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Abstract

We explore whether people can recognise the epistemic goal
or intention of active learners interacting with simulated phys-
ical objects. In a novel online experiment, 110 adults watched
screen recordings of other adults (“players”) manipulating ob-
jects in a 2D simulated physical microworld. Players had ei-
ther the goal of identifying the nature of a hidden magnet-like
force connecting two of the objects, or the relative masses of
those two objects. Observers were then asked to identify the
learning goal of the player they were observing. By drawing
from a previously collected dataset of active physical learning
interactions and an ideal observer analysis, we systematically
manipulated how informative the actions of the player were
about the target property, while also manipulating observers’
level of access to the behaviour such that some participants
could see the players’ micro-control actions as well as their
impact on the physical objects. We found observers were bet-
ter at identifying the goals of successful players and of players
trying to identify the force than the mass property, while the
micro-dynamic evidence trace seemed to improve accuracy on
identifying the mass goal. We use mixed methods to explore
what cues our observers used to make these judgments, and
discuss implications for social cognition in the wild.

Keywords: active learning; epistemic goal; social inference;
intention; intuitive physics

Introduction

When making sense of others’ behaviour, we are said to take
an intentional stance (Dennett, [1987)), assuming others pur-
sue their best interests rationally given their beliefs. This
means behaviour provides a window on what others’ beliefs
and interests are likely to be. However, we know people are
not perfectly rational, and even if they were, reverse engi-
neering their goals and beliefs is computationally challeng-
ing even in the simplest of toy scenarios. In more natural-
istic contexts, the problem seems to only get harder, since
moment-to-moment behaviour may reflect interim or epis-
temic goals—i.e. solving subproblems or learning things
about the environment only indirectly related to one’s ulti-
mate intentions. Nevertheless, a number of recent computa-
tional accounts have modelled social cognition as Bayesian
inverse planning (Baker et al., 2017; Blokpoel et al., [2013;
Jara-Ettinger, [2019). For example, studies have had partic-
ipants reason about the preferences and beliefs of artificial
agents based on observing their trajectories through simple
“gridworld” environments containing obstacles and poten-
tially rewarding destinations (Baker et al., 2009, 2017), re-
verse engineering what the agent must believe or like in order
to behave that way. In one scenario, participants see the agent
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walk past a nearby food truck to reach another, and might
reasonably conclude that the agent prefers the food sold at the
more distant vendor (else, why make the extra effort?). If they
instead travel past the first food truck around an occlusion,
coming into view of a second food truck, then turn around
and return to the first, we might conclude that they prefer the
closer food option than the occluded one, but that they had
anticipated the existence of some third option, preferable to
both others. Adults and even children have been shown to
be capable of such “naive utility calculation”, at least in set-
tings where behaviours and options are salient and unambigu-
ous (Jara-Ettinger, |2019). Related research has shown that
people can also make use of finer-grained behaviour traces
such as body kinematics (Cavallo et al.| [2016; McEllin et al.|
2018)). But goals come in many kinds: epistemic goals—the
desire to learn about something, or resolve some form of un-
certainty about the world (Sandoval, 2015)—may be rather
more inscrutable than a desire for some worldly reward. The
challenge here is that, in order to test their hypotheses and re-
solve their uncertainty, people necessarily take actions whose
outcomes are uncertain even to them, meaning that what they
want to learn and what they achieve can diverge in complex
ways. It is an open question, which we begin to explore here,
to what extent people can recognise the epistemic intentions
behind others’ epistemic actions.

We see this ability or task as important to focus on because
it combines our physical and social expertise, two areas of
skill sorely lacking in Al systems. If we could find a way
of modelling this intersection then we could give Al systems
a key to understanding humans and our way of being in the
world.

Intuitive physics

A key domain in the cognitive science of learning is infu-
itive physics: the understanding shared by embodied beings
of how physical objects move in space (Kubricht et al.| 2017
Ludwin-Peery et al.| [2021} McCloskey} [1983). One popular
experimental setup borrowed from computer vision involves
reasoning about billiard worlds (Fragkiadaki et al., 2015): re-
alistic dynamic simulations of 2D, billiard ball-like objects
interacting within a bounded space in ways controlled by a
physics simulator (see Figure [I). Because the objects move
independently but also respond realistically to contact, such
billiard worlds are a useful testbed for studying how people
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infer the latent causally relevant properties of objects, both
passively (Ullman et al., [2018)) and actively (Bramley et al.,
2018)), as well as how they reason hypothetically and counter-
factually about what will or did happen and why (Gerstenberg
et al} [2021). Thus, we see billiard worlds as a useful setting
for exploring how people infer the learning goals of others
from relatively fine-grained behaviour; a grown-up version of
toddlers at nursery learning how a toy works by watching one
another play.

Active learning

Numerous experiments have demonstrated the value of active
learning—in which the learner chooses what to do or look
at next—over passive learning—in which the learner merely
observes the situation of interest (Markant & Gureckis, 2014}
McCormack et al.| [2016; [Sobel & Kushnir, 2006). Active
learning is critical in domains where experiments can reveal
latent properties and relationships that are confounded in pas-
sive observation (Bramley et al.| 2015} [2018 [Pearl, 2000). A
typical comparison group in active learning experiments is
a yoked condition, where participants observe the actions of
an active learner but cannot influence them, so matching the
information available but removing the control and the priv-
ileged access to the learners’ epistemic goals. Often yoked
participants are less accurate than their active counterparts
(Markant & Gureckis, [2014) but occasionally they do as well
or better. In active learning about physical properties, yoked
learners have been found to approach the accuracy of their
active counterparts provided they share a learning goal. For
example, Bramley et al.| (2018) found yoked learners were
able to identify the force relation or relative mass of two ob-
jects in a billiard world as accurately as the active learner they
observed, but were substantially worse when the learner they
observed was focused on a different property. An information
gain analysis revealed that active learners generally generated
more evidence about their learning goal than the alternative
goal. Secondary analyses also identified a number of micro-
experimental strategies used by participants, with some as-
sociated with the mass goal—shaking the objects back and
forth, launching, knocking and throwing them at each other—
and some associated with the force goal—holding the target
objects close together, bringing them to a stop, moving the
distractor objects out of the way.

Experiment

In our experiment, we ask whether observers can recognise
what active learners are trying to learn on the basis of observ-
ing their interactions with the objects through the relatively
fine-grained medium of real-time touchscreen control. We
use a similar setup to |Bramley et al.| (2018)), using videos of
adult active learners collected as controls for a developmental
project Bramley & Ruggeri| (in revision). The videos show
participants (hereafter, “players”) using touchscreen control
to investigate one of two latent properties of objects in a bil-
liard world. We selected a subset of the videos so as to sys-
tematically manipulate the information content of the record-
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ings under an Ideal Observer model of physical property in-
duction (described below) and also manipulate whether par-
ticipants can see players’ touchscreen control or simply the
results of this control in the movements of the objects.

Figure 1: Conceptual depiction of dynamic motion of objects.
Faint shading indicates the trajectory of the objects over a
couple of seconds. Here object A is controlled by the player
as shown by its black border. Their dragging action, pulling
A toward the top right, is further indicated by inclusion of the
cross showing their finger position.

Methods
Participants

We recruited 110 UK-based adults from the [Testable Minds
crowdsourcing platform (49 female, 2 other, age Mean + SD
36.9 & 11.4, range 18-71 years). Participants were paid $4.50
for taking part in the experiment and $0.10 for each correct
answer (mean $5.46, min $4.80, max $5.90). The task lasted
26.9 £ 9.3 minutes.

Stimuli

Stimuli were 32 video clips, each showing a 45-second in-
teraction between an adult active learner (the “player”) and a
2D simulation of four bouncing objects (“balls”). The envi-
ronment was simulated using Box2D physics engine and the
interactions took place through real-time touchscreen control
on a tablet screen using a full screen javascript web app. The
interactions were chosen from a set of 192 recorded at muse-
ums around Berlin (Bramley & Ruggeri, jin revision). Play-
ers could control the objects by “grabbing” them by holding
their finger on the touchscreen over the object, whereupon the
balls would become attracted to the finger until touch was re-
leased. Players could thus manipulate the objects in real time
to produce curated interactions and dynamics but began each
trial ignorant about key latent properties of the objects. The
physical environment was 6 x 4 meters and rendered on the
tablet screen as 1920 x 1200 pixels. The physics simulator
refreshed 60 times per second resulting in 2,700 frames of ev-
idence making up each clip. Of the four objects in each clip,
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two were described as “targets” given labels “A” and “B” and
coloured pseudo-randomly while the other two were “Dis-
tractors” coloured light and dark grey. Players were given one
of two possible goals: Mass goal (identifying which of the
target objects was heavier) or force goal (identifying whether
the target objects attracted or repelled each other). In fact, all
objects weighed lkg except one target which weighed 2kg,
and the targets either attracted or repelled one another with a
magnet-like force of ﬁ:%. The other five pairwise com-
binations of target and distractor had randomly selected force
relationships € {attract,repel,none}. This resulted in com-
plex and confounded dynamics in the absence of curation by
the active learner. All objects began each trial with randomly
generated positions and velocities. All stimuli, along with de-
tailed simulator settings, can be viewed in our Repository. Of
192 trials from 24 adults, 16 representative videos were se-
lected based on the following procedure: 8 from each learn-
ing goal (force, mass). These comprised 2 from each of the
4 combinations of environment types ({A heavy, B heavy},
{attract, repel}). These were selected such that one was the
most, and the other was the least, informative about the tar-
get property based on an information gain analysis (below),
subject to them also containing 5-25 “actions” (defined as oc-
casions where the player took control of an object for at least
1/6™ of a second). We created two versions of each video. In
the No Cursor version, the video just showed the objects and
indicated which if any was under control with a thick black
line. In the Cursor version, the video also showed where
the player’s finger was located whenever touching the screen,
with a cross symbol (Figure [I).

Information entropy of stimuli The videos we used are
linked with an information entropy analysis in (Bramley &
Ruggeri, in revision; |Shannon, |1948)). This is based on an ac-
count of physical parameter inference via simulation. While
the details are beyond the scope of the current paper,we pro-
vide code for this analysis in our Repository. Roughly, this
involved calculating a posterior probability distribution over
the unknown physical parameters of each world given the dy-
namics produced by the players’ interactions, under an as-
sumption of a computationally unbounded observer. This
involved simulating each environment forward under many
combinations of unknown parameter settings, and measuring
the instantaneous divergence of these simulations in terms of
the direction and velocity of the objects. These discrepan-
cies were run though a simple model of Gaussian perceptual
uncertainty so as to assign a likelihood to each frame of ob-
served dynamics under every possible combination of prop-
erties in the task, and this was combined with a uniform prior
to give a posterior joint distribution. This posterior was then
marginalised over to assess the posterior uncertainty of the
mass and force properties at the end of each trial. It is im-
portant to note that the perceptual uncertainty layer depends
on an arbitrarily set precision parameter, meaning these val-
ues provide a measure of relative informativeness of different
dynamic interactions, rather than an absolute value.
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Figure 2: Force and mass entropy of video stimuli. 1 indi-
cates maximal uncertainty (equally likely that A or B is heav-
ier, or equally likely that objects attract vs repel). O indicates
ideal observer certainty about which object is heavier or about
which force relation is correct. Dotted lines connect the force
and mass entropies for each video.

Figure [2] shows the resulting mass and force entropy (i.e.,
an ideal-observer measure of posterior uncertainty) for the
clips we used. Mass uncertainty and force uncertainty were
negatively correlated (r = -.624), with force entropy lower in
trials where the player’s goal was force (Mean + SD .57 &
45 vs. .65+ .37), mass entropy lower on trials where the
player’s goal was mass (.31 .35 vs. .48 £ .26), but mass
entropy was lower in general than force entropy (.39 & .30
vs. .61 +.39). For selecting trials and predicting guesses, we
used the entropy specific to the player’s epistemic goal, i.e.
mass entropy for mass trials, force entropy for force trials.
However, below we also consider the ratio of force entropy
to mass entropy in analysing how our participants identified
learners’ goals.

Design

We ran an online behavioural experiment. We manipulated
one factor between subjects (Trace:{Cursor, No cursor}), and
two factors within-subject (Goal: {Force, Mass}; and En-
tropy: {High, Low}. Each participant thus faced all 16 videos
described above either with or without the cursor visible, in
random order.

Procedure

The experiment was implemented in Testable| with partici-
pants completing it in the browser on their own devices. Par-
ticipants first entered their basic demographics then read in-
structions about the nature of the task explaining the two pos-
sible learning goals of the players. Participants then watched


https://github.com/Stephaniedroop/inferring-intention
https://github.com/Stephaniedroop/inferring-intention
https://www.testable.org/

a video familiarising them with the virtual physical environ-
ment. They all watched the same video, which showed four
objects interacting with each other with no active learner in-
tervention, with the properties {Attract; B heavier}. Partici-
pants had to correctly complete four True/False comprehen-
sion questions before proceeding to the main task. If they
answered incorrectly they were looped back to the instruc-
tions again. They could attempt the comprehension questions
as many times as they needed.

Instructions were the same for all participants with the ex-
ception of an additional sentence explaining that the black
cross showed the player’s touch actions in the Trace: Cursor
condition. Apart from this between-subject manipulation of
cursor, all participants saw the same 16 stimuli, in random
order. At no point did participants interact with the stimuli.
Participants received no other information about the player
whose goal was the target of their inference.

While each video stimulus was playing, the following
prompt appeared: “Was this person testing for force or
mass?”’. When the video finished playing the next screen
presented the same prompt but now alongside two response
buttons labeled “FORCE” and “MASS”. Participants had one
minute to respond by clicking one of the buttons. The ex-
periment then proceeded to a screen with a free text response
field and the prompt “Why did you answer that? What clues
did you base your answer on? How sure were you? (Be as
detailed as you like)”. Answering this was optional and par-
ticipants could proceed to the next trial. Participants did not
receive feedback during the task but were provided their suc-
cess rate in the final debrief screen.

Analysis

Data were analysed using R version 4.1. Package Ime4 (Bates
et al.l 2014) (glmer, family “binomial”) was used for logistic
regression mixed effects models following recommendations
of Meteyard & Davies|(2020). Participants’ correct responses
were predicted with main effects of trace, goal and entropy
group and a random intercept for participant. Our model was
contrast coded (-.5,.5) and included all interactions.

Results

Here we first report participants’ performance in the task
overall and by condition. We then tease out the contribution
of the information content of players’ actions. Finally we de-
scribe an exploratory mixed-methods analysis investigating
what cues participants might be guided by in their answers.

Performance

Participants were able to infer the intention of the active
learner correctly Mean &+ SD 60.1414.2% of the time overall,
doing so 62.2+14.9% of the time in the trace present condi-
tion, 58.0£13.1% in the trace absent condition, 67.2+17.1%
for the force goal and 53.4 + 16.2% for the mass goal, and
54.3 +16.9% for high and 66.4 +22.6% for low entropy
videos. % tests show that participants were above chance
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Figure 3: Proportion of correct answers in all conditions.
Dashed line shows chance performance. Error bars show
standard error for individuals.

50% in 5 of the 8 condition combinations, with p values be-
low a Bonferroni corrected value of .0063. Three exceptions
were the cursor, mass goal, high entropy condition: > =1.17,
p = .28; the no cursor, mass goal, high entropy condition, x2
= 3.56, p = .06; and the no cursor, mass goal, low entropy
condition: %2 = 1.03, p = .31. There were 14 timeouts: 1
participant had 4 and 10 others had 1 each. By trial: 2 stimuli
had 3 timeouts each, 2 had 2, and 4 had 1. We simply omit-
ted these trials from analyses. No participants were excluded.
The full pattern of results are shown in Figure Logistic
mixed-effects regression shows a significant main effect on
accuracy of epistemic goal (odds ratios, estimate = 1.39, CI
[1.25 1.53], Z = 6.41, p < .001**) and of entropy (odds ra-
tios, estimate = 1.30, CI [1.18 1.44], Z = 5.18, p < .001***),
with an interaction between cursor and goal such that par-
ticipants were more accurate at identifying when the player
had the mass goal when the cursor was present (odds ratios,
estimate = 1.11, CI [1.01 1.23], Z = 2.11, p = .035* but no
main effect of cursor trace (odds ratios, estimate = .92, CI
[.821.03],Z=-1.48, p=.14)

Performance by ground truth

We also analysed performance by ground truth, the environ-
mental properties present in every trial (whether A and B at-
tracted or repelled each other, and whether A or B was heav-
ier). Irrespective of goal, participants got more correct an-
swers when the ground truth was repulsion rather than attrac-
tion (x> = 7.49, p = .006**; Table . When split by epistemic
goal, the repel trials do not influence correct answers in the
force condition (x2 =.015, p =.90). However, when the goal
is mass, repel trials yield more correct answers than attract
(% = 15.87, p < .001***). This was not due to less informa-
tion being produced in the attract conditions.



Table 1: Accuracy (%) by Ground Truth (Force, A/B Heavy)

Ground Truth:  Attract, A Attract, B Repel, A Repel, B
Force Goal: 63.2 70.5 71.8 63.2
Mass Goal: 33.2 53.2 70.9 54.4

Information

We next explored whether judgments could plausibly be
driven by the relative evidence about the two goals. That
is, whether participants simply assessed which property was
better revealed and decided that was the property the learner
wanted to learn about. To assess this, we ran a binomial lo-
gistic mixed-effects regression to predict participants’ proba-
bility of guessing mass, depending on the posterior mass and
force entropies, with interaction and a random effect of par-
ticipant. This regression did not have the predictors from the
main performance model of cursor trace, epistemic goal and
entropy group. We found a main effect of force information
entropy (odds ratios, estimate = 3.69, CI [1.84 7.50], Z =
3.65, p < .001***), whereby people were more likely to an-
swer mass when the force entropy is high. Actual frequency
of answers was 1001 force; 759 mass. We next ran another
binomial logistic mixed-effects regression to check whether
the logarithm of the ratio of force entropy to mass entropy
could predict whether participants guess mass. We found a
main effect of entropy ratio (odds ratios, estimate = 1.03, CI
[1.02 1.05], Z = 4.30, p < .001***). This regression kept the
main predictors of cursor trace and epistemic goal, and their
effects were still present and significant, which shows that al-
though the entropy ratio accounts for some variance, it cannot
account for all. This suggests people were guided by objec-
tive information content to some extent when answering, but
not so much that they relied on it as their only signal.

Exploratory analyses

We performed exploratory analysis of participants’ free text
explanations for why they answered how they did. For this,
free text responses were stripped of participant or trial data
and manually coded by two independent coders. See our
Repository for details of how each response was coded. We
observed that participants often mentioned the player’s physi-
cal actions, that is, they recognised some form of strategic be-
haviour (e.g. “bumping A into B”, “dragging the balls close
to each other”). They also sometimes directly mentioned the
end goal (e.g. “checking the mass”, “seeing if they attract
or repel”) and sometimes a more specific interim sub-goal
which seemed to isolate one property (e.g. “to see which
floats higher”). Therefore, we opted to code each response
for presence or absence on three dimensions: strategy, end
goal, and interim goal. As all the objects had physical prop-
erties, we did not accept answers that simply referenced the
behaviour of the objects (e.g. “Balls A and B were sticking
together throughout”). Inter-rater reliability (Cohen’s k) was
calculated for each of the three dimensions: for strategy K =
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.75, for end goal x = .47, for interim goal k¥ =.56. Out of 1336
text responses received, the raters (Raterl/Rater2) counted
that 769/919 mentioned some kind of strategy, 428/741 men-
tioned an end goal and 455/531 mentioned an interim goal.
For further analysis we counted only those responses rated
True by both raters. We ran a logistic mixed-effect regres-
sion predicting accuracy with fixed effects for strategy, end
goal and interim goal and a random effect of participant. We
found a main effect of strategy (odds ratios, estimate = 1.27,
CI [1.02 1.60], Z = 2.10, p = .03") and of end goal (odds
ratios, estimate = 1.43, CI [1.09 1.88], Z = 2.56, p = .01%)
but not of interim goal (odds ratios, estimate = 1.17, CI [.89
1.55], Z =1.15, p = .25).

Strategies and goals

Participants identified a range of strategies of the players,
describing detailed actions that helped them solve the task.
For example, many mentioned an action that seems partic-
ularly informative as a test for force, characterised by se-
lecting one ball and moving it gently and precisely toward
another without touching (“They gently moved the ball to-
wards each other”, “holding it close to others”). For some
participants a cue indicative of tests for force was more time
spent passively observing: some participants mentioned they
thought the player had left the balls alone on purpose and
merely watched them to allow A and B to reveal their prop-
erties. In contrast, participants frequently cited crashing or
collisions as a sign the player was testing mass: “they were
crashing the balls together”. Strategies like this “initiating
collisions” were often mentioned alongside what we coded
as “end goals”, e.g. this was followed by, “to see which ones
looked heavier”. One other strategy that prompted partici-
pants to judge the player as focused on mass was when they
intervened on A and B separately: “seeing which bounced
faster to compare them”, “drag the balls on an individual ba-
sis”. Interim goals were rarer. People mentioned interim
goals after sophisticated and detailed actions which would
isolate a property by how the balls moved, e.g. “moved one
quickly to see if the other followed”, “dragged them to the
bottom to see which one floated up more quickly”.

Discussion

In this paper we explored inference about the epistemic goals
of others. We found that adults were often able to judge
whether the screen recording they watched was by another
adult trying to ascertain the pairwise magnet-like force be-
tween two objects, or the relative masses of those two ob-
jects. Performance was mixed and responses indistinguish-
able from chance in some settings, such as when identifying
less-successful mass-revealing behaviour (i.e. when mass en-
tropy was still high at the end of the trial according to an ideal
observer account). However, they could identify what more
successful players were testing for, and seemed to find it eas-
ier to identify force-focused behaviour. One limitation is that
binary forced-choice design is a maximally lenient way of
collecting judgements. It allows pragmatic inferences which
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we see some evidence for in free responses: several partici-
pants wrote e.g., “They didn’t do the force test so I knew it
was mass”’. Nevertheless, our experiment shows that people
are able to make use of rich behavioural traces in inferences
about epistemic goals.

Interactions with environmental properties

People were more accurate when the objects repelled one an-
other than when they attracted. We note the comparison to
past work on learning in this setting (Bramley & Ruggeri,
in revision; Ullman et al., [2018}; Bramley et al., |2018)) that
showed passive participants struggled to identify repulsion.
It seems that being able to act on the scene (bringing repul-
sive objects closer together than they would normally go) al-
lowed active participants to identify repulsion at least as well
as attraction, but here also seemed to make it easier for par-
ticipants to identify mass-focused behaviour. In future work
combining intuitive physics and social inference, we hope to
tease out how learners might adapt their goal-directed actions
to “piggyback” off helpful properties (like using repulsion to
help reveal mass).

Information entropy

There was a relationship between the quality of the evidence
the player produced about each property and our participants’
judgments. However, this did not fully explain response pat-
terns. If judgments were driven by the amount of evidence
generated about the two properties we might expect them to
guess mass more often than force, as the ideal observer model
considered there to be stronger evidence about mass than
force on average. In fact we observed the opposite pattern:
participants were more likely to answer force. Participants
were better at identifying force-focused than mass-focused
behaviour, akin to earlier work which found both passive and
active learners to be more accurate at identifying force than
mass |Ullman et al.| (2018)); [Bramley et al.| (2018])), and yoked
learners as accurate as active participants on force trials but
not mass trials.

It could be helpful to tease out what exactly people are sen-
sitive to, and how this differs from what the ideal observer
account is sensitive to. The ideal observer learns a lot about
mass from collisions (Bramley et al.,[2018)). Since heavy ob-
jects are deflected less than light ones, they exit in different
directions depending on their mass. But this evidence de-
pends on seeing exactly how the objects collided and cor-
rectly resolving the exchange of momentum. People, how-
ever, seem more sensitive to qualitative aspects of the force
evidence (objects swerving toward or away from each other).

For our current purposes we should not expect people to
benefit from the same evidence as an ideal observer model
which has perfect precision and memory and considers all
possibilities in parallel with the objective of inferring the la-
tent properties of the objects. In contrast, our participants
had the objective of social inference of the players’ epistemic
goal. It seems for this they were especially sensitive to dif-
ferences in the behaviour they observed. The next section
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discusses how the free responses we collected suggest people
may have recognised behavioural strategies or interim goals
that they could map to one or other of the learning goals.

Recognising strategies and goals

We took an innovative approach to gain traction on the ques-
tion of how people knew what others were trying to do: we
asked them. This approach may seem naive: given the high
dimensional stimuli and impression-based task it might seem
unlikely that people would have articulatable insights about
the workings of their own mental apparatus. However, we
found plenty of hints that people are capable of recognising
apparent strategies, sometimes describing them and linking
them plausibly to interim and final learning goals. Mention of
some strategies recalls the secondary analysis of |Bramley et
al|(2018)), with many participants identifying similar actions,
for example “holding the target objects close together” as a
test for force. Some strategies may be more easily recognised
than others, and we cannot rule out an additional symbolic-
interpretability effect linked to participants’ ease in describ-
ing certain actions (a direction for further work). In addition,
some people noted that force-focused behaviour had charac-
teristically slower motion and fewer total interventions and
some mentioned they could tell the player was “waiting to
see” whether the balls moved together or apart. This suggests
that social inference is based just as much on absence of any
action, or the timing of action, as on the actions themselves.

Although not a significant predictor of accuracy, the rarer
mentions of interim goals give intriguing insight in two ways.
Firstly, they show some participants had a sense of which
types of motion would effectively reveal certain physical
properties (e.g. “to see which bounced slower” as a test for
mass). Secondly, these goals are evidence of people imputing
fine grained intentional behaviour (“he was trying to drag the
balls into a line”) which has implications for theory of mind
research.

Behavioural trace

Identification of mass-focused behaviour, but not force-
focused behaviour, benefited from extra information provided
by display of the players’ touch control. In one sense this is
not surprising: the additional trace increases how much evi-
dence we have, e.g. how quickly the player changed direction
or where they paused. It also provides insight into how they
produced the actions they did: how quickly they dragged their
finger, whether in a straight or curved trajectory. The cursor
also reveals actions that were failed or aborted, such as at-
tempting to grab an object but missing it.

Conclusion

In sum, our results, while preliminary, suggest people are ca-
pable of recognising active learning strategies, as well as what
evidence is produced by the behaviours of others. By com-
bining this information they are able to make sensible guesses
about epistemic goals.
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