

Edinburgh Research Explorer

Reactive bisimulation semantics for a process algebra with
timeouts

Citation for published version:
van Glabbeek, R 2022, 'Reactive bisimulation semantics for a process algebra with timeouts', Acta
Informatica. https://doi.org/10.1007/s00236-022-00417-1

Digital Object Identifier (DOI):
10.1007/s00236-022-00417-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Acta Informatica

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.1007/s00236-022-00417-1
https://doi.org/10.1007/s00236-022-00417-1
https://www.research.ed.ac.uk/en/publications/10490eb5-1683-4dfc-ad5c-2667e0d3f37a

Acta Informatica
https://doi.org/10.1007/s00236-022-00417-1

ORIG INAL ART ICLE

Reactive bisimulation semantics for a process algebra with
timeouts

Rob van Glabbeek1,2

Received: 5 May 2021 / Accepted: 6 February 2022
© The Author(s) 2022

Abstract
This paper introduces the counterpart of strong bisimilarity for labelled transition systems
extended with timeout transitions. It supports this concept through a modal characterisation,
congruence results for a standard process algebra with recursion, and a complete axiomati-
sation.

1 Introduction

This is a contribution to classic untimed non-probabilistic process algebra,modelling systems
that move from state to state by performing discrete, uninterpreted actions. A system is
modelled as a process-algebraic expression, whose standard semantics is a state in a labelled
transition system (LTS). An LTS consists of a set of states, with action-labelled transitions
between them. The execution of an action is assumed to be instantaneous, so when any time
elapses the systemmust be in one of its states. With “untimed” I mean that I will refrain from
quantifying the passage of time; however, whether a system can pause in some state or not
will be part of my model.

Following [33], I consider reactive systems that interact with their environments through
the synchronous execution of visible actions a, b, c, . . . taken from an alphabet A. At any
time, the environment allows a set of actions X ⊆ A, while blocking all other actions. At
discrete moments, the environment can change the set of actions it allows. In a metaphor
from [33], the environment of a system can be seen as a user interacting with it. This user has
a button for each action a ∈ A, on which it can exercise pressure. When the user exercises
pressure and the system is in a state where it can perform action a, the action occurs. For the
system, this involves taking an a-labelled transition to a following state; for the environment
it entails the button going down, thus making the action occurrence observable. This can
trigger the user to alter the set of buttons on which it exercises pressure.

An extended abstract of this paper appears in the proceedings of CONCUR 2020. https://doi.org/10.4230/
LIPIcs.CONCUR.2020.6.

B Rob van Glabbeek
rvg@cs.stanford.edu

1 Data61, CSIRO, Sydney, NSW, Australia

2 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-022-00417-1&domain=pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2020.6
https://doi.org/10.4230/LIPIcs.CONCUR.2020.6

R. van Glabbeek

The current paper considers two special actions that can occur as transition labels: the
traditional hidden action τ [33], modelling the occurrence of an instantaneous action from
which we abstract, and the timeout action t, modelling the end of a time-consuming activity
from which we abstract. The latter was introduced in [18] and constitutes the main novelty
of the present paper with respect to [33] and forty years of research in process algebra. Both
special actions are assumed to be unobservable, in the sense that their occurrence cannot
trigger any state-change in the environment. Conversely, the environment cannot cause or
block the occurrence of these actions.

Following [18], I model the passage of time in the following way. When a system arrives
in a state P , and at that time X is the set of actions allowed by the environment, there are
two possibilities. If P has an outgoing transition P α−→ Q with α ∈ X ∪ {τ }, the system
immediately takes one of the outgoing transitions P α−→ Q with α ∈ X ∪ {τ }, without
spending any time in state P . The choice between these actions is entirely nondeterministic.
The system cannot immediately take a transition b−→ with b ∈ A\X , because the action b is
blocked by the environment. Neither can it immediately take a transition P t−→ Q, because
such transitions model the end of an activity with a finite but positive duration that started
when reaching state P .

In case P has no outgoing transition P α−→ Q with α ∈ X ∪ {τ }, the system idles in state
P for a positive amount of time. This idling can end in two possible ways. Either one of the
timeout transitions P t−→ Q occurs, or the environment spontaneously changes the set of
actions it allows into a different set Y with the property that P a−→ Q for some a ∈ Y . In the
latter case, a transition P a−→ Q occurs, with a ∈ Y . The choice between the various ways
to end a period of idling is entirely nondeterministic. It is possible to stay forever in state P
only if there are no outgoing timeout transitions P t−→ Q.

The addition of timeouts enhances the expressive power of LTSs and process algebras. The
process a.P + t.b.Q, for instance, models a choice between a.P and b.Q where the former
has priority. In an environment where a is allowed it will always choose a.P and never b.Q;
but in an environment that blocks a the process will, after some delay, proceed with b.Q.
Such a prioritymechanism cannot bemodelled in standard process algebraswithout timeouts,
such as CCS [33], CSP [6, 28] and ACP [2, 10]. Additionally, mutual exclusion cannot be
correctly modelled in any of these standard process algebras [20], but adding timeouts makes
it possible—see Sect. 11 for a more precise statement.

In [18], I characterised the coarsest reasonable semantic equivalence on LTSs with
timeouts—the one induced by may testing, as proposed by De Nicola and Hennessy [8].
In the absence of timeouts, may testing yields weak trace equivalence, where two processes
are defined equivalent iff they have the sameweak traces: sequence of actions the system can
perform, while eliding hidden actions. In the presence of timeouts weak trace equivalence
fails to be a congruence for common process algebraic operators, and may testing yields its
congruence closure, characterised in [18] as (rooted) failure trace equivalence.

The present paper aims to characterise one of the finest reasonable semantic equivalences
on LTSs with timeouts—the counterpart of strong bisimilarity for LTSs without timeouts.
Naturally, strong bisimilarity can be applied verbatim to LTSs with timeouts—and has been
in [18]—by treating t exactly like any visible action. Here, however, I aim to take into account
the essence of timeouts, and propose an equivalence that satisfies some natural laws discussed
in [18], such as τ.P + t.Q = τ.P and a.P + t.(Q + τ.R + a.S) = a.P + t.(Q + τ.R). To
motivate the last law, note that the timeout transitiona.P+t.(Q+τ.R+a.S)

t−→ Q+τ.R+a.S
can occur only in an environment that blocks the action a, for otherwise a would have taken

123

Reactive bisimulation semantics for a process algebra with timeouts

place before the timeout went off. The occurrence of this transition is not observable by the
environment, so right afterwards the state of the environment is unchanged, and the action a
is still blocked. Therefore, the process Q+ τ.R+a.S will, without further ado, proceed with
the τ -transition to R, or any action from Q, just as if the a.S summand were not present.

Standard process algebras and LTSswithout timeouts canmodel systemswhose behaviour
is triggered by input signals from the environment in which they operate. This is why they
are called “reactive systems”. By means of timeouts, one can additionally model systems
whose behaviour is triggered by the absence of input signals from the environment, during a
sufficiently long period. This creates a greater symmetry between a system and its environ-
ment, as it has always been understood that the environment or user of a system can change
its behaviour as a result of sustained inactivity of the system it is interacting with. Hence, one
could say that process algebras and LTSs enriched with timeouts form a more faithful model
of reactivity. It is for this reason that I use the name reactive bisimilarity for the appropriate
form of bisimilarity on systems modelled in this fashion.

Section 2 introduces strong reactive bisimilarity as the proper counterpart of strong bisim-
ilarity in the presence of timeout transitions. Naturally, it coincides with strong bisimilarity
when there are no timeout transitions. Section 3 derives a modal characterisation; a reactive
variant of theHennessy–Milner logic. Section 4 offers an alternative characterisation of strong
reactive bisimilarity that will be more convenient in proofs, although it is lacks the intuitive
appeal to be used as the initial definition. Appendix C, reporting on work by Max Pohlmann
[37], offers yet another characterisation of strong reactive bisimilarity; one that reduces it to
strong bisimilarity in a context that models a system together with its environment.

Section 5 recalls the process algebra CCSP, a common mix of CCS and CSP, and adds
the timeout action, as well as two auxiliary operators that will be used in the forthcoming
axiomatisation. Section 6 states that in this process algebra one can express all countably
branching transition systems, and only those, or all and only the finitely branching ones when
restricting to guarded recursion.

Section 7 recalls the concept of a congruence, focusing on the congruence property for
the recursion operator, which is commonly the hardest to establish. It then shows that the
simple initials equivalence, as well as Milner’s strong bisimilarity, are congruences. Due to
the presence of negative premises in the operational rules for the auxiliary operators, these
proofs are not entirely trivial. Using these results as a stepping stone, Sect. 8 shows that
strong reactive bisimilarity is a congruence for my extension of CCSP. Here, the congruence
property for one of the auxiliary operators with negative premises is needed in establishing
the result for the common CCSP operators, such as parallel composition.

Section 9 shows that guarded recursive specifications have unique solutions up to strong
reactive bisimilarity. Using this, Sect. 10 provides a sound and complete axiomatisation for
processes with guarded recursion. My completeness proof combines three innovations in
establishing completeness of process algebraic axiomatisations. First of all, following [22],
it applies to all processes in a Turing powerful language like guarded CCSP, rather than the
more common fragment merely employing finite sets of recursion equations featuring only
choice and action prefixing. Secondly, instead of the classic technique of merging guarded
recursive equations [11, 30–32, 40], which in essence proves two bisimilar systems P and
Q equivalent by equating both to an intermediate variant that is essentially a product of
P and Q, I employ the novel method of canonical solutions [24, 29], which equates both
P and Q to a canonical representative within the bisimulation equivalence class of P and
Q—one that has only one reachable state for each bisimulation equivalence class of states
of P and Q. In fact I tried so hard, and in vain, to apply the traditional technique of merging
guarded recursive equations, that I came to believe that it fundamentally does not work for

123

R. van Glabbeek

this axiomatisation. The third innovation is the use of the axiom of choice [41] in defining
the transition relation on my canonical representative, in order to keep this process finitely
branching.

Section 11 describes a worthwhile gain in expressiveness caused by the addition of time-
outs, and presents an agenda for future work.

2 Reactive bisimilarity

A labelled transition system (LTS) is a triple (P, Act,→) with P a set (of states or pro-
cesses), Act a set (of actions) and → ∈ P × Act × P. In this paper, I consider LTSs with
Act := A�{τ, t}, where A is a set of visible actions, τ is the hidden action, and t the timeout
action. The set of initial actions of a process P ∈ P is I(P) := {α ∈ A ∪ {τ } | P α−→}. Here
P α−→ means that there is a Q with P α−→ Q.

Definition 1 A strong reactive bisimulation is a symmetric relationR ⊆ (P×P(A)×P)∪
(P × P) (meaning that (P, X , Q) ∈ R ⇔ (Q, X , P) ∈ R and (P, Q) ∈ R ⇔ (Q, P) ∈
R), such that,

• if (P, Q) ∈ R and P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, Q′) ∈ R,
• if (P, Q) ∈ R then (P, X , Q) ∈ R for all X ⊆ A,

and for all (P, X , Q) ∈ R,

• if P a−→ P ′ with a ∈ X , then there exists a Q′ such that Q a−→ Q′ and (P ′, Q′) ∈ R,
• if P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, X , Q′) ∈ R,
• if I(P) ∩ (X ∪ {τ }) = ∅, then (P, Q) ∈ R, and
• if I(P)∩(X∪{τ }) = ∅ and P t−→ P ′, then ∃Q′ such that Q t−→ Q′ and (P ′, X , Q′) ∈ R.

Processes P, Q ∈ P are strongly X-bisimilar, denoted P ↔X
r Q, if (P, X , Q) ∈ R for

some strong reactive bisimulationR. They are strongly reactive bisimilar, denoted P ↔r Q,
if (P, Q) ∈ R for some strong reactive bisimulation R.

Intuitively, (P, X , Q) ∈ R says that processes P and Q behave the same way, as witnessed
by the relationR, when placed in the environment X—meaning any environment that allows
exactly the actions in X to occur—whereas (P, Q) ∈ R says they behave the same way in an
environment that has just been triggered to change. An environment can be thought of as an
unknown process placed in parallel with P and Q, using the operator ‖A, enforcing synchro-
nisation on all visible actions. The environment X can be seen as a process

∑
i∈I ai .Ri + t.R

where {ai | i ∈ I } = X . A triggered environment, on the other hand, can execute a sequence
of instantaneous hidden actions before stabilising as an environment Y , for Y ⊆ A. During
this execution, actions can be blocked and allowed in rapid succession. Since the environment
is unknown, the bisimulation should be robust under any such environment.

The first clause for (P, X , Q) ∈ R is like the common transfer property of strong bisim-
ilarity [33]: a visible a-transition of P can be matched by one of Q, such that the resulting
processes P ′ and Q′ are related again. However, I require it only for actions a ∈ X , because
actions b ∈ A\X cannot happen at all in the environment X , and thus need not be matched
by Q. Since the occurrence of a is observable by the environment, this can trigger the envi-
ronment to change the set of actions it allows, so P ′ and Q′ ought to be related in a triggered
environment.

123

Reactive bisimulation semantics for a process algebra with timeouts

The second clause is the transfer property for τ -transitions. Since these are not observable
by the environment, they cannot trigger a change in the set of actions allowed by it, so the
resulting processes P ′ and Q′ should be related only in the same environment X .

The first clause for (P, Q) ∈ R expresses the transfer property for τ -transitions in a trig-
gered environment. Here, it may happen that the τ -transition occurs before the environment
stabilises, and hence P ′ and Q′ will still be related in a triggered environment. A similar
transfer property for a-transitions is already implied by the next two clauses.

The second clause allows a triggered environment to stabilise into any environment X .
The first two clauses for (P, X , Q) ∈ R imply that if (P, X , Q) ∈ R then I(P) ∩ (X ∪

{τ }) = I(Q)∩(X∪{τ }). So P ↔r Q impliesI(P) = I(Q). The conditionI(P)∩(X∪{τ }) =
∅ is necessary and sufficient for the system to remain a positive amount of time in state P when
X is the set of allowed actions. The next clause says that during this time the environment
may be triggered to change the set of actions it allows by an event outside our model, that is,
by a timeout in the environment. So P and Q should be related in a triggered environment.

The last clause says that also a t-transition of P should be matched by one of Q. Naturally,
the t-transition of P can be taken only when the system is idling in P , i.e. when I(P)∩ (X ∪
{τ }) = ∅. The resulting processes P ′ and Q′ should be related again, but only in the same
environment allowing X .

Proposition 2 Strong X-bisimilarity and strong reactive bisimilarity are equivalence rela-
tions.

Proof ↔X
r ,↔r are reflexive, as {(P, X , P), (P, P) | P ∈ P ∧ X ⊆ A} is a strong reactive

bisimulation.
↔X

r and↔r are symmetric, since strong reactive bisimulations are symmetric by definition.
↔X

r and↔r are transitive, for ifR and S are strong reactive bisimulations, then so is

R;S = {(P, X , R) | ∃Q. (P, X , Q) ∈ R ∧ (Q, X , R) ∈ S }
∪{(P, R) | ∃Q. (P, Q) ∈ R ∧ (Q, R) ∈ S }. ��

Note that the union of arbitrarily many strong reactive bisimulations is itself a strong reactive
bisimulation. Therefore, the family of relations↔r ,↔X

r for X ⊆ A can be seen as a strong
reactive bisimulation.

To get a firm grasp on strong reactive bisimilarity, the reader is invited to check the two
laws mentioned in the Introduction, and then to construct a strong reactive bisimulation
between the two systems depicted in Fig. 1. Here, P , Q, R and S are arbitrary subprocesses.
The four processes that are targets of t-transitions always run in an environment that blocks
b. In an environment that allows a, the branch b.R disappears, so that the left branch of the
first process can be matched with the left branch of the second process, and similarly for the
two right branches. In an environment that blocks a, this matching won’t fly, as the branch
b.R now survives. However, the branches a.Q will disappear, so that the left branch of the
first process can be matched with the right branch of the second, and vice versa.

The processes U and V of Fig. 2 show that the pairs that occur in a strong reactive
bisimulation are not completely determined by the triples. One hasU ↔X

r V for any X ⊆ A,
yet U �↔ rV . In particular, when a ∈ X the branch t.R is redundant, and when a /∈ X the
branch a.Q is redundant.

Appendix C, reporting on work by Max Pohlmann [37], offers a context C with the
property that P ↔r Q iff C (P) ↔C (Q), thereby reducing strong reactive bisimilarity to
strong bisimilarity. The context C places a system in a most general environment in which
it could be running. This result allows any toolset for checking strong bisimilarity to be
applicable for checking strong reactive bisimilarity.

123

R. van Glabbeek

P

b t

τ

Q

a

R

b

S

a

t

τ

a

P

b t

Q

a

R

b

S

a

t

τ τ

a

Fig. 1 Two strongly reactive bisimilar processes

U

τ

τ

Q

a

R

t

S

a

τ

τ

a

V

τ

Q

a

R

t

S

a

τ

τ τ

a

Fig. 2 Reactive bisimilarity is not fully determined by reactive X -bisimilarity

2.1 Amore general form of reactive bisimulation

The following notion of a generalised strong reactive bisimulation (gsrb) generalises that of
a strong reactive bisimulation; yet it induces the same concept of strong reactive bisimilarity.
This makes the relation convenient to use for further analysis. I did not introduce it as the
original definition, because it lacks a strong motivation.

Definition 3 A gsrb is a symmetric relation R ⊆ (P× P(A) ×P) ∪ (P×P) such that,
for all (P, Q) ∈ R,

• if P α−→ P ′ with α ∈ A∪{τ }, then there exists a Q′ such that Q α−→ Q′ and (P ′, Q′) ∈ R,
• if I(P) ∩ (X ∪ {τ }) = ∅ with X ⊆ A and P t−→ P ′, then ∃Q′ with Q t−→ Q′ and

(P ′, X , Q′) ∈ R,

and for all (P, Y , Q) ∈ R,

• if P a−→ P ′ with either a ∈ Y or I(P) ∩ (Y ∪ {τ }) = ∅, then ∃Q′ with Q a−→ Q′ and
(P ′, Q′) ∈ R,

123

Reactive bisimulation semantics for a process algebra with timeouts

• if P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, Y , Q′) ∈ R,
• if I(P) ∩ (X ∪ Y ∪ {τ }) = ∅ with X ⊆ A and P t−→ P ′ then ∃Q′ with Q t−→ Q′ and

(P ′, X , Q′) ∈ R.

Unlike Definition 1, a gsrb needs the triples (P, X , Q) only after encountering a t-transition;
two systems without t-transitions can be related without using these triples at all.

Proposition 4 P ↔r Q iff there exists a gsrb R with (P, Q) ∈ R.
Likewise, P ↔X

r Q iff there exists a gsrbR with (P, X , Q) ∈ R.

Proof Clearly, each strong reactive bisimulation satisfies the five clauses of Definition 3 and
thus is a gsrb. In the other direction, given a gsrbB, let

R := B∪ {(P, X , Q) | (P, Q) ∈ B ∧ X ⊆ A}
∪ {(P, Q), (P, X , Q) | ∃Y . (P, Y , Q) ∈ B ∧ I(P) ∩ (Y ∪ {τ }) = ∅ ∧ X ⊆ A} .

It is straightforward to check that R satisfies the six clauses of Definition 1. ��

The above proof has been formalised in [37], using the interactive proof assistant Isabelle.
The formalisation takes up around 250 lines of code.

3 Amodal characterisation of strong reactive bisimilarity

The Hennessy–Milner logic [27] expresses properties of the behaviour of processes in an
LTS.

Definition 5 The classO of infinitary HML formulas is defined as follows, where I ranges
over all index sets and α over A ∪ {τ }:

ϕ ::=
∧

i∈I
ϕi | ¬ϕ | 〈α〉ϕ

� abbreviates the empty conjunction, and ϕ1 ∧ ϕ2 stands for
∧

i∈{1,2} ϕi .

P |� ϕ denotes that process P satisfies formula ϕ. The first two operators represent the
standard Boolean operators conjunction and negation. By definition, P |� 〈α〉ϕ iff P α−→ P ′
for some P ′ with P ′ |� ϕ.

A famous result stemming from [27] states that

P ↔Q ⇔ ∀ϕ ∈ O. (P |� ϕ ⇔ Q |� ϕ)

where↔ denotes strong bisimilarity [27, 33], formally defined in Sect. 7.2. It states that the
Hennessy–Milner logic yields a modal characterisation of strong bisimilarity. I will now
adapt this result to obtain a modal characterisation of strong reactive bisimilarity.

To this end, I extend the Hennessy–Milner logic with a new modality 〈X〉, for X ⊆ A,
and auxiliary satisfaction relations |�X ⊆ P×O for each X ⊆ A. The formula P |� 〈X〉ϕ
says that in an environment X , allowing exactly the actions in X , process P can perform a
timeout transition to a process that satisfies ϕ. P |�X ϕ says that P satisfies ϕ when placed

123

R. van Glabbeek

in environment X . The relations |� and |�X are the smallest ones satisfying:

P |� ∧
i∈I ϕi if ∀i ∈ I . P |� ϕi

P |� ¬ϕ if P �|� ϕ

P |� 〈α〉ϕ with α ∈ A ∪ {τ } if ∃P ′. P α−→ P ′ ∧ P ′ |� ϕ

P |� 〈X〉ϕ with X ⊆ A if I(P) ∩ (X ∪ {τ }) = ∅ ∧ ∃P ′. P t−→ P ′ ∧ P ′ |�X ϕ

P |�X
∧

i∈I ϕi if ∀i ∈ I . P |�X ϕi
P |�X ¬ϕ if P �|�X ϕ

P |�X 〈a〉ϕ with a ∈ A if a ∈ X ∧ ∃P ′. P a−→ P ′ ∧ P ′ |� ϕ

P |�X 〈τ 〉ϕ if ∃P ′. P τ−→ P ′ ∧ P ′ |�X ϕ

P |�X ϕ if I(P) ∩ (X ∪ {τ }) = ∅ ∧ P |� ϕ

Note that a formula 〈a〉ϕ is less often true under |�X than under |�, due to the side condition
a ∈ X . This reflects the fact that a cannot happen in an environment that blocks it. The last
clause in the above definition reflects the fifth clause of Definition 1. If I(P)∩(X ∪{τ }) = ∅,
then process P , operating in environment X , idles for a while, during which the environment
can change. This ends the blocking of actions a /∈ X and makes any formula valid under |�
also valid under |�X .

Example 6 Both systems from Fig. 1 satisfy 〈∅〉〈τ 〉〈b〉� ∧ 〈∅〉〈τ 〉¬〈b〉� ∧ 〈{a}〉〈a〉�
∧ 〈{a}〉¬〈a〉� and neither satisfies 〈∅〉(〈a〉� ∧ 〈τ 〉〈b〉�) or 〈{a}〉(〈a〉� ∧ 〈τ 〉〈b〉�).

Theorem 7 Let P, Q ∈ P and X ⊆ A. Then P ↔r Q ⇔ ∀ϕ ∈ O. (P |� ϕ ⇔ Q |� ϕ)

and P ↔X
r Q ⇔ ∀ϕ ∈ O. (P |�X ϕ ⇔ Q |�X ϕ).

Proof “⇒”: I prove by simultaneous structural induction on ϕ ∈ O that, for all P, Q ∈ P
and X ⊆ A, P ↔r Q ∧ P |� ϕ ⇒ Q |� ϕ and P ↔X

r Q ∧ P |�X ϕ ⇒ Q |�X ϕ. For
each ϕ, the converse implications (Q |� ϕ ⇒ P |� ϕ and Q |�X ϕ ⇒ P |�X ϕ) follow by
symmetry. In particular, these converse directions may be used when invoking the induction
hypothesis.

• Let P ↔r Q ∧ P |� ϕ.

– Let ϕ = ∧
i∈I ϕi . Then, P |� ϕi for all i ∈ I . By induction Q |� ϕi for all i , so

Q |� ∧
i∈I ϕi .

– Let ϕ = ¬ψ . Then, P �|� ψ . By induction Q �|� ψ , so Q |� ¬ψ .
– Let ϕ = 〈α〉ψ with α ∈ A ∪ {τ }. Then, P α−→ P ′ for some P ′ with P ′ |� ψ . By

Definition 3, Q α−→ Q′ for some Q′ with P ′ ↔r Q
′. So by induction Q′ |� ψ , and

thus Q |� 〈α〉ψ .
– Let ϕ = 〈X〉ψ for some X ⊆ A. Then, I(P)∩ (X ∪{τ }) = ∅ and P t−→ P ′ for some

P ′ with P ′ |�X ψ . By Definition 3, Q t−→ Q′ for some Q′ with P ′ ↔X
r Q′. So by

induction Q′ |�X ψ . Moreover, I(Q) = I(P), as P ↔r Q, so I(Q)∩(X∪{τ }) = ∅.
Thus, Q |� 〈X〉ψ .

• Let P ↔X
r Q ∧ P |�X ϕ.

– Let ϕ = ∧
i∈I ϕi , and P |�X ϕi for all i ∈ I . By induction Q |�X ϕi for all i ∈ I ,

so q |�X
∧

i∈I ϕi .
– Let ϕ = ¬ψ , and P �|�X ψ . By induction Q �|�X ψ , so Q |�X ¬ψ .
– Let ϕ = 〈a〉ψ with a ∈ X and P a−→ P ′ for some P ′ with P ′ |� ψ . By Definition 1,

Q a−→ Q′ for some Q′ with P ′ ↔r Q
′. By induction Q′ |� ψ , so Q |�X 〈a〉ψ .

123

Reactive bisimulation semantics for a process algebra with timeouts

– Let ϕ = 〈τ 〉ψ , and P τ−→ P ′ for some P ′ with P ′ |�X ψ . By Definition 1, Q τ−→ Q′
for some Q′ with P ′ ↔X

r Q′. By induction Q′ |�X ψ , so Q |�X 〈τ 〉ψ .
– Let I(P) ∩ (X ∪ {τ }) = ∅ and P |� ϕ. By the fifth clause of Definition 1, P ↔r Q.

Hence, by the previous case in this proof, Q |� ϕ. Moreover, I(Q) ∩ (X ∪ {τ }) =
I(P) ∩ (X ∪ {τ }), since P ↔X

r Q. Thus, Q |�X ϕ.

“⇐”: Write P ≡ Q for ∀ϕ ∈ O. (P |� ϕ ⇔ Q |� ϕ), and P ≡X Q for ∀ϕ ∈ O. (P |�X ϕ

⇔ Q |�X ϕ). I show that the family of relations ≡, ≡X for X ⊆ A constitutes a gsrb.

• Suppose P ≡ Q and P α−→ P ′ with α ∈ A ∪ {τ }. Let Q† := {Q† ∈ P | Q α−→
Q† ∧ P ′ �≡ Q†}. For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |� ϕQ† and
Q† �|� ϕQ† . (Such a formula always exists becauseO is closed under negation.) Define
ϕ := ∧

Q†∈Q† ϕQ† . Then, P ′ |� ϕ, so P |� 〈a〉ϕ. Consequently, also Q |� 〈a〉ϕ. Hence,
there is a Q′ with Q α−→ Q′ and Q′ |� ϕ. Since none of the Q† ∈ Q† satisfies ϕ, one
obtains Q′ /∈ Q† and thus P ′ ≡ Q′.

• Suppose P ≡ Q, X ⊆ A, I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. Let

Q† := {Q† ∈ P | Q t−→ Q† ∧ P ′ �≡X Q†}.
For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |�X ϕQ† and Q† �|�X ϕQ† .
Define ϕ := ∧

Q†∈Q† ϕQ† . Then, P ′ |�X ϕ, so P |� 〈X〉ϕ. Consequently, also Q

|� 〈X〉ϕ. Hence, there is a Q′ with Q t−→ Q′ and Q′ |�X ϕ. Again, Q′ /∈ Q† and thus
P ′ ≡X Q′.

• Suppose P ≡Y Q and P α−→ P ′ with a ∈ A and either a ∈ Y or I(P) ∩ (Y ∪ {τ }) = ∅.
Let Q† := {Q† ∈ P | Q α−→ Q† ∧ P ′ �≡ Q†}. For each Q† ∈ Q†, let ϕQ† ∈ O be a
formula such that P ′ |� ϕQ† and Q† �|� ϕQ† . Define ϕ := ∧

Q†∈Q† ϕQ† . Then, P ′ |� ϕ,
so P |� 〈a〉ϕ, and also P |�Y 〈a〉ϕ, using either the third or last clause in the definition
of |�X . Hence, also Q |�Y 〈a〉ϕ. Therefore, there is a Q′ with Q α−→ Q′ and Q′ |� ϕ,
using the third clause of either |�X or |�. Since none of the Q† ∈ Q† satisfies ϕ, one
obtains Q′ /∈ Q† and thus P ′ ≡ Q′.

• The fourth clause of Definition 3 is obtained exactly like the first, but using |�Y instead
of |�.

• Suppose P ≡Y Q, P t−→ P ′ and I(P) ∩ (X ∪ Y ∪ {τ }) = ∅, with X ⊆ A. Let

Q† := {Q† ∈ P | Q t−→ Q† ∧ P ′ �≡X Q†}.
For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |�X ϕQ† and Q† �|�X ϕQ† .
Define ϕ := ∧

Q†∈Q† ϕQ† . Then, P ′ |�X ϕ, so P |� 〈X〉ϕ, and thus P |�Y 〈X〉ϕ.
Consequently, also Q |�Y 〈X〉ϕ and therefore Q |� 〈X〉ϕ. Hence, there is a Q′ with
Q t−→ Q′ and Q′ |�X ϕ. Again Q′ /∈ Q† and thus P ′ ≡X Q′. ��

4 Timeout bisimulations

I will now present a characterisation of strong reactive bisimilarity in terms of a binary
relation B on processes—a strong timeout bisimulation—not parametrised by the set of
allowed actions X . To this end, I need a family of unary operators θX on processes, for
X ⊆ A. These environment operators place a process in an environment that allows exactly

123

R. van Glabbeek

the actions in X to occur. They are defined by the following structural operational rules.

x τ−→ y

θX (x) τ−→ θX (y)

x a−→ y

θX (x) a−→ y
(a ∈ X)

x α−→ y x
β
� for all β ∈ X ∪ {τ }
θX (x) α−→ y

(α ∈ A ∪ {t})

The operator θX modifies its argument by inhibiting all initial transitions (here including also
those that occur after a τ -transition) that cannot occur in the specified environment. When
an observable transition does occur, the environment may be triggered to change, and the

inhibiting effect of the θX -operator comes to an end. The premises x
β
� for all β ∈ X ∪ {τ }

in the third rule guarantee that the process x will idle for a positive amount of time in its
current state. During this time, the environment may be triggered to change, and again the
inhibiting effect of the θX -operator comes to an end.

Below I assume thatP is closed under θ , that is, if P ∈ P and X ⊆ A then θX (P) ∈ P.

Definition 8 A strong timeout bisimulation is a symmetric relation B ⊆ P×P, such that,
for P B Q,

• if P α−→ P ′ with α ∈ A ∪ {τ }, then ∃Q′ such that Q α−→ Q′ and P ′ B Q′,
• ifI(P)∩(X∪{τ }) = ∅ and P t−→ P ′, then∃Q′ such that Q t−→ Q′ and θX (P ′) B θX (Q′).

Proposition 9 P ↔r Q iff there exists a strong timeout bisimulation B with P B Q.

Proof Let R be a gsrb on P. Define B ⊆ P × P by P B Q iff either (P, Q) ∈ R
or P = θX (P†), Q = θX (Q†) and (P†, X , Q†) ∈ R. I show that B is a strong timeout
bisimulation.

• Let P B Q and P a−→ P ′ with a ∈ A. First suppose (P, Q) ∈ R. Then, by the first clause
of Definition 3, there exists a Q′ such that Q a−→ Q′ and (P ′, Q′) ∈ R. So P ′ B Q′.
Next suppose P = θX (P†), Q = θX (Q†) and (P†, X , Q†) ∈ R. Since θX (P†)

a−→ P ′

it must be that P† a−→ P ′ and either a ∈ X or P† β
� for all β ∈ X ∪ {τ }. Hence, there

exists a Q′ such that Q† a−→ Q′ and (P ′, Q′) ∈ R, using the third clause of Definition 3.
Recall that P† ↔X

r Q† implies I (P†) ∩ (X ∪ {τ }) = I (Q†) ∩ (X ∪ {τ }), and thus either
a ∈ X or Q† β

� for all β ∈ X ∪ {τ }. It follows that Q = θX (Q†)
a−→ Q′ and P ′ B Q′.

• Let P B Q and P τ−→ P ′. First suppose (P, Q) ∈ R. Then, using the first clause of
Definition 3, there is a Q′ with Q τ−→ Q′ and (P ′, Q′) ∈ R. So P ′ B Q′.
Next suppose P = θX (P†), Q = θX (Q†) and (P†, X , Q†) ∈ R. Since θX (P†)

τ−→ P ′,
it must be that P ′ has the form θX (P‡), and P† τ−→ P‡. Thus, by the fourth clause of
Definition 3, there is a Q‡ with Q† τ−→ Q‡ and (P‡, X , Q‡) ∈ R. Now Q = θX (Q†)

τ−→
θX (Q‡) =: Q′ and P ′ B Q′.

• Let P B Q, I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. First suppose (P, Q) ∈ R. Then, by
the second clause of Definition 3, there is a Q′ with Q t−→ Q′ and (P ′, X , Q′) ∈ R. So
θX (P ′) B θX (Q′).
Next suppose P = θY (P†), Q = θY (Q†) and (P†, Y , Q†) ∈ R. Since θY (P†)

t−→ P ′,
it must be that P† t−→ P ′ and P† β

� for all β ∈ Y ∪ {τ }. Consequently, I(P†) = I(P)

and thus I(P†)∩ (X ∪Y ∪{τ }) = ∅. By the last clause of Definition 3 there is a Q′ such
that Q† t−→ Q′ and (P, X , Q′) ∈ R. So θX (P ′) B θX (Q′). From (P†, Y , Q†) ∈ R and

123

Reactive bisimulation semantics for a process algebra with timeouts

I(P†) ∩ (Y ∪ {τ }) = ∅, I infer I(Q†) ∩ (Y ∪ {τ }) = ∅. So Q† β
� for all β ∈ Y ∪ {τ }.

This yields Q = θY (Q†)
t−→ Q′.

Now let B be a timeout bisimulation. Define R ⊆ P × P(A) × P by (P, Q) ∈ R iff
P B Q, and (P, X , Q) ∈ R iff θX (P) B θX (Q). I need to show that R is a gsrb.

• Suppose (P, Q) ∈ R and P α−→ P ′ with α ∈ A ∪ {τ }. Then, P B Q, so there is a Q′
such that Q α−→ Q′ and P ′ B Q′. Hence, (P ′, Q′) ∈ R.

• Suppose (P, Q) ∈ R, X ⊆ A, I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. Then, P B Q, so
∃Q′ such that Q t−→ Q′ and θX (P ′) B θX (Q′). Thus, (P ′, X , Q′) ∈ R.

• Suppose (P, X , Q) ∈ R and P a−→ P ′ with either a ∈ X or I(P)∩ (X ∪{τ }) = ∅. Then,
θX (P) B θX (Q). Moreover, θX (P)

a−→ P ′. Hence, there is a Q′ such that θX (Q)
a−→ Q′

and P ′ B Q′. It must be that Q a−→ Q′. Moreover, (P ′, Q′) ∈ R.
• Suppose (P, X , Q) ∈ R and P τ−→ P ′. Then, θX (P) B θX (Q). Since P τ−→ P ′, one

has θX (P)
τ−→ θX (P ′). Hence, there is an R such that θX (Q)

τ−→ R and θX (P ′) B R.
The process R must have the form θX (Q′) for some Q′ with Q τ−→ Q′. It follows that
(P ′, X , Q′) ∈ R.

• Suppose (P, Y , Q) ∈ R, X ⊆ A, I(P) ∩ (X ∪ Y ∪ {τ }) = ∅ and P t−→ P ′. Then,
θY (P) B θY (Q) and θY (P)

t−→ P ′. Moreover, I(θY (P)) = I(P), so by the second
clause of Definition 8 there exists a Q′ such that θY (Q)

t−→ Q′ and θX (P ′) B θX (Q′).
So Q t−→ Q′ and (P ′, X , Q′) ∈ R. ��

Note that the union of arbitrarily many strong timeout bisimulations is itself a strong timeout
bisimulation. Consequently, the relation↔r is a strong timeout bisimulation.

5 The process algebra CCSP�
t

Let A be a set of visible actions and Var an infinite set of variables. The syntax of CCSPθ
t is

given by

E ::= 0 | α.E | E + E | E‖S E | τI (E) | R(E) | θUL (E) | ψX (E) |
x | /\x |S\

/ (with x ∈ VS)

with α ∈ Act := A � {τ, t}, S, I ,U , L, X ⊆ A, L ⊆ U , R ⊆ A× A, x ∈ Var and S a
recursive specification: a set of equations {y = Sy | y ∈ VS} with VS ⊆ Var (the bound
variables of S) and each Sy a CCSPθ

t expression. I require that all sets {b | (a, b) ∈ R} are
finite.

The constant 0 represents a process that is unable to perform any action. The process
α.E first performs the action α and then proceeds as E . The process E + F behaves as
either E or F . ‖S is a partially synchronous parallel composition operator; actions a ∈ S
must synchronise—they can occur only when both arguments are ready to perform them—
whereas actions α /∈ S from both arguments are interleaved. τI is an abstraction operator;
it conceals the actions in I by renaming them into the hidden action τ . The operator R is
a relational renaming: it renames a given action a ∈ A into a choice between all actions b
with (a, b) ∈ R. The environment operators θUL and ψX are new in this paper and explained
below. Finally, /\x |S\

/ represents the x-component of a solution of the system of recursive
equations S.

123

R. van Glabbeek

Table 1 Structural operational interleaving semantics of CCSPθ
t

α.x α−→ x
x α−→ x ′

x + y α−→ x ′
y α−→ y′

x + y α−→ y′
x α−→ x ′

R(x) β−→ R(x ′)

⎛

⎝
α=β=τ

∨ α=β=t
∨ (α,β)∈R

⎞

⎠

x α−→ x ′

x‖S y α−→ x ′‖S y
(α /∈ S)

x a−→ x ′ y a−→ y′

x‖S y a−→ x ′‖S y′
(a ∈ S)

y α−→ y′

x‖S y α−→ x‖S y′
(α /∈ S)

x α−→ x ′

τI (x)
α−→ τI (x ′)

(α /∈ I)
x a−→ x ′

τI (x)
τ−→ τI (x ′)

(a ∈ I)
/\Sx |S\

/
α−→ y

/\x |S\
/

α−→ y

x τ−→ y

θUL (x) τ−→ θUL (y)

x a−→ y

θUL (x) a−→ y
(a∈U)

x α−→ y x
β
� for all β ∈ L∪{τ }

θUL (x) α−→ y
(α ∈ A∪{t})

x α−→ y

ψX (x) α−→ y
(α ∈ A ∪ {τ }) x t−→ y x

β
� for all β∈X ∪ {τ }

ψX (x) t−→ θX (y)

The language CCSP is a commonmix of the process algebras CCS [33] and CSP [6, 28]. It
first appeared in [34], where it was named following a suggestion by M. Nielsen. The family
of parallel composition operators ‖S stems from [35], and incorporates the two CSP parallel
composition operators from [6]. The relation renaming operatorsR(__) stem from [39]; they
combine both the (functional) renaming operators that are common to CCS and CSP, and the
inverse image operators of CSP. The choice operator + stems from CCS, and the abstraction
operator from CSP, while the inaction constant 0, action prefixing operators a.__ for a ∈ A,
and the recursion construct are common to CCS and CSP. The timeout prefixing operator t.__
was added by me in [18]. The syntactic form of inaction 0, action prefixing α.E and choice
E + F follows CCS, whereas the syntax of abstraction τI (__) and recursion /\x |S\

/ follows
ACP [2, 10]. The fragment of CCSPθ

t without θ
U
L and ψX is called CCSPt [18].

An occurrence of a variable x in a CCSPθ
t expression E is bound iff it occurs in a subex-

pression /\y|S\
/ of E with x ∈ VS; otherwise it is free. Here, each Sy for y ∈ VS counts as a

subexpression of /\x |S\
/. An expression E is invalid if it has a subexpression θUL (F) orψX (F)

such that a variable occurrence in F is free in F but bound in E . Let E be the set of valid
CCSPθ

t expressions. Furthermore, P ⊆ E is the set of closed valid CCSPθ
t expressions, or

processes; those in which every variable occurrence is bound.
A substitution is a partial function ρ :Var⇀E. The application E[ρ] of a substitution ρ

to an expression E ∈ E is the result of simultaneous replacement, for all x ∈ dom(ρ), of
each free occurrence of x in E by the expression ρ(x), while renaming bound variables in
E if necessary to prevent name clashes.

The semantics of CCSPθ
t is given by the labelled transition relation → ⊆ P× Act ×P,

where the transitions P α−→ Q are derived from the rules of Table 1. Here, /\E |S\
/ for E ∈ E

and S a recursive specification denotes the result of substituting /\y|S\
/ for y in E , for all

y ∈ VS.
The auxiliary operators θUL and ψX are added here to facilitate complete axiomatisation,

similar to the left merge and communication merge of ACP [2, 10]. The operator θ X
X is the

same as what was called θX in Sect. 4. It inhibits those transitions of its argument that are
blocked in the environment X , allowing only the actions from X ⊆ A. It stops inhibiting as
soon as the system performs a visible action or takes a break, as this may trigger a change
in the environment. The operator θUL preserves those transitions that are allowed in some
environment X with L ⊆ X ⊆ U . The letters L and U stand for lower and upper bound.

123

Reactive bisimulation semantics for a process algebra with timeouts

The operator ψX places a process in the environment X when a timeout transition occurs;
it is inert if any other transition occurs. If P β−→ for β ∈ A ∪ {τ }, then a timeout transition
P t−→ Q cannot occur in an environment that allows β. Thus, the transition P t−→ Q survives
only when considering an environment that blocks β, meaning β /∈ X ∪ {τ }. Taking the

contrapositive, β ∈ X ∪ {τ } implies P
β
�.

The operator θU∅ features in the forthcoming law L3, which is a convenient addition to my
axiomatisation, although only ψX and θX (= θ X

X) are necessary for completeness.

Stratification. Even though negative premises occur in Table 1, the meaning of this transi-
tion systemspecification iswell-defined, for instance by themethodof stratification explained
in [15, 25]. Assign inductively to each expression E ∈ E an ordinal λE that counts the nest-
ing depth of recursive specifications: if E = /\x |S\

/ then λE is 1 more than the supremum
of the λSy for y ∈ VS; otherwise λE is the supremum of λ/\x |S\

/
for all subterms /\x |S\

/ of
E . Moreover κE ∈ N is the nesting depth of θUL and ψX operators in E that remain after
replacing any subterm F of E with λF < λE by 0. Now the ordered pair (λP , κP) constitutes
a valid stratification for closed literals P α−→ P ′. Namely, whenever a transition P α−→ P ′
depends on a transition Q β−→ Q′, in the sense that that there is a closed substitution instance
r of a rule from Table 1 with conclusion P α−→ P ′, and Q β−→ Q′ occurring in its premises,
then either λQ < λP , or λQ = λP and κQ ≤ κP . Moreover, when P α−→ P ′ depends on a

negative literal Q
β
�, then λQ = λP and κQ < κP .

The above argument hinges on the exclusion of invalid CCSPθ
t expressions. The invalid

expression P := /\x | {x = θ
{a}
{a} (b.0 + R(x))}\/ for instance, withR = {(b, a)}, does not have

a well-defined meaning, since the transition P b−→ 0 is derivable iff one has the premise P
b

�:

b.0 b−→ 0

b.0 + R(P)
b−→ 0

P
b

�

R(P)
a
�

b.0 + R(P)
a
�

P
τ
� (OK)

R(P)
τ
�

b.0 + R(P)
τ
�

θ
{a}
{a} (b.0 + R(P))

b−→ 0

P b−→ 0

However, the meaning of the valid expression /\x | {x = θ
{a}
{a} (/\y|{y = b.y}\/)‖∅R(x)}\/, for

instance, is entirely unproblematic.

6 Guarded recursion and finitely branching processes

In many process algebraic specification approaches, only guarded recursive specifications
are allowed.

Definition 10 An occurrence of a variable x in an expression E is guarded if x occurs in a
subexpression α.F of E , with α ∈ Act . An expression E is guarded if all free occurrences of
variables in E are guarded. A recursive specificationS ismanifestly guarded if all expressions
Sy for y ∈ VS are guarded. It is guarded if it can be converted into a manifestly guarded
recursive specification by repeated substitution of expressions Sy for variables y ∈ VS
occurring in the expressions Sz for z ∈ VS. Let guarded CCSPθ

t be the fragment of CCSPθ
t

allowing only guarded recursion.

123

R. van Glabbeek

Definition 11 The set of processes reachable from a given process P ∈ P is inductively
defined by

(i) P is reachable from P , and
(ii) if Q is reachable from P and Q α−→ R for some α ∈ Act then R is reachable from P .

A process P is finitely branching if for all Q ∈ P reachable from P there are only finitely
many pairs (α, R) such that Q α−→ R. Likewise, P is countably branching if there are
countably many such pairs. A process is finite iff it is finitely branching, has finitely many
reachable states, and is loop-free, in the sense that there are no Q0

α1−→ Q1
α2−→ · · · αn−→ Qn

with n > 0 and Q0 = Qn reachable from P .

Proposition 12 Each CCSPθ
t process is countably branching.

Proof I show that for each CCSPθ
t process Q there are only countably many transitions

Q α−→ R. Each such transition must be derivable from the rules of Table 1. So it suffices to
show that for each Q there are only countably many derivations of transitions Q α−→ R.

A derivation of a transition is a well-founded, upwardly branching tree, in which each
node models an application of one of the rules of Table 1. Since each of these rules has
finitely many positive premises, such a proof tree is finitely branching, and thus finite. Let
d(π), the depth of π , be the length of the longest branch in a derivation π . If π derives a
transition Q α−→ R, then I call Q the source of π .

It suffices to show that for each n ∈ N there are only finitely many derivations of depth n
with a given source. This I do by induction on n.

In case Q = f (Q1, . . . , Qk), with f an k-ary CCSPθ
t operator, a derivation π of depth n

is completely determined by the concluding rule from Table 1, deriving a transition Q β−→ R,
the subderivations of π with source Qi for some of the i ∈ {1, . . . , k}, and the transition
label β. (For the purposes of this proof, Table 1 is understood to have only 15 rules, even if
each of them can be seen as a template, with an instance for each choice of R, S, I , S etc.,
and for each fitting choice of a transition labels a, α and/or β.) The choice of the concluding
rule depends on f , and for each f there are at most three choices. The subderivations of π

with source Qi have depth< n, so by induction there are only finitely many. When f is not a
renaming operatorR, there is no further choice for the transition label β, as it is completely
determined by the premises of the rule, and thus by the subderivations of those premises. In
case f = R, there are finitely many choices for β when faced with a given transition label
α contributed by the premise of the rule for renaming. Here, I use the requirement of Sect. 5
that all sets {b | (a, b) ∈ R} are finite. This shows there are only finitely many choices for π .

In case Q = /\x |S\
/, the last step in π must be application of the rule for recursion, so π is

completely determined by a subderivation π ′ of a transition with source /\Sx |S\
/. By induction

there are only finitely many choices for π ′, and hence also for π . ��
Proposition 13 Each CCSPθ

t process with guarded recursion is finitely branching.

Proof A trivial structural induction shows that if P is aCCSPθ
t processwith guarded recursion

and Q is reachable from P , then also Q has guarded recursion. Hence, it suffices to show that
for each CCSPθ

t process Q with guarded recursion there are only finitely many derivations
with source Q.

Let�be the smallest binary relation onP such that (i) f (P1, . . . , Pk) � Pi for each k-ary
CCSPθ

t operator f except action prefixing, and each i ∈ {1, . . . , k}, and (ii) /\x |S\
/ � /\Sx |S\

/.
This relation is finitely branching. Moreover, on processes with guarded recursion,� has no

123

Reactive bisimulation semantics for a process algebra with timeouts

forward infinite chains P0 � P1 � In fact, this could have been used as an alternative
definition of guarded recursion. Let, for any process Q with guarded recursion, e(Q) be the
length of the longest forward chain Q � P1 � · · · � Pe(Q). I show with induction on e(Q)

that there are only finitely many derivations with source Q. In fact, this proceeds exactly as
in the previous proof. ��
Proposition 14 [13] Each finitely branching process in an LTS can be denoted by a closed
CCSPt expression with guarded recursion. Here, I only need the operations inaction (0),

action prefixing (α.__) and choice (+), as well as recursion /\x |S\
/.

Proof Let P be a finitely branching process in an LTS (P′
, Act,→). Let

VS := {xQ | Q ∈ P′ is reachable from P} ⊆ Var.

For each Q reachable from P , let next(Q) be the finite set of pairs (α, R) ∈ Act × P′

such that there is a transition Q α−→ R. Define the recursive specification S as {xQ
= ∑

(α,R)∈next(Q) α.xR | xQ ∈ VS}. Here, the finite choice operator
∑

i∈I αi .Pi can eas-
ily be expressed in terms of inaction, action prefixing and choice. Now the CCSPt process
/\xP |S\

/ denotes P . ��
In fact, /\xP |S\

/ ↔ P , where↔ denotes strong bisimilarity [33], formally defined in the next
section.

Likewise, recursion-free CCSPθ
t processes are finite, and, up to strong bisimilarity, each

finite process is denotable by a closed recursion-free CCSPθ
t expression, using only 0,

α.__ and +.

Proposition 15 [13] Each countably branching process in an LTS can be denoted by a closed
CCSPt expression. Again I only need the CCSPt operations inaction, action prefixing, choice
and recursion.

Proof The proof is the same as the previous one, except that next(Q) now is a count-
able set, rather than a finite one, and consequently I need a countable choice operator∑

i∈N αi .Pi . The latter can be expressed in CCSPt with unguarded recursion by
∑

i∈N αi .Pi
:= /\zo|{zi = αi .Pi + zi+1 | i ∈ N }\/. ��

7 Congruence

Given an arbitrary process algebra with a collection of operators f , each with an arity n, and
a recursion construct /\x |S\

/ as in Sect. 5, letP andE be the sets of [closed] valid expressions,
and let a substitution instance E[ρ] ∈ E for E ∈ E and ρ : Var⇀E be defined as in
Sect. 5. Any semantic equivalence ∼ ⊆ P×P extends to ∼ ⊆ E×E by defining E ∼ F
iff E[ρ] ∼ F[ρ] for each closed substitution ρ : Var → P. It extends to substitutions
ρ, ν : Var⇀E by ρ ∼ ν iff dom(ρ) = dom(ν) and ρ(x) ∼ ν(x) for each x ∈ dom(ρ).

Definition 16 [16] A semantic equivalence ∼ is a lean congruence if E[ρ] ∼ E[ν] for any
expression E ∈ E and any substitutions ρ and ν with ρ ∼ ν. It is a full congruence if it
satisfies

Pi ∼ Qi for all i = 1, . . . , n ⇒ f (P1, . . . , Pn) ∼ f (Q1, . . . , Qn) (1)

Sy ∼ S′
y for all y ∈ VS ⇒ /\x |S\

/ ∼ /\x |S′\
/ (2)

123

R. van Glabbeek

for all functions f of arity n, processes Pi , Qi ∈ P, and recursive specifications S,S′ with
x ∈ VS = VS′ and /\x |S\

/,
/\x |S′\

/ ∈ P.

Clearly, each full congruence is also a lean congruence, and each lean congruence satisfies
(1). Both implications are strict, as illustrated in [16].

A main result of the present paper will be that strong reactive bisimilarity is a full con-
gruence for the process algebra CCSPθ

t . To achieve it, I need to establish first that strong
bisimilarity [33],↔, and initials equivalence [14, Section 16], =I, are full congruences for
CCSPθ

t .

7.1 Initials equivalence

Definition 17 Two CCSPθ
t processes P and Q are initials equivalent, denoted P =I Q, if

I(P) = I(Q).

Theorem 18 Initials equivalence is a full congruence for CCSPθ
t .

Proof In Appendix A. ��

7.2 Strong bisimilarity

Definition 19 A strong bisimulation is a symmetric relation B on P, such that, whenever
P B Q,

• if P α−→ P ′ with α ∈ Act then Q α−→ Q′ for some Q′ with P ′ B Q′.

Two processes P, Q ∈ P are strongly bisimilar, P ↔ Q, if P R Q for some strong
bisimulation B.

Contrary to reactive bisimilarity, strong bisimilarity treats the timeout action t, as well as the
hidden action τ , just like any visible action. In the absence of timeout actions, there is no
difference between a strong bisimulation and a timeout bisimulation, so↔r and↔ coincide.
In general, strong bisimulation is a finer equivalence relation than strong reactive bisimilarity
and initials equivalence: P ↔ Q ⇒ P ↔r Q ⇒ P =I Q, and both implications are strict.

Lemma 1 For each CCSPθ
t process P, there exists a CCSPt process Q only built using

inaction, action prefixing, choice and recursion, such that P ↔ Q.

Proof Immediately from Propositions 12 and 15. ��
Theorem 20 Strong bisimilarity is a full congruence for CCSPθ

t .

Proof The structural operational rules for CCSPt (that is, CCSPθ
t without the operators θUL

and ψX) fit the tyft/tyxt format with recursion of [16]. By [16, Theorem 3] this implies
that↔ is a full congruence for CCSPt. (In fact, when omitting the recursion construct, the
operational rules for CCSPt fit the tyft/tyxt format of [26], and by the main theorem of [26],
↔ is a congruence for the operators of CCSPt, that is, it satisfies (1) in Definition 16. The
work of [16] extends this result of [26] with recursion.)

The structural operational rules for all of CCSPθ
t fit the ntyft/ntyxt format with recursion of

[16]. By [16, Theorem 2] this implies that↔ is a lean congruence for CCSPθ
t . (In fact, when

omitting the recursion construct, the operational rules for CCSPθ
t fit the ntyft/ntyxt format of

123

Reactive bisimulation semantics for a process algebra with timeouts

[25], and by the main theorem of [25],↔ is a congruence for the operators of CCSPθ
t . The

work of [16] extends this result of [25] with recursion.)
To verify (2) for the whole language CCSPθ

t , let S and S′ be recursive specifications with
x ∈ VS = VS′ , such that /\x |S\

/,
/\x |S′\

/ ∈ P and Sy ↔ S′
y for all y ∈ VS. Let {Pi | i ∈ I } be

the collection of processes of the form θUL (Q) or ψX (Q), for some L , U , X , that occur as a
closed subexpression of Sy or S′

y for one of the y ∈ VS, not counting strict subexpressions
of a closed subexpression R of Sy or S′

y that is itself of the form θUL (Q) or ψX (Q). Pick a
fresh variable zi /∈ VS for each i ∈ I , and let, for y ∈ VS, Ŝy be the result of replacing each
occurrence of Pi in Sy by zi . Then, Ŝy does not contain the operators θUL (Q) or ψX (Q). In
deriving this conclusion, it is essential that /\x |S\

/ is a valid expression, for this implies that the
term Sy ∈ E, which may contain free occurrences of the variables y ∈ VS, does not have a
subterm of the form θUL (F) or ψX (F) that contains free occurrences of these variables. Let
Ŝ := {y = Ŝy | y ∈ VS}; it is a recursive specification in the language CCSPt. The recursive
specification Ŝ′

is defined in the same way.
For each i ∈ I there is, by Lemma 1, a process Qi in the language CCSPt such that

Pi ↔ Qi . Now let ρ, η : {zi | i ∈ I } → P be the substitutions defined by ρ(zi) = Pi
and η(zi) = Qi for all i ∈ I . Then, ρ ↔ η. Since ↔ is a lean congruence for CCSPθ

t ,
one has /\x |̂S \

/[ρ] ↔ /\x |̂S \
/[η] and likewise /\x |̂S′ \

/[ρ] ↔ /\x |̂S′ \
/[η]. For the same reason, one

has Ŝy[η] ↔ Ŝy[ρ] = Sy ↔ S′
y ↔ Ŝ′

y[ρ] ↔ Ŝ′
y[η] for all y ∈ VS. Since Ŝ[η] and Ŝ′[η]

are recursive specifications over CCSPt, /\x |̂S[η]\/ ↔ /\x |̂S′[η]\/. Hence, /\x |S\
/ = /\x |̂S[ρ]\/ =

/\x |̂S\
/[ρ] ↔ /\x |̂S\

/[η] = /\x |̂S[η]\/ ↔ /\x |̂S′[η]\/ ↔ /\x |̂S′[ρ]\/ = /\x |S′\
/. ��

The following lemmas on the relation between θX and the other operators of CCSPθ
t deal with

strong bisimilarity, but are needed in the congruence proof for strong reactive bisimilarity.
Their proofs can be found in Appendix B.

Lemma 2 If P
τ
�,I(P)∩X ⊆ S and Y = X\(S\I(P)), then θX (P‖SQ) ↔θX (P‖SθY (Q)).

Lemma 3 θX (τI (P)) ↔θX (τI (θX∪I (P))).

Lemma 4 θX (R(P)) ↔θX (R(θR−1(X)(P))).

8 Strong reactive bisimilarity is a full congruence for CCSP�
t

The forthcoming proofs showing that↔r is a full congruence for CCSP
θ
t follow the lines of

Milner [33], but are more complicated due to the nature of reactive bisimilarity. A crucial
tool is Milner’s notion of bisimilarity up-to. The above three lemmas play an essential rôle.
Even if we would not be interested in the operators θUL and ψX , the proof needs to take the
operator θX (= θ X

X) along in order to deal with the other operators. This is a consequence of
the occurrence of θX in Definition 8.

Definition 21 Given a relation ∼ ⊆ P × P, a strong timeout bisimulation up to ∼ is a
symmetric relationB ⊆ P×P, such that, for P B Q,

• if P α−→ P ′ with α ∈ A ∪ {τ }, then ∃Q′ such that Q α−→ Q′ and P ′ ∼B∼ Q′,
• ifI(P)∩(X∪{τ }) = ∅ and P t−→ P ′, then ∃Q′ with Q t−→ Q′ and θX (P ′) ∼B∼ θX (Q′).

Here, ∼B∼ := {(R, T) | ∃R′, T ′. R ∼ R′ B T ′ ∼ T }.
Proposition 22 If P B Q for some strong timeout bisimulationB up to↔, then P ↔r Q.

123

R. van Glabbeek

Proof Using the reflexivity of↔it suffices to show that↔B↔is a strong timeout bisimula-
tion. Clearly this relation is symmetric, and that it satisfies the first clause of Definition 8 is
straightforward, using transitivity of↔. So assume P ↔R B T ↔Q, I(P)∩ (X ∪{τ }) = ∅
and P t−→ P ′. Then, I(R) ∩ (X ∪ {τ }) = ∅. By the transfer property of↔, there exists an R′

with R t−→ R′ and P ′ ↔R′. Since↔is a congruence for θX it follows that θX (P ′) ↔θX (R′).
By Definition 21, there exists a T ′ with T t−→ T ′ and θX (R′) ↔B↔ θX (T ′). Again using

the transfer property of ↔, there exists a Q′ with Q t−→ Q′ and θX (T ′) ↔ θX (Q′). Thus,
θX (P ′) ↔B↔θX (Q′). ��
Theorem 23 Strong reactive bisimilarity is a lean congruence for CCSPθ

t . In other words, if
ρ, ν :Var⇀E are substitutions with ρ ↔r ν, then E[ρ] ↔r E[ν] for any expression E ∈ E.

Proof It suffices to prove this theorem for the special case that ρ, ν : Var → P are closed
substitutions; the general case then follows by means of composition of substitutions. Let
B ⊆ P×P be the smallest relation satisfying

• if P ↔r Q, then P B Q,
• if P B Q and α ∈ A ∪ {τ, t}, then α.P B α.Q,
• if P1 B Q1 and P2 B Q2, then P1 + P2 B Q1 + Q2,
• if P B Q, L ⊆ U ⊆ A and X ⊆ A, then θUL (P) B θUL (Q) and ψX (P) B ψX (Q),
• if P1 B Q1, P2 B Q2 and S ⊆ A, then P1‖S P2 B Q1‖SQ2,
• if P B Q and I ⊆ A, then τI (P) B τI (Q),
• if P B Q andR ⊆ A × A, then R(P) B R(Q),
• if S is a recursive specification with z ∈ VS, and ρ, ν : Var \ VS → P are substitutions

satisfying ρ(x) B ν(x) for all x ∈ Var \ VS, then /\z|S\
/[ρ] B /\z|S\

/[ν].
A straightforward induction on the derivation of P B Q, employing Theorem 18, yields
that

if P B Q then I(P) = I(Q) , i.e. P =I Q. (@)

(For the last case, the assumption that ρ(x) B ν(x) for all x ∈ Var \ VS implies ρ =I ν by
induction. Since =I is a lean congruence by Theorem 18, this implies /\z|S\

/[ρ] =I /\z|S\
/[ν].)

A trivial structural induction on E ∈ E shows that

if ρ, ν : Var → P satisfyρ(x) B ν(x) for all x ∈ Var , then E[ρ] B E[ν].(∗)

For S a recursive specification and ρ : Var \ VS → P, let ρS : Var → P be the closed
substitution given by ρS(x) := /\x |S\

/[ρ] if x ∈ VS and ρS(x) := ρ(x) otherwise. Then,
/\E |S\

/[ρ] = E[ρS] for all E ∈ E. Hence, an application of (∗) with ρS and νS yields that
under the conditions of the last clause forB above one even has /\E |S\

/[ρ] B /\E |S\
/[ν] for all

expressions E ∈ E. ($)
It suffices to show thatB is a strong timeout bisimulation up to↔, because then P ↔r Q ⇔
P B Q, and (∗) implies thatB is a lean congruence. Because↔r is symmetric, so isB. So
I need to show thatB satisfies the two clauses of Definition 21.

• Let P B Q and P α−→ P ′ with α ∈ A ∪ {τ }. I have to find a Q′ with Q α−→ Q′ and
P ′ ↔B↔Q′. In fact, I show that even P ′ B Q′. This I will do by structural induction

on the proof π of P α−→ P ′ from the rules of Table 1. I make a case distinction based on
the derivation of P B Q.

– Let P ↔r Q. Using that the relation↔r is a strong timeout bisimulation, there must

be a process Q′ such that Q α−→ Q′ and P ′ ↔r Q
′. Hence, P ′ B Q′.

123

Reactive bisimulation semantics for a process algebra with timeouts

– Let P = β.P† and Q = β.Q† with β ∈ A ∪ {τ, t} and P† B Q†. Then, α = β and
P ′ = P†. Take Q′ := Q†. Then, Q α−→ Q′ and P ′ B Q′.

– Let P = P1+P2 and Q = Q1+Q2 with P1 B Q1 and P2 B Q2. I consider the first
rule from Table 1 that could have been responsible for the derivation of P α−→ P ′;
the other proceeds symmetrically. So suppose that P1

α−→ P ′. Then, by induction
Q1

α−→ Q′ for some Q′ with P ′ B Q′. By the same rule from Table 1, Q α−→ Q′.
– Let P = θUL (P†), Q = θUL (Q†) and P† B Q†. First suppose α ∈ A. Since

θUL (P†)
α−→ P ′, it must be that P† α−→ P ′ and either α ∈ U or P† β

� for all

β ∈ L ∪ {τ }. In the latter case, (@) yields I(P†) = I(Q†), and thus Q† β
� for all

β ∈ L ∪{τ }. By induction there exists a Q′ such that Q† α−→ Q′ and P ′ B Q′. So,
in both cases, Q = θUL (Q†)

α−→ Q′.
Now suppose α = τ . Since θUL (P†)

τ−→ P ′ it must be that P ′ has the form θUL (P‡),

and P† τ−→ P‡. By induction, there exists a Q‡ such that Q† τ−→ Q‡ and P‡ B Q‡.
Now Q = θUL (Q†)

τ−→ θUL (Q‡) =: Q′ and P ′ B Q′.
– Let P = ψX (P†), Q = ψX (Q†) and P† B Q†. Since ψX (P†)

α−→ P ′, one has
P† α−→ P ′. By induction there exists a Q′ with Q† α−→ Q′ and P ′ B Q′. So
Q = ψX (Q†)

α−→ Q′.
– Let P = P1‖S P2 and Q = Q1‖SQ2 with P1 B Q1 and P2 B Q2. I consider

the three rules from Table 1 that could have been responsible for the derivation of
P α−→ P ′.
First suppose that α /∈ S, P1

α−→ P ′
1 and P ′ = P ′

1‖S P2. By induction, Q1
α−→ Q′

1 for

some Q′
1 with P ′

1 B Q′
1. Consequently, Q1‖SQ2

α−→ Q′
1‖SQ2, and P ′ = P ′

1‖S P2 B
Q′

1‖SQ2.

Next suppose that α ∈ S, P1
α−→ P ′

1, P2
α−→ P ′

2 and P ′ = P ′
1‖S P ′

2. By induction,

Q1
α−→ Q′

1 for some Q′
1 with P ′

1 B Q′
1, and Q2

α−→ Q′
2 for some Q′

2 with P ′
2 B Q′

2.

Consequently, Q1‖SQ2
α−→ Q′

1‖SQ′
2, and P ′ = P ′

1‖S P ′
2 B Q′

1‖SQ′
2.

The remaining case proceeds symmetrically to the first.
– Let P = τI (P†) and Q = τI (Q†) with I ⊆ A and P† B Q†. Then, P† β−→ P‡

for some P‡ with P ′ = τI (P‡), and either β = α /∈ I , or β ∈ I and α = τ . By
induction, Q† β−→ Q‡ for some Q‡ with P‡ B Q‡. Consequently, Q = τI (Q†)

α−→
τI (Q‡) =: Q′ and P ′ B Q′.

– Let P = R(P†) and Q = R(Q†) withR ⊆ A× A and P† B Q†. Then, P† β−→ P‡

for some P‡ with P ′ = R(P‡), and either (β, α) ∈ R or β = α = τ . By induction,
Q† β−→ Q‡ for some Q‡ with P‡ B Q‡. Consequently, Q = R(Q†)

α−→ R(Q‡) =:
Q′ and P ′ B Q′.

– Let P = /\z|S\
/[ρ] = /\z|S[ρ]\/ and Q = /\z|S\

/[ν] = /\z|S[ν]\/ where S is a recursive
specification with z ∈ VS, and ρ, ν : Var \ VS → P satisfy ρ(x) B ν(x) for all
x ∈ Var\VS. ByTable 1 the transition /\Sz |S[ρ]\/ α−→ P ′ is provable bymeans of a strict
subproof of the proofπ of /\z|S\

/[ρ] α−→P ′. By ($) above one has /\Sz |S[ρ]\/ B /\Sz |S[ν]\/.
So by induction there is a Q′ such that /\Sz |S[ν]\/ a−→ Q′ and P ′ B Q′. By Table 1,
Q = /\z|S[ν]\/ α−→ Q′.

• Let P B Q, I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. I have to find a Q′ such that Q t−→ Q′
and θX (P ′) ↔B↔ θX (Q′). This I will do by structural induction on the proof π of

123

R. van Glabbeek

P t−→ P ′ from the rules of Table 1. I make a case distinction based on the derivation of
P B Q.

– Let P ↔r Q. Using that the relation↔r is a strong timeout bisimulation, there must

be a process Q′ such that Q t−→ Q′ and θX (P ′) ↔r θX (Q′). Thus θX (P ′) ↔B↔
θX (Q′).

– Let P = β.P† and Q = β.Q† with β ∈ A ∪ {τ, t} and P† B Q†. Then, β = t and
P ′ = P†. Take Q′ := Q†. Then, Q t−→ Q′ and P ′ B Q′. Thus, θX (P ′) ↔B↔
θX (Q′).

– Let P = P1 + P2 and Q = Q1 + Q2 with P1 B Q1 and P2 B Q2. I consider
the first rule from Table 1 that could have been responsible for the derivation of
P t−→ P ′; the other proceeds symmetrically. So suppose that P1

t−→ P ′. Since
I(P1) ∩ (X ∪ {τ }) ⊆ I(P) ∩ (X ∪ {τ }) = ∅, by induction Q1

t−→ Q′ for some Q′
with P ′ ↔B↔ Q′. Hence, Q t−→ Q′.

– Let P = θUL (P†), Q = θUL (Q†) and P† B Q†. Since θUL (P†)
t−→ P ′ it must be that

P† t−→ P ′ and P† β
� for all β ∈ L ∪ {τ }. Consequently, P α−→ P‡ iff P† α−→ P‡,

for all α ∈ A ∪ {t}. So I(P†) ∩ (X ∪ {τ }) = ∅. By induction, Q† t−→ Q′ for
some Q′ with θX (P ′) ↔B↔ θX (Q′). By (@), Q† β

� for all β ∈ L ∪ {τ }. Hence
Q = θUL (Q†)

t−→ Q′.
– Let P = ψY (P†), Q = ψY (Q†) and P† B Q†. Since ψY (P†)

t−→ P ′ one has

P† t−→ P‡ for some P‡ with P ′ = θY (P‡), and P† β
� for all β ∈ Y ∪ {τ }, i.e.

I(P†) ∩ (Y ∪ {τ }) = ∅. By induction, Q† t−→ Q‡ for a Q† with θY (P‡) ↔B↔
θY (Q‡). By (@), I(P†) = I(Q†), so Q† β

� for all β ∈ Y ∪ {τ }. Let Q′ := θY (Q‡),
so that Q = ψY (Q†)

t−→ θY (Q‡) = Q′. From θY (P‡) ↔ P ′′ B Q′′ ↔ θY (Q‡), one
obtains

θX (θY (P‡)) ↔ θX (P ′′) B θX (Q′′) ↔ θX (θY (Q‡)),

using that↔is a congruence for θX (= θ X
X). Thus, θX (P ′) ↔B↔ θX (Q′).

– Let P = P1‖S P2 and Q = Q1‖SQ2 with P1 B Q1 and P2 B Q2. I consider the

last rule from Table 1 that could have been responsible for the derivation of P t−→ P ′.
The other proceeds symmetrically. So suppose that P2

t−→ P ′
2 and P ′ = P1‖S P ′

2. Let
Y := X \ (S \I(P1)) = (X \ S)∪ (X ∩ S∩I(P1)). Then, I(P2)∩ (Y ∪{τ }) = ∅. By
induction, Q2

t−→ Q′
2 for some Q′

2 with θY (P ′
2)

↔B↔ θY (Q′
2). Let Q

′ := Q1‖SQ′
2,

so that Q = Q1‖SQ2
t−→ Q1‖SQ′

2 = Q′. From θY (P ′
2)

↔ P ′′
2 B Q′′

2
↔ θY (Q′

2)

and P1 B Q1, one obtains P1‖SθY (P ′
2)

↔ P1‖S P ′′
2 B Q1‖SQ′′

2
↔ Q1‖SθY (Q′

2),
using that↔is a congruence for ‖S . Therefore, since↔is also a congruence for θX

(= θ X
X),

θX (P1‖SθY (P ′
2)) ↔ θX (P1‖S P ′′

2) B θX (Q1‖SQ′′
2) ↔ θX (Q1‖SθY (Q′

2)).

Since I(P1‖S P2) ∩ (X ∪ {τ }) = ∅, one has P1
τ
� and I(P1) ∩ X ⊆ S. More-

over, since P1 B Q1, one has I(P1) = I(Q1). Hence θX (P ′) = θX (P1‖S P ′
2)

↔
θX (P1‖SθY (P ′

2))
↔B↔ θX (Q1‖SθY (Q′

2))
↔ θX (Q1‖SQ′

2) = θX (Q′) by
Lemma 2.

– Let P = τI (P†) and Q = τI (Q†) with I ⊆ A and P† B Q†. Then, P† t−→ P‡ for
some P‡ with P ′ = τI (P‡). Moreover, I(P†) ∩ (X ∪ I ∪ {τ }) = ∅. By induction,

123

Reactive bisimulation semantics for a process algebra with timeouts

Q† t−→ Q‡ for some Q‡ with θX∪I (P‡) ↔B↔ θX∪I (Q‡). Let Q′ := τI (Q‡), so

that Q = τI (Q†)
t−→ τI (Q‡) = Q′. From θX∪I (P‡) ↔ P ′′ B Q′′ ↔ θX∪I (Q‡),

one obtains

θX (τI (P
‡)) ↔ θX (τI (θX∪I (P

‡))) ↔θX (τI (P
′′)) B θX (τI (Q

′′)) ↔ . . . ↔θX (τI (Q
‡)),

using Lemma 3 and that ↔ is a congruence for τI and θX . Thus, θX (P ′) ↔B↔
θX (Q′).

– Let P = R(P†) and Q = R(Q†) withR ⊆ A× A and P† B Q†. Then, P† t−→ P‡

for some P‡ with P ′ = R(P‡). Moreover, I(P†) ∩ (R−1(X) ∪ {τ }) = ∅. By
induction, Q† t−→ Q‡ for some Q‡ with θR−1(X)(P

‡) ↔B↔ θR−1(X)(Q
‡). Let

Q′ := R(Q‡), so that Q = R(Q†)
t−→ R(Q‡) = Q′. From θR-1(X)(P

‡) ↔ P ′′ B
Q′′ ↔ θR-1(X)(Q

‡), one obtains

θX (R(P‡)) ↔θX (R(θR-1(X)(P
‡))) ↔θX (R(P ′′)) B θX (R(Q′′)) ↔ . . . ↔θX (R(Q‡)),

using Lemma 4 and that ↔ is a congruence for R and θX . Thus, θX (P ′) ↔B↔
θX (Q′).

– Let P = /\z|S\
/[ρ] = /\z|S[ρ]\/ and Q = /\z|S\

/[ν] = /\z|S[ν]\/ where S is a recursive
specification with z ∈ VS, and ρ, ν : Var \ VS → P satisfy ρ(x) B ν(x) for all
x ∈ Var \ VS. By Table 1 the transition /\Sz |S[ρ]\/ t−→ P ′ is provable by means of a
strict subproof of the proof π of /\z|S\

/[ρ] t−→P ′. The rule for recursion in Table 1 also
implies that I(/\z|S\

/[ρ]) = I(/\Sz |S\
/[ρ]). Therefore, I(/\Sz |S\

/[ρ]) ∩ (X ∪ {τ }) = ∅.
By ($) above one has /\Sz |S[ρ]\/ B /\Sz |S[ν]\/. So by induction there is a Q′ such that
/\Sz |S[ν]\/ t−→ Q′ and θX (P ′) ↔B↔ θX (Q′). By Table 1, Q = /\z|S[ν]\/ t−→ Q′. ��

Proposition 24 If P B Q for some strong timeout bisimulationB up to↔r , then P ↔r Q.

Proof Exactly as the proof of Proposition 22, now using that↔r is a congruence for θX . ��
Theorem 25 Strong reactive bisimilarity is a full congruence for CCSPθ

t .

Proof LetB ⊆ P×P be the smallest relation satisfying

• if S and S′ are recursive specifications with x ∈ VS = VS′ and /\x |S\
/,

/\x |S′\
/ ∈ P, such

that Sy ↔ S′
y for all y ∈ VS, then /\x |S\

/ B
/\x |S′\

/,

in addition to the eight or nine clauses listed in the proof of Theorem 23. Again, a straight-
forward induction on the derivation of P B Q, employing Theorem 18, yields that

if P B Q then I(P) = I(Q) , i.e. P =I Q.(@)

(For the new case, the assumption that Sy ↔ S′
y for all y ∈ VS implies Sy =I S′

y for all
y ∈ VS. So by Theorem 18, /\x |S\

/ =I /\x |S′\
/.) A trivial structural induction on E ∈ E shows

again that

if ρ, ν : Var → P satisfy ρ(x) B ν(x) for all x ∈ Var , then E[ρ] B E[ν].(∗)

This again implies that in the last clause forB one even has /\E |S\
/[ρ] B /\E |S′\

/[ν] for all
E ∈ E, ($) and likewise, in the new clause, /\E |S\

/ B
/\E |S′\

/ for all E ∈ E with variables
from VS. (#)

It suffices to show thatB is a strong timeout bisimulation up to↔r , because thenB ⊆ ↔r
with Proposition 24, and the new clause forB implies (2). By constructionB is symmetric.

123

R. van Glabbeek

• Let P B Q and P α−→ P ′ with α ∈ A ∪ {τ }. I have to find a Q′ with Q α−→ Q′ and
P ′ ↔rB↔r Q′. In fact, I show that even P ′ B↔r Q′. This I will do by structural

induction on the proof π of P α−→ P ′ from the rules of Table 1. I make a case distinction
based on the derivation of P B Q.

– Let P = /\x |S\
/ ∈ P and Q = /\x |S′\

/ ∈ P where S and S′ are recursive specifications
with x ∈ VS = VS′ , such that Sy ↔ S′

y for all y ∈ VS, meaning that for all y ∈ W
and σ : VS → P one has Sy[σ] ↔r S′

y[σ].
By Table 1 the transition /\Sx |S\

/
α−→ P ′ is provable by means of a strict subproof of

π . By (#) above one has /\Sx |S\
/ B

/\Sx |S′\
/. So by induction there is an R′ ∈ P such

that /\Sx |S′\
/

α−→ R′ and P ′ B↔r R
′. Since /__ |S′\

/ is the application of a substitution
of the form σ : VS′ → P, one has /\Sx |S′\

/ ↔r
/\S′

x |S′\
/. Hence, there is a Q′ with

P � /\S′
x |S′\

/
α−→Q′ and R′ ↔r Q

′. So P ′ B↔r Q
′. By Table 1, Q = /\x |S′\

/
α−→Q′.

– The remaining nine cases proceed just as in the proof of Theorem 23, but withB↔r
substituted for the blue occurrences ofB. In the case for θUL with α = τ , I conclude
from P‡ B↔r Q

‡ that θUL (P‡) B↔r θUL (Q‡). Besides applying the definition of
B, this also involves the application of Theorem 23 that↔r is already known to be
a congruence for θUL . The same reasoning applies in the cases for ‖S , τI and R.

• Let P B Q, I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. I will find a Q′ such that Q t−→ Q′
and θX (P ′) ↔B↔r θX (Q′). This I will do by structural induction on the proof π of

P t−→ P ′ from the rules of Table 1. I make a case distinction based on the derivation of
P B Q.

– Let P = /\x |S\
/ ∈ P and Q = /\x |S′\

/ ∈ P where S and S′ are recursive specifications
with x ∈ VS = VS′ , such that for all y ∈ W and σ : VS → P one has Sy[σ] ↔r
S′
y[σ]. ByTable 1 the transition /\Sx |S\

/
t−→ P ′ is provable bymeans of a strict subproof

of the proof π of /\x |S\
/

t−→ P ′. The rule for recursion in Table 1 also implies that
I(/\x |S\

/) = I(/\Sx |S\
/). Therefore, I(/\Sx |S\

/) ∩ (X ∪ {τ }) = ∅. By (#) above one has
/\Sx |S\

/ B /\Sx |S′\
/. So by induction there is an R′ ∈ P such that /\Sx |S′\

/
t−→ R′ and

θX (P ′) ↔B↔r θX (R′). Since /__ |S′\
/ is the application of a substitution of the form

σ : VS′ → P, /\Sx |S′\
/ ↔r

/\S′
x |S′\

/. Using (@), I(/\Sx |S′\
/) ∩ (X ∪ {τ }) = ∅. Hence,

∃Q′ with P � /\S′
x |S′\

/
t−→Q′ and R′ ↔r Q′, and thus θX (R′) ↔r θX (Q′), using

Theorem 23. So θX (P ′) ↔B↔r θX (Q′). By Table 1, Q = /\x |S′\
/

t−→Q′.
– The remaining eight cases proceed just as in the proof of Theorem 23, but withB↔r

substituted for the blue occurrences ofB↔. ��

9 The recursive specification principle

For W ⊆ Var a set of variables, a W -tuple of expressions is a function �E ∈ EW . It has a
component �E(x) for each variable x ∈ W . Note that aW -tuple of expressions is nothing else
than a substitution. Let idW be the identity function, given by idW (x) = x for all x ∈ W . If
G ∈ E and �E ∈ EW then G[�E] denotes the result of simultaneous substitution of �E(x) for
x in G, for all x ∈ W . Likewise, if �G ∈ EV and �E ∈ EW then �G[�E] ∈ EV denotes the
V -tuple with components G(y)[�E] for y ∈ V . Henceforth, I regard a recursive specification

123

Reactive bisimulation semantics for a process algebra with timeouts

S as a VS-tuple with components S(y) = Sy for y ∈ VS. If �E ∈ EW and S ∈ EV , then
/\ �E |S\

/ ∈ EW is the W -tuple with components /\ �E(x)|S\
/ ∈ EW for x ∈ W .

For S a recursive specification and �E ∈ EVS a VS-tuple of expressions, �E ↔r S[�E] states
that �E is a solution of S, up to strong reactive bisimilarity. The tuple /\idVS |S\

/ ∈ EVS is called
the default solution.

In [2, 10], two requirements occur for process algebras with recursion. The recursive
definition principle (RDP) says that each recursive specification must have a solution, and
the recursive specification principle (RSP) says that guarded recursive specifications have
at most one solution. When dealing with process algebras where the meaning of a closed
expression is a semantic equivalence class of processes, these principles become requirements
on the semantic equivalence employed.

Proposition 26 Let S be a recursive specification, and x ∈ VS. Then /\x |S\
/ ↔r

/\Sx |S\
/.

Proof Let σ : Var → P be a closed substitution. I have to show that /\x |S\
/[σ] ↔r

/\Sx |S\
/[σ].

Equivalently I may show this for σ : Var\VS → P. Now /\x |S\
/[σ] = /\x |S[σ]\/ ∈ P and

/\Sx |S\
/[σ] = /\Sx [σ]|S[σ]\/ ∈ P. Consequently, it suffices to prove the proposition under the

assumption that /\x |S\
/,

/\Sx |S\
/ ∈ P. This follows immediately from the rule for recursion in

Table 1 and Definition 8. ��
Proposition 26 says that the recursive definition principle holds for strong reactive bisim-
ulation semantics. The “default solution” of a recursive specification is in fact a solution.
Note that the conclusion of Proposition 26 can be restated as /\idVS |S\

/ ↔r
/\S|S\

/, and that
S[/\idVS |S\

/] = /\S|S\
/.

The following theorem establishes the recursive specification principle for strong reactive
bisimulation semantics. Some aspects of the proof that are independent of the notion of
bisimilarity employed are delegated to the following two lemmas.

Lemma 5 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let
�P, �Q ∈ PW . Then, I(H [�P]) = I(H [�Q]).
Proof In Appendix A. ��
Lemma 6 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let
�P, �Q ∈ PW . If H [�P] α−→ R′ with α ∈ Act, then R′ has the form H ′[�P] for some term
H ′ ∈ E with free variables in W only. Moreover, H [�Q] α−→ H ′[�Q].
Proof By induction on the derivation of H [�P] α−→ R′, making a case distinction on the shape
of H .

Let H = α.G, so that H [�P] = α.G[�P]. Then, R′ = G[�P] and H [�Q] α−→ G[�Q].
The case H = 0 cannot occur. Nor can the case H = x ∈ Var, as H is guarded.
Let H = H1‖SH2, so that H [�P] = H1[�P]‖SH2[�P]. Note that H1 and H2 are guarded

and have free variables in W only. One possibility is that a /∈ S, H1[�P] α−→ R1 and R′ =
R1‖SH2[�P]. By induction, R′

1 has the form H ′
1[�P] for some term H ′

1 ∈ Ewith free variables

inW only. Moreover, H1[�Q] α−→ H ′
1[�Q]. Thus, R′ = (H ′

1‖SH2)[�P], and H ′ := H ′
1‖SH2 has

free variables inW only.Moreover, H [�Q] = H1[�Q]‖SH2[�Q] α−→ H ′
1[�Q]‖SH2[�Q] = H ′[�Q].

The other two cases for ‖S , and the cases for the operators+, τI andR, are equally trivial.
Let H = θUL (H†), so that H [�P] = θUL (H†[�P]). Note that H† is guarded and has free

variables in W only. The case α = τ is again trivial, so assume α �= τ . Then H†[�P] α−→ R′

123

R. van Glabbeek

and either α ∈ X or H†[�P] β
� for all β ∈ L ∪ {τ }. By induction, R′ has the form H ′[�P]

for some term H ′ ∈ E with free variables in W only. Moreover, H†[�Q] α−→ H ′[�Q]. Since
I(H†[�P]) = I(H†[�Q]) by Lemma 5, either α ∈ X or H†[�Q] β

� for all β ∈ L ∪ {τ }.
Consequently, H [�Q] = θUL (H†[�Q]) α−→ H ′[�Q].

Let H = ψX (H†), so that H [�P] = ψX (H†[�P]). Note that H† is guarded and has free
variables in W only. The case α ∈ A ∪ {τ } is trivial, so assume α = t. Then, H†[�P] t−→ R†

for some R† such that R′ = θX (R†). Moreover, H†[�P] β
� for all β ∈ X ∪{τ }. By induction,

R† has the form H ′[�P] for some term H ′ ∈ E with free variables in W only. Moreover,

H†[�Q] t−→ H ′[�Q]. SinceI(H†[�P]) = I(H†[�Q]) byLemma5, H†[�Q] β
� for allβ ∈ X∪{τ }.

Consequently, H [�Q] = ψX (H†[�Q]) t−→ θX (H ′[�Q]).
Finally, let H = /\x |S\

/, so that H [�P] = /\x |S[�P†]\/, where �P† is the W\VS-tuple that is
left of �P after deleting the y-components, for y ∈ VS. The transition /\Sx [�P†]|S[�P†]\/ α−→
R′ is derivable through a subderivation of the one for /\x |S[�P†]\/ α−→ R′. Moreover,
/\Sx [�P†]|S[�P†]\/ = /\Sx |S\

/[�P]. So by induction, R′ has the form H ′[�P] for some term H ′ ∈ E
with free variables inW only, and /\Sx |S\

/[�Q] α−→ H ′[�Q]. Since /\Sx |S\
/[�Q] = /\Sx [�Q†]|S[�Q†]\/,

it follows that H [�Q] = /\x |S\
/[�Q] = /\x |S[�Q†]\/ α−→ H ′[�Q]. ��

Theorem 27 Let S be a guarded recursive specification. If �E ↔r S[�E] and �F ↔r S[�F] with
�E, �F ∈ EVS , then �E ↔r

�F.
Proof It suffices to prove Theorem 27 under the assumptions that�,∝∈PVS and only the vari-
ables from VS occur free in the expressions Sx for x ∈ VS. For in the general case I have
to establish that �E[σ] ↔r

�F[σ] for an arbitrary closed substitution σ : Var → P. Let
σ̂ : Var\VS → P be given by σ̂ (x) = σ(x) for all x ∈ Var\VS. Then �E ↔r S[�E] implies
�E[σ] ↔r S[�E][σ] = S[σ̂][�E[σ]]. Hence, I merely have to prove the theorem with �E[σ],
�F[σ]and S[σ̂] in place of �E , �F and S.
It also suffices to prove Theorem 27 under the assumption that S is a manifestly guarded

recursive specification. Namely, for a general guarded recursive specification S, let S′ be the
manifestly guarded specification into which S can be converted. Then, �E ↔r S[�E] implies
�E ↔r S′[�E] by Theorem 23.
So let S be manifestly guarded with free variables from VS only, and let �P, �Q ∈ PVS

be two of its solutions, that is, �P ↔r S[�P] and �Q ↔r S[�Q]. I will show that the symmetric
closure of

B := {H [S[�P]], H [S[�Q]] | H ∈ E has free variables in VS only}
is a strong timeout bisimulation up to ↔r . Once I have that, taking H := x ∈ VS yields
Sx [�P] ↔r Sx [�Q] by Proposition 24, and thus P(x) ↔r Sx [�P] ↔r Sx [�Q] ↔r Q(x) for all
x ∈ VS. So �P ↔r

�Q.

• Let R B T and R α−→ R′ with α ∈ A ∪ {τ }. I have to find a T ′ with T α−→ T ′
and P ′ ↔rB↔r Q′. Assume that R = H [S[�P]] and T = H [S[�Q]]—the case that
R = H [S[�Q]] will follow by symmetry.
Note that H [S[�P]] can also be written as H [S][�P]. Since the expressions Sx for x ∈
VS have free variables from VS only, so does H [S]. Moreover, since S is manifestly
guarded, the expression H [S] must be guarded. By Lemma 6, R′ must have the form
H ′[�P], where H ′ ∈ E has free variables in VS only. Moreover, T = H [S[�Q]] =
H [S][�Q] α−→ H ′[�Q] =: T ′. Furthermore, by Theorem 23, H ′[�P] ↔r H ′[S[�P]] and
H ′[S[�Q]] ↔r H

′[�Q]. Thus, R′ = H ′[�P] ↔rB↔r H
′[�Q] = T ′.

123

Reactive bisimulation semantics for a process algebra with timeouts

• Let R B T , I(R)∩(X∪{τ }) = ∅ and R t−→ R′. I have to find a T ′ such that T t−→ T ′ and
θX (R′) ↔B↔r θX (T ′). The proof for this case proceeds exactly as that of the previous
case, up to the last sentence; the condition I(R) ∩ (X ∪ {τ }) = ∅ is not even used. Now
from R′ = H ′[�P] ↔r H ′[S[�P]] B H ′[S[�Q]] ↔r H

′[�Q] = T ′ it follows that

θX (R′) ↔r θX (H ′[S][�P]) B θX (H ′[S][�Q]) ↔r θX (T ′)

using Theorem 23 and the observation that θX (H ′[S[�P]]) = θX (H ′)[S[�P]]. ��

10 Complete axiomatisations

Let Ax denote the collection of axioms from Tables 2, 3 and 4 , Ax′ the ones from Tables 2
and 3 , and Ax′′ merely the ones from Table 2. Moreover, let Ax f , resp. Ax′

f and Ax′′
f , be

same collections without the two axioms using the recursion construct /\x |S\
/, RDP and RSP.

In this section, I establish the following.

Let P and Q be recursion-freeCCSPt processes. Then, P ↔Q ⇔ Ax′′
f � P = Q. (3)

Let P and Q be CCSPt processes with guarded recursion. Then,P ↔Q ⇔ Ax′′ � P = Q.

(4)

Let P and Q be recursion-freeCCSPθ
t processes. Then,P ↔Q ⇔ Ax′

f � P = Q. (5)

Let P and Q be CCSPθ
t processes with guarded recursion. Then,P ↔Q ⇔ Ax′ � P = Q.

(6)

Let P and Q be recursion-free CCSPθ
t processes. Then,P ↔r Q ⇔ Ax f � P = Q. (7)

Let P and Q beCCSPθ
t processes with guarded recursion.Then,P ↔r Q ⇔ Ax � P = Q. (8)

In each of these cases, “⇐” states the soundness of the axiomatisation and “⇒” com-
pleteness.

Section 10.1 recalls (4), which stems from [22], and (3), which is folklore. Then, Sect. 10.2
extends the existing proofs of (4) and (3) to obtain (6) and (5). In Sect. 10.3, I move from
strong bisimilarity to strong reactive bisimilarity; I discuss the merits of the axiom RA from
Table 4 and establish its soundness, thereby obtaining direction “⇐” of (8) and (7). I prove
the completeness of Ax f for recursion-free processes—direction “⇒” of (7)—in Sect. 10.4.
Sections 10.5–10.7 deal with the completeness of Ax for guarded CCSPθ

t —direction “⇒” of
(8). Section 10.8 explains why I need the axiom of choice for the latter result.

10.1 A complete axiomatisation of strong bisimilarity on guarded CCSPt

The well-known axioms of Table 2 are sound for strong bisimilarity, meaning that writing
↔ for =, and substituting arbitrary expressions for the free variables x, y, z, or the meta-
variables Pi and Q j , turns them into true statements. In these axioms α, β range over Act
and a, b over A. All axioms involving variables are equations. The axiom involving P and
Q is a template that stands for a family of equations, one for each fitting choice of P and Q.
This is the CCSPt version of the expansion law from [33]. The axiom RDP (/\x |S\

/ = /\Sx |S\
/)

says that recursively defined processes /\x |S\
/ satisfy their set of defining equations S. As

discussed in the previous section, this entails that each recursive specification has a solution.
The axiom RSP [2, 10] is a conditional equation with the equations of a guarded recursive
specification S as antecedents. It says that the x-component of any solution of S—a vector

123

R. van Glabbeek

Table 2 A complete axiomatisation of strong bisimilarity on guarded CCSPt

x + (y + z) = (x + y) + z τI (x + y) = τI (x) + τI (y) R(x + y) = R(x) + R(y)
x + y = y + x τI (α.x) = α.τI (x) ifα/∈I R(τ.x) = τ.R(x)
x + x = x τI (α.x) = τ.τI (x) ifα ∈ I R(t.x) = t.R(x)
x + 0 = 0 /\x |S\

/ = /\Sx |S\
/ (RDP) R(a.x) =

∑

{b|(a,b)∈R}
b.R(x)

IfP =
∑

i∈I
αi .Pi and Q =

∑

j∈J

β j .Q j then

P‖S Q =
∑

i∈I , αi /∈S
(αi .Pi‖S Q) +

∑

j∈J , β j /∈S
(P‖Sβ j .Q j) +

∑

i∈I , j∈J , αi=β j∈S
αi .(Pi‖S Q j)

Recursive specification principle (RSP) S ⇒ x = /\x |S\
/ (S guarded)

of processes substituted for the variables VS—equals /\x |S\
/. In other words, each solution

of S equals the default solution. This is a compact way of saying that solutions of guarded
recursive specifications are unique.

Theorem 28 For CCSPt processes P, Q ∈ P with guarded recursion, one has P ↔ Q, that
is, P and Q are strongly bisimilar, iff P = Q is derivable from the axioms of Table 2.

In this theorem, “if”, the soundness of the axiomatisation of Table 2, is an immediate conse-
quence of the soundness of the individual axioms. “Only if” states the completeness of the
axiomatisation.

A crucial tool in its proof is the simple observation that the axioms from the first box
of Table 2 allow any CCSPt process with guarded recursion to be brought in the form∑

i∈I αi .Pi—a head normal form. Using this, the rest of the proof is a standard argument
employing RSP, independent of the choice of the specific process algebra. It can be found in
[2, 10, 31, 33] and many other places. However, in the literature this completeness theorem
was always stated and proved for a small fragment of the process algebra, allowing only
guarded recursive specifications with a finite number of equations, and whose right-hand
sides Sy involve only the basic operators inaction, action prefixing and choice. Since the
set of true statements P ↔ Q, with P and Q processes in a process algebra like guarded
CCSPt, is well known to be undecidable, and even not recursively enumerable, it was widely
believed that no sound and complete finitely presented axiomatisation of strong bisimilarity
could exist. Only in March 2017, Kees Middelburg observed (in the setting of the process
algebra ACP [2, 10]) that the standard proof applies almost verbatim to arbitrary processes
with guarded recursion, although one has to be a bit careful in dealing with the infinite
nature of recursive specifications. The argument has been carefully documented in [22], in
the setting of the process algebra ACP. This result does not contradict the non-enumerability
of the set of true statements P ↔Q, due to the fact that RSP is a proof rule with infinitely
many premises.

Awell-known simplification of Theorem28 and its proof also yields completenesswithout
recursion:

Theorem 29 For CCSPt processes P, Q ∈ P without recursion, one has P ↔ Q iff P = Q
is derivable from the axioms of Table 2 minus RDP and RSP.

123

Reactive bisimulation semantics for a process algebra with timeouts

Table 3 A complete axiomatisation of strong bisimilarity on guarded CCSPθ
t

θUL (
∑

i∈I αi .xi) = ∑
i∈I αi .xi (αi /∈ L ∪ {τ } for all i ∈ I)

θUL (x + α.y + β.z) = θUL (x + α.y) (α ∈ L ∪ {τ } ∧ β /∈ U ∪ {τ })
θUL (x + α.y + β.z) = θUL (x + α.y) + θUL (β.z) (α ∈ L ∪ {τ } ∧ β ∈ U ∪ {τ })
θUL (β.x) = β.x (β �= τ)

θUL (τ.x) = τ.θUL (x)

ψX (x + α.z) = ψX (x) + α.z (α /∈ X ∪ {τ, t})
ψX (x + α.y + t.z) = ψX (x + α.y) (α ∈ X ∪ {τ })
ψX (x + α.y + β.z) = ψX (x + α.y) + β.z (α, β ∈ X ∪ {τ })
ψX (α.x) = α.x (α �= t)

ψX (
∑

j∈I t.yi) = ∑
j∈I t.θX (y j)

10.2 A complete axiomatisation of strong bisimilarity on guarded CCSP�
t

Table 3 extends Table 2 with axioms for the auxiliary operators θUL and ψX . With Table 1 it
is straightforward to check the soundness of these axioms. The fourth axiom, for instance,
follows from the second or third rule for θUL in Table 1, depending on whether β ∈ L ∪ {t}.
Moreover, a straightforward induction shows that these axioms suffice to convert eachCCSPθ

t
process with guarded recursion into the form

∑
I∈Iαi .Pi—a head normal form. The below

proposition sharpens this observation by pointing out that one can take the processes Pi for
i ∈ I to be exactly the ones that are reachable by one αi -labelled transition from P .

Definition 30 Given a CCSPθ
t process P ∈ P, let P̂ := ∑

{(α,Q)|P α−→Q} α.Q.

By Proposition 12, P is countably branching, so using Proposition 15 P̂ is a valid CCSPθ
t

process. In case P ∈ P is a process with only guarded recursion, then P is finitely branching
by Proposition 13, so also P̂ is a valid CCSPθ

t process with only guarded recursion.

Proposition 31 Let P ∈ P have guarded recursion only. Then, Ax′ � P = P̂. The condi-
tional equation RSP is not even needed here.

Proof The proof is by induction on the measure e(P), defined in the proof of Proposition 13.
Let P = /\x |S\

/. Axiom RDP yields Ax � P = /\x |S\
/ = /\Sx |S\

/. Moreover, e(/\Sx |S\
/) <

e(/\x |S\
/). So by induction, Ax � /\Sx |S\

/ = /̂\Sx |S\
/. Moreover, {(α, Q) | /\Sx |S\

/
α−→ Q} =

{(α, Q) | /\x |S\
/

α−→ Q}, so /̂\Sx |S\
/ = /̂\x |S\

/ = P̂ . Thus Ax � P = P̂ .
Let P = θUL (P ′). Using that e(P ′) < e(P), by induction Ax � P ′ = P̂ ′ so Ax � P =

θUL (P̂ ′). Let

P̂ ′ =
∑

h∈H
τ.Ph +

∑

i∈I
ai .Qi +

∑

j∈J

b j .R j +
∑

k∈K
γk .Tk ,

where ai ∈ L for all i ∈ I , b j ∈ U\L for all j ∈ J , and γk /∈ U ∪ {τ } for all k ∈ K . (So γk
may be t.)
In case H ∪ I = ∅, one has Ax � P = θUL (P̂ ′) = P̂ ′ = P̂ , using the first axiom for θUL .
Otherwise

Ax � P =
∑

h∈H
τ.θUL (Ph) +

∑

i∈I
ai .Qi +

∑

j∈J

b j .R j

123

R. van Glabbeek

by the remaining four axioms for θUL . The right-hand side is P̂ .
The cases for the remaining operators are equally straightforward. ��

In the special case that P is a recursion-free process, also the axiom RDP is not needed for
this result.

Once we have head normalisation, the proofs of Theorems 28 and 29 are independent of
the precise syntax of the process algebra in question. Using Proposition 31, we immediately
obtain (6) and (5):

Theorem 32 For CCSPθ
t processes P, Q ∈ P with guarded recursion, one has P ↔ Q iff

P = Q is derivable from the axioms of Tables 2 and 3. ��
Theorem 33 For CCSPθ

t processes P, Q ∈ P without recursion, one has P ↔ Q iff P = Q
is derivable from the axioms of Tables 2 and 3 minus RDP and RSP.

A law that turns out to be particularly useful in verifications modulo strong reactive bisimi-
larity is

θV
K (θUL (x)) ↔θV∩U

K∪L (x) provided U = V or K = L or K ⊆ L ⊆ U ⊆ V or L ⊆ K ⊆ V ⊆ U (L1) .

Note that the right-hand side only exists if (K ∪ L) ⊆ (V ∩ U). This law is sound for
strong bisimilarity, as demonstrated by the following proposition. Yet it is not needed to add
it to Table 3, as all its closed instances are derivable. In fact, this is a consequence of the
above completeness theorems.

Proposition 34 θV
K (θUL (P)) ↔θV∩U

K∪L (P), provided (K ∪ L) ⊆ (V ∩ U) and either U = V
or K = L or K ⊆ L ⊆ U ⊆ V or L ⊆ K ⊆ V ⊆ U.

Proof For given K , L,U , V ⊆ A with (K ∪ L) ⊆ (V ∩U) and either U = V or K = L or
K ⊆ L ⊆ U ⊆ V or L ⊆ K ⊆ V ⊆ U , let

B := Id ∪
{(

θV
K (θUL (P)), θV∩U

K∪L (P)
) | P ∈ P

}
.

It suffices to show that the symmetric closure B̃ ofB is a strong bisimulation. So let R B̃ T
and R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.
• The case that R = T is trivial.
• Let R = θV

K (θUL (P)) and T = θV∩U
K∪L (P).

First assume α = τ . Then, P τ−→ P ′ for some P ′ such that R′ = θV
K (θUL (P ′)).

Hence, T = θV∩U
K∪L (P)

τ−→ θV∩U
K∪L (P ′) =: T ′, and R′ B T ′.

Now assume α ∈ A ∪ {t}. Then, θUL (P)
α−→ R′ and either α ∈ V or θUL (P)

β
� for all

β ∈ K∪{τ }. Using that K ⊆ U , this implies that eitherα ∈ V or P
β
� for allβ ∈ K∪{τ }.

Moreover, P α−→ R′ and either α ∈ U or P
β
� for all β ∈ L ∪ {τ }. It follows that either

α ∈ V ∩U or P
β
� for all β ∈ K ∪ L ∪ {τ }. (Here I use that either U = V or K = L or

K ⊆ L ⊆ U ⊆ V or L ⊆ K ⊆ V ⊆ U .) Consequently, T = θV∩U
K∪L (P)

α−→ R′.
• Let R = θV∩U

K∪L (P) and T = θV
K (θUL (P)).

First assume α = τ . Then, P τ−→ P ′ for some P ′ such that R′ = θV∩U
K∪L (P ′).

Hence, T = θV
K (θUL (P))

τ−→ θV
K (θUL (P ′)) =: T ′, and R′ B̃ T ′.

Now assume α ∈ A ∪ {t}. Then, P α−→ R′ and either α ∈ V ∩ U or P
β
� for all

β ∈ K ∪ L ∪ {τ }. Consequently, θUL (P)
α−→ R′ and thus T = θV

K (θUL (P))
α−→ R′. ��

123

Reactive bisimulation semantics for a process algebra with timeouts

Table 4 A complete
axiomatisation of strong reactive
bisimilarity on guarded CCSPθ

t

ψX (x) = ψX (y) for all X ⊆ A

x = y
(RA)

The side condition to L1 cannot be dropped, for θ
{a,c}
{c} θ

{c}
∅ (a.0 + c.0) a−→ 0, yet θ

{c}
{c} (a.0 +

c.0)
a
�.

10.3 A complete axiomatisation of strong reactive bisimilarity on guarded CCSP�
t

To obtain a sound and complete axiomatisation of strong reactive bisimilarity for CCSPθ
t with

guarded recursion, one needs to combine the axioms of Tables 2, 3 and 4. These axioms are
useful only in combination with the full congruence property of strong reactive bisimilarity,
Theorem 25. This is what allows us to apply these axioms within subexpressions of a given
expression. Since ↔ ⊆ ↔r , the soundness of all equational axioms for strong reactive
bisimilarity follows from their soundness for strong bisimilarity. The soundness of RSP has
been established as Theorem 27. The soundness of RA, the reactive approximation axiom,
is contributed by the following proposition.

Proposition 35 Let P, Q ∈ P. If ψX (P) ↔r ψX (Q) for all X ⊆ A, then P ↔r Q.

Proof Given P, Q ∈ P with ψX (P) ↔r ψX (Q) for all X ⊆ A, I show that B := ↔r ∪
{(P, Q), (Q, P)} is a strong timeout bisimulation.

Let P α−→ P ′ with α ∈ A ∪ {τ }. Take any X ⊆ A. Then, ψX (P)
α−→ P ′. Since ψX (P) ↔r

ψX (Q), this implies ψX (Q)
α−→ Q′ for some Q′ with P ′ ↔r Q

′, and hence Q α−→ Q′.
Let P t−→ P ′ andI(P)∩(X∪{τ }) = ∅. Then,ψX (P)tθX (P ′) andI(ψX (P))∩(X∪{τ }) =

∅. Since ψX (P) ↔r ψX (Q), this implies ψX (Q)
t−→ Q′′ for some Q′′ with θX (θX (P ′)) ↔r

θX (Q′′). It must be that Q t−→ Q′ for some Q′ with Q′′ = θX (Q′). By Proposition 34,
θX (θX (R)) ↔ θX (R) for all R ∈ P. Thus, θX (P ′) ↔ θX (θX (P ′)) ↔r θX (θX (Q′)) ↔
θX (Q′), which had to be shown. ��
At first sight, it appears that axiom RA is not very handy, as, in case the alphabet A of visible
actions is finite, the number of premises to verify is exponential in the size A. In case A is
infinite, there are even uncountably many premises. However, in practical verifications this
is hardly an issue, as one uses a partition of the premises into a small number of equivalence
classes, each of which requires only one common proof. This technique will be illustrated
on three examples below. Furthermore, one could calculate the set of visible actions J(P)

of a process P that can be encountered as initial actions after one t-transition followed by
a sequence of τ -transitions. For large classes of processes, J(P) will be a finite set. Now
axiom RA can be modified by changing X ⊆ A into X ⊆ J(P) ∪ J(Q). This preserves the
soundness of the axiom, because only the actions inJ(P) play any rôle in evaluatingψX (P).

A crucial property of strong reactive bisimilarity was mentioned in the Introduction:

τ.P + t.Q = τ.P (L2) .

It is an immediate consequence of RA, since ψX (τ.P + t.Q) = ψX (τ.P) for any X ⊆ A,
by Table 3. Another useful law in verifications modulo strong reactive bisimilarity is

∑
i∈I ai .xi + t.y = ∑

i∈I ai .xi + t.θ A\In
∅ (y), where In = {ai | i ∈ I }. (L3)

123

R. van Glabbeek

Its soundness is intuitively obvious: the t-transition to y will be taken only in an environ-
ment X with X ∩ In = ∅. Hence, one can just as well restrict the behaviour of y to those
transitions that are allowed in one such environment. This law was one of the prime reasons
for extending the family of operators θX (= θ X

X), which were needed to establish the key
theorems of this paper, to the larger family θUL . Law L3 for finite I is effortlessly derivable
from its simple instance

a.x + t.y = a.x + t.θ A\{a}
∅ (y). (L3′)

in combination with L1. I now show how to derive L3 from RA. For this proof, I need to
partition the set of premises of RA in only two equivalence classes.

First let X ∩ In �= ∅. Then, ψX (
∑

i∈I ai .xi + t.y) = ∑
i∈I ai .xi = ψX (

∑
i∈I ai .xi +

t.θ A\In
∅ (y)).
Next let X ∩ In = ∅. Then ψX (

∑
i∈I ai .xi + t.y) = ∑

i∈I ai .xi + t.θX (y)

= ∑
i∈I ai .xi + t.θX (θ

A\In
∅ (y))

= ψX (
∑

i∈I ai .xi + t.θ A\In
∅ (y)) ,

where the second step is an application of L1.
As an application of L3′, one obtains the law from [18] that was justified in the Introduc-

tion:

a.P + t.(Q + τ.R + a.S) = a.P + t.θ A\{a}
∅ (Q + τ.R + a.S)

= a.P + t.θ A\{a}
∅ (Q + τ.R)

= a.P + t.(Q + τ.R) .

As a third illustration of the use of RA, I derive an equational law that does not follow
from L1, L2 and L3, namely

b.P + t.(a.Q + τ.(b.R + a.S)) + t.τ.a.S = b.P + t.(a.Q + τ.a.S) + t.τ.(b.R + a.S)

These are the systems depicted in Fig. 1. These systems are surely not strongly bisimilar.
Moreover, L3 does not help in proving them equivalent, as applying θ

A\{b}
∅ to any of the four

targets of a t-transition does not kill any of the transitions of those processes. In particular,
θ
A\{b}
∅ (b.R + a.S) = b.R + a.S. To derive this law from RA, I partition P(A) into three
equivalence classes.

First, let b ∈ X . Then, ψX (b.P + t.(a.Q + τ.(b.R + a.S)) + t.τ.a.S)

= b.P
= ψX (b.P + t.(a.Q + τ.a.S) + t.τ.(b.R + a.S)).

Next, let b /∈ X and a ∈ X . Then,

ψX
(
b.P + t.(a.Q + τ.(b.R + a.S)) + t.τ.a.S

)

= b.P + t.θX
(
a.Q + τ.(b.R + a.S)

) + t.θX
(
τ.a.S

)

= b.P + t.(a.Q + τ.θX (b.R + a.S)) + t.τ.θX (a.S)

= b.P + t.(a.Q + τ.a.S) + t.τ.a.S
= b.P + t.(a.Q + τ.θX (a.S)) + t.τ.θX

(
b.R + a.S

)

= b.P + t.θX
(
a.Q + τ.a.S

) + t.θX
(
τ.(b.R + a.S)

)

= ψX
(
b.P + t.(a.Q + τ.a.S) + t.τ.(b.R + a.S)

)
.

123

Reactive bisimulation semantics for a process algebra with timeouts

Finally, let a, b /∈ X . Then,

ψX
(
b.P + t.(a.Q + τ.(b.R + a.S)) + t.τ.a.S

)

= b.P + t.θX
(
a.Q + τ.(b.R + a.S)

) + t.θX
(
τ.a.S

)

= b.P + t.τ.θX (b.R + a.S) + t.τ.θX (a.S)

= b.P + t.τ.(b.R + a.S) + t.τ.a.S
= b.P + t.τ.a.S + t.τ.(b.R + a.S)

= b.P + t.τ.θX (a.S) + t.τ.θX
(
b.R + a.S

)

= b.P + t.θX
(
a.Q + τ.a.S

) + t.θX
(
τ.(b.R + a.S)

)

= ψX
(
b.P + t.(a.Q + τ.a.S) + t.τ.(b.R + a.S)

)
.

10.4 Completeness for finite processes

Theorem 36 Let P and Q be closed recursion-free CCSPθ
t expressions. Then, P ↔r Q ⇒

Ax f � P = Q.

Proof Let the length of a path P α1−→ P1
α2−→ . . .

αn−→ Pn of a processes P be n. Let d(P),
the depth of P , be the length of its longest path; it is guaranteed to exist when P is a closed
recursion-free CCSPθ

t expression. I prove the theorem with induction on max(d(P), d(Q)).
Suppose P ↔r Q. By Proposition 31 one has Ax f � P = P̂ and Ax f � Q = Q̂. I will

show that Ax f � ψX (P̂) = ψX (Q̂) for all X ⊆ A. This will suffice, as then Axiom RA
yields Ax f � P̂ = Q̂ and thus Ax f � P = Q. So pick X ⊆ A. Let

P̂ =
∑

i∈I
αi .P

′
i +

∑

j∈J

t.P ′′
j and Q̂ =

∑

k∈K
βk .Q

′
k +

∑

h∈H
t.Q′′

h

with α j , βk ∈ A ∪ {τ } for all i ∈ I and k ∈ K . The following two claims are the crucial part
of the proof.

Claim 1: For each i ∈ I , there is a k ∈ K with αi = βk and Ax f � P ′
i = Q′

k .
Claim 2: If I(P) ∩ (X ∪ {τ }) = ∅, then for each j ∈ J there is a h ∈ H with Ax f �
θX (P ′′

j) = θX (Q′′
h).

With these claims, the rest of the proof is straightforward. Since P ↔r Q, one has I(P) =
I(P̂) = {αi | i ∈ I } = {βk | k ∈ K } = I(Q̂) = I(Q). First suppose that I(P)∩(X∪{τ }) =
∅. Then,
ψX (P̂) =

∑

i∈I
αi .P

′
i +

∑

j∈J

t.θX (P ′′
j) and ψX (Q̂) =

∑

k∈K
βk .Q

′
k +

∑

h∈H
t.θX (Q′′

h) .

Claim 1 yields Ax f � ψX (Q̂) = ψX (Q̂) + αi .P ′
i for each i ∈ I . Likewise, Claim 2 yields

Ax f � ψX (Q̂) = ψX (Q̂) + t.θX (P ′′
j) for each j ∈ J . Together this yields Ax f � ψX (Q̂) =

ψX (Q̂) + ψX (P̂). By symmetry, one obtains Ax f � ψX (P̂) = ψX (P̂) + ψX (Q̂) and thus
Ax f � ψX (P̂) = ψX (Q̂).

Next suppose I(P) ∩ (X ∪ {τ }) �= ∅. Then, ψX (P̂) = ∑
i∈I αi .P ′

i and ψX (Q̂) =∑
k∈K βk .Q′

k . The proof proceeds just as above, but without the need for Claim 2.

Proof of Claim 1: Pick i ∈ I . Then P̂ αi−→ P ′
i . So Q̂ αi−→ Q′ for some Q′ with P ′

i
↔r Q

′. Hence
there is a k ∈ K with αi = βk and Q′ = Q′

k . Using that d(P ′
i) < d(P) and d(Q′

i) < d(Q),
by induction Ax f � P ′

i = Q′
k .

Proof of Claim 2: Pick j ∈ J . Then P̂ t−→ P ′′
j . Since I(P̂) ∩ (X ∪ {τ }) = ∅, there is a Q′′

such that Q̂ t−→ Q′′ and θX (P ′′
j)

↔r θX (Q′′). Hence, there is a h ∈ H with Q′′ = Q′′
h .

123

R. van Glabbeek

1

P

b

2

t

4

τ

Q

a

R

b

S

a

3

t

T

a

5

τ

a

×

6

P

b

7

t

9Q

a

R

b

S

a

8

t

T

a
τ

10

τ

a

=

1,6

P

b

2,7

t
2,8

t

4,9

τ

R

b

S

a

3,7

t

5,10

τ

a

4,10

τ

a

Q

a

3,8

t

T

a

5,9

τ

a

Fig. 3 A failed product construction

Using that d(θX (P ′′
j)) ≤ d(P ′′

j) < d(P) and d(θX (Q′′
h)) ≤ d(Q′′

h) < d(Q), by induction
Ax f � θX (P ′′

j) = θX (Q′′
h). ��

10.5 Themethod of canonical representatives

The classic technique of proving completeness of axiomatisations for process algebras with
recursion involvesmerging guarded recursive equations [11, 30–32, 40]. In essence, it proves
two bisimilar systems P and Q equivalent by equating both to an intermediate variant that
is essentially a product of P and Q. I tried so hard, and in vain, to apply this technique to
obtain (8), that I came to believe that it fundamentally does not work for this axiomatisation.

The problem is illustrated in Fig. 3. Here, similar to the example of Fig. 1, the processes
1 and 6 are strongly reactive bisimilar. The merging technique constructs a transition system
whose states are pairs of states reachable from 1 and 6. There is a transition (s, t) α−→ (s′, t ′)
iff both s α−→ s′ and t α−→ t ′. Normally, only those pairs (s, t) satisfying s ↔ t are included.
Here, the requirement s ↔r t would be to strong. Namely, although 1 ↔r 6, one has neither
2 ↔r 7 nor 2 ↔r 8 nor 3 ↔r 7 nor 3 ↔r 8, so there would be no outgoing t-transitions from
(1, 6). Hence, one has to include states (s, t) with s ↔X

r t for some set X . Note that 2 ↔X
r 7

and 3 ↔X
r 8 when a ∈ X and b /∈ X , whereas 2 ↔X

r 8 and 3 ↔X
r 7 when a /∈ X . This yields

the product depicted in Fig. 3.

123

Reactive bisimulation semantics for a process algebra with timeouts

In the reactive bisimulation game, the transition 1 t−→ 2 will be matched by 6 t−→ 8 only
in an environment X with a /∈ X . Hence, intuitively the state (2, 8) in the product should
only be visited in such an environment. Yet, when aiming to show that 1↔r (1, 6) ↔r 6, one

cannot prevent taking the transition (1, 6) t−→ (2, 8) in an environment X with a ∈ X and
b /∈ X . However, since (2, 8)

a
�, this t-transition cannot be simulated by process 2.

Itmaybe possible to repair the construction, for instance by adding a transition (2, 8) a−→ Q
or (2, 8) a−→ T after all, but not both. However, each such ad hoc repair that I tried gave raise to
further problems, making the solution more and more complicated without sight on success.

Therefore, I here employ the novel method of canonical solutions [24, 29], which equates
both P and Q to a canonical representativewithin the bisimulation equivalence class of P and
Q—one that has only one reachable state for each bisimulation equivalence class of states
of P and Q. Moreover, my proof employs the axiom of choice [41] in defining the transition
relation on my canonical representative, in order to keep this process finitely branching.

To illustrate his technique on the example from Fig. 3, the states 1 and 6, being strongly
reactive bisimilar, form one new state {1, 6} of the canonical representative. Likewise, there
will be states {4, 9} and {5, 10}. However, the states 2, 3, 7 and 8 remain separate. Within the
new state {1, 6}, my construction chooses an arbitrary element, say 1. Based on this choice,
the outgoing transitions of {1, 6} are dictated by 1, and thus go to P , {2} and {3}. As a result,
the canonical representative will look just like the left-hand process. It could however be
the case that S ↔r P , in which case the initial states of these subprocesses are merged in
the canonical representative, and again an element in the resulting equivalence class will be
chosen that dictates its outgoing transitions.

10.6 The canonical representative

Let Pg denote the set of CCSPθ
t processes with guarded recursion. Let [P] := {Q ∈ Pg |

Q ↔r P} be the strong reactive bisimulation equivalence class of a process P ∈ Pg . Below,
by “abstract process” I will mean such an equivalence class. Choose a function χ that selects
an element out of each↔r-equivalence class of CCSP

θ
t processes with guarded recursion—

this is possible by the axiom of choice [41]. Define the transition relations α−→, for α ∈ Act ,
between abstract processes by

R α−→ R′ ⇔ ∃P ′ ∈ R′. χ(R)
α−→ P ′ . (9)

I will show that P ↔r [P] for all P ∈ Pg . Formally, ↔r has been defined only between
processes belonging to the same LTS P, and here [P] /∈ P. However, this restriction is
not material: two processes P ∈ P and Q ∈ Q from different LTSs can be compared by
considering↔r on the disjoint unionP �Q.

Lemma 7 Let α ∈ A ∪ {τ }. Then, [P] α−→ R′ iff P α−→ P ′ for some P ′ with R′ = [P ′].

Proof Let P α−→ P ′ with α ∈ A∪{τ }. Since P ↔r χ([P]), by Definition 8 there is a Q′ such
that χ([P]) α−→ Q′ and P ′ ↔r Q

′. Hence, [P] α−→ [Q′] by (9). Moreover, P ′ ∈ [Q′]=[P ′].
Let [P] α−→ R′ with α ∈ A ∪ {τ }. Then, χ([P]) α−→ Q′ for some Q′ ∈ R′. Since

χ([P]) ↔r P , there is a P ′ such that P α−→ P ′ and Q′ ↔r P ′. Hence, P ′ ∈ R′ and thus
R′ = [P ′]. ��
Corollary 37 I([P]) = I(P) for all P ∈ Pg.

123

R. van Glabbeek

Lemma 8 If I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′ then [P] t−→ [Q′] for a Q′ with θX (P ′) ↔r

θX (Q′). Moreover, if I(P) ∩ (X ∪ {τ }) = ∅ and [P] t−→ [Q′] then P t−→ P ′ for a P ′ with
θX (Q′) ↔r θX (P ′).

Proof Let I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. Since P ↔r χ([P]), by Definition 8 there is
a Q′ such that χ([P]) t−→ Q′ and θX (P ′) ↔r θX (Q′). Hence, [P] t−→ [Q′] by (9).

LetI(P)∩(X∪{τ }) = ∅ and [P] t−→ [Q′]. Then,χ([P]) t−→ R′ for some R′ ∈ [Q′]. Since
χ([P]) ↔r P (soI(χ([P])) = I(P)), there is a P ′ such that P t−→ P ′ and θX (R′) ↔r θX (P ′).
As↔r is a congruence for θX , one has θX (Q′) ↔r θX (R′), and thus θX (Q′) ↔r θX (P ′). ��
Definition 38 Let B∗:= {(R, T) | ∃n ≥ 0. ∃R0, . . . , Rn . R = R0 B R1 B · · · B
Rn = T } denote the reflexive and transitive closure of a binary relationB. A strong timeout
bisimulation up to reflexivity and transitivity is a symmetric relationB ⊆ P×P, such that,
for P B Q,

• if P α−→ P ′ with α ∈ A ∪ {τ }, then ∃Q′ such that Q α−→ Q′ and P ′ B∗ Q′,
• if I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′, then ∃Q′ with Q t−→ Q′ and θX (P ′) B∗ θX (Q′).

Proposition 39 If P B Q for a strong timeout bisimulation B up to reflexivity and transi-
tivity, then P ↔r Q.

Proof It suffices to show that B∗ is a strong timeout bisimulation. Clearly this relation is
symmetric.

• Suppose R0 B R1 B · · · B Rn for some n ≥ 0 and R0
α−→ R′

0 with α ∈ A ∪ {τ }. I have
to find an R′

n such that Rn
α−→ R′

n and R′
0 B∗ R′

n . I proceed with induction on n. The

case n = 0 is trivial. Fixing an n > 0, by Definition 38 there is an R′
1 such that R1

α−→ R′
1

and R′
0 B∗ R′

1. Now, by induction there is an R′
n such that Rn

α−→ R′
n and R′

1 B∗ R′
n .

Hence, R′
0 B

∗ R′
n .

• Suppose R0 B R1 B · · · B Rn for some n ≥ 0, I(R0) ∩ (X ∪ {τ }) = ∅ and R0
t−→ R′

0.

ByDefinition 38 I(R0) = I(R1) = · · · = I(Rn). I have to find an R′
n such that Rn

t−→ R′
n

and θX (R′
0) B

∗ θX (R′
n). This proceeds exactly as for the case above. ��

Lemma 9 θX ([P]) ↔r [θX (P)] for all P ∈ Pg and X ⊆ A.

Proof I show that the symmetric closure ofB := {(θX ([P]), [θX (P)]) | P ∈ Pg ∧ X ⊆ A}
is a strong timeout bisimulation up to reflexivity and transitivity.

• Let θX ([P]) τ−→ R′. Then, [P] τ−→ Q′ for some Q′ with R′ = θX (Q′). By Lemma 7,
P τ−→ P ′ for some P ′ with Q′ = [P ′]. Hence, θX (P)

τ−→ θX (P ′) and thus [θX (P)] τ−→
[θX (P ′)] by Lemma 7. Moreover, R′ = θX ([P ′]) B [θX (P ′)].

• Let [θX (P)] τ−→ R′. By Lemma 7, θX (P)
τ−→ Q′ for some Q′ with R′ = [Q′]. Thus,

P τ−→ P ′ for some P ′ with Q′ = θX (P ′). Now [P] τ−→ [P ′] by Lemma 7, and thus
θX ([P]) τ−→ θX ([P ′]). Moreover, R′ = [θX (P ′)] B−1 θX ([P ′]).

• Let θX ([P]) a−→ R′ with a ∈ A. Then, [P] a−→ R′ and either a ∈ I([P]) or [P] β
� for

all β ∈ X ∪ {τ }. Thus, either a ∈ I(P) or P
β
� for all β ∈ X ∪ {τ }, using Corollary 37.

By Lemma 7, P a−→ P ′ for some P ′ with R′ = [P ′]. Hence, θX (P)
a−→ P ′ and thus

[θX (P)] a−→ [P ′] = R′.

123

Reactive bisimulation semantics for a process algebra with timeouts

• Let [θX (P)] a−→ R′ with a ∈ A. By Lemma 7, θX (P)
a−→ P ′ for some P ′ with R′ = [P ′].

Thus, P a−→ P ′ and either a ∈ I(P) or P
β
� for all β ∈ X ∪ {τ }. Therefore, either

a ∈ I([P]) or [P] β
� for all β ∈ X ∪ {τ }, using Corollary 37. Moreover, [P] a−→ [P ′] by

Lemma 7. It follows that θX ([P]) a−→ [P ′] = R′.
• Let I(θX ([P])) ∩ (X ∪ {τ }) = ∅ and θX ([P]) t−→ R′ = [Q′]. Then, [P] t−→ [Q′] and

[P] β
� for all β ∈ X ∪ {τ }. Thus, P β

� for all β ∈ X ∪ {τ }, using Corollary 37, so
I(P) ∩ (X ∪ {τ }) = ∅ and I(θX (P)) ∩ (X ∪ {τ }) = ∅. By Lemma 8, P t−→ P ′ for some
P ′ with θX (Q′) ↔r θX (P ′). Hence θX (P)

t−→ P ′ and thus, again applying Lemma 8,

[θX (P)] t−→ [T ′] for some T ′ with θX (P ′) ↔r θX (T ′). Moreover, θX (R′) = θX ([Q′]) B
[θX (Q′)] = [θX (T ′)] B−1 θX ([T ′]).

• Let I([θX (P)]) ∩ (X ∪ {τ }) = ∅ and [θX (P)] t−→ [Q′]. By Lemma 8, θX (P)
t−→ P ′

for a P ′ with θX (Q′) ↔r θX (P ′). Hence P t−→ P ′ and P
β
� for all β ∈ X ∪ {τ }, so

I(P) ∩ (X ∪ {τ }) = ∅. Hence, by Lemma 8, [P] t−→ [T ′] for a T ′ with θX (P ′) ↔r

θX (T ′). By Corollary 37, [P] β
� for all β ∈ X ∪ {τ }. So θX ([P]) t−→ [T ′]. Moreover,

θX ([Q′]) B [θX (Q′)] = [θX (T ′)] B−1 θX ([T ′]). ��
Proposition 40 P ↔r [P] for all P ∈ Pg.

Proof Using Proposition 24, I show that the symmetric closure of the relation B :=
{(P, [P]) | P ∈ Pg} is a strong timeout bisimulation up to ↔r . Here, the right-hand
side processes come from an LTS that is closed under θ and contains the processes [P] for
P ∈ Pg .

• Let P α−→ P ′ with α ∈ A ∪ {τ }. Then, [P] α−→ [P ′] by Lemma 7, and P ′ B [P ′].
• Let [P] α−→ R′ with α ∈ A ∪ {τ }. Then, by Lemma 7, P α−→ P ′ for some P ′ with

R′ = [P ′]. Moreover, R′ B−1 P ′.
• Let I(P) ∩ (X ∪ {τ }) = ∅ and P t−→ P ′. By Lemma 8, [P] t−→ [Q′] for some Q′ such

that θX (P ′) ↔r θX (Q′). Moreover, using Lemma 9, θX (P ′) B [θX (P ′)] = [θX (Q′)] ↔r
θX ([Q′]).

• Let I([P]) ∩ (X ∪ {τ }) = ∅ and [P] t−→ [Q′]. Then, by Lemma 8, P t−→ P ′ for some P ′
with θX (Q′) ↔r θX (P ′). By Lemma 9, θX ([Q′]) ↔r [θX (Q′)] = [θX (P ′)] B−1 θX (P ′).

��
By Proposition 13, each P ∈ Pg is finitely branching. By construction, so is [P].

No two states reachable from [P] are strongly reactive bisimilar. Hence, the process
[P] with its above-generated transition relation can be seen as a version of P where each
equivalence class of reachable states is collapsed into a single state—a kind of minimisation.
But it is not exactly a minimisation, as not all states reachable from [P] need be strongly
reactive bisimilar with reachable states of P . This is illustrated by Process 6 of Fig. 3, when
χ({1, 6}) = 1. Now {2} and {3} are reachable from [P], but not strongly reactive bisimilar
with reachable states of 6.

10.7 Completeness for finitely branching processes

I will now give a syntactic representation of each process [P], for P ∈ Pg , as a CCSPθ
t

process with guarded recursion. Take a different variable xR for each↔r-equivalence class

123

R. van Glabbeek

R of CCSPθ
t processes with guarded recursion. Let VS be the set of all those variables and

define the recursive specification S by

xR =
∑

R
α−→R′

α.xR′ .

By construction, R ↔ /\xR |S\
/, that is, the process [P] := /\x[P]|S\

/ ∈ Pg is strongly bisimilar
to [P]. In fact, the symmetric closure of the relation {([P], [P]) | P ∈ Pg} is a strong
bisimulation. Thus, [P] serves as a normal form within the↔r-equivalence class of P ∈ Pg .

The above construction will not work when there are not as many variables as equiva-
lence classes of CCSPθ

t processes with guarded recursion. Note that each real number in the
interval [0, 1) can be represented as an infinite sequence of 0s and 1s, and thus as CCSPθ

t
processes with guarded recursion employing the finite alphabet A = {0, 1}. Hence, there are
uncountably many equivalences classes of CCSPθ

t processes with guarded recursion.
To solve this problem, one starts here already with the proof of (8), and fixes two processes

P0 andQ0 ∈ Pg with P0 ↔r Q0. The task is to proveAx � P0 = Q0.Nowcall an equivalence
class R of CCSPθ

t processes with guarded recursion relevant if either R is reachable from
[P0] = [Q0], or a member of R is reachable from P0 or Q0. There are only countably many
relevant equivalence classes. It suffices to take a variable xR only for relevant R. Below, I
will call a process P ∈ Pg relevant if it is a member of a relevant equivalence class; in case
we had enough variables to start with, all processes P ∈ Pg may be called relevant.

Lemma 10 Let P, Q ∈ Pg be relevant. Then, [P]↔r [Q] ⇒ [P] = [Q].

Proof Suppose [P] ↔r [Q]. Then, P ↔r [P] ↔r [Q] ↔r Q, so [P] = [Q], and hence
[P] = [Q]. ��
Lemma 11 Let P, Q ∈ Pg be relevant. Then, θX ([P]) ↔r θX ([Q]) ⇒ θX ([P]) ↔ θX ([Q]).

Proof I show that B := Id ∪ {(θX ([P]), θX ([Q])) | θX ([P]) ↔r θX ([Q])} is a strong
bisimulation.

Suppose θX ([P]) ↔r θX ([Q]). Then, [P]
β
� for all β ∈ X ∪ {τ } iff [Q]

β
� for all β ∈

X ∪ {τ }, since I([P]) ∩ (X ∪ {τ }) = I(θX ([P])) ∩ (X ∪ {τ }) = I(θX ([Q])) ∩ (X ∪ {τ }) =
I([Q]) ∩ (X ∪ {τ }).

First consider the case that [P]
β
� for all β ∈ X ∪ {τ }. Then, θX ([P]) ↔ [P] and

θX ([Q]) ↔ [Q]. Hence, [P]↔ θX ([P]) ↔r θX ([Q]) ↔ [Q]. So by Lemma 10, [P] = [Q],
and thus θX ([P]) Id θX ([Q]).

Henceforth, I suppose that [P] β−→ for some β ∈ X ∪ {τ }. So [P]
t

� and [Q]
t

�.

• Let θX ([P]) a−→ P ′′ with a ∈ A. Then, θX ([Q]) a−→ Q′′ for some Q′′ with P ′′ ↔r Q
′′.

One has [P] a−→ P ′′ and [Q] a−→ Q′′. The process P ′′ must have the form [P ′], and
likewise Q′′ = [Q′]. Since [P ′]↔r [Q

′], Lemma 10 yields [P ′] = [Q′].
• Let θX ([P]) τ−→ P ′′. Then, θX ([Q]) τ−→ Q′′ for some Q′′ with P ′′ ↔r Q

′′. The process
P ′′ must have the form θX ([P ′]), and likewise Q′′ = θX ([Q′]). Hence P ′′ B Q′′. ��

Definition 41 Given a relevant CCSPθ
t process P ∈ Pg , let P̃ := ∑

{(α,Q)|P α−→Q} α.[Q].

Thus, P̃ is defined like the head-normal form P̂ of P ∈ Pg , except that all processes Q
reachable from P by performing one transition are replaced by the normal form within their
↔r-equivalence class.

123

Reactive bisimulation semantics for a process algebra with timeouts

So P ↔ P̂ ↔r P̃ . Note that [P] = ˜χ([P]) is provable through a single application of the
axiom RDP.

The following step is the only one where the reactive approximation axiom (RA) is used.

Proposition 42 Let P, Q ∈ Pg be relevant. Then, P ↔r Q ⇒ Ax � P̃ = Q̃.

Proof Suppose P ↔r Q. Then, P̃ ↔r P ↔r Q ↔r Q̃.With Axiom RA it suffices to show
that Ax f � ψX (P̃) = ψX (Q̃) for all X ⊆ A. So pick X ⊆ A. Let

P̃ =
∑

i∈I
αi .P

′
i +

∑

j∈J

t.P ′′
j and Q̃ =

∑

k∈K
βk .Q

′
k +

∑

h∈H
t.Q′′

h

with α j , βk ∈ A∪ {τ } for all i ∈ I and k ∈ K . As for Theorem 36, the following two claims
are crucial.

Claim 1: For each i ∈ I , there is a k ∈ K with αi = βk and Ax � P ′
i = Q′

k .
Claim 2: If I(P)∩ (X ∪{τ }) = ∅, then for each j ∈ J there is a h ∈ H with Ax � θX (P ′′

j) =
θX (Q′′

h).

With these claims the proof proceeds exactly as the one of Theorem 36.

Proof of Claim 1: Pick i ∈ I . Then, P̃ αi−→ P ′
i . So Q̃ αi−→ Q′ for some Q′ with P ′

i
↔r Q

′.
Hence there is a k ∈ K with αi = βk and Q′ = Q′

k . The processes P ′
i and Q′

k must have
the form [P ′] and [Q′] for some P ′, Q′ ∈ Pg . Hence, by Lemma 10, P ′

i = Q′
k , and thus

certainly Ax � P ′
i = Q′

k .

Proof of Claim 2: Pick j ∈ J . Then, P̃ t−→ P ′′
j . Since I(P̃) ∩ (X ∪ {τ }) = ∅, there is a Q′′

such that Q̃ t−→ Q′′ and θX (P ′′
j)

↔r θX (Q′′). Hence, there is a h ∈ H with Q′′ = Q′′
h . The

processes P ′′
j and Q

′′
h have the form [P ′′] and [Q′′] for some P ′′, Q′′ ∈ Pg . So by Lemma 11,

θX (P ′′
j)

↔ θX (Q′′). The completeness of Ax for strong bisimilarity (Theorem 32) now yields
Ax � θX (P ′′

j) = θX (Q′′). ��
Theorem 43 Let P ∈ Pg be relevant. Then, Ax � P = [P].

Proof Let reach(P) be the set of processes reachable from P . Take a different variable zR for
each R ∈ reach(P), and define the recursive specification S′ by VS′ := {zR | R ∈ reach(P)}
and

zR =
∑

R
α−→R′

α.zR′ .

By construction, R ↔/\xR |S\
/. In fact, the symmetric closure of {(R, /\xR |S\

/) | R ∈ reach(P)}
is a strong bisimulation. To establish Theorem 43 through an application of RSP, I show that
both P and [P] are xP -components of solutions of S′. So I show

Ax � R =
∑

R
α−→R′

α.R′ and Ax � [R] =
∑

R
α−→R′

α.[R′]

for all R ∈ reach(P). The first of these statements is a direct application of Proposition 31.
The second statement can be reformulated as Ax � [R] = R̃. As remarked above, Ax � [R]
= ˜χ([R]) through a single application of RDP. Hence, I need to show that Ax � ˜χ([R])
= R̃. Considering that χ([R]) ↔r R, this is a consequence of Proposition 42. ��
Corollary 44 Let P, Q ∈ Pg be relevant. Then, P ↔r Q ⇒ Ax � P = Q.

Proof Let P ↔r Q. Then, [P] = [Q] by Lemma 10, so Ax � P = [P] = [Q] = Q. ��

123

R. van Glabbeek

b

t

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

. . .

Fig. 4 An uncountable variety of strongly reactive bisimilar processes

10.8 Necessity of the axiom of choice

At first glance, it may look like the above proof can be simplified so as to avoid using the
axiom of choice, namely by changing (9) into

R α−→ R′ ⇔ ∃P ∈ R, P ′ ∈ R′. P α−→ P ′ .

However, this would make some processes [P] infinitely branching, even when P is finitely
branching. Figure 4 shows an uncountable collection of strongly reactive bisimilar finitely
branching processes. Here, each pair of a dashed b-transition and the dotted one right below
it constitutes a design choice: either the dashed or the dotted b-transition is present, but not
both. Since there is this binary choice for infinitely many pairs of b-transitions, this figure
represents an uncountable collection of processes. All of them are strongly reactive bisimilar,
because the t-transitionwill only be taken in an environment that blocks b. In case a is blocked
as well, all the a-transitions from a state with an outgoing τ -transition can be dropped, and
the difference between these processes disappears. In case a is allowed by the environment,
all b transitions can be dropped, and again the difference between these processes disappears.
Hence, the above alternative definition would yield uncountably many outgoing t-transitions
from the equivalence class of all these processes. This would make it impossible to represent
such a “minimised” process in CCSPθ

t .

11 Concluding remarks

This paper laid the foundations of the proper analogue of strong bisimulation semantics for
a process algebra with timeouts. This makes it possible to specify systems in this setting and
verify their correctness properties. The addition of timeouts comes with considerable gains
in expressive power. An illustration of this is mutual exclusion.

As shown in [20], it is fundamentally impossible to correctly specify mutual exclusion
protocols in standard process algebras, such as CCS [33], CSP [6, 28], ACP [2, 10] or CCSP,
unless the correctness of the specified protocol hinges on a fairness assumption. The latter,
in the view of [20], does not provide an adequate solution, as fairness assumptions are in

123

Reactive bisimulation semantics for a process algebra with timeouts

many situations unwarranted and lead to false conclusions. In [9], a correct process-algebraic
rendering of mutual exclusion is given, but only after making two important modifications to
standard process algebra. The first involvesmaking a justness assumption. Here, justness [21]
is an alternative to fairness, in some sense a much weaker form of fairness—meaning weaker
than weak fairness. Unlike (strong or weak) fairness, its use typically is warranted and does
not lead to false conclusions. The second modification is the addition of a new construct—
signals—to CCS, or any other standard process algebra. Interestingly, both modifications are
necessary; just using justness, or just adding signals, is insufficient. Bouwman [4, 5] points
out that since the justness requirement was fairly new, and needed to be carefully defined
to describe its interaction with signals anyway, it is possible to specify mutual exclusion
without adding signals to the language at all, instead reformulating the justness requirement
in such a way that it effectively turns some actions into signals. Yet justness is essential in all
these approaches. This may be seen as problematic, because large parts of the foundations of
process algebra are incompatible with justness, and hence need to be thoroughly reformulated
in a justness-friendly way. This is pointed out in [17].

The addition of timeouts to standard process algebra makes it possible to specify mutual
exclusion without assuming justness! Instead, one should make the assumption called
progress in [21], which is weaker than justness, uncontroversial, unproblematic, and made
(explicitly or implicitly) in virtually all papers dealing with issues like mutual exclusion. This
claim is substantiated in [19].

Besides applications to protocol verification, future work includes adapting the work done
here to a form of reactive bisimilarity that abstracts from hidden actions, that is, to provide a
counterpart for process algebras with timeouts of, for instance, branching bisimilarity [23],
weak bisimilarity [33] or coupled similarity [3, 12, 36]. Other topics worth exploring are the
extension to probabilistic processes, and especially the relations with timed process algebras.
Davies & Schneider in [7], for instance, added a construct with a quantified timeout to the
process algebraCSP [6, 28], elaborating the timedmodel of CSP presented byReed&Roscoe
in [38].

Acknowledgements I thank the CONCUR’20 and Acta Informatica referees for helpful feedback.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Initials congruence

This appendix contains the proofs of two facts about initials equivalence I need in this paper,
namely that it is a full congruence for CCSPθ

t and that it is not affected by which processes
are substituted for variables whose free occurrences are guarded.

Theorem 18 Initials equivalence is a full congruence for CCSPθ
t .

Proof LetB ⊆ P×P be the smallest relation satisfying

123

http://creativecommons.org/licenses/by/4.0/

R. van Glabbeek

• if S and S′ are recursive specifications with x ∈ VS = VS′ and /\x |S\
/,

/\x |S′\
/ ∈ P, such

that Sy =I S′
y for all y ∈ VS, then /\x |S\

/ B
/\x |S′\

/,
• if P =I Q, then P B Q,
• if P B Q and α ∈ A ∪ {τ, t}, then α.P B α.Q,
• if P1 B Q1 and P2 B Q2, then P1 + P2 B Q1 + Q2,
• if P1 B Q1, P2 B Q2 and S ⊆ A, then P1‖S P2 B Q1‖SQ2,
• if P B Q and I ⊆ A, then τI (P) B τI (Q),
• if P B Q andR ⊆ A × A, then R(P) B R(Q),
• if P B Q, L ⊆ U ⊆ A and X ⊆ A, then θUL (P) B θUL (Q) and ψX (P) B ψX (Q),
• if S is a recursive specification with z ∈ VS, and ρ, ν : Var \ VS → P are substitutions

satisfying ρ(x) B ν(x) for all x ∈ Var \ VS, then /\z|S\
/[ρ] B /\z|S\

/[ν].
A trivial structural induction on E ∈ E (not using the first two clauses) shows that if
ρ, ν : Var → P satisfy ρ(x) B ν(x) for all x ∈ Var, then E[ρ] B E[ν].(∗)

For S a recursive specification and ρ : Var \ VS → P, let ρS : Var → P be the closed
substitution given by ρS(x) := /\x |S\

/[ρ] if x ∈ VS and ρS(x) := ρ(x) otherwise. Then,
/\E |S\

/[ρ] = E[ρS] for all E ∈ E. Hence, an application of (∗) with ρS and νS yields that
under the conditions of the last clause forB above one even has /\E |S\

/[ρ] B /\E |S\
/[ν] for all

expressions E ∈ E, ($)
and likewise, in the first clause, /\E |S\

/ B
/\E |S′\

/ for all E ∈ E with variables from VS.(#)
It suffices to show that P B Q ⇒ P =I Q, because then B = =I, and (∗) implies that

B is a lean congruence.Moreover, the clauses forB (not needing the last) then imply that=I
is a full congruence. This I will do by induction on the stratum (λR, κR) of processes R ∈ P,
as defined in Sect. 5. So pick a stratum (λ, κ) and assume that P ′ B Q′ ⇒ P ′ =I Q′
for all P ′, Q′ ∈ P with (λP , κP) < (λ, κ) and (λQ, κQ) < (λ, κ). I need to show that
P B Q ⇒ P =I Q for all P, Q ∈ P with (λP , κP) ≤ (λ, κ) and (λQ, κQ) ≤ (λ, κ).

Because=I is symmetric, so isB. Hence, it suffices to show that P B Q∧ P α−→ ⇒ Q α−→
for all P, Q ∈ P with (λP , κP), (λQ, κQ) ≤ (λ, κ) and all α ∈ A ∪ {τ }. This I will do by

structural induction on the proof π of P α−→ from the rules of Table 1. I make a case distinction
based on the derivation of P B Q. So assume P B Q, (λP , κP), (λQ, κQ) ≤ (λ, κ), and

P α−→ with α ∈ A ∪ {τ }.
• Let P = /\x |S\

/ ∈ P and Q = /\x |S′\
/ ∈ P where S and S′ are recursive specifications

with x ∈ VS = VS′ , such that Sy =I S′
y for all y ∈ VS, meaning that for all y ∈ VS and

σ : VS → P one has Sy[σ] =I S′
y[σ].

By Table 1, the transition /\Sx |S\
/

α−→ is provable by means of a strict subproof of π . By
(#) above, one has /\Sx |S\

/ B /\Sx |S′\
/. So by induction /\Sx |S′\

/
α−→. Since /__ |S′\

/ is the
application of a substitution of the form σ : VS′ → P, one has /\Sx |S′\

/ =I /\S′
x |S′\

/.

Hence, /\S′
x |S′\

/
α−→. By Table 1, Q = /\x |S′\

/
α−→.

• The case P =I Q is trivial.
• Let P = β.P† and Q = β.Q† with β ∈ A ∪ {τ, t} and P† B Q†. Then, α = β and

Q α−→.
• Let P = P1 + P2 and Q = Q1 + Q2 with P1 B Q1 and P2 B Q2. I consider the first

rule from Table 1 that could have been responsible for the derivation of P α−→; the other
proceeds symmetrically. So suppose that P1

α−→. Then, by induction Q1
α−→. By the same

rule, Q α−→.
• Let P = P1‖S P2 and Q = Q1‖SQ2 with P1 B Q1 and P2 B Q2. I consider the three

rules from Table 1 that could have been responsible for the derivation of P α−→.

123

Reactive bisimulation semantics for a process algebra with timeouts

First suppose that α /∈ S, and P1
α−→. By induction, Q1

α−→. Consequently, Q1‖SQ2
α−→.

Next suppose that α ∈ S, P1
α−→ and P2

α−→. By induction, Q1
α−→ and Q2

α−→. So
Q1‖SQ2

α−→.
The remaining case proceeds symmetrically to the first.

• Let P = τI (P†) and Q = τI (Q†) with I ⊆ A and P† B Q†. Then, P† β−→ and either
β = α /∈ I , or β ∈ I and α = τ . By induction, Q† β−→. Consequently, Q = τI (Q†)

α−→.
• Let P = R(P†) and Q = R(Q†) with R ⊆ A × A and P† B Q†. Then, P† β−→ and

either (β, α) ∈ R or β = α = τ . By induction, Q† β−→. Consequently, Q = R(Q†)
α−→.

• Let P = θUL (P†), Q = θUL (Q†) and P† B Q†. Then, (λP† , κP†) < (λ, κ) and
(λQ† , κQ†) < (λ, κ), as remarked in Sect. 5. So by induction P† =I Q†. (This is
the only use of stratum induction.)

Since θUL (P†)
α−→, it must be that P† α−→ and either α ∈ U ∪ {τ } or P† β

� for all β ∈
L ∪ {τ }. In the latter case, Q† β

� for all β ∈ L ∪{τ }. Moreover, Q† α−→. So, in both cases,
Q = θUL (Q†)

α−→.

• Let P = ψX (P†), Q = ψX (Q†) and P† B Q†. Since ψX (P†)
α−→, one has P† α−→. By

induction Q† α−→. So Q = ψX (Q†)
α−→.

• Let P = /\z|S\
/[ρ] = /\z|S[ρ]\/ and Q = /\z|S\

/[ν] = /\z|S[ν]\/ where S is a recursive
specification with z ∈ VS, and ρ, ν : Var \ VS → P satisfy ρ(x) B ν(x) for all
x ∈ Var \ VS. By Table 1 the transition /\Sz |S[ρ]\/ α−→ is provable by means of a strict
subproof of the proof π of /\z|S\

/[ρ] α−→. By ($) above one has /\Sz |S[ρ]\/ B /\Sz |S[ν]\/. So
by induction, /\Sz |S[ν]\/ a−→. By Table 1, Q = /\z|S[ν]\/ α−→. ��

Lemma 5 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let
�P, �Q ∈ PW . Then, I(H [�P]) = I(H [�Q]).
Proof Lemma 5 can be strengthened as follows.

Let H ∈ E be such that all free occurrences of variables from W ⊆ Var in H are
guarded, and let �P, �Q ∈ PW . Then, H [�P] =I H [�Q].

The proof proceeds with structural induction on H .

• Let H = /\x |S\
/, so that H [�P] = /\x |S[�P†]\/, where �P† is the W\VS-tuple that is left

of �P after deleting the y-components, for y ∈ VS, and H [�Q] = /\x |S[�Q†]\/. For each
y ∈ VS, all free occurrences of variables from W\VS in Sy are guarded. Thus, by
induction, Sy[�P†] =I Sy[�Q†]. Since =I is a full congruence for CCSPθ

t , it follows that
H [�P] = /\x |S[�P†]\/ =I /\x |S[�Q†]\/ = H [�Q].

• Let H = α.H ′ for some α ∈ Act . Then, I(H [�P]) = I(H [�Q]) (namely ∅ if α = t and
{α} otherwise).

• Let H = H1‖SH2. Since all free occurrences of variables from W ⊆ Var in H are
guarded, so are those in H1 and H2. Thus, by induction, H1[�P] =I H1[�Q] and H2[�P] =I
H2[�Q]. Since =I is a full congruence for S, it follows that H [�P] =I H [�Q].

• The cases for all other operators go exactly like the case for ‖S . ��

B Proofs of lemmas on �X and strong bisimilarity from Sect. 7.2

The following lemmas on the relation between θX and the other operators of CCSPθ
t deal with

strong bisimilarity, but are needed in the congruence proof for strong reactive bisimilarity.

123

R. van Glabbeek

Lemma 12 If I(Q) ∩ (Y ∪ {τ }) = ∅ then θY (Q) ↔Q.

Proof This follows immediately from the operational rules for θY . ��
Lemma 2 If P

τ
�, I(P)∩X ⊆ S and Y = X \(S\I(P)), then θX (P‖SQ) ↔θX (P‖SθY (Q)).

Proof Let P ∈ P and S, X , Y ⊆ A be as indicated in the lemma. Let

B := ↔ ∪ {(θX (P‖SQ), θX (P‖SθY (Q))) | Q ∈ P}
It suffices to show that the symmetric closure B̃ ofB is a strong bisimulation.

So let R B̃ T and R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and
R′ B̃ T ′.
• The case that R ↔T is trivial.
• Let R = θX (P‖SQ) and T = θX (P‖SθY (Q)), for some Q ∈ P.

First assume α = τ . Then, Q τ−→ Q′ for some Q′ with R′ = θX (P‖SQ′). Consequently,
T = θX (P‖SθY (Q))

τ−→ θX (P‖SθY (Q′)) =: T ′ and R′ B T ′.
Now assume α ∈ A ∪ {t}. Then, P‖SQ α−→ R′. I first deal with the case that α ∈ X , and

consider the three rules from Table 1 that could have derived P‖SQ α−→ R′.

– The case that α /∈ S and P α−→ P ′ cannot occur, because I(P) ∩ X ⊆ S.
– Let α ∈ S, P α−→ P ′, Q α−→ Q′ and R′ = P ′‖SQ′. Then, α ∈ I(P), so α /∈ S \ I(P)

and thus α ∈ Y . Hence, θY (Q)
α−→ Q′. Now T = θX (P‖SθY (Q))

α−→ P ′‖SQ′ = R′.
– Let α/∈S, Q α−→ Q′ and R′ = P‖SQ′. Then, α ∈ Y , so θY (Q)

α−→ Q′. Therefore,
P‖SθY (Q)

α−→ P‖SQ′ and thus T = θX (P‖SθY (Q))
α−→ P‖SQ′ = R′.

Finally, assume α ∈ (A ∪ {t}) \ X . In that case P‖SQ
β
� for all β ∈ X ∪ {τ }. Therefore,

Q
β
� for all β ∈ (X \ S)∪{τ }, and for all β ∈ X ∩ S∩I(P), and thus for all β ∈ Y ∪{τ }.

By Lemma 12, θY (Q) =I Q, and hence P‖SθY (Q)
β
� for all β ∈ X ∪ {τ }. Again, I

consider the three rules from Table 1 that could have derived P‖SQ α−→ R′.

– Let α/∈S, P α−→ P ′ and R′ = P ′‖SQ. Then, P‖SθY (Q)
α−→ P ′‖SθY (Q) and thus

T = θX (P‖SθY (Q))
α−→ P ′‖SθY (Q) =: T ′. By Lemma 12, θY (Q) ↔Q. Since↔is

a congruence for ‖S , it follows that R′ = P ′‖SQ ↔P ′‖SθY (Q) = T ′.
– Let α ∈ S, P α−→ P ′, Q α−→ Q′ and R′ = P ′‖SQ′. Then, θY (Q)

α−→ Q′ and therefore
P‖SθY (Q)

α−→ P ′‖SQ′ and T = θX (P‖SθY (Q))
α−→ P ′‖SQ′ = R′.

– Let α/∈S, Q α−→ Q′ and R′ = P‖SQ′. Then, θY (Q)
α−→ Q′, so P‖SθY (Q)

α−→ P‖SQ′

and thus T = θX (P‖SθY (Q))
α−→ P‖SQ′ = R′.

• Let R = θX (P‖SθY (Q)) and T = θX (P‖SQ), for some Q ∈ P.

First assume α = τ . Then, Q τ−→ Q′ for some Q′ with R′ = θX (P‖SθY (Q′)). Conse-
quently, T = θX (P‖SQ)

τ−→ θX (P‖SQ′) =: T ′ and R′ B̃ T ′.
Now assume α ∈ A ∪ {t}. Then, P‖SθY (Q)

α−→ R′ and either α ∈ X or P‖SθY (Q)
β
�

for all β ∈ X ∪ {τ }. In the latter case, one obtains θY (Q)
β
� for all β ∈ Y ∪ {τ } (as

above), and thus Q
β
� for all β ∈ Y ∪ {τ }, that is, I(Q) ∩ (Y ∪ {τ }) = ∅. Furthermore,

this implies that P‖SQ
β
� for all β ∈ X ∪ {τ }.

123

Reactive bisimulation semantics for a process algebra with timeouts

I consider the three rules from Table 1 that could have derived P‖SQ α−→ R′.

– Let α/∈S, P α−→ P ′ and R′ = P ′‖SθY (Q). Then, a /∈ X , because I(P) ∩ X ⊆ S.

Hence, P‖SθY (Q)
β
� for all β ∈ X ∪ {τ }, so I(Q) ∩ (Y ∪ {τ }) = ∅.

Now T = θX (P‖SQ)
α−→ P ′‖SQ =: T ′ and R′ ↔ T ′, using Lemma 12.

– Let α ∈ S, P α−→ P ′, θY (Q)
α−→ Q′ and R′ = P ′‖SQ′. Then, Q α−→ Q′.

Hence, P‖SQ α−→ P ′‖SQ′ and thus T = θX (P‖SQ)
α−→ P ′‖SQ′ = R′.

– Let α /∈ S, θY (Q)
α−→ Q′ and R′ = P‖SQ′. Then, Q α−→ Q′.

Consequently, P‖SQ α−→ P‖SQ′ and thus T = θX (P‖SQ)
α−→ P‖SQ′ = R′. ��

Lemma 3 θX (τI (P)) ↔θX (τI (θX∪I (P))).

Proof For given X and I , let B := Id ∪ {(θX (τI (P)), θX (τI (θX∪I (P)))) | P ∈ P}. It
suffices to show that the symmetric closure B̃ of B is a strong bisimulation. So let R B̃ T
and R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.

• The case that R = T is trivial.
• Let R = θX (τI (P)) and T = θX (τI (θX∪I (P))), for some P ∈ P.

First assume α = τ . Then, τI (P)
τ−→ R′′ for some R′′ such that R′ = θX (R′′). Therefore,

P β−→ P ′ for some β ∈ I ∪ {τ } and some P ′ with R′′ = τI (P ′). In case β = τ , it turns
out that T = θX (τI (θX∪I (P)))

τ−→ θX (τI (θX∪I (P ′))) =: T ′. Moreover, R′ B T ′. In
case β ∈ I , θX∪I (P)

β−→ P ′, so τI (θX∪I (P))
τ−→ τI (P ′) and T = θX (τI (θX∪I (P)))

τ−→
θX (τI (P ′)) = R′.
Now assume α ∈ A ∪ {t}. Then, τI (P)

α−→ R′ and either α ∈ X or τI (P)
β
� for all

β ∈ X∪{τ }. It follows that α /∈ I and P α−→ P ′ for some P ′ with R′ = τI (P ′). Moreover,

in case α /∈ X one has P
β
� for all β ∈ X ∪ I ∪ {τ }, and hence also θX∪I (P)

β
� for all

β ∈ X ∪ I ∪ {τ }, and thus τI (θX∪I (P))
β
� for all β ∈ X ∪ {τ }. Now θX∪I (P)

α−→ P ′, so
τI (θX∪I (P))

α−→ τI (P ′) and thus T = θX (τI (θX∪I (P)))
α−→ τI (P ′) = R′.

• Let R = θX (τI (θX∪I (P))) and T = θX (τI (P)), for some P ∈ P.
First assume α = τ . Then, τI (θX∪I (P))

τ−→ R′′ for some R′′ such that R′ = θX (R′′).
Therefore, θX∪I (P)

β−→ P ′ for some β ∈ I ∪ {τ } and some P ′ with R′′ = τI (P ′). In
case β = τ , it turns out that P τ−→ P ′′ for some P ′′ such that P ′ = θX∪I (P ′′). So
T = θX (τI (P))

τ−→ θX (τI (P ′′)) =: T ′, and R′ B̃ T ′. In case β ∈ I , one has P β−→ P ′,
so τI (P)

τ−→ τI (P ′) and T = θX (τI (P))
τ−→ θX (τI (P ′)) = R′.

Now assume α ∈ A ∪ {t}. Then, τI (θX∪I (P))
α−→ R′, so α /∈ I and θX∪I (P)

α−→ P ′

for some P ′ such that R′ = τI (P ′). Thus, P α−→ P ′ and either α ∈ X or P
β
� for all

β ∈ X ∪ I ∪ {τ }. In the latter case, τI (P)
β
� for all β ∈ X ∪ {τ }. Now τI (P)

α−→ τI (P ′)
and consequently T = θX (τI (P))

α−→ τI (P ′) = R′. ��
Lemma 4 θX (R(P)) ↔θX (R(θR−1(X)(P))).

Proof For given X ⊆ A andR ⊆ A× A, letB := Id∪{(θX (R(P)), θX (R(θR−1(X)(P)))) |
P ∈ P}. It suffices to show that the symmetric closure B̃ of B is a strong bisimulation. So
let R B̃ T and R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.

• The case that R = T is trivial.

123

R. van Glabbeek

• Let R = θX (R(P)) and T = θX (R(θR−1(X)(P))), for some P ∈ P.

First assume α = τ . Then, P τ−→ P ′ for some P ′ such that R′ = θX (R(P ′)).
Hence, T = θX (R(θR−1(X)(P)))

τ−→ θX (R(θR−1(X)(P
′))) =: T ′, and R′ B T ′.

Now assume α ∈ A ∪ {t}. Then, R(P)
α−→ R′, and either α ∈ X or R(P)

β
� for all

β ∈ X ∪ {τ }. In the latter case, P β
� for all β ∈ R−1(X) ∪ {τ }. Moreover, P γ−→ P ′, for

some γ with γ = t = α or (γ, α) ∈ R, and some P ′ with R′ = R(P ′). In caseα ∈ X , one
has γ ∈ R−1(X). Therefore, θR−1(X)(P)

γ−→ P ′, and thusR(θR−1(X)(P))
α−→ R(P ′).

Either α∈X or θR−1(X)(P)
β
� for all β ∈ R−1(X)∪{τ }, in which caseR(θR−1(X)(P))

β
�

for all β ∈ X ∪ {τ }. Consequently, T = θX (R(θR−1(X)(P)))
α−→ R(P ′) = R′.

• Let R = θX (R(θR−1(X)(P))) and T = θX (R(P)), for some P ∈ P.

First assume α = τ . Then, P τ−→ P ′ for some P ′ such that R′ = θX (R(θR−1(X)(P
′))).

Hence, T = θX (R(P))
τ−→ θX (R(P ′)) =: T ′, and R′ B̃ T ′.

Now assume α ∈ A ∪ {t}. Then R(θR−1(X)(P))
α−→ R′ and either α ∈ X or

R(θR−1(X)(P))
β
� for all β ∈ X ∪ {τ }. Therefore, θR−1(X)(P)

γ−→ P ′ for some γ with

γ = t = α or (γ, α) ∈ R, and some P ′ such that R′ = R(P ′). Hence, P γ−→ P ′, and
thusR(P)

α−→ R(P ′). In case α /∈ X , one has θR−1(X)(P)
β
� for all β ∈ R−1(X) ∪ {τ },

and thus P
β
� for all β ∈ R−1(X) ∪ {τ }, so R(P)

β
� for all β ∈ X ∪ {τ }. Hence,

T = θX (R(P))
α−→ R(P ′) = R′. ��

C Reducing strong reactive bisimilarity to strong bisimilarity

Pohlmann [37] introduces unary operators ϑ and ϑX for X ⊆ A that model placing their
argument process in an environment that is triggered to change, or allows exactly the actions
in X , respectively. Although inspired by my operators θX from Sect. 4,1 their semantics is
different, and given by the following structural operational rules (for all X ⊆ A).

x τ−→ y

ϑ(x) τ−→ ϑ(y) ϑ(x) εX−→ ϑX (x)
x a−→ y

ϑX (x) a−→ ϑ(y)
(a ∈ X)

x τ−→ y

ϑX (x) τ−→ ϑX (y)
x

α
� for all α ∈ X ∪ {τ }

ϑX (x) tε−→ ϑ(y)

x t−→ y x
α
� for all α ∈ X ∪ {τ }

ϑX (x) t−→ ϑX (y)

Here, the actions tε /∈ A and εX /∈ A for X ⊆ A are generated by the new operators, but
may not be used by processes substituted for their arguments x . They model a timeout action
taken by the environment, and the stabilisation of an environment into one that allows exactly
the set of actions X , respectively.

These rules mirror the clauses of Definition 1 of a strong reactive bisimulation.

• τ -transitions can be performed regardless of the environment,
• triggered environments can stabilise into arbitrary stable environments X for X ⊆ A,
• allowed visible transitions can be performed and can trigger a change in the environment,

1 Pohlmann [37] follows the original, 2020, version of this paper; this appendix was added in September 2021.

123

Reactive bisimulation semantics for a process algebra with timeouts

• τ -transitions cannot be observed by the environment and hence cannot trigger a change,
• if the underlying system is idle, the environment may timeout and become triggered to

change,
• if the underlying system is idle, it can perform a t-transition, not observed by the envi-

ronment.

The main result from [37] reduces strong reactive bisimilarity to strong bisimilarity:

Theorem 45 Let P,Q ∈ P, X ⊆ A. Then, P ↔r Q iff ϑ(P) ↔ ϑ(Q), and P ↔X
r Q iff

ϑX (P) ↔ϑX (Q).

Proof IfR is a strong reactive bisimulation, then

B:= {(ϑ(P), ϑ(Q)) | (P, Q) ∈ R} ∪ {(ϑ(P), ϑ(Q)) | (P, X , Q) ∈ R}
is a strong bisimulation. Moreover,

R := {(P, Q) | ϑ(P) ↔ϑ(Q)} ∪ {(P, X , Q) | ϑX (P) ↔ϑX (Q)}
is a strong reactive bisimulation. Both statements follow directly from the definitions, and
they imply the theorem. This proof stems from [37], where it is formalised in Isabelle. ��
Another notable result from [37] is a function ς that turns any formula ϕ from my extension
of the Hennessy–Milner logic into a formula ς(ϕ) in the regular Hennessy–Milner logic,
such that P |� ϕ iff ϑ(P) |� ς(ϕ) and P |�X ϕ iff ϑX (P) |� ς(ϕ).

Interestingly, the operators ϑ and ϑX from [37] can be expressed in terms of (fairly)
standard process algebra operators. Define the universal environment E as the recursive
specification

{U =
∑

X⊆A

εX .X} ∪ {X = tε.U +
∑

a∈X
a.U | X ⊆ A}.

In case A is infinite, this requires an infinite choice operator
∑

, which was not included in
the syntax of CCSPt used in Sect. 5. Here, VE = {U } ∪ {X | X ⊆ A} are the bound variables
of E. The process /\U |E\

/ denotes an environment that is triggered to change, and /\X |E\
/ one that

allows exactly the actions in X . The only actions that /\U |E\
/ can do are stabilising into any

/\X |E\
/. The process /\X |E\

/ can either synchronise on any action a ∈ X or perform a timeout,
in both cases returning to the state /\U |E\

/.
If we now drop the negative premises from the structural operational rules of the operators

ϑX , and add a rule x
t−→y

ϑ(x)
t−→ϑ(y)

, then ϑ(P) ↔ /\U |E\
/‖AP and ϑX (P) ↔ /\X |E\

/‖AP . Here, the

operator ‖A enforces synchronisation on all visible actions a ∈ A, although actions εX and tε
can occur when the environment is ready do do them, and actions τ and t can be triggered by
just the process P . Checking strong bisimilarity between ϑ(P) and /\U |E\

/‖AP , and between
ϑX (P) and /\X |E\

/‖AP , is straightforward.
To obtain the real process ϑ(P) from /\U |E\

/‖AP , or ϑX (P) from /\X |E\
/‖AP , all one has to

do is to inhibit any t- or tε-transition when a transition with a label in A∪{τ }∪{εX | X ⊆ A}
is possible. This can be achieved with the priority operator of Baeten, Bergstra & Klop [1].
This unary operator � is parametrised by a partial order < on the set of actions, the priority
order, and passes through a transition of its argument process only if no transition with a
higher priority is possible. Its operational semantic is given by

x α−→ y x
β
� for all β > α

�(x) α−→ �(y)
.

123

R. van Glabbeek

For the present application, I take < := {(t, α), (tε, α) | α ∈ Act\{t, tε}}, thus giving t and
tε a lower priority than all other actions. This yields the desired properties

ϑ(P) ↔�(/\U |E\
/‖AP) and ϑX (P) ↔�(/\X |E\

/‖AP) .

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Syntax and defining equations for an interrupt mechanism in
process algebra. Fundam. Inform. 9(2), 127–168 (1986). https://doi.org/10.3233/FI-1986-9202

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511624193

3. Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta Inform. 57(3–5),
439–463 (2020). https://doi.org/10.1007/s00236-019-00356-4

4. Bouwman, M.S.: Liveness analysis in process algebra: simpler techniques to model mutex algorithms.
Technical Report, EindhovenUniversity of Technology (2018). http://www.win.tue.nl/~timw/downloads/
bouwman_seminar.pdf

5. Bouwman, M.S., Luttik, B., Willemse, T.A.C.: Off-the-shelf automated analysis of liveness properties
for just paths. Acta Inform. 57(3–5), 551–590 (2020). https://doi.org/10.1007/s00236-020-00371-w

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM
31(3), 560–599 (1984). https://doi.org/10.1145/828.833

7. Davies, J., Schneider, S.: Recursion induction for real-time processes. Formal Aspects Comput. 5(6),
530–553 (1993). https://doi.org/10.1007/BF01211248

8. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34, 83–133 (1984).
https://doi.org/10.1016/0304-3975(84)90113-0

9. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing Mutual Exclusion using Process Algebra with
Signals. In: Peters, K., Tini, S. (eds.). Proceedings Combined 24th InternationalWorkshop on Expressive-
ness in Concurrency and 14th Workshop on Structural Operational Semantics, Electronic Proceedings
in Theoretical Computer Science, vol. 255. Open Publishing Association, pp. 18–34. https://doi.org/10.
4204/EPTCS.255.2 (2017)

10. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS
Series. Springer, Berlin (2000). https://doi.org/10.1007/978-3-662-04293-9

11. van Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state
behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.). Proceedings 18th International Symposium
onMathematical Foundations ofComputer Science,MFCS ’93, LNCS711. Springer, pp. 473–484 (1993).
https://doi.org/10.1007/3-540-57182-5_39

12. van Glabbeek, R.J.: The Linear Time—Branching Time Spectrum II; The semantics of sequential systems
with silent moves. In: Best, E. (ed.). Proceedings 4th International Conference on Concurrency Theory,
CONCUR’93, LNCS 715. Springer, pp. 66–81 (1993). https://doi.org/10.1007/3-540-57208-2_6

13. van Glabbeek, R.J.: On the expressiveness of ACP (extended abstract). In: Ponse, A., Verhoef, C., van Vli-
jmen, S.F.M. (eds.). Proceedings First Workshop on the Algebra of Communicating Processes, ACP’94,
Workshops in Computing. Springer, pp. 188–217 (1994). https://doi.org/10.1007/978-1-4471-2120-6_8

14. van Glabbeek, R.J.: The Linear Time—Branching Time Spectrum I; The Semantics of Concrete, Sequen-
tial Processes. In: Bergstra, J.A., Ponse,A., S.A. Smolka, editors:Handbook of ProcessAlgebra, chapter 1,
Elsevier, pp. 3–99 (2001). https://doi.org/10.1016/B978-044482830-9/50019-9

15. van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. J. Logic
Algebr. Program. 60–61, 229–258 (2004). https://doi.org/10.1016/j.jlap.2004.03.007

16. van Glabbeek, R.J.: Lean and full congruence formats for recursion. In: Proceedings 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS’17. IEEE Computer Society Press (2017).
https://doi.org/10.1109/LICS.2017.8005142

17. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems: open problems. J. Log. Algebr.
Methods Program. 109, 100480 (2019)

18. van Glabbeek, R.J.: Failure trace semantics for a process algebra with time-outs. Log. Methods Comput.
Sci. 17(2), 11 (2021). https://doi.org/10.23638/LMCS-17(2:11)2021

19. van Glabbeek, R.J.: Modelling Mutual Exclusion in a Process Algebra with Time-outs. https://arxiv.org/
abs/2106.12785 (2021)

20. van Glabbeek, R.J., Höfner, P.: CCS: It’s not fair! Fair schedulers cannot be implemented in CCS-like
languages even under progress and certain fairness assumptions. Acta Inform. 52(2–3), 175–205 (2015)

123

https://doi.org/10.3233/FI-1986-9202
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/s00236-019-00356-4
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1145/828.833
https://doi.org/10.1007/BF01211248
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-1-4471-2120-6_8
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.1016/j.jlap.2004.03.007
https://doi.org/10.1109/LICS.2017.8005142
https://doi.org/10.23638/LMCS-17(2:11)2021
https://arxiv.org/abs/2106.12785
https://arxiv.org/abs/2106.12785

Reactive bisimulation semantics for a process algebra with timeouts

21. van Glabbeek, R.J., Höfner, P.: Progress, justness and fairness. ACM Comput. Surv. 52(4), 69 (2019).
https://doi.org/10.1145/3329125

22. van Glabbeek, R.J., Middelburg, C.A.: On Infinite Guarded Recursive Specifications in Process Algebra
(2020). http://arxiv.org/abs/2005.00746

23. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM
43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556

24. Grabmayer,C., Fokkink,W.J.:Acomplete proof system for 1-free regular expressionsmodulo bisimilarity.
In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.). Proceedings of 35th Annual ACM/IEEE
Symposium onLogic in Computer Science, LICS’20. ACM, pp. 465–478 (2020). https://doi.org/10.1145/
3373718.3394744

25. Groote, J.F.: Transition system specifications with negative premises. Theor. Comput. Sci. 118, 263–299
(1993). https://doi.org/10.1016/0304-3975(93)90111-6

26. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congruence. Inf.
Comput. 100(2), 202–260 (1992). https://doi.org/10.1016/0890-5401(92)90013-6

27. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161
(1985). https://doi.org/10.1145/2455.2460

28. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)
29. Liu,X.,Yu, T.: Canonical solutions to recursive equations and completeness of equational axiomatisations.

In: Konnov, I., Kovacs, L. (eds.). Proceedings 31st International Conference on Concurrency Theory
(CONCUR 2020), Leibniz International Proceedings in Informatics (LIPIcs) 171, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.35

30. Lohrey, M., D’Argenio, P.R., Hermanns, H.: Axiomatising divergence. Inf. Comput. 203(2), 115–144
(2005). https://doi.org/10.1016/j.ic.2005.05.007

31. Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst. Sci. 28,
439–466 (1984). https://doi.org/10.1016/0022-0000(84)90023-0

32. Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviors. Inf. Comput.
81(2), 227–247 (1989). https://doi.org/10.1016/0890-5401(89)90070-9

33. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.). Hand-
book of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland), pp.
1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,
of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer
(1990). https://doi.org/10.1007/3-540-10235-3

34. Olderog, E.-R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.). Advances in Petri Nets
1987, LNCS 266. Springer, pp. 196–223 (1987). https://doi.org/10.1007/3-540-18086-9_27

35. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta
Inform. 23, 9–66 (1986). https://doi.org/10.1007/BF00268075

36. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation. In: Cleaveland, W.R.
(ed.). Proceedings CONCUR 92, Stony Brook, NY, USA, LNCS 630. Springer, pp. 518–533 (1992).
https://doi.org/10.1007/BFb0084813

37. Pohlmann, M.: Reducing strong reactive bisimilarity to strong bisimilarity. Bachelor’s thesis, TU Berlin.
https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf (2021)

38. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theor. Comput. Sci.
58, 249–261 (1988). https://doi.org/10.1016/0304-3975(88)90030-8

39. Vaandrager, F.W.: Expressiveness results for process algebras. In: deBakker, J.W., deRoever,W.P., Rozen-
berg, G. (eds.). Proceedings REX Workshop on Semantics: Foundations and Applications, Beekbergen,
The Netherlands, 1992, LNCS 666. Springer, pp. 609–638 (1993). https://doi.org/10.1007/3-540-56596-
5_49

40. Walker, D.J.: Bisimulation and divergence. Inf. Comput. 85(2), 202–241 (1990). https://doi.org/10.1016/
0890-5401(90)90048-M

41. Zermelo, E.: Untersuchungen über dieGrundlagen derMengenlehre I.Math. Ann. 65(2), 261–281 (1908).
https://doi.org/10.1007/bf01449999

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3329125
http://arxiv.org/abs/2005.00746
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1016/0304-3975(93)90111-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1145/2455.2460
https://doi.org/10.4230/LIPIcs.CONCUR.2020.35
https://doi.org/10.1016/j.ic.2005.05.007
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/BFb0084813
https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
https://doi.org/10.1016/0304-3975(88)90030-8
https://doi.org/10.1007/3-540-56596-5_49
https://doi.org/10.1007/3-540-56596-5_49
https://doi.org/10.1016/0890-5401(90)90048-M
https://doi.org/10.1016/0890-5401(90)90048-M
https://doi.org/10.1007/bf01449999

	Reactive bisimulation semantics for a process algebra with timeouts
	Abstract
	1 Introduction
	2 Reactive bisimilarity
	2.1 A more general form of reactive bisimulation

	3 A modal characterisation of strong reactive bisimilarity
	4 Timeout bisimulations
	5 The process algebra CCSPtθ
	6 Guarded recursion and finitely branching processes
	7 Congruence
	7.1 Initials equivalence
	7.2 Strong bisimilarity

	8 Strong reactive bisimilarity is a full congruence for CCSPtθ
	9 The recursive specification principle
	10 Complete axiomatisations
	10.1 A complete axiomatisation of strong bisimilarity on guarded CCSPt
	10.2 A complete axiomatisation of strong bisimilarity on guarded CCSPtθ
	10.3 A complete axiomatisation of strong reactive bisimilarity on guarded CCSPtθ
	10.4 Completeness for finite processes
	10.5 The method of canonical representatives
	10.6 The canonical representative
	10.7 Completeness for finitely branching processes
	10.8 Necessity of the axiom of choice

	11 Concluding remarks
	Acknowledgements
	A Initials congruence
	B Proofs of lemmas on thetaX and strong bisimilarity from Sect. 7.2
	C Reducing strong reactive bisimilarity to strong bisimilarity
	References

