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Abstract

Many of the real world phenomena that cognizers must grap-
ple with are continuous, not only in the values they can take,
but also in how these values change over time. The mind must
somehow abstract from these inputs to extract useful discrete
concepts such as objects, events and causal relationships. We
investigate several factors that affect basic inferences about
causal relationships between continuous variables based on ob-
servations in continuous time. In a novel experiment, we ex-
plore the ways in which causal judgments are sensitive to fac-
tors that relate to causal inductive biases (e.g. causal lags, the
direction of variation) and causal perception (e.g. the range
and rapidity of variation). We argue standard statistical time-
series models have limited utility in accounting for human sen-
sitivity to these factors. We suggest further work is needed to
fully understand the cognitive processes that underlie causal
induction from time-series information.

Keywords: causal learning, continuous time, continuous vari-
ables, time-series data, dynamics.

Introduction

From the waxing and waning of daylight in our eyes, to the
ebb and flow of the neighborhood hubbub in our ears, ana-
logue inputs, tied to real world causal dynamics, flow in
through our senses continuously. It remains unclear how peo-
ple extract information from continuous inputs to make causal
inferences. We here investigate several factors that might in-
fluence this foundational aspect of causal model-based rea-
soning. In particular, we test the idea that reasoning about
causal relationships in dynamic systems depends on two in-
teracting dimensions: (1) An ability to perceive and extract
causal signals from background noise, and (2) Intuitive causal
theories about the nature of causal relata and their functional
relationships.

Following Davis, Bramley, and Rehder (2020a), we adapt
the Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Orn-
stein, 1930) and use it as a generative causal model that can
simulate a variety of naturalistic continuous dynamics. OU
networks combine a causal graph with functions expressing
the continuous influence of cause variables on effect variables
by way of an augmented OU processes—producing a form of
mean-regressive Brownian motion. Unlike standard causal
graphical models (Pearl, 2000), OU networks model causal
dynamics in continuous time, with effects continually nois-
ily regressing toward a moving target defined as a function
of earlier values of their cause(s). Critically, this behavior
is governed by several parameters that, when manipulated,
change the properties of the resultant causal dynamics. For

example, we can manipulate the lag, i.e. how long influ-
ences from cause X take to arrive at Y, but also the strength or
“rigidity” of the influence—how rapidly Y approaches what-
ever basin of attraction is created by the earlier values of X
(see Figure 1). We use this as a test-bed to explore human
causal judgments.

Studies into causal cognition have long focused on “pre-
packaged” contingency information, such as covariation of
binary variables across independent trials (Cheng, 1997;
Griffiths & Tenenbaum, 2009). However, recently several
studies have investigated more naturalistic situations that
involve continuous variables and time-series data (Soo &
Rottman, 2018, 2020; Zhang & Rottman, 2021) produced
by continuous dynamic causal systems (Davis et al., 2020a;
Davis, Bramley, & Rehder, 2020b; Bramley, Gerstenberg,
Mayrhofer, & Lagnado, 2019). Some of these studies have
shown that people can leverage moment-by-moment transi-
tions (i.e. changes in the values of variables between suc-
cessive observations) to identify the presence and direction
of causal relationships (Soo & Rottman, 2018). It has also
been shown that people can often identify the causal structure
of dynamic systems that involves three continuous variables
(Davis et al., 2020a, 2020b) if they can freely intervene on
and control each variable in real time, although they make
systematic errors in identifying chain structures. Participants
in these tasks appeared to follow an intervention strategy of
creating occasional dramatic and rapid changes in variables
and monitoring the behavior of other variables shortly af-
terward. They were able to learn better when the variables
changed rapidly and affected one another rigidly rather than
slowly or gradually (Figure 1; Davis et al., 2020b).

This paper aims to extend this previous work by consid-
ering factors that are particularly interesting for continuous-
time causal systems with continuous variables. These novel
empirical results can help inspire new computational models
to describe the underlying cognitive process, as we will dis-
cuss towards the end of the paper. We focus on four factors
as listed below.

Causal lag

In reasoning about causal relationships between events, peo-
ple are clearly sensitive to temporal delays. They generally
make stronger causal attributions when a putative cause is
followed by a putative effect after a short delay than after a
long delay, if no specific mechanistic information is conveyed
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Figure 1: Examples of an effect variable (colored) following
a change to its cause (gray) under different causal lags (t=2
vs. t=8) and degrees of rigidity. Dashed lines indicate the
asymptotic values of the effect before and after the change in
the value of the cause.

(Buehner & McGregor, 2006; Shanks, Pearson, & Dickin-
son, 1989; Lagnado & Speekenbrink, 2010). This could be
explained from a cognitive perspective by the idea that, the
longer delay between two events, the harder it is for learners
to sustain memory of the first in working memory or potential
association with the second (Buehner & May, 2003). From
a normative perspective also, the longer the delay, the more
likely it is that alternative candidate events have taken place
during the interval that may then compete to explain the ef-
fect (Lagnado & Speekenbrink, 2010). It is unclear whether
people also hold similar intuitions about “lags” when judging
influences between continuous variables. For example, would
people be more likely to make a causal attribution when the
effect ¥’s value at ¢ is influenced by cause X’s value at  — 1
seconds compared to when it follows X at r — 10 seconds.
Previous studies generally fix the causal lag (usually as# — 1)
and have not compared different intervals (Soo & Rottman,
2018; Davis et al., 2020b). Davis et al. (2020b) manipulated
a related but distinct quantity: varying the refresh rate of their
causal systems between 100ms to 300ms in different condi-
tions but scaling the causal dynamics to be otherwise identical
(with causal influences still lagging exactly one refresh).

Granger causality (Granger, 1969) is an established sta-
tistical technique designed to identify potential causality in
time-series data, with a mechanism to accommodate causal
lag. To assess if one variable “Granger causes” another, one
searches across a range of fixed lags deemed to be mecha-
nistically plausible, e.g. X;_;...X;_,,, and tests whether in-
clusion of any of these terms statistically improve prediction
of Y; over and above its own lagged autocorrelation (mod-
eled by including Y;_;...Y;_,, as a covariate). If a statis-
tical relation is found for one or more of these lags, the
causal influence is deemed to be supported. As such, Granger
causality does not inherently privilege longer or shorter lags.
This lag-indifference may be appropriate for minimizing bias
when modeling domains that are poorly understood but may

not reflect human expectations. We will investigate whether
laypeople are similarly indifferent, or if their causal judg-
ments decay with lag as they do with discrete cases.
Rigidity

For a given change in a cause, a rigid causal relationship
would lead to the effect asymptoting to its new value sooner
than a non-rigid relationship (see Figure 1). Davis et al.
(2020b) found that people are more likely to infer a causal
link between two variables if the effect responds rigidly to
the cause’s change, essentially overwhelming the variables’
random motion more dramatically or saliently. However, they
tested this in an active learning setting where participants’ ac-
tions complicated interpretation of accuracy patterns. In par-
ticular, in the non-rigid condition, participants faced a trade-
off between either not waiting long enough between their ac-
tions to observe full influence of genuine causal effects, or
else waiting a long time for outcomes to manifest, so per-
forming fewer interventions. We thus test rigidity in a passive
learning setting to make sure that observed rigid vs. non-rigid
stimuli only differ in their detailed temporal dynamics and not
the final magnitude of the change (Figure 2).

Direction of change

Continuous variables can increase or decrease over time. Pre-
vious research provides people with time-series data where
variables both increase and decrease within the same episode
(Soo & Rottman, 2018; Davis et al., 2020a). In this study,
we are simply curious whether people are equally sensitive to
increases and decreases and to matched or inverted changes
of cause relative to effect. People are frequently found to
have a preference for positive over equally informative nega-
tive evidence (Newman, Wolff, & Hearst, 1980) and to have
a prior expectation of positive linear relationships (Sanborn,
Griffiths, & Shiffrin, 2010). People tend to test positive ex-
amples of a hypothesis (Coenen, Rehder, & Gureckis, 2015),
and focus more on the positive aspects of their observations
(e.g. the “A-cell bias”, Kao & Wasserman, 1993). As an intu-
itive example, direct associations are far more often described
as if ascending: “Y increases as X increases” than as if de-
scending “Y decreases as X decreases”. We will test whether
people are influenced by the direction of change by including
all four combinations of X’s increase or decrease over time
with Y’s increase or decrease over time.

Perceived magnitude of change

In situations where people experience real-time continuous
dynamics, we have to also consider the role of low-level in-
formation processing, i.e. perception. That is, in order to
discover relationships between variables, learners must first
perceive that the variables have changed meaningfully—e.g.
surprisingly, relative to their baseline behavior of nonsystem-
atic fluctuations or drift.

Sensitivity to continuous change is a domain in which it
seems likely that people will deviate dramatically from naive
idealized observer accounts, which are typically presumed to
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Table 1: Parameter Settings of OU Processes.

Condition Level

Lag short: k=2 vs. long: k=38

Rigidity rigid: ® = 0.8 vs. non-rigid: ® = 0.2
Slope positive: B =1 vs. negative: = —1

Rangey boundary vs. middle, controlled by o

have perfect numerical precision and computing resources.
For example, it would likely be easier for us to notice a
change in the quantity of green algae in a fish tank when it
accumulates from 0% (a perfectly clean tank) to 10% than ac-
cumulating from a higher baseline (e.g. 50%-60%). It would
also be easier to detect the change from 90% and 100% (as
the observer can focus on the change in the remaining clean
space). This is known as a boundary effect in numerical es-
timation and relates to proximity of both lower and upper
bounds (Kim & Opfer, 2017; Thompson & Opfer, 2008).
Therefore, we plan to compare four ranges of Y’s change that
differ in how close they are to the limits of the range of the
variables in question (Figure 2c¢). We hypothesize that people
are more likely to detect causal relationships correctly when
the effect in question starts or ends nearer to its boundary
(Figure 2c).

OU process

As sketched at the start, we adapt OU processes to generate
the stimuli in our experiment (Davis et al., 2020a; Uhlenbeck
& Ornstein, 1930). A standard OU process models mean-
regressive Brownian motion of the sort one might recognize
in a coke can bouncing around the seat well of a car in mo-
tion. By combining a causal graph (here just X — Y) with
OU-processes, and replacing the fixed mean of these with a
function of cause X, we can model how an effect Y changes
and fluctuates in continuous time while being causally influ-
enced by its parent X. OU processes provide a mathemati-
cally straightforward formula for producing rich continuous
dynamics. Compared to using simple regressions (Zhang &
Rottman, 2021), the OU process can easily capture the “stick-
iness” feature where Y is “dragged” to the expected value
gradually with noise.

P(AV, V', 0,k,B,0,0) = o[(B-v, F+a) =]+ N(0,0) (1)

Eq.1 formalizes the extended OU process we use such that
Av;—the change in Y from ¢ to t + 1—noisily depends on the
difference between the target Y value and current Y value v’y.
We further assume the target Y value is determined by a linear
function of its cause X at time ¢ — k, where k captures the time
lag, and the slope B and the intercept o potentially rescale
and offset Y relative to X. ® then controls how “rigidly” the
change in the effect occurs — for example, ® = 0.8 would
mean that ¥ moves 80%=0 of the way toward its target value
every time interval while ® = 0.2 means moves only 20%=+c
of the way and so adjusts to a change in its target value more

gradually. Critically, the variables additionally fluctuate ac-
cording to random noise here drawn from Gaussian distribu-
tion with a mean of zero and a standard deviation of G.

We fixed 6 = 1 and varied all other parameters systemati-
cally to create our set of experimental conditions. As shown
in Table 1, we consider different levels of Lag (k), Rigidity
(), Slope (B) and Rangey (i.e. the intercept, o). Addition-
ally, we vary the behavior of the cause X (Directiony) such
that it either increases or decreases abruptly shortly after the
beginning of each trial (Figure 2b). X’s behavior is also con-
trolled by an OU process but since it has no parent we in-
troduce it as being manually controlled (i.e. through external
intervention) and have it approach a basin point u that either
increases or decreases abruptly a few seconds into the trial
with ® = 0.6 and 6 = 1 (see Figure 2b). Directiony (whether
Y ultimately increases or decreases) is thus jointly determined
by Directiony and the sign of Slope P. Critically, under our
current parametric set, differences in Lag and Rigidity do not
affect the final value that Y arrives at by the end of a trial
(Figure 2c).

Experiment
Methods

Participants 100 participants (47 female, 52 male, 1 non-
binary, aged 42+12) were recruited via Prolific Academic
and were paid £1.20. The task took around 10 minutes.
The anonymized pre-registration (https://osf.io/dqyez), data
and analysis code (https://osf.io/ybpSm/), and the experiment
demo (https://bit.ly/3tDr4uz) are available online.

Design & Procedure FEach stimulus contained 32 frames
visualizing X and Y’s values from ¢ = 1 to 32. In each case,
cause X starts initially following an OU process that reverts to
basin point u;, and switches to a new basin point up att =7
(Figure 2). The effect Y responds according to Eq.1. Each
frame lasts 750ms.

For the cover story, participants were asked to imagine
playing the role of a “forestry manager” who needs to identify
the causal relationship between different pairs of Plant A and
Plant B following observations in which Plant A’s quantity
is manipulated artificially (i.e. by the forestry commission).
The quantity of each kind of plant varies across the trial. Each
pair of Plant A and B had unique colors to ensure participants
understand that plants from different trials are not related.

Plant A is displayed in a rectangular “forest” in which the
leaves accumulate from the bottom to the top (Figure 2a). We
did this to make this quantity perceptually similar to the verti-
cal sliders used in past research (Soo & Rottman, 2018; Davis
et al., 2020a; Zhang & Rottman, 2021) where the quantity and
range can be perceived by simply considering the height and
boundaries. Plant B (the potential effect) is displayed in a cir-
cular birds-eye view of a “forest” in which the leaves appear
in random positions (Figure 2a). The quantity needs to be de-
termined by estimating the number of leaves (or the area they
cover). We used slightly different presentations for Plant A
and B to to aid separability (Soo & Rottman, 2018). Leaves
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Figure 2: The cover story and experimental stimuli. a) Visualization of task interface. b) The actual runs of how X behaved in
the experiment. ¢) How Y behaved in different conditions. Stimuli (Individual lines) were generated individually for each trial.

are never stacked or overlapping in the presentation meaning
that the circular boundary also implied an upper bound on the
range of variation for Plant B.

Participants answered “What is the relationship between
Plant A and B” by choosing one of the three radio buttons
labeled: “Positive (regular)”, “Negative (inverse)”, and “No
relationship”. The order of presentation of the radio buttons
was randomized between participants. Each stimulus could
be viewed only once and lasted a total of 24 seconds.

Each participant went through 16 trials, facing 16 stimuli
representing all combinations of Lag, Rigidity, Rangey, and
Directiony. The Directiony and hence Slope was randomly
selected for each trial. Each trial involved a unique sequence
generated by the OU process (Figure 2b and c). The order of
trials was randomized independently for each participant.

Before starting the task, participants were instructed that a
positive (regular) relationship is one in which an increase in
the quantity of Plant A causes an increase in the quantity of
Plant B, or equally that a decrease in the quantity of Plant A
causes a decrease in the quantity of Plant B. A negative (in-
verse) relationship was described as one such that an increase
in the quantity of Plant A causes a decrease in the quantity
of Plant B, or equally that a decrease in the quantity of Plant
A causes an increase in the quantity of Plant B. We added
“(regular)” and “(inverse)” after the word positive or negative
in order to emphasize that the question is about the relation-
ship itself not about the input or the the outcome of the causal
influence in the scenario (cf. Davis et al., 2020a). It was also

emphasized in the instructions that figuring out the relation-
ship would require the learner to observe both Plant A and B
and that it would be impossible to work out the relationship
by focusing on just one kind of plant. Participants had to pass
comprehension check questions before starting the task.

Results

Since all stimuli in fact display a causal relationship, we code
answers aligned with the underlying OU processes (f = 1 for
positive and B = —1 for negative) as correct (1), and others
including judgments of no connection, as incorrect (0). This
accuracy serves as the primary index in this paper.

To examine the manipulated factors, we fit mixed-effects
logistic regression models using lmerTest in R, with Sub-
ject as a random effect.! Under simple regressions with one
predictor each, lower Lag (z = 4.45, p < .001), higher Rigid-
ity (z =3.36, p < .001), increasing Directiony (z = 3.37,
p < .001), increasing Directiony (z = 3.87, p < .001) and
higher (closer to the boundaries) Rangey (z=5.59, p < .001)
all relate to higher accuracy (Figure 3), while there was no
evidence that Slope (positive or negative) made any differ-
ence to accuracy (z = 1.01, p = .31). This suggests there
was no general difference between identifying positive and
negative relationships (Figure 3). Since Slope could be seen
as an interaction effect of Directionxy and Directiony, we
later only focus on the five factors (Lag, Rigidity, Directiony,

IConcretely, we included random intercepts and slopes for each
subject (Brauer & Curtin, 2018; Barr, 2013).
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Quantity changes We first focus on the two- and three-way
interactions of three of the factors—Directiony * Directiony *
Rangey—that determined the start and end points of X and Y
(Figure 4). There was an interaction between Directiony and
Rangey (z = 2.19, p = .03), such that the boundary effects
were stronger between Y’s decreasing from around 24 to 8
vs. from 48 to 32, than between increasing from 48 to 64 vs.
from 24 to 40 (Figure 2). Interestingly, there was an interac-
tion between Directiony and Rangey such that the boundary
effect was stronger when the cause increased than decreased
(z =4.85, p < .001). This might indicate that participants’
processing of X and Y happened sequentially rather than in
parallel, where the deficit of reasoning through X would in-
fluence the reasoning of Y. There was also a three-way inter-
action (z = 3.52, p < .001) such that the boundary effect was
largest when X increased and when Y decreased from 24 to 8
vs. from 48 to 32 (Figure 4).

Detailed dynamics We now investigate factors that influ-
enced the trajectory of how Y arrived at its final value:
LagxRigidity. There was no interaction between Lag and
Rigidity (z=1.19, p = .23). As for whether Lag or Rigid-
ity interact with Directiony, Directiony, or Rangey, we found
no two- or three-way interactions.

2 All main effects remained significant when we tested interac-
tions so we do not report them again here.

Choice frequency We finally checked the frequency of
three choices (positive, negative, no relationship) under dif-
ferent conditions. Since the relationship cannot be deter-
mined by any single factor apart from Slope, we normatively
would not expect any other single factor to predict the fre-
quency of positive vs. negative choice. As shown in Figure 5,
the relative frequency of positive vs. negative did not vary
much depending on Lag (multinomial regression: z = 1.44,
p = .15) or Rigidity (z =0.35, p = .73). The only difference
is that people chose “no relationship” more often when the
causal lag was long or when Y’s change was non-rigid. How-
ever, the frequency of positive vs. negative did vary depend-
ing on Directiony and Directiony. Participants were more
inclined to choose positive (regular) relationships when X in-
creased, and choose negative (inverse) relationships when X
decreased (z = 5.45, p < .001). Similarly, they chose more
positive (regular) relationships when Y increased, and more
negative (inverse) relationships when Y decreased (z = 3.11,
p = .002). This shows that judgments were influenced by
the change direction of each variable taken separately in spite
of instruction to focus on the relationship between two vari-
ables. Finally, the difference between positive vs. negative
was larger in the boundary than the central range condition
(z =3.78, p < .001). This is aligned with the finding that
participants performed best with the stimuli in which Y de-
creased to the lower bound as X increased.

Discussion

Everyday experience is one of endless small changes that oc-
cur from moment to moment. Making useful causal discover-
ies under these continuous dynamics may involve complex
and hierarchical cognitive processes that cognitive science
is just beginning to explain. In this paper we described a
study that systematically investigates how several elemental
aspects of continuous dynamics combine in shaping real-time
dynamic causal inferences.

As has been found with discrete variables (Buehner & Mc-
Gregor, 2006; Shanks et al., 1989; Lagnado & Speekenbrink,
2010), people more reliably identified a relationship when
its causal lag was short than long. This is already a depar-
ture from standard statistical models such as Granger causal-
ity that do not inherently favor any particular lag (Granger,
1969). Since the trajectory of Y’s change was identical for
short and long lags except for the onset time, it is unlikely
that Y’s changes under the long lag were harder to perceive.
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This could be more indicative of a memory constraint or prior
expectation that causal lags will be short, making causal at-
tributions less certain under longer lag times. It is also pos-
sible that people concluded there was no relationship toward
the end of the observation and so paid little attention to what
happened afterward.

Accuracy was higher when the effect changed rigidly. This
replicated the finding on Davis et al. (2020b) but in a cleaner
passive learning setting where we controlled the total amount
of change. One possibility is that people have an indepen-
dent representation of rigidity and follow their causal intu-
itions by expecting effects to respond rigidly, especially when
the cause changed rigidly, as in the current study. Another
possibility is that rigidity works interdependently with other
factors to influence how perceptually salient the change is.
Future work could look closer at both explanations. Although
people were asked to judge the relationship between two vari-
ables, their judgments were influenced by the direction of
change of a single variable, with a general increase in accu-
racy when both were positive. Again, purely statistical mod-
els seldom differentiate between increases and decreases of a
single variable in time. Participants were more accurate when
they observed that the cause increased or the effect increased,
in alignment with heightened sensitivity to positive evidence
in general (Kao & Wasserman, 1993; Newman et al., 1980).
We also see hints of use of a heuristic of using the increase or
decrease of one variable as a stand-in for the direction of the
relationship. It could be that people may have prototypes for
how positive or negative relationships typically look in time-
series data. This finding is of practical relevance to issues of
creating effective data visualizations to communicate causal
relationships (Soo & Rottman, 2020). One may want to trans-
form variables so as to visualize them in ways that make use
of inductive biases rather than require overriding them.

Participants’ judgments were also influenced by the per-
ceivability of change. We found they performed better when
Y’s change was easier to detect, i.e. closer to the lower or up-
per bound of the range. This is consistent with the idea that
numerical quantities are often represented logarithmically in
cognition (Kim & Opfer, 2017; Thompson & Opfer, 2008).
This reminds us that it is important to consider potential for
non-linearity in how values with different formats are per-
ceived and represented in the human mind when studying
causal learning in continuous settings.

Our results highlight several ways that general-purpose sta-

tistical models like linear regression may fail to account for
basic phenomena in human cognition (Yarkoni, 2022). This
is connected to research outside the narrow field of causal-
ity that studies how people interact with realistically com-
plex systems (Adolph & Hoch, 2019; Smith & Thelen, 2003),
and the dynamic, nonlinear generative models they may form
when reasoning in these environments (see Clark, 2013, for
review). In future work, we plan to develop quantitative ac-
counts of effects obtained from the current experiment and
also experiments with varied formats and cover stories. This
includes incorporating priors, exploring a wider range of time
dynamics and contrasting models that represent causality ei-
ther continuously or discretely. It is possible that people still
use continuous representations (i.e. as something like an OU
process in the head) but make different functional or parame-
terization assumptions that lead them to deviate from directly
reverse engineering the generative model behind these stim-
uli. It is also possible that people abstract away to higher-
level and more discrete representations, such as marking sub-
stantial changes as events linked by parametric causal delays
(Davis et al., 2020b; Bramley, Gerstenberg, Mayrhofer, &
Lagnado, 2018; Gong & Bramley, 2020). For example, some-
one might simplify complex dynamics by abstracting events
such as (X increased dramatically at # = 1) triggering another
(Y increased/decreased around ¢t = 5). This would unlock rea-
soning at the level of events providing a different set of com-
putational opportunities and constraints (Davis et al., 2020b;
Gong & Bramley, 2020). In doing this, we hope these em-
pirical findings can speak to the large topic of how bounded
human learners (Simon, 1982), succeed in identifying useful
causal representations of a continuous dynamic world.

In sum, we systematically tested factors that seemed likely
to influence judgments about the nature of a single causal
relationship. We found that, indeed, judgment patterns re-
flected plausible inductive biases—preferences for shorter
lags, and positive changes—but also more perceptual factors,
such as sensitivity to range of change relative to each vari-
able’s bounds, and the rigidity with which an effect adjusts to
changes in its cause. The insensitivity of standard time-series
models to these factors suggests they may have limited util-
ity in accounting for human causal induction. We argue that
careful work to reverse engineer how human inductive biases
and perceptual constraints combine in shaping causal repre-
sentation is necessary for understanding the cognitive process
of causal induction in a continuous world.
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