
Analysis of Call Data Record (CDR)
using Hadoop Cluster

Authors: Toufiqur Rahman Chowdhury, Arun Sai Prakash Arumugam; Supervisor: Jeongkyu Lee

Department of Computer Science and Engineering

University of Bridgeport, Bridgeport, CT - 06604

The management of big data is the most important
issue for this decade since the real world applications
are generating very large scale of data in petabytes and
zetabytes scale. Most popular solution of big data
management is a system based on Hadoop Distributed
File System.

However, implementing enterprise level solution is a
challenge because of the production of such huge data.
In this project, we employ Hadoop cluster to the
telecommunication data since it produces a huge
amount of log data regarding to customer calls as well
as network equipment. To emphasize more realistic
solution we ponder on call data details for our Big Data
application.

In this project, we have acquired real-time Call Data
Record (CDR) data for our implementation from telco
operator named Banglalink who is operating 30 million
users in Bangladesh. To narrow down the scope, CDR
data analytics using Hadoop cluster can result top
callers to promote customer experience. This
implement can also help Banglalink to implement
similar application for backup data warehouse using
Hadoop cluster for CDR analytics.

Hadoop Distributed File System (HDFS) can handle
large scale of data-set in zetabytes using sequential
read and write operation. To process files are divided
into chunks and stored into three data nodes. A Name
Node and thousands of Data node can be employed to
serve for processing such large scale of dataset. In
Name node, Job Tracker at first, gets job from Client
node and assigns task to Task-trackers in Data nodes.
Second, it co-ordinates Map and Reduce Phases and
provide job progress info. So, MapReduce plays a very
important role and is employed to process input
format of splits or chunks using user defined ‘Map’
function, shuffle and then sort and finally merge using
to achieve output data.

MapReduce is the restricted programming model to
process and generate large scale data set over HDFS.
MapReduce programs are automatically parallelized as
well as executed in HDFS. In Map function, user
specifies statements to process a key/value pairs for
generating intermediate key/value pairs. In Reduce
function, all intermediate values get merged for the
same intermediate keys.

Since the input data set can be very large the
computation is distributed across thousands of cluster
the complexity of such systems is the process of
parallelism of computation. MapReduce provides the
encapsulation of details of parallelization, fault
tolerance, load balancing and data distribution using its
restricted functional programming model offering
simple and powerful interface.

Abstract

Hadoop Architecture

Though the highlighted data are IMSI and SUBNO, B-
SUBNO and CALL DURATION, we have also considered
time start for call in our algorithm

Considering the Telecommunication Billing architecture
presented below, we gathered the data set from
Mediation System. The system generates data from
usage data of end user from network switches and
builds a call detail record (CDR) after the call is made.
The CDR is a standard call data record that contains A
party number (Subscriber Number) and B party
number (Destination Number) as well as start and end
date and times for any call made using the Telco
operator network.

The applications read the CDR data to provide analytics
operation for a given subscriber number. We have
targeted to prepare two applications from CDR data
purposefully with advise from the Telecom Company
we are working with.
1. The first application provides total call duration for

each user. From which we can conclude the Top N
caller

2. Another application provides the destinations for
each caller with duration and start time for call

The CDR data set needs to be parsed to necessary
fields like subscriber number, duration and
destinations. For a given subscriber number, the
application will find out key and value pair as
subscriber number and call duration. Finally, we can
get the total call duration that can be sorted to get Top
N callers using automatic Key sort and also Call
destination with timestamp and duration made by the
subscriber number.

Application 1:
Step1: At first we put the test Call Data Record (CDR)
CDR data set to HDFS cluster.
Step2: Secondly, we will create a ‘Map’ function to
parse the Call Data Record (CDR) data. Our algorithm
for ‘Map’ function perform line reading and then parse
the Subscriber Number and the Call Duration using
substring (int beginIndex, int endIndex) function for
given length for different fields.
Step 3: The analytics application1 combiner then sums
up all the call durations for the given subscriber
number from all the mapper output. This will result
with key/value pair as Subscriber Number and total call
duration.

Step 4: The reducer has sum up functionality and
does the toggling of key and value pair.

It results with key/value pair as and total call duration
Subscriber Number.
Step 5: We use the following command to find out the
Top 10 callers,
$ hadoop fs cat output/part* | sort –rg | head –n 10

Application 2:
Step1: At first we put the test Call Data Record (CDR)
CDR data set to HDFS cluster.
Step2: Secondly, the algorithm for ‘Map’ function
perform line reading and then parse the Subscriber
Number, Call Duration, Destination number and Start
time using substring (int beginIndex, int endIndex)
function for given length for different fields. Finally, the
algorithm pass key/value pairs as <Text , Text > where
the Value contains JSON format text data that can be
highly usable by Web-Service to feed any application.

For our project we have implemented a Hadoop cluster
with 1 master node and 3 salve node in UB Big Data
Lab. We have used Cloudera hadoop version 2.0.

We have checked carefully the behavior or our master
and slave nodes while processing of medium large
scale amount of CDR data, approximately 702 MB reak
time test data. We have followed the following steps
during our test,
1. We have run Master node and Slave nodes

daemons accordingly.
2. We have started monitoring our server using port

50070 ad 50030.
3. We have uploaded our data from Client System (in

our case which is master node itself)
4. We checked the data occupancy in data nodes from

the monitoring system.
5. We have run hadoop jar command to run our

executable application written in Java that was
build in our development system.

6. We followed up the system behavior in the cluster
for all data nodes with the master node.

7. We have successfully run our applications in our
own cluster in Big Data Lab.

Though the cluster size is small but this highly scalable.
We can plug-in more data node anytime according to
our need of data processing. In our case, the cluster
Map job capacity is 8 and also Reduce jobs capacity is
8. In future, we intend to upgrade our cluster as well as
increasing the CDR data volume to find more insight of
the analytics.

For implementation, we will use 4 node Hadoop
clusters to test around 700 MB of data to measure the
performance throughput for Call Data Record (CDR)
data analytics applications. For which Application 1
takes 120000 ~ 130000 ms and for Application 2 , it
takes 140000 ~ 150000 ms whare as in pseudo-cluster
it takes more than 180000 ms.
This application should help understanding to realize
deeper insights of customer behavior patterns to find
out revenue per user as well as offering promotion to
leverage customer experience. The applications are
peoduction solution for global telecom section since
the Call Data Record (CDR) data set is the standard
network data from Mediation System of State of Art
Telecom Infrastructure.
References:
1. MapReduce: Simplified Data Processing on Large
Clusters by Jeffrey Dean and Sanjay Ghemawat
jeff@google.com, sanjay@google.com Google, Inc.
2. A Comparison of Approaches to Large-Scale Data
Analysis Andrew Pavlo Erik Paulson Alexander Rasin

CDR App Hadoop Cluster Architecture

The Problem statement

Conclusion

Data Throughput Performance: an Overview

Methodology

Solution Algorithm

CDR Data Format

Multimedia Information group

