
Abstract

Tracking a Line for Automatic Piloting System of Drone

Yawei Yang

Advisor Prof. Jeongkyu Lee

Department of Computer Science and Engineering

University of Bridgeport, Bridgeport, CT 

Multimedia Information Group

Design and Implementation

Final Result

Nowadays, the FAA is discussing about open the low area

for registered flight, so the Drone for Amazon will be the

possible. In addition, Amazon is developing its own drone for

future delivery method. In this project, we implement automatic

piloting system for AR. Drone by tracking a line with on-board

camera. This project uses AR.Drone for our implementation of

the line tracker because there exist several available SDKs

based on Wi-Fi network and two HD quality cameras. For the

SDK, YA.Drone from University in Hamburg, Germany is

employed and it is combined with Image Processing

Technology in order for a drone to track the line. The

preliminary results show that a drone can successfully track

various types of lines behind a drone, such as straight, 90

degree, crank, circle and arbitrary lines. Using the automatic

piloting system in this project, a drone can send something

from one room to other room, and eventually deliver an item

outdoor.

First, we need get image from AR.Drone bottom camera.

After that, this program will binary the image base on different

RGB range, using OpenCV Library to generate binary image

to show which is line. It include default value, however based

on different environment, it also allow manually choose the

specific color range. analyze the result image, and calculate

boundary of the image for four bounders, then sent the

command to AR.Drone to turn or go straight.

For algorithm, the image we get form AR.Drone will be

binary with OpenCV inRange function, (this will be reset the
image to 1 and 0, only two value) . After that, we will detect

the first row and last row, first column and last column, to

make sure that where is the line. The image will be separate

into three part, (Left, Middle, Right). In the left and right part

will be turn directly, and based on distance with the center, the

turn power will be different. And in the middle part, AR.Drone

just go straight to avoid that only 1 pixel can go stragith. If only

bottom row detective the line, then land on the ground. So

based on different conditions to sent different command.

Conclusion

The problem is the latency for communicate and analysis.

The SDK some time cannot get image form AR.Drone. Also

the when analysis the image, still 0.5 seconds late, when sent

back to AR.Drone, it already fly away, and maybe lost the line.

So the same result when SDK cannot get image.

For algorithm if we have a cross “+” for line, AR.Drone only

can go straight, and if it’s “Y” corner, AR.Drone will only

choose left side.

1
. A

R
.D

ro
n

e 
g

et
 i

m
ag

e 
fo

rm
 b

o
tt

o
m

 c
am

er
a.

2. Sent image to computer 

3
. A

n
aly

sis im
ag

e th
en

 co
m

p
u

te lin
e 

4. Sent command back to AR.Drone

Now the AR.Drone can detect different color line but only

work on the non-mirror reflection ground, like rug or curtain.

Because if the lightness is too strong that the camera will

cannot detect other color. It can finish different type of turn and

curve. i.e. straight, 90 degree, crank, circle and arbitrary lines

as figures.

AR.Drone, is a small quadcopter from Parrot like this.

References 

1. http://opencv.org/

2. http://vsis-www.informatik.uni-hamburg.de

/oldServer/teaching//projects/yadrone/

3. http://cdn.ardrone2.parrot.com/

■ Ultrasound Altimeter.

■ Mission frequency: 40kHz

■ Vertical stabilization

■ Vertical camera. QVGA 60 FPS

■ 64° diagonal CMOS sensor

■ Allows stabilization even with a 

light wind.

■ HD Camera. 720p 30FPS

■ Wide angle lens : 92°

diagonal

■ H264 encoding base profile

■ Low latency streaming

■ Video storage on the fly 

with the remote device

■ JPEG photo

■ Video storage on the fly 

with Wi-Fi directly on your 

remote device or on a USB 

key

■ 1GHz 32 bit ARM Cortex A8 processor with 

800MHz video DSP TMS320DMC64x

■ Linux 2.6.32

■ 1GB DDR2 RAM at 200MHz

■ USB 2.0 high speed for extensions

■ Wi-Fi b g n

■ 3 axis gyroscope 2000°/second precision

■ 3 axis accelerometer +-50mg precision

■ 3 axis magnetometer 6° precision

■ Pressure sensor +/- 10 Pa precision

Black Bold Line is Target Path

Red Narrow Line is Real Path

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52956355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

