 

26 Improved Method of Arabic Text Steganography is using the Extension  √  √   High 0.3-1.00 Low 

file:///E:/For%20Thesis/Paper/read/Text%20Steganography%20by%20Changing%20Words%20Spelling.pdf
file:///E:/For%20Thesis/Paper/04604331.pdf
file:///E:/For%20Thesis/Paper/read/AN%20EFFICIENT%20LINGUISTIC%20STEGANOGRAPHY%20FOR%20CHINESE%20TEXT.pdf
file:///E:/For%20Thesis/Paper/read/Synonym%20Based%20Malay%20Linguistic%20Text%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Steganography%20in%20TeX%20Documents.pdf
file:///E:/For%20Thesis/Paper/read/Emoticon-based%20Text%20Steganography%20in%20Chat.pdf
file:///E:/For%20Thesis/Paper/read/An%20Evolution%20of%20Hindi%20Text%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/A%20New%20Approach%20to%20Hindi%20Text%20Steganography%20Using%20Matraye,%20Core.pdf
file:///E:/For%20Thesis/Paper/read/A%20New%20Approach%20to%20Telugu%20Text%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/A%20NEW%20APPROACH%20TO.pdf
file:///E:/For%20Thesis/Paper/read/A%20Novel%20Text%20Steganography%20Technique%20Based%20on%20Html%20Documents.pdf
file:///E:/For%20Thesis/Paper/read/Chinese%20Language%20Steganography%20using%20the%20Arabic%20Diacritics%20as%20a%20Covered%20Media.pdf
file:///E:/For%20Thesis/Paper/read/Chinese%20Language%20Steganography%20using%20the%20Arabic%20Diacritics%20as%20a%20Covered%20Media.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/Pseudo%20Space%20PersianArabic%20Text%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/Persian%20Arabic%20Unicode%20Text%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/ARABIC%20DIACRITICS%20BASED%20STEGANOGRAPHY.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05893864
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05893864
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“Kashida‟ Character. 

27 Improving Security and Capacity for Arabic Text Steganography Using 

'Kashida' Extensions.   √   √     
1.22% 

0.2-1.00 

Low 

28 Exploit Kashida Adding to Arabic e-Text for High Capacity Steganography    √   √     39.5% 0.1-1.00 Low 

29 Arabic/Persian Text Steganography Utilizing similar Letters with Different 

Codes √     √     
(31-36)% 

0.5-1.00 

Low 

30  A Novel Text Steganography Technique to Arabic Language Using Reverse 

Fatha √     √     
High 

0.3-1.00 
High 

31 Arabic Text Steganography Using Kashida Extension With Huffman Code    √   √     3.01% 0.2-1.00 High 

32 SSCE    √   √     Low 0.1-1.00 Low 

33 
Extra blank  

  √   √     

One Bit per 

space  0.7-1.00 

Low 

34 
Line and word shifting  

  √  √   

One Bit per 

line/word 0.7-1.00 

Low 

 

file:///E:/For%20Thesis/Paper/read/Arabic/Exploit%20Kashida%20Adding%20to%20Arabic%20e-Text%20for%20High%20Capacity%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/Exploit%20Kashida%20Adding%20to%20Arabic%20e-Text%20for%20High%20Capacity%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/Exploit%20Kashida%20Adding%20to%20Arabic%20e-Text%20for%20High%20Capacity%20Steganography.pdf
file:///E:/For%20Thesis/Paper/read/Arabic/436-439.pdf
http://wikieducator.org/images/1/1c/CI-3.4.pdf
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CHAPTER 3 : SOFTWARE IMPLEMENTATION 

This section, presents eight new text Steganography algorithms: (1) 

Multipoint, (2) ZKA, (3) Diacritics, (4) KVA, (5) ZWC, and (6) Remarks (7) HTML 

code (8) MS Word symbols. The proposed algorithms enhance the hidden capacity 

ratio including the system’s transparency and robustness. The diversity of algorithms 

enables the users to pass their sensitive data in authenticated and secure manner. Each 

algorithm has a different strategy that allows the user to hide data inside the text file; 

some of these algorithms employ the text’s font format to embed data such as 

Multipoint Algorithm. Other algorithm use symbol insertion technique to pass 

sensitive data over public channel. In addition, the presented algorithms can be 

classified into two categories (1) Unicode languages and (2) Multiple languages. 

3.1 Multipoint Algorithm  

Multipoint algorithm is presented and applied in Unicode language (Arabic, 

Persian). These languages have some letters called multipoint shaped letters, which 

contain more than one point, unlike the English shaped letters (i, j). Vertically or 

horizontally shifting techniques can be employed to hide two bits of information in 

each character. The proposed algorithm offers a highly hidden capacity ratio 

compared to other algorithms. Each multipoint letter can hide 2 bits, whereas, other 

algorithms can hide only one bit per letter. The proposed algorithm enhances 

robustness by changing Stego-object to an Image or a PDF file in order to avoid the 
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retype problem. In addition, the introduced algorithm can be applied into other 

languages such as Pashto and Urdu [38]. Table 3.1 illustrates relation between letter 

effect and hidden code. 

Table 3.1. Relation of Shifting and Distance to hide Bits 

Point Shift Distance between points Hidden code Letter Format effect 

0 0 00 No Change 

0 1 01 Distance between points 

1 0 10 Vertical shifting 

1 1 11 Distance and shifting 

Multipoint Algorithm Pseudo Code  

1. Enter the text and hidden file and its size  

2. Search for multipoint letters  

3. Hide size of embedded data at the beginning  

4. For I= start to EOF  

  IF hidden data ="00" then call No change ();  

Else if hidden data= "01" then call distance ();  

Else if hidden data ="10" then call shifting ();  

  Else call distance-shifting ();  

End for  

5. Convert file to image file and send to other side  

6. End 

Table 3.2 illustrates the experimental results of the Multipoint algorithm. As 

shown in Figure 3.1, the Multipoint algorithm merges with a Single point algorithm 

to enhance the hidden data ratio capacity. 

Table 3.2. Experiment Results of Multipoint Algorithm 

# Website Page Size 
The character # 2 point 

or more 

Capacity Ratio 

(Bit/ Kilobyte) 

1 aljazeera.net 23.8 KB 1245 105 

2 daralhayat.com 15.4 KB 968 126 

3 salahws.com 10.3 KB 535 104 

4 holyquran.net/tadabur 13.8 KB 516 75 

5 khayma.com 21.8 KB 499 46 
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Figure 3.1. Histogram for Multipoint and Single Point Algorithms 

 3.2 Zero Width Character and Kashida Algorithm (ZKA) 

Zero Width character and Kashida are introduced through the Unicode 

language (Arabic) by using special characters to justify sentences; Kashida and Zero 

Width character hide two bits between connected letters. In order to avoid any 

attackers’ suspicion, a randomization algorithm utilizing ZKA has been applied. By 

using this process, each message applied different strategies to conceal secret 

messages. The proposed algorithm can be extended to other Unicode languages. Two 

weaknesses of ZKA are: (1) the retyping problem, and (2) the clear format problem. 

These deficiencies reduce the algorithm robustness [39]. Table 3.3 illustrates cover 

object before and after inserting secret bits. 

Table 3.3. Cover object before and after insert secret bits 

Cover 

Object 

ناء السد كان ساحل مصر الشمالي سل ة غذاء مصر والامبراطورية الرومانية التي كانت تحتل مصر قبل الإسلام. فقبل ب

ار في زراعة الصيفية في الوادي والدلتا كما اعتمدوا على مياه الأمطالعالي، اعتمد المصريون على مياه النيل فى الزراعات 

  القمح

Stego 

Object 

ـام. كـان ساحل مـصر الـشمـالي سـلـ ة غذاء مـصـر والـامبراطـورية الرومـانـيـة الـتي كانـت تـحـتـل مـصـر قـبـل الإسـل

تـا كمـا مـيـاه الـنـيل فـى الزراعات الصـيـفـيـة فـي الـوادي والدلفـقبل بـناء الـسـد العـالـي، اعتمد الـمصريـون عـلـى 

 اعـتـمـدوا عـلـى مـياه الأمطـار في زراعة القـمـح

 

Secret 

Bits  

1001001000001110101100010111101100011111110011101111100111110100000100101110

001100000001011010001111111000000101001 
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3.3 Diacritics Algorithm 

Diacritics Algorithm is represented in [40] to hide data inside Arabic text. 

This proposed algorithm uses Arabic diacritics which are language characteristics 

represented by small vowel letters.  These diacritics are an optional property for any 

Arabic text, and are not popularly used. Most of the Arabic letters need diacritics to 

correct word pronunciation. The proposed algorithm employs diacritics to hide two 

secret bits from each diacritic, in order to offer a high hidden ratio by applying this 

algorithm compared to other algorithms. The main drawback of the diacritics 

algorithm is that the use of diacritics is uncommon. Thus, hackers might be more 

intrigued to analyze the file. Table 3.4 shows cover object effect after and before 

insert the secret data. 

Table 3.4. Cover object effect before and after insert secret bits 

Cover 

Object 

ر  ق ب ل  ا ت لَّ مِص  ومانِيَّة  الَّتِي ك ان ت  ت ح  رٍ والامبراطورية الرُّ الِيِ سل ة غِذ اء  مِص  رِ الشَّم  س لامِ . ف ق ب ل  بِ ك ان  س احِل  مِص  ِ ن اء  السَّد ِ لإ 

راع ات   رِيُّون  ع ل ى مِي اهِ النَّي لِ فى الز ِ د  ال مِص  ت م  د وا ع ل ى مِي اهِ الأ  م  ال ع الِي ، اعِ  ت م  ا اعِ  ل تا ك م  الد ِ ادِي و  ي فِيَّة  فِي ال و  ط ارِ فِي الصَّ

حِ   زِراع ةِ ال ق م 

 

Stego 

Object 

ر  ق ب ل   ت لَّ مِص  ومانِيَّة  الَّتِي ك ان ت  ت ح  رٍ والامبراطورية الرُّ الِيِ سل ة غِذ اء  مِص  رِ الشَّم  س لامِ . ف ق ب ل  بِ ك ان  س احِل  مِص  ِ ن اء  السَّد ِ الإ 

ا ل تا ك م  الد ِ ادِي و  ي فِيَّة  فِي ال و  راع ات  الصَّ رِيُّون  ع ل ى مِي اهِ النَّي لِ فى الز ِ د  ال مِص  ت م  د وا ع ل ى مِي اهِ الأ  م   ال ع الِي ، اعِ  ت م  ط ارِ فِي اعِ 

حِ   زِراع ةِ ال ق م 

Secret 

Bits  

1001001000001110101100010111101100011111110011101111100111110100000100101110

001100000001011010001111111000000101001 
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Table 3.5. Vertical Shifting of Diacritics Algorithm 
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ize R
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tio
 

(B
it/K

ilo
b

yte) 

1 http://mubashermisr.aljazeera.net/ 6138 3631 2507 16.6 17.19 0.59 3.55% 145.84 

2 http://www.alfikralarabi.org/ 6492 3854 2638 17.4 17.9 0.5 2.87% 147.37 

3 http://mentouri.ibda3.org/ 5651 3363 2288 16.6 17.6 1 6.02% 130.00 

4 http://alamatonline.net/ 7342 4352 2990 17.9 19.1 1.2 6.70% 156.54 

5 http://www.sawaleif.com 2382 1479 903 14.8 15.3 0.5 3.38% 59.02 

6 http://www.ahram.org.eg/ 4272 2444 1828 15.7 16.5 0.8 5.10% 110.79 

7 http://www.alquds.co.uk/ 1661 1006 655 14.3 14.8 0.5 3.50% 44.26 

8 http://www.alriyadh.com/ 6512 3951 2561 17.5 18.4 0.9 5.14% 139.18 

http://mubashermisr.aljazeera.net/
http://www.alfikralarabi.org/
http://mentouri.ibda3.org/
http://alamatonline.net/
http://www.sawaleif.com/
http://www.ahram.org.eg/
http://www.alquds.co.uk/
http://www.alriyadh.com/


  

Table 3.5 demonstrates numerical values of the carrier file characteristic as applied 

through the Diacritics algorithm. Figure 3.2 as shown below offers a comparison of file size 

with and without diacritics. 

 

Figure 3.2. Carrier Files Size With and Without Diacritics 

3.4 Kashida Variation Algorithm (KVA)  

Kashida variation algorithm (KVA) is presented in Kashida according to the space 

position in order to hide two bits between words. KVA is a simple application that, typically, 

uses justified text over any word editors. The proposed KVA introduces four different 

Kashida information hidden scenarios. A specific scenario applies in each fragment as shown 

in Figure 3.3. Furthermore, an aggregation is applied over message blocks to reassemble the 

message that contains hidden information. The benefits of the variation process within KVA 

creates an extra complex dimension, enhance robustness, and transparency [41]. Table 3.6 

illustrates the cover file effect after embedded secret data. According to the Table 3.6, the 

semantic of the carrier file did not change. 
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Table 3.6. Cover Object Changes After Apply KVA 

 

 
Figure 3.3. KVA Blocks 

Table 3.7.  KVA Simulation Results 

# Website KVA Line Shift Word shift 

1 www.aljazeera.net 34.5 0.20 2.87 

2 www.bbc.co.uk 30.8 0.21 2.06 

3 www.ahram.org.eg 35.5 0.23 2.96 

4 www.addustour.com 41.2 0.32 2.75 

 

Table 3.7 presents the simulation results using KVA, line shift, and word shift 

algorithms. Based on the simulation, KVA’s hidden data ratio is comparatively higher than 

the line shift and word shift algorithms.  

Cover 

Object 

لى مياه النيل فى بناء السد العالي، اعتمد المصريون ع كان ساحل مصر الشمالي سل ة غذاء مصر والامبراطورية الرومانية التي كانت تحتل مصر قبل الإسلام. فقبل

  الزراعات الصيفية في الوادي والدلتا كما اعتمدوا على مياه الأمطار في زراعة القمح

Stego 

Object 

مد الـمصريـون ـام. فـقبل بـناء الـسـد العـالـي، اعتكـان ساحل مـصر الـشمـالي سـلـ ة غذاء مـصـر والـامبراطـورية الرومـانـيـة الـتي كانـت تـحـتـل مـصـر قـبـل الإسـل

 عـلـى مـيـاه الـنـيل فـى الزراعات الصـيـفـيـة فـي الـوادي والدلتـا كمـا اعـتـمـدوا عـلـى مـياه الأمطـار في زراعة القـمـح

 

Secret 

Bits  

10010010000011101011000101111011000111111100111011111001111101000001001011100011000000010110100011111

11000000101001 

http://www.addustour.com/
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3.5 Zero Width Character Algorithm (ZWC) 

Zero Width Character algorithm is presented in[42] by merging a space and Zero 

Width Character to hide two bits between words inside any document. The main idea of 

ZWC is variation between two letters in order to hide data as shown in Figure 3.4. By hiding 

the data in the file, the time complexity equation will be = M + (N/2) where M represents 

the number of carrier files, and N represents the number of hidden bits. 

 An advantage of ZWC is its ability to be applied to any language. A disadvantage of 

ZWC is its transparency, which is created by adding an extra space that can be checked by 

most of word editors’ programs. In addition, retyping can destroys robustness of the 

algorithm. 

 
Figure 3.4. Represent ZWC Blocks 
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Table 3.8. Hidden Ratio for ZWC Algorithm 

Table 3.8 identifies an additional increase of secret bits, when ZWC algorithm is 

applied to a carrier webpage.  Table 3.9 shows carrier object after and before insert secret 

data, as Table 3.9 also shows hidden bits positions in carrier object.  

Table 3.9 Position of Secret Bits in Carrier Object 

Cover Object 

اء السد كان ساحل مصر الشمالي سل ة غذاء مصر والامبراطورية الرومانية التي كانت تحتل مصر قبل الإسلام. فقبل بن

ر في زراعة زراعات الصيفية في الوادي والدلتا كما اعتمدوا على مياه الأمطاالعالي، اعتمد المصريون على مياه النيل فى ال

 القمح

Stego Object 

اء ـل بنـبـقـبل الإسلام. فـحتل مصر قـي كانت تـة التـيـراطورية الرومانـمالي سل ة غذاء مصر والامبـكان ساحل مصر الش

اه الأمطار في مدوا على ميـا كما اعتـي الوادي والدلتـفية فـالزراعات الصيمد المصريون على مياه النيل فى ـالسد العالي، اعت

 زراعة القمح

 

Secret Bits 

Positions 

 

3.6 Remarks Algorithm 

Remarks Steganography Algorithm is published in ASEE 2013[41]. The algorithm 

uses a text file as a carrier to hide the data inside it. The main goal of this idea is to hide data 

inside a word file without any change in the file format. A Stegoanalyzer program analyzes 

the file content and formatting. If there is any change in the file format, Stegoanalyzer 

program can detect the hidden data. In Remarks Algorithm the Right-to-Left Remark 

(U200F) symbol “ ” and the Left-to-Right Remark (U200E) symbol “ ” are used to hide the 

# Website  Original 

size 

 

Number of 

secret bits 

 Worst case Average  Best Case Space 

Ratio 

1 www.bbc.co.uk  13,348 3798 17146 15247 13,348 28.45 

2 http://www.cnn.com  16,722 2340 19062 17892 16,722 13.99 

3 http://www.nytimes.com 14,954 2286 17240 16097 14,954 15.29 

4 http://education.astate.edu  40,960 6138 47098 44029 40,960 14.99 

5 http://www.post-gazette.com 15,766 2214 17980 16873 15,766 14.04 

http://www.bbc.co.uk/
http://www.cnn.com/
http://www.nytimes.com/
http://education.astate.edu/
http://www.post-gazette.com/
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bits inside the carrier file. This method will not change the format of the file and can also be 

applied to different languages, regardless of the UNICODE or ASCII coding. This method is 

easily applied to the Microsoft Office Word application in order to hide data. 

Algorithm I: Hiding Data 

Input:  Carrier file, hidden bits file 

Output:  Stego file (embedded U200E && U200F file) 

Step 1: Choose any DOC file  

Step 2: Repeat while! (EOF)// repeat until the end of the hidden file 

Step 3: Embed hidden data in the selected file   

            Step 3(a): Start from the first letter of the carrier file           

            Step 3(b): Pack out the first two hidden bits  

                      If 00, then no U200F nor U200E  

                      Else if 01, then there is U200F 

                      Else if 10, then there is U200E 

                      Else add U200F and U200E. 

Step 5: Go to step 2 

Step 6: Save file as PDF then send it to other side. 

 Algorithm II: Data Extraction 

Input:-Stego file 

Output: - Secure data, original file 

Step 1: Open PDF Message  

Step 2: Repeat while! (EOF)// repeat until the end of Stego file 

Step 3: Embed hidden data in selected file  
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            Step 3(a): Separate each letter           

            Step 3(b):  

                      If there is nothing then 00  

                      Else if only U200F then 01  

                      Else if U200E then it’s a 10 

                      Else, 11 

Step 4: Go to step 2 

Step 5: Read hidden data. 

Due to the symbol insertion, The Remark Algorithm has an effect on the file size, 

which depends on the hidden data that may increase dramatically. In order to solve this file 

size issue, identified in the Remark Algorithm. 

Prior to embedding data, statistical information was collected representing the 

percentage of ones and zeros, and then the following equation was applied.  

𝑓(𝑥) = {
𝑖𝑓  𝑧𝑒𝑟𝑜′𝑠 > 𝑜𝑛𝑒′𝑠                                                 𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒  𝑠𝑎𝑚𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑖𝑓 𝑜𝑛𝑒′𝑠 > 𝑧𝑒𝑟𝑜′𝑠                      𝑆𝑤𝑖𝑡𝑐ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑒𝑛 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 𝑎𝑛𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 4
       (1) 

By applying the above-mentioned equation, optimal result would be evident when all 

hidden data are zeros or ones, and the file size remains unchanged. Alternatively, an 

unfavorable result would emerge if half of the hidden data consists of zeros, and the other 

half comprises of ones. Through Table 3.10, the Remark algorithm simulation results 

demonstrate the number of words that can be embedded in the hidden capacity ratio. 

Table 3.10. Hidden ratio be using Remarks Algorithm 

# Website  Number of words that 

can be embedded 

Text Size 

(Kilo Byte) 

Capacity 

Ratio 

1 www.nydailynews.com 826 8.8 674 

2 www.aljazeera.com 1658 18.7 637 

3 www.englisharticles.info 1351 15.9 610 

4 www.latimes.com 1208 14.8 586 
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Figure 3.5. Steganography Process 

3.7 Steganography over HTML Code 

In this paper[43], we employ Cryptography and Steganography techniques to pass 

secure information. WebPages are used as the carrier for secret data, and these WebPages are 

published over the Internet. Authenticated users can access the hidden data. The proposed 

algorithm consists of three main steps, as shown in Figure 3.5, where the first and third steps 

represent inverse operations. 

 

 

The Conceal operation consists of six stages:  

1. The Statistical Stage consists of an array of 26 elements that count the characters' 

frequency. The frequency array can be increased or decreased based on a Webpage’s 

language. Our experiments are based on the English language. 

2. The Character Representation Stage assigns “bits” based in the frequent use of the 

character. For example, after the frequency array has been generated. The lowest two 

frequently found characters could be represented by one bit. If two characters have 

the same frequency number, the character order specifies which one is zero. For 

example, if letter ‘X’ appears 10 times and a letter ‘Z’ appears 6 times, then ‘Z’ is 

represented as ‘0’, and ‘X’ as ‘1’. Moreover, if both letters have the same occurrence 

number, then ‘X’ is represented as ‘0’ and ‘Z’ is represented as ‘1’. Similarly, the 

next four characters can be represented by two bits. 

3. The Embedding Stage occurs when the secret bits are embedded after the character 

representation equals ‘8’ bits. In other words, if the first character representation is 

‘0’ and the secret bits are “0111011”, the code will be “00111011”. 

Conceal Data 

inside Webpage 

Publish Carrier 

Webpage 

Reveal Hidden 

Information 
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4. The Encryption Stage: consists of three simple binary operations.  First, the binary 

representation is complemented. Then, “exclusive OR” (XOR) is performed with the 

binary key. In order to produce the output of XOR gate, shift left must be applied by 

one bit and reentered as XOR input. In addition, the binary key code creation depends 

on the Webpage index where each page has a rear index. This operation repeats twice 

as shown in Figure 3.6. 

 
Figure 3.6. Encryption Gates 

This numerical example explains that the input is (C) 01000011, and the key is 

10001100: 

Step 1:- Binary representation for C =>01000011 

Step 2: - 1’s complement of C => 10111100 

Step 3:- 10001100 XOR 10111100=>00110000 

Step 4:-Shift left 00110000 =>  01100000 

Step 5:- 10001100 XOR 01100000=>11101100 

Step 6:- Shift left 11101100=>11011001 

5. The Decoding Stage converts binary code to ASCII code. Here, the numerical form is 

changed into text. In the example, shown above “11011001” is decoded to (Ù). 

6. The Insertion Stage occurs when inserting the text from the decoding stage is 

produced. Then, the text is placed into the Webpage code as comment. The comments 

do not appear in the Webpage’s output view. 
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 To reveal the secret message apply the following procedural stages:- 

1. The Statistical Stage relies on 26 characters, similar to those found in the “Conceal 

Operation” statistical stage.  

2. The Reading Comments Stage allows the user to read comments from the Webpage.  

3. The Encoding Stage converts any comment appearing in the text into binary 

representation. 

4. The Decryption Stage follows in the same binary processes that exist in the encryption 

stage founded in the “Conceal Operation”. 

5. The Reveal Character Code Stage is performed by using the frequency array created in 

the statistical stage, and comparing it with the binary output of the decryption stage. 

The embedded information is obtained by removing the character representation. 

3.7.1 Experiments and Results 

This section explains the concepts of decryption of Hidden Data Ratio and the 

results formed after applying HTML Code Algorithm. In Figure 3.7, letter frequency is 

displayed by applying the HTML code Algorithm to different news Websites. 

𝑙𝑒𝑡𝑡𝑒𝑟 𝐹𝑟𝑒𝑞 = 𝐿𝐸𝑁(𝑤𝑒𝑏𝑠𝑖𝑡𝑒) − 𝐿𝐸𝑁(𝑆𝑈𝐵𝑆𝑇𝐼𝑇𝑈𝑇𝐸(𝑊𝑒𝑏𝑠𝑖𝑡𝑒, 𝑙𝑒𝑡𝑡𝑒𝑟)) (2) 

When applying the HTML Code Algorithm, the max volume of secret hidden bit is 

122 bits, regardless of the Website size. Moreover, the suggested algorithm utilized non-

pure Steganography by employing encryption gates in order to improve the system’s 

transparency. In addition, the statistical equation improves the system’s robustness. By 

improve robustness; the sensitive message remains unchanged during the transformation 

process.  
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Figure 3.7. Letter Frequency 

 

3.7.2 HTML Code Algorithm Analysis 

HTML Code Algorithm has a number of advantages over other algorithms. This 

section explores some of it’s benefits.  

1. Language independency:  

 The HTML Code algorithm can be applied to multiple languages. This ability 

enables users to employ it regardless of the language used on the Webpage. Different 

languages have different frequency array sizes. For example, if the Webpage contains 

Arabic letters, then the array size is 28. If the Website contains English text, then the array 

size is 26. 

2. Algorithm Transparency: 

One of the most important criteria in measuring the performance of a Steganography 

algorithm is the ability to prevent hacker from reading hidden data. The HTML Code 

Algorithm improves the transparency feature by hiding encrypted data inside the code. In 

addition, the secret bits are inserted as comments, and the comments do not appear on the 

screen of the Webpage. The proposed technique eliminates the need to change file format in 
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order to reduce intruder suspicion. 

3. Hidden Ratio Capacity:  

The HTML Code algorithm hides different amount of bits inside each Webpage. For 

example, if we assume the Webpage is written in English text, then the maximum amount 

of hidden bits per page is 126. 

4. Algorithm Reusability: 

The HTML Code algorithm enables the user to create an individual Webpage and 

reuse the same Webpage to hide different secret messages. 

5. Algorithm Robustness: 

The HTML Code Algorithm prohibits any change to carrier Webpage code during 

the transmission process, since the hidden data is stored in the page code as comments. 

3.8 Steganography in Text by Using MS Word Symbols  

The MS Word Symbols Algorithm [44]hides data inside a Word file without altering 

the carrier file properties such as file size, content and format.  The MS Word Symbols 

Algorithm employs some invisible symbols to hide four bits between letters. This process 

improves the hidden capacity ratio compared to other algorithms. Moreover, no modification 

in the Word format file or letter shapes would be made. Thus, the suggested algorithm 

avoids raising any hackers’ suspicions. 

Table 3.11 represents some of the hidden codes. For example, if we insert all four-

table variation symbols after each letter, then the passing bits code is 0000. This insertion 

enables us to hide four bits of secret data. The four symbols applied are Right remark 
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(200E), Left remark (200F), Zero width joiner (200D), and Zero width non-joiner (200C).  

In this technique, different variations can be used to represent hidden bits for a total of 16 

different codes.  

Table 3.11 Sample of Hidden Bits by Using Word Symbols 

Right 

Remark 

Left 

Remark 

ZWJ ZWNJ Hidden 

code 

X X X X 0000 

X X X  0001 

X  X  0101 

X X   0011 

X    0111 

    1111 

  X  1101 

 

Figure 3.8 represents the data hiding steps when using three inputs: the Stego key, 

carrier file, and hidden data. The main purpose of Stego key is to change the symbols’ bit 

representation. For example, ‘0’ represents a bit’s absence, and ‘1’ represents a bit’s 

presents. In the next step, a symbols’ table is created depending on the outcome of the 

Stego key.  

The capacity of the carrier file is computed as follows: 

       Capacity of carrier file = Number of letters × 4     (3) 

The hidden capacity of our algorithm is computed as follows: 
  Capacity Ratio= (Number of letters ×4) / carrier file size     (4) 

 The receiver can extract the hidden data by reading the carrier file, and then apply 

the Stego key to build a symbols’ table. By reading the symbols after each letter and 

matching those with the symbols’ table would enable the receiver to extract the hidden data. 
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Figure 3.8. Data Hiding Algorithm 

Table 3.12 presents the simulation’s results using MS Word, Line shift, and Word 

shift algorithms. Based on the simulation, MS Word’s hidden data ratio is comparatively 

higher than the Line shift and Word shift algorithms. Figure 3.9 shows a comparison 

histogram for the three algorithms. 

 

Table 3.12. Hidden Capacity of 3 Text Steganography Algorithms 

# Website Size 

(K.B) 

Number 

of lines 

Number 

of words 

Number 

of letters 

MS Word 

Symbols 

Line shift  Word shift  

1 www.cnn.com 19.8 74 763 4592 928 4 39 

2 www.bbc.com 19.3 67 749 4065 842 3 39 

3 www.nypost.com 19.8 48 634 3532 714 2 32 

4 www.guardian.co.uk 21 64 935 5625 1071 3 45 

5 www.ctpost.com 20.5 51 640 3652 713 2 31 

http://www.ctpost.com/
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Figure 3.9. Hidden Bits Comparison between Three Different Algorithms 

3.9 Performance Evaluation  

Table 3.13 shows the proposed algorithms and their classifications. Multipoint, 

Diacritics, ZKA, and KVA algorithms are language dependent. These algorithms (A1, A2, 

A3, and A4) have the potential to hide secret data inside Unicode Languages such as Arabic, 

Persian, and Urdu. Multipoint and Diacritics algorithms hide data by substituting one letter 

with another modified shaped letter. This approach works well, since there is no standard 

position or distance between the letter and the points. Also, this approach has proven that 

there is no standard position between the letter and the Diacritics. The main advantage of the 

A1 and A2 algorithms is the file’s size stability. Moreover, A1 and A2 have the ability to 

combine with A3, A4, A5, A6, A7, and A8 in order to improve the hidden ratio capacity. A3 

and A4 hide the data inside a carrier object by inserting non-printed symbols. The main 

drawback of A3 and A4 is that the carrier file’s size increases with the process of embedding 

the secret message. 
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A5, A6, and A8 hide the data by embedding non-printed symbols. In addition, A5, 

A6, and A8 provide a highly hidden ratio capacity. Moreover, these algorithms have the 

ability to be combined with A1 and A2 in order to improve the hidden ratio capacity. One 

disadvantage associated with A5, A6, and A8 is that the carrier file’s size increases through 

the insertion of non-printed symbols. HTML Code A7 algorithm hides the encrypted secret 

data as comments inside the HTML Webpage. Limited hidden bits can be inserted based on 

the webpage’s original language. The hidden capacity of HTML Code A7 algorithm can be 

enhanced by combing it with A1 and/or A2. Table 3.14 explains the results of combining one 

algorithm with another algorithm and the effect on the hidden ratio capacity and the file size. 

It is notable that combing one algorithm with another will increase the hidden ratio capacity 

at a risk of increasing the file size. The only case that the file size does not increase is when 

A1 and A2 are combined. Here, either A1 or A2 did not increase the carrier file size. These 

algorithms are only based on changing the points or the Diacritics positions. 

 

 
 

Figure 3.10. Hidden Ratio [Bit/Kbyte] 

Figure 3.10 illustrates and compares the hidden ratio of eight proposed algorithms 
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and Line and Word Shift algorithms introduced in literature. Equation 5, stated below, 

represents the hidden ratio capacity (HR). Based on the simulation results, A8 achieves the 

highest hidden ratio range. A6 achieves the second highest hidden ratio range. A7 represents 

a constant hidden ratio range. The average range of the hidden ratio of A1 = 104 bits per 

Kbyte (KB); A2 = 144 b/KB; A3 = 153 b/KB; A4 =355 b/KB; A5 = 153 b/KB; A6 = 626 

b/KB; A7 = 127 b/KB; and A8 = 799 b/KB. 

𝐻𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑

𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑓𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 [𝐾𝐵𝑦𝑡𝑒]
        (5) 

 

 

 
 

Figure 3.11. File Size Effect after Inserting Secret Data 

Figure 3.11 represents and compares the file size of the Stego objects that increase the 

hidden ratio capacity of eight proposed algorithms with Line and Word Shift algorithms.  

Based on the simulation results for the hidden ratio range, there is no change in the 

carrier file size when each A1, A2, and A7 is applied. On other hand, the highest file increase 

ratio appears in A8. A6 offers the second highest file size increase. 

3.10 Merge Capability  

Table 3.13 describes the proposed algorithms and their classification. Multipoint, 

Diacritics, ZKS, and KVA are language dependent. These algorithms (A1, A2, A3, and A4) 
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could be used to hide secret data inside Arabic, Persian, and Urdu. Multipoint and Diacritics 

algorithms hide data by substitute one letter by another modified shaped letter. Where there 

is no standard position or distance between letter and points or between letter and Diacritic. 

The main advantage of these algorithms (A1, A2) is the file size stability. Moreover, A1 and 

A2 have ability to merge with ((A3, A4, A5, A6, A7, and A8) to improve the hidden ratio 

capacity. A3, A4 hide data inside a carrier object by insert non-printed symbols. ZKS and 

KVA are language dependent. The main drawback of A3 and A4 is carrier file size 

increment. 

A5, A6, and A8 hide data by embedded non-printed symbols. In addition, A5, A6, 

and A8 present highly hidden ratio. Moreover, they have ability to merge with A1 and A2 to 

improve hidden capacity ratio. On the other hand, A5, A6, and A8 have carrier file size 

increment problem. HTML Code algorithm suggested hiding encrypted secret data inside 

HTML Webpage as comments. Limited hidden bits can be inserted based on Webpage 

language. The hidden capacity of HTML Code algorithm can be enhanced by merge with A1, 

A2.  

In this section, we discuss the possibility of merging more than one algorithm. The 

proposed algorithms can be merged collectively to further improve the hidden ratio range of 

the carrier file. For example, A1 can be combined with either A2, A3, A4, A5, A6, A7 or A8. 

Figure 3.12 illustrates the hidden ratio output when A1 is combined with other algorithms. 

Figure 3.13 represents the change in the carrier file size, once other algorithms have been 

merged with A1. The merging process will be done in sequence. For example, the user can 

select A1 algorithm. The carrier file will be updated based on the secret data, and then the 

user can get the output file of the A1 algorithm and select the second suggested algorithm. 
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Figure 3.12. Hidden Ratio Merged with Multipoint 

 

 

Figure 3.13. File Size Change Merged with Multipoint 
 

Based on the simulation results, the best outcome will depend on the individual user 

requirements. If the file size is not allowed to change, then the user will select A1, A2, or A7. 

Otherwise, if the carrier file size is allowed to increase, and large amounts of secret data are 

being embedded in the carrier file, then A8 will be the best algorithm choice. One distinctive 

merging algorithm scenario is (A1, A2, A4, A7) Multipoint, Diacritics, KVA, and HTML 

Code. This scenario provides a highly hidden ratio while the size of the carrier file will 
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minimally increase, as shown in Table 3.13. The results show that the merging scenario is 

very consistent among different Websites in terms of hidden ratio capacity and the file size 

change. 

Table 3.13. Merged Simulation Results of A1, A2, A4, A7 

Webpage Hidden Ratio b/KB File size Change 

Aljazeera 723 2% 

CNN 709 1% 

BBC 717 2% 

Alhayat 771 2% 



  

Table 3.14. Comparison between Eight Different Algorithms 

Algorithm Applicable  Language General Categories Technique File size 
Ability to merge with other 

Algorithm(s) 

A1: Multipoint 
Unicode(Arabic, 

Persian, Urdu) 
Substitution Linguistic  Not Effect 

Can be merge with all 

other algorithms 

(A2,A3,A4,A5,A6) 

A2: Diacritics 
Unicode(Arabic, 

Persian, Urdu) 
Substitution Linguistic Not Effect 

Can be merge with all 

other algorithms 

(A1,A3,A4,A5,A6) 

A3: ZKS 
Unicode(Arabic, 

Persian, Urdu) 
Injection Linguistic Increase Can merge with (A1,A2) 

A4: KVA 
Unicode(Arabic, 

Persian, Urdu) 
Injection Linguistic Increase Can merge with (A2) 

A5: ZWC Language Independent Injection Format Increase Can merge with (A1,A2) 

A6: Remarks Language Independent Injection Format Increase Can merge with (A1,A2) 

A7: HTML 

Code  
Language Independent Injection Format Increase Can merge with (A1,A2) 

A8: MS Word  Language Independent Injection Format  Increase Can merge with (A1,A2) 
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Table 3.15. Output of Merge Process between Proposed Algorithms 

Algorithm Applicable  Language General Categories Technique 
Hidden 

Capacity 

File Size 

A1(A3,A4,A5,A6) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A2(A3,A4,A5,A6) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

(A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Injection Linguistic Increase No change  

A3 (A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A4 (A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A5(A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A6 (A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A7(A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 

A8(A1,A2) 
Unicode(Arabic, 

Persian, Urdu) 
Substitution/Injection Linguistic/format  Increase Increase 
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CHAPTER 4 : HARDWARE SIMULATION  

In Chapter 4, we present the hardware simulation results of our proposed 

algorithms. In addition, sections (4.1, 4.2, 4.3, 4.4, 4.5, and 4.6) explain real-time 

Steganography techniques that hide data inside a text file using a hardware engine. 

Most of the introduced techniques use software implementation to embed secret 

data inside the carrier file. Nevertheless, software implementations are not sufficiently 

fast for real-time applications. In this chapter, we present new real-time Steganography 

techniques that hide data inside a text file using a hardware engine. 

In [45], a novel hardware design was proposed for  image Steganography using 

the least significant bit (LSB) algorithm. The implementation was carried out using 

Cyclone II FPGA of the ALTERA family. The technique employed 2/3LSB design to 

produce a good image quality to avoid any attacker doubt. Meanwhile, it provided a high 

memory access performance to speed up the system performance. In [46], an FPGA 

hardware architecture was introduced to hide the secret information by exploiting the 

noise regions in an image. This strategy improved system transparency which made it 

hard to realize the hidden data. In [47], an implementation of audio or video Stenography 

using FPGAs was discussed. The proposed algorithm speeds up the secret data 

embedding rate at the hardware implementation for real-time Steganography. Another 

hardware architecture was introduced in [48] to simulate the ability to hide information 
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inside image and video carrier files. Two schemes were applied to speed up real-time 

video applications. The main drawback of this system is its need for a high speed 

memory buffer. In [49], the proposed algorithm employed image as carrier file by using 

multilayer embedding in parallel with three-stage pipeline on FPGA. Promising results 

showed high throughputs while maintaining the image quality. In [50] and [51], authors 

employed perturbed quantization to hide data inside JPEG image. The main feature of 

perturbed quantization is that it is undetectable with current Stego-analyst.  

As can be seen, most of the presented algorithms were implemented in hardware 

focus on image, video, or audio as the carrier file for the secret message. This is while 

text Steganography has not been considered for implementation in hardware engines 

and/or digital signal processors.  

In this Chapter, we build on top of our prior works and apply our algorithms over 

hardware concepts to speed up the system efficiency. In our software implementation, we 

try to achieve the highest Steganography performance “Magic Triangle Concepts” for 

Steganography; that is, the ability to achieve and maintain high transparency, robustness, 

and hiding capacity. 

4.1 Multipoint Algorithm [52] 

In order to simulate a Multipoint Algorithm into a hardware engine, a “State” 

transition diagram is constructed that reflects the Multipoint Algorithm’s procedure. 

Figure 4.1 illustrates the Finite “States” Machine Diagram of the Multipoint system. This 

system consists of five “States.” Each “State” depends on the input character in the text 

file and in the hidden data. “State” ‘A’ begins the process of the initial “State” of the 
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search. The hidden information represents input data that transfers from one “State” to 

another “State.” Figure 4.2 describes the main components of the hardware engine in 

RTL view. This Multipoint hardware system consists of four comparison units that scan 

hidden information in order to determine a suitable data path.  

When applying “Quartus II” hardware compilation application,” to the Multipoint 

hardware simulation our findings indicate the critical path time equals Tminclk = 1.42ns. 

In each cycle, we process 16 bits.  The following equation is used to determine the 

maximum frequency: 

fmax =
1

TminCLK
=

1

1.42ns
= 704.22 MHz  . 

The system, therefore, has an overall throughput of 11.27 Gbit/second. 
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 Figure 4.1. Finite “State” Machine Diagram for Multipoint 

4.2 ZKA Algorithm 

Our hardware engine is applied over text in a form of a carrier file through ZKA. 

This algorithm permits hiding data inside a Word file without any changes to the carrier 

file format. Figure 4.3 exemplifies the main components of the hardware engine in RTL 

view. The system consists of four comparison units that check the hidden information in 

order to choose a suitable data path. 
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Figure 4.2. RTL View of the Hardware Engine for Multipoint 

 
Figure 4.3. RTL View of the hardware engine ZKA Algorithm 

The critical path time reported by the (Quartus II) is Tminclk = 2.494ns.  

Therefore, the maximum frequency is:  

fmax =
1

TminCLK
=

1

1.669ns
≈ 599 MHz  . 

Hence 16 bits are processed in each clock cycle; the system has an overall 

throughput of 9.5 Gbit/second. 

4.3 ZWC Algorithm[53] 

For the ZWC Algorithm, we also configured the hardware engine. In our 

implementation, we process the hidden file two bits in each step to hide it and then make 

a transition from the current state to another state based on the conditions.  

 The critical path time reported by the (Quartus II) tool is Tminclk = 2.494ns.  
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Therefore, the maximum frequency is:  

fmax =
1

TminCLK
=

1

2.494ns
≈ 401 MHz  . 

Hence 16 bits are processed in each clock cycle; the system has an overall 

throughput of 6.415 Gbit/second.  

4.4 Diacritics Algorithm 

In order to build a Diacritics Algorithm into the hardware system, a “State” 

transition diagram is constructed that reflects the Diacritics Algorithm procedure. Figure 

4.4 demonstrates the “State” diagram of the hardware system. This Diacritics hardware 

system contains three “States.” Each “State” depends on the input value character located 

in the text file and the hidden data. “State” A represents the initial “State” of the search. 

The hidden information transfers input data from one “State” to another “State.” 

The hardware engine is configured based on this finite state machine in (Quartus 

II). Figure 4.5 illustrates the main components of the hardware engine in RTL view. The 

Diacritics hardware system contains four comparison units that check the hidden 

information to determine a suitable data path.  

The critical path time reported by the application (Quartus II) was Tminclk =

1.824ns.  Therefore, 

fmax =
1

TminCLK
=

1

1.824ns
≈ 548 MHz  . 

Hence 16 bits are processed in each clock cycle; the system has an overall 

throughput of 8.77 Gbit/second.  
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Figure 4.4 . Finite “State” Machine Diagram for Diacritics Algorithm [H= Hidden bit, D= diacritic] 

 
Figure 4.5. RTL View of the Hardware Engine for Diacritics Algorithm 

4.5 KVA Algorithm 

In order to configure the KVA in hardware, a “State” transition diagram is 

constructed that reflects KVA’s procedure. Figure 4.6 illustrates the Finite “State” 

Machine Diagram of the KVA system. The KVA system consists of three “States.” Each 

“State” depends on the input value character located in the text file and the hidden data. 

“State” A represents the initial “State” of the search. The hidden information transfers an 

input data from one “State” to another “State”. 
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Figure 4.7 illustrates the main components of the hardware engine in RTL view. 

The critical path time reported by the application (Quartus II) was Tminclk = 2.103ns.  

Therefore, 

fmax =
1

TminCLK
=

1

2.103ns
≈ 475.5 MHz  . 

Hence 16 bits are processed in each clock cycle; the system has an overall 

throughput of 7.608 Gbit/second 

 Figure 4.6. Finite “State” Machine Diagram for KVA [H= Hidden bit, C= Connected Letter, NC = 

NOT C] 
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Figure 4.7. RTL View of the Hardware Engine for KVA 

4.6 Remarks Algorithm[54] 

As previously mentioned, in order to apply various algorithms into a hardware 

configuration, a “State” transition diagram is constructed that reflects each algorithm’s 

procedure. Figure 4.8 illustrates the Finite “State” Machine Diagram of the Remarks 

Algorithm. Figure 4.9 consists of five “States.” Each “State” depends on the input value 

character located in the text file and the hidden data. “State” A represents the initial 

“State” of the search. The hidden information transfers input data from one “State” to 

another “State.” As shown in Figure 28, the Remarks Algorithm detects the hidden bits 

and input data bytes at each “State”. If the hidden bits are “00”, the output is “Null”, and 

next “State” is ‘B’. If the hidden bits are “01”, the next “State” is ‘C’, and the symbol 

inserted in the output file is “U200F.” 

Figure 4.9 represents the main components of the Remarks hardware engine in 

RTL view. The Remarks Hardware system consists of four comparison units that check 

the hidden information to determine a suitable data path. 

The critical path time reported by the application (Quartus II) was Tminclk =
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1.669ns. Therefore,  

fmax =
1

TminCLK
=

1

1.669ns
= 599161174.36 Hz . 

Hence 16 bits are processed in each clock cycle; the system had an overall 

throughput of 9.6 Gbit/second. 
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Figure 4.8. Finite “State” Machine Diagram for Remarks Algorithm 

 
Figure 4.9.  RTL View of the Hardware Engine for Remarks Algorithm 

4.7 Analysis and Synthesis results 

Table 4.1 shows the analysis and synthesis results of comprehensive text 

Steganography system. Our model enables users to choose the higher performance 
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algorithm according to the carrier file format. The suggested comprehensive model also 

supports the ability to change the applied algorithm after agreement between trusted 

parties. Table 4.2 summarizes the presented algorithms and throughputs. 

Table 4.1. Analysis and Synthesis Results of Comprehensive System 

ATTRIBUTE   VALUE 

Top Level Entity Name System 

Family Stratix II 

Logic Utilization <1% 

Total registers 5 

Total Pins 53/343 (15%) 

Parallel compilation Enable ( 4 Processors detected ) 

Hold time violation between Source pin  and Destination 

pin 

3.173ns 

Largest skew 3.794ns 

Shortest register to register delay 0.527ns 

Longest  register to register delay 10.170ns 

Shortest clock path from clock to destination register 4.663ns 

Longest  clock path from clock to source register 7.561ns 

Longest  register to pin delay 4.370ns 

Peak Virtual Memory 183 megabyte 

Estimated ALUTs Used 60 

 

Table 4.2. Algorithm Throughputs 

Algorithm Throughputs  Gbit/second 

Multipoint Algorithm 11.27 

ZKA 9.5  

ZWC Algorithm 6.415  

Diacritics Algorithm 8.77. 

KVA Algorithm 7.608 

Remark Algorithm 9.6 

 

Figure 4.10 shows the simulation waveforms of data inserted and the system 

states transformation using a timing wave graph. The system consists of three main inputs 

carrier file, hidden data, and selected algorithm. For example, if the user chooses the first 

option, it will select the ZWC algorithm. According to the hidden data the d_out will be 

changed and the next state will be updated. 
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Figure 4.10. Hiding Data Algorithm’s Timing Simulation Results and “State” Transitions 

4.8 Summary 

In this chapter, we tested fast and real-time hardware simulations to build secure 

and safe communication algorithms over cyber networks. We presented the hardware 

simulations of 6 original algorithms: (1) Multipoint; (2) ZKA; (3) Diacritics; (4) KVA; 

(5) ZWC; and (6) Remarks. The proposed hardware configurations represent extremely 

efficient processing speeds as applied to text Steganography in hardware applications. 

In addition, the proposed hardware systems are first of their kind to utilize text as a 

carrier file in Steganography. The suggested engines provides the flexibility to the users 

to select a specific algorithm or run multiple hardware engines simultaneously to 

improve the system speed and enhance hidden data ability. Furthermore, the proposed 

hardware system could be embedded in a router, or a gateway, or in a Network Interface 

Card to improve security over public communication channels. 
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CHAPTER 5 : CONCLUSIONS 

The novel eight algorithms:  Multipoint, ZKA, Diacritics, KVA, ZWC, Remarks, 

HTML code, and MS Word symbols presented in this dissertation provide additional and 

necessary protection for communicating sensitive data over the cyber world. In this 

research, we have outlined a list of existing text Steganography techniques, and presented 

eight original algorithms to increase the protection of data hiding inside text carrier files. 

The algorithm simulation results present a highly hidden data ratio that can be adopted in 

multiple languages. 

Our proposal’s results and research offer valuable and vital utilization in order to 

establish safe communication, privacy enhancement, secure data sharing, and additional 

protection of copyrighted products. For example, our algorithms can be applied to 

multimedia and publishing products. By using any of the eight algorithms presented in 

this proposal, users will have a more secured system in place to prevent and curtail 

hackers.  

The proposed hardware systems represent extremely efficient processing speed 

as applied to text Steganography in hardware applications. In addition, the proposed 

hardware systems are first of their kind to utilize text as a carrier file in Steganography.  
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