

Edinburgh Research Explorer

Comparing the expressiveness of the -calculus and CCS
Citation for published version:
van Glabbeek, R 2022, Comparing the expressiveness of the -calculus and CCS. in I Sergey (ed.),
Programming Languages and Systems: 31st European Symposium on Programming, ESOP 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2–7, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13240, Springer
International Publishing Switzerland, Cham, pp. 548-574, 31st European Symposium on Programming,
Munich, Bavaria, Germany, 2/04/22. https://doi.org/10.1007/978-3-030-99336-8_20

Digital Object Identifier (DOI):
10.1007/978-3-030-99336-8_20

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Programming Languages and Systems: 31st European Symposium on Programming, ESOP 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2–7, 2022, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.1007/978-3-030-99336-8_20
https://doi.org/10.1007/978-3-030-99336-8_20
https://www.research.ed.ac.uk/en/publications/5bd4be19-f81f-4769-9f13-7ffb5736d2b3

Comparing the expressiveness of the π-calculus
and CCS

Rob van Glabbeek1,2�

1 Data61, CSIRO, Sydney, Australia
2 School of Comp. Sc. and Engineering, Univ. of New South Wales, Sydney, Australia

rvg@cs.stanford.edu

Abstract. This paper shows that the π-calculus with implicit matching
is no more expressive than CCSγ , a variant of CCS in which the result of
a synchronisation of two actions is itself an action subject to relabelling
or restriction, rather than the silent action τ . This is done by exhibiting
a compositional translation from the π-calculus with implicit matching
to CCSγ that is valid up to strong barbed bisimilarity.
The full π-calculus can be similarly expressed in CCSγ enriched with the
triggering operation of Meije.
I also show that these results cannot be recreated with CCS in the rôle
of CCSγ , not even up to reduction equivalence, and not even for the
asynchronous π-calculus without restriction or replication.
Finally I observe that CCS cannot be encoded in the π-calculus.

1 Introduction

The π-calculus [23,24,22,33] has been advertised as an “extension to the process
algebra CCS” [23] adding mobility. It is widely believed that the π-calculus has
features that cannot be expressed in CCS, or other immobile process calculi—so
called in [27]—such as ACP and CSP.

“the π-calculus has a much greater expressiveness than CCS”
[Sangiorgi [32]]

“Mobility – of whatever kind – is important in modern computing.
It was not present in CCS or CSP, [...] but [...] the π-calculus [...]
takes mobility of linkage as a primitive notion.” [Milner [22]]

The present paper investigates this belief by formally comparing the expressive
power of the π-calculus and immobile process calculi.

Following [10,11] I define one process calculus to be at least as expressive as
another up to a semantic equivalence ∼ iff there exists a so-called valid trans-
lation up to ∼ from the other to the one. Validity entails compositionality, and
requires that each translated expression is ∼-equivalent to its original. This con-
cept is parametrised by the choice of a semantic equivalence that is meaningful
for both the source and the target language. Any language is as expressive as
any other up to the universal relation, whereas almost no two languages are
equally expressive up to the identity relation. The equivalence ∼ up to which a

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 548–574, 2022.
https://doi.org/10.1007/978-3-030-99336-8_20

http://orcid.org/0000-0003-4712-7423
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_20

translation is valid is a measure for the quality of the translation, and thereby
for the degree in which the source language can be expressed in the target.

Robert de Simone [34] showed that a wide class of process calculi, including
CCS [20], CSP [6], ACP [4] and SCCS [18], are expressible up to strong bisimi-
larity in Meije [1]. In [8] I sharpened this result by eliminating the crucial rôle
played by unguarded recursion in De Simone’s translation, now taking aprACPR
as the target language. Here aprACPR is a fragment of the language ACP of [4],
enriched with relational relabelling, and using action prefixing instead of general
sequential composition. It differs from CCS only in its more versatile communica-
tion format, allowing multiway synchronisation instead of merely handshaking,
in the absence of a special action τ , and in the relational nature of the relabelling
operator. The class of languages that can be translated to Meije and aprACPR
are the ones whose structural operational semantics fits a format due to [34],
now known as the De Simone format. They can be considered the “immobile
process calculi” alluded to above. The π-calculus does not fit into this class—its
operational semantics is not in De Simone format.

To compare the expressiveness of mobile and immobile process calculi I first
of all need to select a suitable semantic equivalence that is meaningful for both
kinds of languages. A canonical choice is strong barbed bisimilarity [26,33]. Strong
barbed bisimilarity is not a congruence for either CCS or the π-calculus, but it is
used as a semantic basis for defining suitable congruences on languages [26,33].
For CCS, the familiar notion of strong bisimilarity [19] arises as the congruence
closure of strong barbed bisimilarity. For the π-calculus, the congruence closure
of strong barbed bisimilarity yields the notion of strong early congruence, called
strong full bisimilarity in [33]. In general, whatever its characterisation in a par-
ticular calculus, strong barbed congruence is the name of the congruence closure
of strong barbed bisimilarity, and a default choice for a semantic equivalence
[33].

My first research goal was to find out if there exists a translation from the
π-calculus to CCS that is valid up to strong barbed bisimilarity. The answer
is negative. In fact, no compositional translation of the π-calculus to CCS is
possible, even when weakening the equivalence up to which it should be valid
from strong barbed bisimilarity to strong reduction equivalence, and even when
restricting the source language to the asynchronous π-calculus [5] without re-
striction and replication. This disproves a result of [3].

My next research goal was to find out if there is a translation from the π-
calculus to any other immobile process calculus, and if yes, to keep the target
language as close as possible to CCS. Here the answer turned out to be positive.
How close the target language can be kept to CCS depends on which version
of the π-calculus I take as source language. My first choice was the original π-
calculus, as presented in [23,24], as it is at least as expressive as its competitors. It
turns out, however, that the matching operator [x=y]P of [23,24] is the source of
a complication. The book [33] merely allows matching to occur as part of action
prefixing, as in [x=y]u(z).P or [x=y]ūv.P . I call this implicit matching. Matching
was introduced in [23,24] to facilitate complete equational axiomatisations of the
π-calculus, and [33] shows that for that purpose implicit matching is sufficient.

Comparing the expressiveness of the π-calculus and CCS 549

To obtain a valid translation from the π-calculus with implicit matching
(henceforth called πIM) to an upgraded variant of CCS, the only upgrade needed
is to turn the result of a synchronisation of two actions into a visible action,
subject to relabelling or restriction, rather than the silent action τ . I call this
variant CCSγ , where γ is a commutative partial binary communication function,
just like in ACP [4]. CCSγ is a fragment of aprACPR, which also carries a
parameter γ. If γ(a, b) = c, this means that an a-action of one component in
a parallel composition may synchronise with a b-action of another component,
into a c-action; if γ(a, b) is undefined, the actions a and b do not synchronise.
CCS can be seen as the instance of CCSγ with γ(ā, a) = τ , and γ undefined
for other pairs of actions. But as target language for my translation I will need
another choice of the parameter γ.

An important feature of ACP, which greatly contributes to its expressiveness,
is multiway synchronisation. This is achieved by allowing an action γ(a, b) to
synchronise with an action c into γ(γ(a, b), c). This feature is not needed for
the target language of my translations. So I require that γ(γ(a, b), c) is always
undefined.

To obtain a valid translation from the full π-calculus, with an explicit match-
ing operator, I need to further upgrade CCSγ with the triggering operator of
Meije, which allows a relabelling of the first action of its argument only.

By a general result of [11], the validity up to strong barbed bisimilarity of
my translation from πIM to CCSγ (and from π to CCStrig

γ) implies that it is
even valid up to an equivalence on their disjoint union that on π coincides with
strong barbed congruence, or strong early congruence, and on CCStrig

γ is the
congruence closure of strong barbed bisimilarity under translated contexts. The
latter is strictly coarser than strong bisimilarity, which is the congruence closure
of strong barbed bisimilarity under all CCStrig

γ contexts.
Having established that πIM can be expressed in CCSγ , the possibility re-

mains that the two languages are equally expressive. This, however, is not the
case. There does not exists a valid translation (up to any reasonable equivalence)
from CCS—thus neither from CCSγ—to the π-calculus, even when disallowing
the infinite sum of CCS, as well as unguarded recursion. This is a trivial conse-
quence of the power of the CCS renaming operator, which cannot be mimicked
in the π-calculus. Using a simple renaming operator that is as finite as the suc-
cessor function on the natural numbers, CCS, even without infinite sum and
unguarded recursion, allows the specification of a process with infinitely many
weak barbs, whereas this is fundamentally impossible in the π-calculus.

2 CCS

CCS [19] is parametrised with a sets K of agent identifiers and A of visible
actions. The set A of co-actions is A := {ā | a ∈ A }, and L := A ∪ A is
the set of labels. The function ·̄ is extended to L by declaring ¯̄a = a. Finally,
Act := L] {τ} is the set of actions. Below, a, b, c, . . . range over L and α, β
over Act. A relabelling is a function f : L→L satisfying f(ā) = f(a); it extends

550 R.J. van Glabbeek

Table 1. Structural operational semantics of CCS

α.P α−→ P
Pj

α−→ P ′j∑
i∈I Pi

α−→ P ′j
(j ∈ I)

P α−→ P ′

P |Q α−→ P ′|Q
P a−→ P ′, Q ā−→ Q′

P |Q τ−→ P ′|Q′
Q α−→ Q′

P |Q α−→ P |Q′

P α−→ P ′

P\L α−→ P ′\L
(α 6∈ L ∪ L̄)

P α−→ P ′

P [f] f(α)−−−→ P ′[f]

P α−→ P

A α−→ P
(A

def
= P)

to Act by f(τ) := τ . The class TCCS of CCS terms, expressions, processes or
agents is the smallest class1 including:

α.P for α ∈Act and P ∈ TCCS prefixing∑
i∈IPi for I an index set and Pi ∈ TCCS choice

P |Q for P,Q ∈ TCCS parallel composition
P\L for L ⊆ L and P ∈ TCCS restriction
P [f] for f a relabelling and P ∈ TCCS relabelling
A for A ∈ K recursion.

One writes P1 +P2 for
∑
i∈I Pi when I ={1, 2}, and 0 when I = ∅. Each agent

identifier A ∈ K comes with a unique defining equation of the form A
def
= P , with

P ∈ TCCS. The semantics of CCS is given by the labelled transition relation
→ ⊆ TCCS×Act×TCCS. The transitions P α−→ Q with P,Q∈TCCS and α∈Act
are derived from the rules of Table 1.

Arguably, the most authentic version of CCS [20] features a recursion con-
struct instead of agent identifiers. Since there exists a straightforward valid tran-
sition from the version of CCS presented here to the one from [20], the latter
is at least as expressive. Therefore, when showing that a variant of CCS is at
least as expressive as the π-calculus, I obtain a stronger result by using agent
identifiers.

3 CCSγ

CCSγ has four parameters: the same set K of agent identifiers as for CCS, an
alphabet A of visible actions, with a subset S ⊆ A of synchronisations2, and a

1 CCS [19,20] allows arbitrary index sets I in summations
∑
i∈IPi. As a consequence,

TCCS is a proper class rather than a set. Although this is unproblematic, many
computer scientists prefer the class of terms to be a set. This can be achieved by
choosing a cardinal κ and requiring the index sets I to satisfy |I| < κ. To enable
my translation from the π-calculus to CCStrig

γ , κ should exceed the size of the set of
names used in the π-calculus.

2 These have been added solely to prevent multiway synchronisation.

Comparing the expressiveness of the π-calculus and CCS 551

partial communication function γ : (A \S)2 ⇀S ∪ {τ}, which is commutative,
i.e. γ(a, b) = γ(b, a) and each side of this equation is defined just when the other
side is. Compared to CCS there are no co-actions, so Act := A] {τ}.

The syntax of CCSγ is the same as that of CCS, except that parallel compo-
sition is denoted ‖ rather than |, following ACP [4,2]. This indicates a semantic
difference: the rule for communication in the middle of Table 1 is for CCSγ
replaced by

P a−→ P ′, Q b−→ Q′

P‖Q c−→ P ′‖Q′
(γ(a, b) = c).

Moreover, relabelling operators f : A → Act are allowed to rename visible
actions into τ , but not vice versa.3 They are required to satisfy c ∈ S ⇒ f(c) ∈
S ∪ {τ}. These are the only differences between CCS and CCSγ .

4 Strong barbed bisimilarity

The semantics of the π-calculus and CCS can be expressed by associating a
labelled or a barbed transition system with these languages, with processes as
states. Semantic equivalences are defined on the states of labelled or barbed
transition systems, and thereby on π- and CCS processes.

Definition 1. A labelled transition system (LTS) is pair (S,→) with S a class
(of states) and → ⊆ S × A × S a transition relation, for some suitable set of
actions A.

I write P α−→ Q for (P, α,Q) ∈ →, P α−→ for ∃Q. P α−→ Q, and P 6α−→ for its
negation. The structural operational semantics of CCS presented before creates
an LTS with as states all CCS processes and the transition relation derived from
the operational rules, with A := Act.

Definition 2. A strong bisimulation is a symmetric relation R on the states of
an LTS such that

– if P R Q and P α−→ P ′ then ∃Q′. Q α−→ Q′ ∧ P ′ R Q′.

Processes P and Q are strongly bisimilar—notation P ↔Q—if P R Q for some
strong bisimulation R.

As is well-known,↔ is an equivalence relation, and a strong bisimulation itself.
Through the operational semantics of CCSγ , strong bisimilarity is defined on
CCSγ processes.

Definition 3. A barbed transition system (BTS) is a triple (S, 7→, ↓) with S a
class (of states), 7→ ⊆ S×S a reduction relation, and ↓ ⊆ S×B an observability
predicate for some suitable set of barbs B.

3 Renaming into τ could already be done in CCS by means of parallel composition.
Hence this feature in itself does not add extra expressiveness.

552 R.J. van Glabbeek

Table 2. The actions

α Kind O(α) fn(α) bn(α)
Mτ Silent − ∅ ∅
Mx̄y Free output x̄ n(M) ∪ {x, y} ∅
Mx̄(y) Bound output x̄ n(M) ∪ {x} {y}
Mxy Free input x n(M) ∪ {x, y} ∅
Mx(y) Bound input x n(M) ∪ {x} {y}

One writes P↓b for P ∈ S and b ∈ B when (P, b) ∈ ↓. A BTS can be extracted
from an LTS with τ ∈A, by means of a partial observation function O : A ⇀ B.
The states remain the same, the reductions are taken to be the transitions la-
belled τ (dropping the label in the BTS), and P↓b holds exactly when there is a
transition P α−→ Q with O(α) = b.

In this paper I consider labelled transition systems whose actions α∈A are of
the forms presented in Table 2. Here x and y are names, drawn from the disjoint
union of two sets Z and R of public and private names, and M is a (possibly
empty) matching sequence, a sequence of matches [x=y] with x, y ∈ Z]R and
x 6= y. The set of names occurring in M is denoted n(M). In Table 2, also the
free names fn(α) and bound names bn(α) of an action α are defined. The set
of names of α is n(α) := fn(α) ∪ bn(α). Consequently, also the actions Act of
my instantiation of CCSγ need to have the forms of Table 2. For the translation
into barbed transition systems I take B := Z ∪ Z, where Z := {ā | a ∈ Z}, and
O(α) as indicated in Table 2, provided M = ε and O(α) ∈B.

Definition 4. A strong barbed bisimulation is a symmetric relation R on the
states of a BTS such that

– if P R Q and P 7−→ P ′ then ∃Q′. Q 7−→ Q′ ∧ P ′ R Q′

– and if P R Q and P↓b then also Q↓b.

Processes P and Q are strongly barbed bisimilar—notation P •∼ Q—if P R Q
for some strong barbed bisimulation R.

Again, •∼ is an equivalence relation, and a strong barbed bisimulation itself.
Through the above definition, strong barbed bisimilarity is defined on all LTSs
occurring in this paper, as well as on my instantiation of CCSγ . It can also be
used to compare processes from different LTSs, namely by taking their disjoint
union.

5 The π-calculus

The π-calculus [23,24] is parametrised with an infinite set N of names and, for
each n ∈ IN, a set of Kn of agent identifiers of arity n. The set Tπ of π-calculus
terms, expressions, processes or agents is the smallest set including:

Comparing the expressiveness of the π-calculus and CCS 553

0 inaction
τ.P for P ∈ Tπ silent prefix
x̄y.P for x, y ∈N and P ∈ Tπ output prefix
x(y).P for x, y ∈N and P ∈ Tπ input prefix
(νy)P for y ∈N and P ∈ Tπ restriction
[x=y]P for x, y ∈N and P ∈ Tπ match
P |Q for P,Q ∈ Tπ parallel composition
P +Q for P,Q ∈ Tπ choice
A(y1, ..., yn) for A ∈ Kn and yi ∈N defined agent

The order of precedence among the operators is the order of the listing above.
A process α.0 with α = τ or x̄y or x(y) is often written α.

n(P) denotes the set of all names occurring in a process P . An occurrence
of a name y in a term is bound if it occurs in a subterm of the form x(y).P or
(νy)P ; otherwise it is free. The set of names occurring free (resp. bound) in a
process P is denoted fn(P) (resp. bn(P)).

Each agent identifier A ∈ Kn is assumed to come with a unique defining
equation of the form

A(x1, . . . , xn)
def
= P

where the names xi are all distinct and fn(P) ⊆ {x1, . . . , xn}.
The π-calculus with implicit matching (πIM) drops the matching operator,

instead allowing prefixes of the form Mx̄y.P , Mx(y).P and Mτ.P , with M a
matching sequence.

A substitution is a partial function σ:N⇀N such thatN\(dom(σ)∪range(σ))
is infinite. For ~x= (x1, . . . , xn), ~y = (y1, . . . , yn) ∈ Nn, {~y/~x} denotes the substi-
tution given by σ(xi) = yi for 1≤ i≤ n. One writes {y/x} when n=1.

For x ∈ N , x[σ] denotes σ(x) if x ∈ dom(σ) and x otherwise; M [σ] is the
result of changing each occurrence of a name x in M into x[σ], while dropping
resulting matches [y=y].

For a substitution σ, the process Pσ is obtained from P ∈Tπ by simultaneous
substitution, for all x ∈ dom(σ), of x[σ] for all free occurrences of x in P , with
change of bound names to avoid name capture. A formal inductive definition is:

0σ = 0
(Mτ.P)σ = M [σ]τ.(Pσ)

(Mx̄y.P)σ = M [σ]x[σ]y[σ].(Pσ)
(Mx(y).P)σ = M [σ]x[σ](z).(P{z/y}σ)

((νy)P)σ = (νz)(P{z/y}σ)
([x=y]P)σ = [x[σ]=y[σ]](Pσ)

(P |Q)σ = (Pσ)|(Qσ)
(P +Q)σ = (Pσ) + (Qσ)

A(~y)σ = A(~y[σ])

where z is chosen outside fn((νy)P) ∪ dom(σ) ∪ range(σ); in case y /∈ dom(σ) ∪
range(σ) one always picks z := y.

A congruence is an equivalence relation ∼ on Tπ such that P ∼ Q implies
τ.P ∼ τ.Q, x̄y.P ∼ x̄y.Q, x(y).P ∼ x(y).Q, (νy)P ∼ (νy)Q, [x=y]P ∼ [x=y]Q,

554 R.J. van Glabbeek

P |U ∼ Q|U , U |P ∼ U |Q, P + U ∼ Q + U and U + P ∼ U + Q. Let ≡ be the
smallest congruence on Tπ allowing renaming of bound names, i.e., that satisfies
x(y).P ≡ x(z).(P{z/y}) and (νy)P ≡ (νz)(P{z/y}) for any z /∈ fn((νy)P). If
P ≡ Q, then Q is obtained from P by means of α-conversion. Due to the choice
of z above, substitution is precisely defined only up to α-conversion.

Note that P ≡ Q implies that fn(P) = fn(Q), and also that Pσ ≡ Qσ for
any substitution σ.

6 The semantics of the π-calculus

π

late
LTS

late
symbolic

LTS

early
LTS

early
symbolic

LTS

α

BTS

reduction
semantics

α

Fig. 1. Semantics of the π-calculus

Whereas CCS has only one operational semantics, the π-calculus is equipped
with at least five, as indicated in Figure 1. The late operational semantics stems
from [24], the origin of the π-calculus. It is given by the action rules of Table 3.
These rules generate a labelled transition system in which the states are the
π-calculus processes and the transitions are labelled with the actions τ , x̄y, x̄(y)
and x(y) of Table 2 (always with M the empty string). Here I take Z := N and
R := ∅. For πIM, rule match is omitted. A process [x=y]α.P has no outgoing
transitions, similar to 0.

In [24] the late and early bisimulation semantics of the π-calculus were pro-
posed.

Definition 5. A late bisimulation is a symmetric relation R on π-processes
such that, whenever P R Q, α is either τ or x̄y and z 6∈ n(P) ∪ n(Q),

1. if P α−→ P ′ then ∃Q′ with Q α−→ Q′ and P ′ R Q′,
2. if P x(z)−−→ P ′ then ∃Q′∀y. Q x(z)−−→Q′ ∧ P ′{y/z} R Q′{y/z},
3. if P x̄(z)−−→ P ′ then ∃Q′ with Q x̄(z)−−→ Q′ and P ′ R Q′.

Processes P and Q are late bisimilar—notation P
.∼L Q—if P R Q for some late

bisimulation R. They are late congruent—notation P∼LQ—if P{~y/~x} .∼LQ{~y/~x}
for any substitution {~y/~x}.

Comparing the expressiveness of the π-calculus and CCS 555

Table 3. Late structural operational semantics of the π-calculus

tau:

τ.P τ−→ P

output:

x̄y.P x̄y−→ P

input:

x(y).P x(z)−−→ P{z/y} (z 6∈ fn((νy)P))

sum:

P α−→ P ′

P +Q α−→ P ′

match:

P α−→ P ′

[x=x]P α−→ P ′

ide:

P{~y/~x} α−→ P ′

A(~y) α−→ P ′
(A(~x)

def
= P)

par:

P α−→ P ′

P |Q α−→ P ′|Q

(
bn(α) ∩
fn(Q) = ∅

) com:

P x̄y−→ P ′, Q x(z)−−→ Q′

P |Q τ−→ P ′|Q′{y/z}

close:

P x̄(z)−−→ P ′, Q x(z)−−→ Q′

P |Q τ−→ (νz)(P ′|Q′)

res:

P α−→ P ′

(νy)P α−→ (νy)P ′
(y 6∈ n(α))

alpha-open:

P x̄y−→ P ′

(νy)P x̄(z)−−→ P ′{z/y}

(
y 6= x
z 6∈ fn((νy)P ′)

)
The rules sum, par, com and close additionally have symmetric forms,

with the rôles of P and Q exchanged.

Early bisimilarity (
.∼E) and congruence (∼E) are defined likewise, but with

∀y∃Q′ instead of ∃Q′∀y. In [24,33] it is shown that
.∼L and

.∼E are congruences
for all operators of the π-calculus, except for the input prefix. ∼E and ∼L are
congruence relations for the entire language; in fact they are the congruence
closures of

.∼L and
.∼E , respectively. By definition,

.∼L ⊆
.∼E , and thus∼L ⊆ ∼E .

Lemma 1 ([24]). Let P ≡ Q and bn(α) ∩ n(Q) = ∅.
If P α−→ P ′ then Q α−→ Q′ for some Q′ with P ′ ≡ Q′.

This implies that ≡ is a late bisimulation, so that ≡ ⊂ ∼L.
In [25] the early operational semantics of the π-calculus is proposed, presented

in Table 4; it uses free input actions xy instead of bound inputs x(y). This is also
the semantics of [33]. The semantics in [25,33] requires us to identify processes
modulo α-conversion before applying the operational rules. This is equivalent to
adding rule alpha of Table 4.

A variant of the late operational semantics incorporating rule alpha is also
possible. In this setting rule alpha-open can be simplified to open, and likewise
input to x(y).P x(y)−−→ P . By Lemma 1, the late operational semantics with alpha

gives rise to the same notions of early and late bisimilarity as the late opera-
tional semantics without alpha; the addition of this rule is entirely optional.
Interestingly, the rule alpha is not optional in the early operational semantics,
not even when reinstating alpha-open.

Example 1. Let P := x̄y|(νy)(x(z)). One has (νy)(x(z)) x(z)−−→L (νy)0 and thus

P τ−→L 0|(νy)0 by com. However, (νy)(x(z)) xy−→E (νy)0 is forbidden by the side
condition of res, so in the early semantics without alpha P cannot make a τ -step.
Rule alpha comes to the rescue here, as it allows P≡x̄y|(νw)(x(z)) τ−→E0|(νw)0.

556 R.J. van Glabbeek

Table 4. Early structural operational semantics of the π-calculus

tau:

τ.P τ−→ P

output:

x̄y.P x̄y−→ P

early-input:

x(y).P xz−→ P{z/y}

sum:

P α−→ P ′

P +Q α−→ P ′

match:

P α−→ P ′

[x=x]P α−→ P ′

ide:

P{~y/~x} α−→ P ′

A(~y) α−→ P ′
(A(~x)

def
= P)

par:

P α−→ P ′

P |Q α−→ P ′|Q

(
bn(α) ∩
fn(Q) = ∅

) early-com:

P x̄y−→ P ′, Q xy−→ Q′

P |Q τ−→ P ′|Q′

early-close:

P x̄(z)−−→ P ′, Q xz−→ Q′

P |Q τ−→ (νz)(P ′|Q′)

(
z /∈
fn(Q)

)
res:

P α−→ P ′

(νy)P α−→ (νy)P ′
(y 6∈ n(α))

open:

P x̄y−→ P ′

(νy)P x̄(y)−−→ P ′

(
y 6= x

) alpha:

P ≡ Q, Q α−→ Q′

P α−→ Q′

By the following lemma, the early transition relation −→E is completely deter-
mined by the late transition relation −→αL with alpha:

Lemma 2 ([25]). Let P ∈ Tπ and β be τ , x̄y or x̄(y).

–P β−→E Q iff P β−→αL Q.
–P xy−→E Q iff P x(z)−−→αL R for some R, z with Q≡R{y/z}.

The early transition relations allow a more concise definition of early bisimilarity:

Proposition 1 ([25]). An early bisimulation is a symmetric relation R on Tπ
such that, whenever P R Q and α is an action with bn(α)∩ (n(P)∪ n(Q)) = ∅,
– if P α−→E P ′ then ∃Q′ with Q α−→E Q′ and P ′ R Q′.

Processes P and Q are early bisimilar iff P R Q for some early bisimulation R.

Through the general method of Section 4, taking Z := N and R := ∅,
a barbed transition system can be extracted from the late or early labelled
transition system of the π-calculus; by Lemmas 1 and 2 the same BTS is obtained
either way. This defines strong barbed bisimilarity •∼ on Tπ. The congruence
closure of •∼ is early congruence [33]. In [21] a reduction semantics of the π-
calculus is given, that yields a BTS right away. Up to strong barbed bisimilarity,
this BTS is the same as the one extracted from the late or early LTS.

In [32] yet another operational semantics of the π-calculus was introduced, in
a style called symbolic by Hennessy & Lin [16], who had proposed it for a version
of value-passing CCS. It is presented in Table 5. The transitions are labelled with
actions α of the form Mβ, where M is a matching sequence and β an action as in
the late operational semantics. When x 6=y the matching sequence M prepended
with [x=y] is denoted [x=y]M ; however, [x=x]M simply denotes M .

In the operational semantics of CCS, τ -actions can be thought of as reactions
that actually take place, whereas a transition labelled a merely represents the

Comparing the expressiveness of the π-calculus and CCS 557

Table 5. Late symbolic structural operational semantics of the π-calculus

tau:

Mτ.P Mτ−−→ P

output:

Mx̄y.P Mx̄y−−−→ P

input:

Mx(y).P Mx(z)−−−−→ P{z/y} (z 6∈ fn((νy)P))

sum:

P α−→ P ′

P +Q α−→ P ′

symb-match:

P α−→ P ′

[x=y]P [x=y]α−−−−→ P ′

ide:

P{~y/~x} α−→ P ′

A(~y) α−→ P ′
(A(~x)

def
= P)

par:

P α−→ P ′

P |Q α−→ P ′|Q

(
bn(α) ∩
fn(Q) = ∅

) symb-com:

P Mx̄y−−−→ P ′, Q Nv(z)−−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′{y/z}

symb-close:

P Mx̄(z)−−−−→ P ′, Q Nv(z)−−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)

res:

P α−→ P ′

(νy)P α−→ (νy)P ′

(
y /∈
n(α)

) symb-alpha-open:

P Mx̄y−−−→ P ′

(νy)P Mx̄(z)−−−−→ P ′{z/y}

y 6= x
z 6∈ fn((νy)P ′)
y /∈ n(M)

For the π-calculus, the blue Ms are omitted; for πIM the purple rules.

potential of a reaction with the environment, one that can take place only if
the environment offers a complementary transition ā. In case the environment
never does an ā, this potential will not be realised. A reduction semantics (as
in [22]) yields a BTS that only represents directly the realised actions—the τ -
transitions or reductions—and reasons about the potential reactions by defining
the semantics of a system in terms of reductions that can happen when placing
the system in various contexts. An LTS, on the other hand, directly represents
transitions that could happen under some conditions only, annotated with the
conditions that enable them. For CCS, this annotation is the label a, saying that
the transition is conditional on an ā-signal from the environment. As a result
of this, semantic equivalences defined on labelled transitions systems tend to be
congruences for most operators right away, and do not need much closure under
contexts.

Seen from this perspective, the operational semantics of the π-calculus of
Table 3 or 4 is a compromise between a pure reduction semantics and a pure
labelled transition system semantics. Input and output actions are explicitly
included to signal potential reactions that are realised in the presence of a suit-
able communication partner, but actions whose occurrence is conditional on two
different names x and y denoting the same channel are entirely omitted, even
though any π-process can be placed in a context in which x and y will be identi-
fied. As a consequence of this, the early and late bisimilarities need to be closed
under all possible substitutions or identifications of names before they turn into
early and late congruences. The operational semantics of Table 5 adds the con-
ditional transitions that where missing in Table 3, and hence can be seen as a
true labelled transition system semantics.

In this paper I need the early symbolic operational semantics of the π-
calculus, presented in Table 6. Although new, it is the logical combination of
the early and the (late) symbolic semantics. Its transitions that are labelled

558 R.J. van Glabbeek

Table 6. Early symbolic structural operational semantics of the π-calculus

tau:

Mτ.P Mτ−−→ P

output:

Mx̄y.P Mx̄y−−−→ P

early-input:

Mx(y).P Mxz−−−→ P{z/y}

sum:

P α−→ P ′

P +Q α−→ P ′

symb-match:

P α−→ P ′

[x=y]P [x=y]α−−−−→ P ′

ide:

P{~y/~x} α−→ P ′

A(~y) α−→ P ′
(A(~x)

def
= P)

par:

P α−→ P ′

P |Q α−→ P ′|Q

bn(α)
∩ fn(Q)

= ∅

 e-s-com:

P Mx̄y−−−→ P ′, Q Nvy−−→Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′

e-s-close:

P Mx̄(z)−−−−→ P ′, Q Nvz−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)

(
z /∈
fn(Q)

)
res:

P α−→ P ′

(νy)P α−→ (νy)P ′

(
y /∈
n(α)

) symb-open:

P Mx̄y−−−→ P ′

(νy)P Mx̄(y)−−−−→ P ′

(
y 6= x
y /∈ n(M)

) alpha:

P ≡ Q, Q α−→ Q′

P α−→ Q′

with actions having an empty matching sequence are exactly the transitions of
the early semantics, so the BTS extracted from this semantics is the same.

For πIM, rule symb-match is omitted, but tau, output and input carry the
matching sequence M (indicated in blue).

7 Valid translations

A signature Σ is a set of operator symbols g, each of which is equipped with an
arity n ∈ IN. The set TΣ of closed terms over Σ is the smallest set such that,
for all g ∈ Σ,

P1, . . . , Pn ∈ TΣ ⇒ g(P1, . . . , Pn) ∈ TΣ .

Call a language simple if its expressions are the closed terms TΣ over some
signature Σ. The π-calculus is simple in this sense; its signature consists of the
binary operators + and |, the unary operators τ , x̄y., x(y)., (νy) and [x=y]
for x, y ∈ N , and the nullary operators (or constants) 0 and A(y1, . . . , yn) for
A ∈ Kn and yi ∈ N . CCS is not quite simple, since it features the infinite choice
operator.

Let L be a language. An n-ary L-context C is an L-expression that may con-
tain special variables X1, ..., Xn—its holes. For C an n-ary context, C[P1, . . . , Pn]
is the result of substituting Pi for Xi, for each i = 1, . . . , n.

Definition 6. Let L′ and L languages, generating sets of closed terms TL′ and
TL. Let L′ be simple, with signature Σ. A translation from L′ to L (or an
encoding from L′ into L) is a function T : TL′ → TL. It is compositional if
for each n-ary operator g ∈ Σ there exists an n-ary L-context Cg such that
T (g(P1, . . . , Pn)) = Cg[T (P1), . . . ,T (Pn)].

Let ∼ be an equivalence relation on TL′ ∪ TL. A translation T from L′ to
L is valid up to ∼ if it is compositional and T (P) ∼ P for each P ∈ TL′ .

Comparing the expressiveness of the π-calculus and CCS 559

The above definition stems in essence from [10,11], but could be simplified here
since [10,11] also covered the case that L′ is not simple. Moreover, here I restrict
attention to what are called closed term languages in [11].

8 The unencodability of π into CCS

In this section I show that there exists no translation of the π-calculus to CCS
that is valid up to •∼. I even show this for the fragment π¶A of the (asynchronous)
π-calculus without choice, recursion, matching and restriction (thus only featur-
ing inaction, action prefixing and parallel composition).

Definition 7. Strong reduction bisimilarity,↔r, is defined just as strong barbed
equivalence in Definition 4, but without the requirement on barbs.

I show that there is no translation of π¶A to CCS that is valid up to ↔r. As↔r
is coarser than •∼, this implies my claim above. It may be useful to read this
section in parallel with the first half of Section 14.

Definition 8. Let � be the smallest preorder on CCS contexts such that∑
i∈I Ei � Ej for all j ∈ I, E|F � E, E|F � F , E\L � E, E[f] � E

and A � P for all A ∈ K with A
def
= P . A variable X occurs unguarded in a

context E if E � X.

If the hole X1 occurs unguarded in the unary context E[] and U τ−→ (resp.
U τ−→ τ−→) then E[U] τ−→ (resp. E[U] τ−→ τ−→).

Lemma 3. Let E[] be a unary and C[,] a binary CCS context, and P,Q,

P ′, Q′, U ∈ TCCS. If E[C[P,Q]] τ−→ and U τ−→ but neither E[C[P ′, Q]] τ−→ nor

E[C[P,Q′]] τ−→ nor E[U] τ−→ τ−→, then C[P,Q] τ−→.

•
•
•
•
•

•
•
•
•
•
•
•
•

CCS proof trees

Proof. Since the only rule in the operational semantics of
CCS with multiple premises has a conclusion labelled τ , it
can occur at most once in the derivation of a CCS transition.
Thus, such a derivation is a tree with at most two branches,
as illustrated at the right. Now consider the derivation of
E[C[P,Q]] τ−→. If none of its branches prods into the sub-
process P , the transition would be independent on what is substituted here,
thus yielding E[C[P ′, Q]] τ−→. Thus, by symmetry, both P and Q are visited
by branches of this proof. It suffices to show that these branches come together
within the context C, as this implies C[P,Q] τ−→. So suppose, towards a contra-
diction, that the two branches come together in E. Then E must have the form
E1[E2[]|E3[]], where the hole X1 occurs unguarded in E2, E3 as well as E1.
But in that case E[U] τ−→ τ−→, contradicting the assumptions. ut

Lemma 4. If D[, ,] is a ternary CCS context, P1, P2, P3 ∈ TCCS, and
D[P1, P2, P3] τ−→, then there exists an i ∈ {1, 2, 3} and a CCS context E[] such

that D′[P] τ−→ E[P] for any P ∈ TCCS. Here D′ is the unary context obtained
from D[, ,] by substituting Pj for the hole Xj , for all j ∈ {1, 2, 3}, j 6= i.

560 R.J. van Glabbeek

Proof. Since the derivation of D[P1, P2, P3] τ−→ has at most two branches, one
of the Pi is not involved in this proof at all. Thus, the derivation remains valid
if any other process P is substituted in the place of that Pi; the target of the
transition remains the same, except for P taking the place of Pi in it. ut

Theorem 1. There is no translation from π¶A to CCS that is valid up to↔r.

Proof. Suppose, towards a contradiction, that T is a translation from π¶A to
CCS that is valid up to ↔r. By definition, this means that T is compositional
and that T (P)↔r P for any π¶A-process P .

As T is compositional, there exists a ternary CCS context D[, ,] such
that, for any π¶A-processes R,S, T ,

T
(
x̄v
∣∣ x(y).(R|S|T)

)
= D[T (R),T (S),T (T)].

Since x̄v
∣∣x(y).(0|0|0) τ−→ as well as T

(
x̄v
∣∣x(y).(0|0|0)

)
↔r x̄v

∣∣x(y).(0|0|0),

it follows that T
(
x̄v
∣∣x(y).(0|0|0)

) τ−→, i.e., D[T (0),T (0),T (0)] τ−→. Hence
Lemma 4 can be applied. For simplicity I assume that i = 1; the other two
cases proceed in the same way. So there is a CCS context E[] such that

D[P,T (0),T (0)] τ−→E[P] for all CCS terms P . In particular, for all π¶A-termsR,

T
(
(x̄v
∣∣x(y).(R|0|0)

)
=D[T (R),T (0),T (0)] τ−→ E[T (R)]. (1)

I examine the translations of the π-calculus expressions x̄v
∣∣x(y).(R|0|0), for

R ∈ {ȳz|v(w), 0|v(w), ȳz|0, τ}.
Since x̄v

∣∣x(y).(ȳz|v(w)|0|0) τ−→ τ−→ and T respects↔r,

T
(
x̄v
∣∣x(y).(ȳz|v(w)|0|0)

) τ−→ τ−→ .

In the same way, neither T
(
x̄v
∣∣x(y).(0|v(w)|0|0)

) τ−→ τ−→
nor T

(
x̄v
∣∣x(y).(ȳz|0|0|0)

) τ−→ τ−→.
(2)

Furthermore, since T respects↔r and there is no S ∈ Tπ such that

x̄v|x(y).(ȳz|v(w)|0|0) τ−→ S 6τ−→,

there is no S ∈ TCCS with T
(
x̄v|x(y).(ȳz|v(w)|0|0)

) τ−→ S 6τ−→. (3)

By (1) and (3), E[T (ȳz|v(w))] τ−→.

By (1) and (2), E[T (0|v(w))] 6τ−→ and E[T (ȳz|0)] 6τ−→.
Since T is compositional, there is a binary CCS context C|[,] such that

T (P |Q) = C|[T (P),T (Q)] for any P,Q ∈ Tπ. It follows that

E[C|[T (ȳz),T (v(w))]] τ−→
E[C|[T (0),T (v(w))]] 6τ−→
E[C|[T (ȳz),T (0)]] 6τ−→ .

Moreover since τ τ−→, also U := T (τ) τ−→, but, since it is not the case that

x̄v
∣∣x(y).(τ |0|0) τ−→ τ−→ τ−→, neither holds T

(
x̄v
∣∣x(y).(τ |0|0)

) τ−→ τ−→ τ−→, and

neither E[U] τ−→ τ−→. So by Lemma 3, T (ȳz|v(w)) = C|[T (ȳz),T (v(w))] τ−→,

yet ȳz|v(w) 6τ−→. This contradicts the validity of T up to↔r. ut

Comparing the expressiveness of the π-calculus and CCS 561

9 A valid translation of πIM into CCSγ

Given a set N of names, I now define the parameters K, A and γ of the language
CCSγ that will be the target of my encoding. First of all, K will be the disjoint
union of all the sets Kn for n ∈ IN, of n-ary agent identifiers from the chosen
instance of the π-calculus.

Take p /∈ N . Let R0 := {ςp | ς ∈ {e, `, r}∗}. The set R of private names is
{uυ | u ∈ R0 ∧ υ ∈ {′}∗}. Let S = {s1, s2, . . .} be an infinite set of spare names,
disjoint from N and R. Let Z := N] S and H := Z]R.4

I take Act to be the set of all expressions α from Table 2, as defined in
Section 4 (in terms of Z and R), so A :=Act\{τ}. The communication function
γ is given by γ(Mx̄y,Nvy) = [x=v]MNτ , just as for rule e-s-com in Table 6.

For ~x = (x1, . . . , xn) ∈ N n and ~y = (y1, . . . , yn) ∈ Hn, with the xi distinct,
let {~y/~x}S : S ∪ {x1, . . . , xn} ⇀ H be the substitution σ with σ(xi) = yi and
σ(si) = xi for i = 1, ..., n, and σ(si) = si−n for i > n. These functions extend
homomorphically to A and thereby constitute CCSγ relabellings. Abbreviate
[{~y/~x}S] by [~y/~x] and [{z/y}S] by [z/y].

For η ∈ {`, r, e} and y ∈ Z, let the surjective substitutions η : R ⇀ R and
py :{y} ∪ R → {y} ∪ R be given by:

py(y) := p
η(ςp) := ηςp py(p′) := y
η(ςpυ′) := ςpυ if ς 6= ηζ py(u) := e(u) if u 6= y, p′.

These σ : H⇀ H are injective, i.e., x[σ] 6=y[σ] when x 6=y. Also they yield CCSγ
relabellings. The following compositional encoding, which will be illustrated with
examples in Section 12, defines my translation from πIM to CCSγ .

T (0) := 0
T (Mτ.P) := Mτ.T (P)
T (Mx̄y.P) := Mx̄y.T (P)
T (Mx(y).P) :=

∑
z∈HMxz.

(
T (P)[z/y]

)
T ((νy)P) := T (P)[py]
T (P | Q) := T (P)[`] ‖T (Q)[r]
T (P +Q) := T (P) + T (Q)
T (A(~y)) := A[~y/~x] when A(~x)

def
= P

where the CCSγ agent identifier A has the defining equation A = T (P) when
A(~x)

def
= P was the defining equation of the agent identifier A from the π-calculus.

To explain what this encoding does, inaction, silent prefix, output prefix and
choice are translated homomorphically. The input prefix is translated into an in-
finite sum over all possible input values z that could be received, of the received
message Mxz followed by the continuation process T (P)[z/y]. Here [z/y] is a
CCS relabelling operator that simulates substitution of z for y in T (P). This

4 The names in S and in R\R0 exist solely to make the substitutions {~y/~x}S , η and
py surjective. Here σ is surjective iff dom(σ) ⊆ range(σ).

562 R.J. van Glabbeek

implements the rule early-input from Table 6. Agent identifiers are also trans-
lated homomorphically, except that their arguments ~y are replaced by relabelling
operators.

Restriction is translated by simply dropping the restriction operator, but
renaming the restricted name y into a private name p that generates no barbs.
The operator [py] injectively renames all private names ςp that occur in the scope
of (νy) by tagging all of them with a tag e. This ensures that the new private
name p is fresh, so that no name clashes can occur that in πIM would have been
prevented by the restriction operator.

Parallel composition is almost translated homomorphically. However, each
private name on the right is tagged with an r, and on the left with an `. This
guarantees that private names introduced at different sides of a parallel compo-
sition cannot interact. Interaction is only possible when the name is passed on
in the appropriate way.

The main result of this paper states the validity of the above translation,
and thus that CCSγ is at least as expressive as πIM:

Theorem 2. For P ∈ Tπ one has T (P) •∼ P .

See http://theory.stanford.edu/~rvg/abstracts.html#153 for a proof.
Theorem 2 says that each π-calculus process is strongly barbed bisimilar to its

translation as a CCSγ process. The labelled transition systems of the π-calculus
and CCSγ are both of the type presented in Section 4, i.e. with transition labels
taken from Table 2. There also the associated barbs are defined. By Theorem 2
each π transition P τ−→ P ′ can be matched by a CCSγ transition T (P) τ−→ Q
with T (P ′) •∼ Q. Likewise, each CCSγ transition T (P) τ−→Q can be matched
by a π transition P τ−→ P ′ with T (P ′) •∼ Q. Moreover, if P has a barb x (or
x̄) then so does T (P), and vice versa. Here a π or CCSγ process P has a barb
a ∈ Z ∪ Z iff P ay−→ P ′ or P a(y)−−→ P ′ for some name y ∈ H and process P ′.

Transitions P Mx̄y−−−→ P ′, P Mx̄(y)−−−−→ P ′, P Mxy−−−→ P ′ or P Mx(y)−−−−→ P ′ with M 6= ε or
x ∈ R generate no barbs.

10 The ideas behind this encoding

The above encoding combines seven ideas, each of which appears to be necessary
to achieve the desired result. Accordingly, the translation could be described as
the composition of seven encodings, leading from πIM to CCSγ via six interme-
diate languages. Here a language comprises syntax as well as semantics. Each of
the intermediate languages has a labelled transition system semantics where the
labels are as described in Section 4. Accordingly, at each step it is well-defined
whether strong barbed bisimilarity is preserved, and one can show it is. These
proofs go by induction on the derivation of transitions, where the transitions
with visible labels are necessary steps even when one would only be interested in
the transitions with τ -labels. There are various orders in which the seven steps
can be taken. The seven steps are:

Comparing the expressiveness of the π-calculus and CCS 563

http://theory.stanford.edu/~rvg/abstracts.html#153

πIM(N)

πIM(Z,R) π†
IM(Z,R) CCSγ

Fig. 2. Translation from the π-calculus with implicit matching to CCSγ
Definitions of the intermediate languages πIM(Z,R) and π†

IM(Z,R) are not provided here.

1. Moving from the late operational semantics (Table 3) to the early one (Ta-
ble 4). This translation is syntactically the identity function, but still its
validity requires proof, as the generated LTS changes. The proof amounts to
showing that the same barbed transition system is obtained before and after
the translation—see Section 6.

2. Moving from a regular operational semantics (Table 4) to a symbolic one
(Table 6). This step commutes with the previous one.

3. Renaming the bound names of a process in such a way that the result is clash-
free [3], meaning that all bound names are different and no name occurs both
free and bound. The trick is to do this in a compositional way. The relabelling
operators [`], [r] and [py] in the final encoding stem from this step.

4. Eliminating the need for rule alpha in the operational semantics. This works
only for clash-free processes, as generated by the previous step.

5. Dropping the restriction operators, while preserving strong barbed bisimi-
larity. This eliminates the orange parts of Table 6. For this purpose clash-
freedom and the elimination of alpha are necessary.

6. Changing all occurrences of substitutions into applications of CCS relabelling
operators.

7. The previous six steps generate a language with a semantics in the De Simone
format. So from here on a translation to Meije or aprACPR is known to be
possible. The last step, to CCSγ , involves changing the remaining form of
name-binding into an infinite sum.

As indicated in Figure 2, my translation maps the π-calculus with implicit
matching to a subset of CCSγ . On that subset, π-calculus behaviour can be
replayed faithfully, at least up to strong early congruence, the congruence clo-
sure of strong barbed bisimilarity (cf. [11]). However, the interaction between
a translated π-calculus process and a CCSγ process outside the image of the
translation may be disturbing, and devoid of good properties. Also, in case in-
termediate languages are encountered on the way from πIM to CCSγ , which is
just one of the ways to prove my result, no guarantees are given on the sanity of
those languages outside the image of the source language, i.e. on their behaviour
outside the realm of clash-free processes after Step 3 has been made.

11 Triggering

To include the general matching operator in the source language I need to extend

564 R.J. van Glabbeek

the target language with the triggering operator s⇒P of Meije [1,34]:

P α−→ P ′

s⇒P sα−→ P ′

Meije features signals and actions ; each signal s can be “applied” to an action
α, and doing so yields an action sα. In this paper the actions are as in Table 2,
and a signal is an expression [x=y] with x, y ∈ N ; application of a signal to an
action was defined in Section 6.

Triggering cannot be expressed in CCSγ , as rooted weak bisimilarity [2], the
weak congruence of [19,20], is a congruence for CCSγ but not for triggering.
However, rooted branching bisimilarity [12] is a congruence for triggering [9].

My translation from πIM to CCSγ can be extended into one from the full
π-calculus to CCStrig

γ by adding the clause

T ([x=y]P) := [x=y]⇒T (P).

Theorem 2 applies to this extended translation as well.

12 Examples

Example 2. The outgoing transitions of x(y).ȳw are

x(y).ȳw

z̄1wxz1
0

z̄1w

z̄2w
xz2

0
z̄2w

...

z̄nw
xzn 0 .

z̄nw

The same applies to its translation
∑
z∈H xz.

(
(ȳw.0)[z/y]

)
.

∑
z∈H xz.

(
(ȳw.0)[z/y]

) (ȳw.0)[z1/y]xz1
0[z1/y]

z̄1w

(ȳw.0)[z2/y]
xz2

0[z2/y]
z̄2w

...

(ȳw.0)[zn/y]xzn 0[zn/y]
z̄nw

Here the zi range over all names in N . Below I flatten such a picture by drawing
the arrows only for one name z, which however still ranges over N .

Example 3. The transitions of P = x(y).ȳw | x̄u.u(v) are

(x(y).ȳw)|x̄u.u(v) z̄w|x̄u.u(v)
xz

0|x̄u.u(v)
z̄w

(x(y).ȳw)|u(v)

x̄u

z̄w|u(v)

x̄u
xz

0|u(v)

x̄u
z̄w

(x(y).ȳw)|0

uq

z̄w|0

uq

xz
0|0

uq
z̄w

ūw|u(v)

τ

τ
[z=u]τ

Comparing the expressiveness of the π-calculus and CCS 565

Here ūw|u(v) is the special case of z̄w|u(v) obtained by taking z := u. It thus
also has outgoing transitions labelled ūw and uq, for q ∈ N .

Up to strong bisimilarity, the same transition system is obtained by the
translation T (P) of P in CCSγ .

T (P) =

(∑
z∈H

xz.((ȳw.0)[z/y])

)
[`]

∥∥∥∥∥
(
x̄u.
∑
z∈H

uz(0[z/v])

)
[r]

Since there are no restriction operators in this example, the relabelling operators
[`] and [r] are of no consequence. Here

T (P)
τ→ (ȳw.0)[u/y][`]‖

∑
z∈H

uz(0[z/v])[r]
τ→ 0[u/y][`] ‖0[w/v][r].

Example 4. Let Q = (νx)
(
x(y).ȳw | (νu)

(
x̄u.u(v)

))
. It has no other transitions

than
Q τ−→ (νx)(νu)

(
ūw|u(v)

) τ−→ (νx)(νu)(0|0).

Its translation T (Q) into CCSγ is((∑
z∈H

xz.((ȳw.0)[z/y])

)
[`]

∥∥∥∥∥
(
x̄u.
∑
z∈H

uz(0[z/v])

)
[pu][r]

)
[px]

Up to strong bisimilarity, its transition system is the same as that of P or T (P)
from Example 3, except that in transition labels the name u is renamed into the
private name erp, and x is renamed into the private name p. One has T (Q) •∼ Q,
since private names generate no barbs.

Example 5. The process (νx)(x(y)) | (νx)(x̄u) has no outgoing transitions. Ac-
cordingly, its translation(∑

z∈H
xz.(0{z/y})

)
[px][`]

∥∥∥∥∥ (x̄u)[px][r]

only has outgoing transitions labelled `pz for z∈H and rpu. Since the names `p and
rp are private, these transitions generate no barbs. In this example, the relabelling
operators [`] and [r] are essential. Without them, the mentioned transitions
would have complementary names, and communicate into a τ -transition.

Example 6. Let P = (νy)
(
x̄y.ȳw

)
| x(u).u(v). Then

P τ−→ (νy)
(
ȳw | y(v)

) τ−→ (νy)(0|0).

Now T
(
(νy)

(
x̄y.ȳw

))
= (x̄y.ȳw.0)[py] and

T (x(u).u(v)) =
∑
z∈H

xz.

((∑
z∈H

uz.(0[z/v])

)
[z/u]

)
.

566 R.J. van Glabbeek

Hence T
(
(νy)

(
x̄y.ȳw

))
[`] x̄`p−−→ (ȳw.0)[py][`]. Since the substitution r used in

the relabelling operator [r] is surjective, there is a name s that is mapped to `p,

namely `p′. Considering that T (x(u).u(v)) xs−→ T (u(v))[s/u],

T (P) τ−→ (ȳw.0)[py][`]

∥∥∥∥∥
(∑
z∈H

(uz.0)[z/v]

)
[s/u][r].

These parallel components can perform actions p̀w and `pw, synchronising into
a τ -transition, and thereby mimicking the behaviour of P .

Example 7. Let P = (νy)
(
x̄y.(νy)(ȳw)

)
| x(u).u(v).

Then P τ−→ (νy)
(
(νy)(ȳw) | y(v)

)
6τ−→. One obtains

T (P) τ−→ (ȳw.0)[py][py][`]

∥∥∥∥∥
(∑
z∈H

uz.(0[z/v])

)
[s/u][r]

for a name s that under [r] maps to `p. Now the left component can do an action
`epw, whereas the left component can merely match with p̀w. No synchronisation
is possible. This shows why it is necessary that the relabelling [py] not only
renames y into p, but also p into ep.

Example 8. Let P = x(y).x(w).w̄u. Then

P |x̄v.x̄y.y(v) τ−→ x(w).w̄u|x̄y.y(v) τ−→ ȳu|y(v) τ−→ 0|0.

Therefore, T (P |x̄v.x̄y.y(v)) must also be able to start with three consecutive
τ -transitions. Note that

T (P |x̄v.x̄y.y(v)) = T (P)[`]

∥∥∥∥∥
(
x̄v.x̄y.

∑
z∈H

yz(0[z/y])

)
[r]

with

T (P) =
∑
z∈H

xz.

((∑
z∈H

xz.((w̄u.0)[z/w])

)
[z/y]

)
.

The only way to obtain T (P |x̄v.x̄y.y(v)) τ−→ τ−→ τ−→ is when T (P) xv−→ Q xy−→ ȳu−→.
The CCSγ process Q must be(∑

z∈H
xz.((w̄u.0)[z/w])

)
[v/y].

Given the semantics of CCS relabelling, one must have
∑
z∈H

xz.((w̄u.0)[z/w]) α−→,

such that applying the relabelling [v/y] to α yields xy. When simply taking [{v/y}]
for [v/y], that is, the relabelling that changes all occurrences of the name y in a

Comparing the expressiveness of the π-calculus and CCS 567

transition label into v, this is not possible. This shows that a simplification of
my translation without use of the spare names S would not be valid.

Crucial for this example is that I only use surjective substitutions. [v/y] is an
abbreviation of [{v/y}S]. Here {v/y}S is a surjective substitution that not only
renames y into v, but also sends a spare name s to y. This allows me to take
α := xs. Consequently, in deriving the transition

∑
z∈H xz.((w̄u.0)[z/w]) α−→, I

choose z to be s, so that∑
z∈H

xz.((w̄u.0)[z/w]) xs−→ (w̄u.0)[s/w] s̄u−→ 0[s/w].

Putting this in the scope of the relabelling [v/y] yields

Q xy−→ (w̄u.0)[s/w][v/y] ȳu−→ 0[s/w][v/y]

as desired, and the example works out.5

This example shows that spare names play a crucial role in intermediate states of
CCSγ-translations. In general this leads to stacked relabellings from true names
into spare ones and back. Making sure that in the end one always ends up with
the right names calls for particularly careful proofs that do not cut corners in
the bookkeeping of names.

A last example showing a crucial feature of my translation is discussed in
Section 14.

13 The unencodability of CCS into π

Let f : A → A be a CCS relabelling function satisfying f(xiy) = xi+1y. Here
(xi)

∞
i=0 is an infinite sequence of names, and A is as in Section 4. The CCS

process A defined by
A := x0y.0 + τ.(A[f])

satisfies ∃P. A τ−→
∗
P ∧ P↓xi

for all i ≥ 0, i.e., it has infinitely many weak
barbs. It is easy to check that all weak barbs of a π-calculus process Q must be
free names of Q, of which there are only finitely many. Consequently, there is
no π-calculus process Q with A •∼ Q, and hence no translation of CCS in the
π-calculus that is valid up to •∼.6

14 Related work

My translation from πIM to CCSγ is inspired by an earlier translation E from a
version of the π-calculus to CCS, proposed by Banach & van Breugel [3]. The

5 This use of spare names solves the problem raised in [3, Footnote 5].
6 In [28] it was already mentioned, by reference to Pugliese [personal communication,

1997] that CCS relabelling operators cannot be encoded in the π-calculus.

568 R.J. van Glabbeek

paper [3] takes A := {〈x, y〉 | x, y ∈ N} for the visible CCS actions; action
〈x, y〉 corresponds with my xy, and its complement 〈x, y〉 with my x̄y. On the
fragment of π featuring inaction, prefixing, choice and parallel composition, the
encoding of [3] is given by

E(0) := 0
E(τ.P) := τ.E(P)

E(x̄y.P) := 〈x, y〉.E(P)
E(x(y).P) :=

∑
z∈N 〈x, z〉.

(
E(P)[z/y]

)
E(P | Q) := E(P) | E(Q)
E(P +Q) := E(P) + E(Q).

The main result of [3] (Theorem 5.3), stating the correctness of this encoding,
says that P ↔r Q iff E(P) ↔r E(Q), for all π-processes P and Q. Here ↔r
is strong reduction bisimilarity—see Definition 7. In fact, replacing the call to
Lemma 3.5 in the proof of this theorem by a call to Lemma 3.4, they could
equally well have claimed the stronger result that P ↔r E(P) for all π-processes
P , i.e., that E is valid up to↔r.

This result contradicts my Theorem 1 and thus must be flawed. Where it fails
can be detected by pushing the counterexample process P := x̄v | x(y).R with
R := ȳu|v(w), used in the proof of Theorem 1, through the encoding of [3]. I

claim that while P τ−→ v̄u|v(w) τ−→, its translation E(P) cannot do two τ -steps.
Hence P 6↔r E(P). Using a trivial process Q such that P ↔r Q ↔r E(Q), this
also constitutes a counterexample to [3, Theorem 5.3].

Note that E(R) = 〈y, u〉.0 |
∑
z∈N 〈v, z〉.(0[z/w]). This process can perform

the actions 〈y, u〉 as well as 〈v, u〉, but no action τ , since y 6= v. Now

E(P) = 〈x, v〉.0 |
∑
z∈N
〈x, z〉.(E(R)[z/y]).

Its only τ -transition goes to 0 | E(R)[v/y]. This process can perform the actions
〈v, u〉 as well as 〈v, u〉, but still no action τ , since [v/y] is a CCS relabelling oper-
ator rather than a substitution, and it is applied only after any synchronisations
between 〈y, u〉.0 and

∑
z∈N 〈v, z〉.(0[z/w]) are derived.

My own encoding T translates the processes P and R essentially in the same
way, but now there is a transition T (R) [y=v]τ−−−−→ (0‖0[u/w]). The renaming [v/y]
turns this synchronisation into a τ :

T (P) τ−→ T (R)[v/y] τ−→ (0‖0[u/w])[v/y].

The crucial innovation of my approach over [3] in this regard is the switch from
the early to the early symbolic semantics of the π-calculus, combined with a
switch from CCS as target language to CCSγ .

In [31], Roscoe argues that CSP is at least as expressive as the π-calculus. As
evidence he present a translation from the latter to the former. Roscoe does not
provide a criterion for the validity of such a translation, nor a result implying
that a suitable criterion has been met. The following observations show that his

Comparing the expressiveness of the π-calculus and CCS 569

transition is not compositional, and that it is debatable whether it preserves a
reasonable semantic equivalence.

(1) Roscoe translates τ.P as tau→csp[P], where→ is CSP action prefixing and
csp[P] is the translation of the π-expression P . Here tau is a visible CSP
action, that is renamed into τ only later in the translation, when combin-
ing prefixes into summations. Thus, on the level of prefixes, the translation
does not preserve (strong) barbed bisimilarity or any other suitable seman-
tic equivalence. This problem disappears when we stop seeing prefixing and
choice as separate operators in the π-calculus, instead using a guarded choice∑
i∈I αi.Pi.

(2) Roscoe translates x(y).P into x?z → csp[P{z/y}]. This is not compositional,
since the translation of x(y).P does not merely call the translation of P as a
building block, but the result of applying a substitution to P . Substitution
is not a CSP operator; it is applied to the π-expression P before translating
it. While this mode of translation has some elegance, it is not compositional,
and it remains questionable whether a suitable weaker correctness criterion
can be formulated that takes the place of compositionality here.

(3) To deal with restriction, [31] works with translations csp[P]κ,σ, where two
parameters κ and σ are passed along that keep track of sets of fresh names to
translate restricted names into. The set of fresh names σ is partitioned in the
translation of P |Q (page 388), such that both sides get disjoint sets of fresh
names to work with. Although the idea is rather similar to the one used here,
the passing of the parameters makes the translation non-compositional. In
a compositional translation csp[P |Q] the arguments P and Q may appear
in the translated CSP process only in the shape csp[P] and csp[Q], not
csp[P]κ,σ′ for new values of σ′.

As pointed out in [14,29], even the most bizarre translations can be found valid
if one only imposes requirements based on semantic equivalence, and not com-
positionality. Roscoe’s translation is actually rather elegant. However, we do not
have a decent criterion to say to what extent it is a valid translation. The ex-
pressiveness community strongly values compositionality as a criterion, and this
attribute is the novelty brought in by my translation.

15 Conclusion

This paper exhibited a compositional translation from the π-calculus to CCSγ
extended with triggering that is valid up to strong barbed bisimilarity, thereby
showing that the latter language is at least as expressive as the former. Triggering
is not needed when restricting to the π-calculus with implicit matching (as used
for instance in [33]). Conversely, I observed that CCS (and thus certainly CCSγ)
cannot be encoded in the π-calculus. I also showed that the upgrade of CCS to
CCSγ is necessary to capture the expressiveness of the π-calculus.

A consequence of this work is that any system specification or verification
that is carried out in the setting of the π-calculus can be replayed in CCSγ . The

570 R.J. van Glabbeek

main idea here is to replace the names that are kept private in the π-calculus by
means of the restriction operator, by names that are kept private by means of a
careful bookkeeping ensuring that the same private name is never used twice. Of
course this in no way suggests that it would be preferable to replay π-calculus
specifications or verifications in CCSγ .

My translation encodes the restriction operator (νy) from the π-calculus by
renaming y into a “private name”. Crucial for this approach is that private
names generate no barbs, in contrast with standard approaches where all names
generate barbs. This use of private names is part of the definition of strong
barbed bisimilarity •∼ on my chosen instance of CCSγ , and justified since that
definition is custom made in the present paper. The use of private names can be
avoided by placing an outermost CCS restriction operator around any translated
π-process. This, however, would violate the compositionality of my translation.

The use of infinite summation in my encoding might be considered a serious
drawback. However, when sticking to a countable set of π-calculus names, only
countable summation is needed, which, as shown in [8], can be eliminated in
favour of unguarded recursion with infinitely many recursion equations. As the
original presentation of the π-calculus already allows unguarded recursion with
infinitely many recursion equations [24] the latter can not reasonably be forbid-
den in the target language of the translation. Still, it is an interesting question
whether infinite sums or infinite sets of recursion equations can be avoided in the
target language if we rule them out in the source language. My conjecture is that
this is possible, but at the expense of further upgrading CCSγ , say to aprACPτR.
This would however require work that goes well beyond what is presented here.

An alternative approach is to use a version of CCS featuring a choice quan-
tifier [17] instead of infinitary summation, a construct that looks remarkably
like an infinite sum, but is as finite as any quantifier from predicate logic. A
choice quantifier binds a data variable z (here ranging over names) to a single
process expression featuring z. The present application would need a function
from names to CCS relabelling operators. When using this approach, the size of
translated expressions becomes linear in the size of the originals.

It could be argued that choice quantification is a step towards mobility. On
the other hand, if mobility is associated more with scope extrusion than with
name binding itself, one could classify CCSγ with choice quantification as an
immobile process algebra. A form of choice quantification is standard in mCRL2
[15], which is often regarded “immobile”.

My translation from π to CCSγ has a lot in common with the attempted
translation of π to CCS in [3]. That one is based on the early operational se-
mantics of CCS, rather than the early symbolic one used here. As a consequence,
substitutions there cannot be eliminated in favour of relabelling operators.

A crucial step in my translation yields an intermediate language with an
operational semantics in De Simone format. In [7] another representation of the
π-calculus is given through an operational semantics in the De Simone format. It
uses a different way of dealing with substitutions. This type of semantics could
be an alternative stepping stone in an encoding from the π-calculus into CCSγ .

Comparing the expressiveness of the π-calculus and CCS 571

In [28] Palamidessi showed that there exists no uniform encoding of the π-
calculus into a variant of CCS. Here uniform means that T (P |Q)=T (P)|T (Q).
This does not contradict my result in any way, as my encoding is not uniform.
Palamidessi [28] finds uniformity a reasonable criterion for encodings, because
it guarantees that the translation maintains the degree of distribution of the
system. In [30], however, it is argued that it is possible to maintain the degree of
distribution of a system upon translation without requiring uniformity. In fact,
the translation offered here is a good example of one that is not uniform, yet
maintains the degree of distribution.

Gorla [13] proposes five criteria for valid encodings, and shows that there
exists no valid encoding of the π-calculus (even its asynchronous fragment) into
CCS. Gorla’s proof heavily relies on the criterion of name invariance imposed
on valid encodings. It requires for P ∈ Tπ and an injective substitution σ that
T (Pσ) = T (P)σ′ for some substitution σ′ that is obtained from σ through
a renaming policy. Furthermore, the renaming policy is such that if dom(σ) is
finite, then also dom(σ′) is finite. This latter requirement is not met by the
encoding presented here, for a single name x ∈ N corresponds with an infinite
set of actions xy, the “names” of CCS, and a substitution that merely renames
x into z must rename each action xy into zy at the CCS end, thus violating the
finiteness of dom(σ′).

My encoding also violates Gorla’s compositionality requirement, on grounds
that T (P) appears multiple times (actually, infinitely many) in the translation
of Mx(y).P . It is however compositional by the definition in [10] and elsewhere.
My encoding satisfies all other criteria of [13] (operational correspondence, di-
vergence reflection and success sensitiveness).

References

1. Austry, D., Boudol, G.: Algèbre de processus et synchronisations. TCS 30(1), 91–
131 (1984). https://doi.org/10.1016/0304-3975(84)90067-7

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press (1990). https://doi.org/10.
1017/CBO9780511624193

3. Banach, R., van Breugel, F.: Mobility and modularity: expressing π-calculus in
CCS. Preprint (1998), http://www.cs.man.ac.uk/~banach/some.pubs/Pi.CCS.

ext.abs.pdf

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: Mathematics
and Computer Science, pp. 89–138. CWI Monograph 1, North-Holland (1986)

5. Boudol, G.: Asynchrony and the π-calculus (note). Tech. Rep. 1702, INRIA (1992)
6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential

processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833
7. Ferrari, G.L., Montanari, U., Quaglia, P.: A pi-calculus with explicit substitutions.

Theoretical Computer Science 168(1), 53–103 (1996). https://doi.org/10.1016/
S0304-3975(96)00063-1

8. Glabbeek, R.J. van: On the expressiveness of ACP (extended abstract). In: Proc.
ACP’94. pp. 188–217. Workshops in Computing, Springer (1994). https://doi.

org/10.1007/978-1-4471-2120-6_8

572 R.J. van Glabbeek

https://doi.org/10.1016/0304-3975(84)90067-7
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1017/CBO9780511624193
http://www.cs.man.ac.uk/~banach/some.pubs/Pi.CCS.ext.abs.pdf
http://www.cs.man.ac.uk/~banach/some.pubs/Pi.CCS.ext.abs.pdf
https://doi.org/10.1145/828.833
https://doi.org/10.1016/S0304-3975(96)00063-1
https://doi.org/10.1016/S0304-3975(96)00063-1
https://doi.org/10.1007/978-1-4471-2120-6_8
https://doi.org/10.1007/978-1-4471-2120-6_8

9. Glabbeek, R.J. van: On cool congruence formats for weak bisimulations. Theoret-
ical Computer Science 412(28), 3283–3302 (2011). https://doi.org/10.1016/j.
tcs.2011.02.036

10. Glabbeek, R.J. van: Musings on encodings and expressiveness. In: Proc. EX-
PRESS/SOS’12. EPTCS, vol. 89, pp. 81–98. Open Publishing Association (2012).
https://doi.org/10.4204/EPTCS.89.7

11. Glabbeek, R.J. van: A theory of encodings and expressiveness. In: Proc. FoS-
SaCS’18. LNCS, vol. 10803, pp. 183–202. Springer (2018). https://doi.org/10.
1007/978-3-319-89366-2_10

12. Glabbeek, R.J. van, Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996). https://doi.org/10.
1145/233551.233556

13. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Information and Computation 208(9), 1031–1053 (2010). https:
//doi.org/10.1016/j.ic.2010.05.002

14. Gorla, D., Nestmann, U.: Full abstraction for expressiveness: history, myths and
facts. Mathematical Structures in Computer Science 26(4), 639–654 (2016). https:
//doi.org/10.1017/S0960129514000279

15. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

16. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Comp. Sc. 138(2), 353–
389 (1995). https://doi.org/10.1016/0304-3975(94)00172-F

17. Luttik, B.: On the expressiveness of choice quantification. Ann. Pure Appl. Logic
121, 39–87 (2003). https://doi.org/10.1016/S0168-0072(02)00082-9

18. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Comp. Sc. 25, 267–
310 (1983). https://doi.org/10.1016/0304-3975(83)90114-7

19. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

20. Milner, R.: Operational and algebraic semantics of concurrent processes. In: Hand-
book of Theoretical Computer Science, chap. 19, pp. 1201–1242. Elsevier Science
Publishers B.V. (North-Holland) (1990)

21. Milner, R.: Functions as processes. Mathematical Structures in Computer Science
2(2), 119–141 (1992). https://doi.org/10.1017/S0960129500001407

22. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press (1999)

23. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. I&C 100,
1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. I&C 100,
41–77 (1992). https://doi.org/10.1016/0890-5401(92)90009-5

25. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. TCS 114,
149–171 (1993). https://doi.org/10.1016/0304-3975(93)90156-N

26. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proc. ICALP’92.
LNCS, vol. 623, pp. 685–695. Springer (1992). https://doi.org/10.1007/

3-540-55719-9_114

27. Nestmann, U.: Welcome to the jungle: A subjective guide to mobile process calculi.
In: Proc. CONCUR’06. LNCS, vol. 4137, pp. 52–63. Springer (2006). https://doi.
org/10.1007/11817949_4

28. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Mathematical Structures in Comp. Science 13(5), 685–719
(2003). https://doi.org/10.1017/S0960129503004043

Comparing the expressiveness of the π-calculus and CCS 573

https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.4204/EPTCS.89.7
https://doi.org/10.1007/978-3-319-89366-2_10
https://doi.org/10.1007/978-3-319-89366-2_10
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1016/0304-3975(94)00172-F
https://doi.org/10.1016/S0168-0072(02)00082-9
https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0304-3975(93)90156-N
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/11817949_4
https://doi.org/10.1007/11817949_4
https://doi.org/10.1017/S0960129503004043

29. Parrow, J.: General conditions for full abstraction. Math. Struct. in Comp. Sc.
26(4), 655–657 (2016). https://doi.org/10.1017/S0960129514000280

30. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In: Proc.
ESOP’13. LNCS, vol. 7792, pp. 310–329. Springer (2013). https://doi.org/10.
1007/978-3-642-37036-6_18

31. Roscoe, A.W.: CSP is expressive enough for π. In: Reflections on the Work
of C.A.R. Hoare, pp. 371–404. Springer (2010). https://doi.org/10.1007/

978-1-84882-912-1_16

32. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33(1), 69–97
(1996). https://doi.org/10.1007/s002360050036

33. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

34. Simone, R. de: Higher-level synchronising devices in Meije-SCCS. TCS 37, 245–
267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

574 R.J. van Glabbeek

https://doi.org/10.1017/S0960129514000280
https://doi.org/10.1007/978-3-642-37036-6_18
https://doi.org/10.1007/978-3-642-37036-6_18
https://doi.org/10.1007/978-1-84882-912-1_16
https://doi.org/10.1007/978-1-84882-912-1_16
https://doi.org/10.1007/s002360050036
https://doi.org/10.1016/0304-3975(85)90093-3
http://creativecommons.org/licenses/by/4.0/

	Comparing the expressiveness of the π-calculus and CCS
	1 Introduction
	2 CCS
	3 CCS_γ
	4 Strong barbed bisimilarity
	5 The π-calculus
	6 The semantics of the π-calculus
	7 Valid translations
	8 The unencodability of π into CCS
	9 A valid translation of π_IM into CCS_γ
	10 The ideas behind this encoding
	11 Triggering
	12 Examples
	13 The unencodability of CCS into π
	14 Related work
	15 Conclusion
	References

