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Abstract

Dozens of SARS-CoV-2 vaccines have been ap-
proved for public use, yet there remains a risk
that the virus evolves to escape vaccine protec-
tion. This motivates the development of univer-
sal vaccines capable of protecting against current
and potentially new strains of the virus. A key
challenge is the lack of computational tools to
design new viral proteins capable of vaccine es-
cape, which could serve as good targets for the
development of universal vaccines.

Here, we designed Variational Autoencoder
(VAE) capable of generating SARS-CoV-2 spike
proteins with variable immune visibility to the
cell-mediated immune response. We compared
our model with two simpler generative models; a
random-mutator and an 11-gram language model.
All three models can generate stable, structurally
valid sequences, yet only the VAE model can gen-
erate low immunogenicity sequences that inter-
polate smoothly along the principal variance di-
rections of known natural sequences. This model
provides an effective computational tool for the
generation of spike protein sequences useful for
universal vaccine design. We provide its source
code at https://github.com/hcgasser/SpikeVAE.
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1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a beta coronavirus first identified in December
2019 (Wang et al., 2020). The global pandemic it caused
spurred vaccine development at a record-breaking rate (Petri,
2020). The first approval of a vaccine for widespread use
in the UK came in January 2021 - just 11 months after the
first viral sequence was released (Ledford et al., 2020). As
of May 2022, there are a total of 30 vaccines approved for
public use globally, utilising a wide range of technologies
(Craven, 2022).

Despite this success in vaccine development, there is strong
evidence that the Omicron variant can partially escape main-
stream vaccines (Cao et al., 2022; Cele et al., 2022; Flem-
ming, 2022). This motivates the development of universal
vaccines that are broadly effective against both current and
potential future strains (Nachbagauer & Krammer, 2017).

Much of the research into universal SARS-CoV-2 vaccines
has been inspired by similar efforts for influenza - which has
a similar evolutionary rate (Beans, 2022; Callaway, 2021).
In particular, the main focus of efforts has been on identify-
ing conserved viral epitopes: preserved regions of viral anti-
gens recognised by the immune system (Sanchez-Trincado
et al., 2017; El-Manzalawy & Honavar, 2010).

There are several computational methods for automatically
identifying conserved epitopes (Qiu et al., 2019; Malone
et al., 2020). They are, however, limited in that they can-
not extrapolate beyond existing known sequences, which
restricts their use for developing universal vaccines. In addi-
tion, a reliance on conserved regions misses the opportunity
to leverage the commonalities in a comprehensive map of
epitopes of the virus. A promising alternative approach
could be generative models (Strokach & Kim, 2022), which
have found success for in silico generation of proteins with
particular biological function, such as improved ligand bind-
ing or antibiotic resistance properties (Madani et al., 2020;
Greener et al., 2018; Chhibbar & Joshi, 2019).

In this paper, we demonstrate how VAE, a popular type of
generative model, can be employed to generate novel protein
sequences. We designed and evaluated an immune-aware

https://github.com/hcgasser/SpikeVAE
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VAE that selectively generates synthetic SARS-CoV-2 spike
proteins with variable levels of immune visibility. We evalu-
ate the validity and stability of the generated sequences and
their tertiary structures with respect to natural spike proteins.
Generated sequences with low immune visibility might pose
the highest risk of vaccine escape, and therefore should be
considered when designing forward-looking vaccines.

The structure of the paper is as follows. Section 2 covers
the necessary background in immunology, SARS-CoV-2
biology and generative models for protein design. Section
3 details our methods. Results are presented and discussed
in Section 4. Conclusions and further work can be found in
Section 5.

2. Background
2.1. Vaccine-induced immune response

Vaccines enable fast pathogen detection by the adaptive im-
mune system. Detected pathogen parts (antigens) leading
to an immune response are called immunogenic. Antibod-
ies produced by B-Cells are part of the humoral response,
while the cellular response is mainly T-Cell based. Cyto-
toxic T-lymphocytes (CTL) deal with viruses inside cells. In
nucleated cells the MHC class I (MHC-I) mechanism facili-
tates the detection of infected cells (Rock et al., 2016). The
MHC-I protein presents fragments of all proteins present in
a cell (called peptides, typically 8–10 amino acids (AAs)
long) on the cell surface (Rock et al., 2016). These are
produced by proteasomes and then transferred into the en-
doplasmic reticulum (ER) where they encounter MHC-I
proteins. Some peptides will bind to the MHC-I’s binding
grooves. These peptide-MHC protein complexes (pMHCs)
then migrate to the cell surface, where they are presented to
the extracellular environment. They can act as epitopes to
the T-cell receptor (TCR) of CTL. If these CTLs are acti-
vated and the epitope is considered by them to be non-self,
then the cell will be destroyed (Rock et al., 2016). Mod-
els exist that predict which peptides of a protein will get
presented (see Section 2.4).

2.2. Principles of viral mutation

Considering potential mutations in vaccine design is always
necessary, particularly for highly mutagenic viruses. Mu-
tations can be caused by replication errors, damage to the
nucleic acids, host proteins changing the virus’s genetic
material, but also by so-called diversity-generating retro-
elements (DGRs) (Benler et al., 2018). Recombinations
of coinfecting viruses exchanging genetic information can
also lead to major genetic changes (Fleischmann, 1996).
Mutation rates vary across viruses. In general ribonucleic
acid (RNA) viruses (like SARS-CoV-2 and HIV) display
higher mutation rates than DNA based viruses (like HPV)

(Sanjuán & Domingo-Calap, 2016). This is mainly due to
the RNA virus’s lack of proofreading functionality (Fleis-
chmann, 1996). Single-stranded viruses (like SARS-CoV-2)
are also renown to have higher mutation rates than double-
stranded ones (Sanjuán & Domingo-Calap, 2016).

Positive-stranded RNA coronaviruses display a compara-
tively high mutation rate (Piepoli et al., 2020). An esti-
mate for SARS-CoV-2’s overall mutation rate is in the or-
der of 10−6 nt−1cycle−1 (per nucleotide per infection cy-
cle) (Borges et al., 2021), whilst the spike protein estimate
is even an order of magnitude higher at 10−5 nt−1cycle−1

(Borges et al., 2021). Due to its exposure to the external
environment (making it accessible to antibodies) the spike
protein was the focus of vaccine development and is also the
focus of this work. Typically, there are 50 to 100 of them
on a single virus (Piepoli et al., 2020).

2.3. Generative models in Protein Design

Autoregressive (AR) models were early generative models
for AA sequences. For example, Shin et al. have used a
LSTM recurrent neural network (RNN) to generate single
domain antibodies. In recent years, RNN models are increas-
ingly being replaced by transformers (Vaswani et al., 2017)
- also in protein design. Wu et al. used them to generate sig-
nal peptides (control protein secretion in cells). Also, recent
advances in image generative models have been transferred
to protein generation - for example Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014) and VAEs.
Repecka et al. have developed ProteinGAN which they use
to generate new malate dehydrogenase (MDH) variations
and were able to experimentally verify that 24% of these
displayed MDH’s catalytic activity in vitro.

We use the second popular generative model - VAEs. These
are based on the idea of Autoencoders (AEs). Both consist
of an encoder and a decoder. For example, a AA sequence
is fed into the encoder outputting a lower-dimensional se-
quence representation - the latent variable. This is then fed
into the decoder to reconstruct the original input. The loss
represents how well the original input was reconstructed.
Unfortunately AEs tend not to generate a diverse set of ex-
amples outside the dataset. Therefore Kingma & Welling
introduced VAEs. Here the encoder’s output is used to pro-
duce an expected value and variance for the latent variable.
A normally distributed random variable with these speci-
fications is then sampled and fed into the decoder. This
enables the model to attribute useful values to a continuum
of latent variables. The distribution of the latent variables is
controlled by a loss term that includes the KL-divergence
between the actual latent variable distribution and an ideal-
ized standard normal (Kingma & Welling, 2014) in addition
to the reconstruction loss.

Early work using VAE for protein design was done by Sinai
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et al.. They use encoder and decoder networks with three
dense layers of 250 units and dropout. They used five la-
tent variables for prediction and two for visualization. They
find that the lower-dimensional representation had only a
slight weakening effect on predictive power. In comparison,
on almost 70,000 luciferase-like oxidoreductases Hawkins-
Hooker et al. trained a fully connected encoder and de-
coder on aligned sequences (MSA VAE), and on unaligned
sequences they trained a convolutional neural network en-
coder in combination with an auto-regressive decoder (AR
VAE). Their MSA VAE model was better able to capture
long-distance dependencies reflecting the 3D structure of
the folded protein. In total, 6 of their 12 generated AR
VAE variants and 9 of their 11 generated MSA VAE vari-
ants demonstrated measurable luminescence. They used
conditional VAEs (Sohn et al., 2015) to control the vari-
ant solubility - we use this to control for level of immune
visibility (see Section 2.4).

2.4. Antigenicity prediction

Not all viral protein parts are presented on the cell’s sur-
face (Section 2.1). With antigenicity we mean a peptides
propensity to be displayed on the cell’s surface. The higher,
the easier detection should be for the immune system. Sev-
eral models predict presentation - for example NetMHCpan
(Reynisson et al., 2020), MHCflurry (O’Donnell et al., 2020)
and ImmunoBERT (Gasser et al., 2021).

3. Methods
3.1. Data

We acquired a large set of SARS-CoV-2 spike proteins from
the Global Initiative on Sharing All Influenza Data (GI-
SAID) database (Shu & McCauley, 2017). Its entries are
sourced from high-quality, deeply sequenced genomics data
from laboratories across the globe. As of January 2022, the
database consists of 13,817,026 individual SARS-CoV-2
spike protein sequences.

Notably, some database sequences are only fragments. Oth-
ers have undetermined amino-acids at various residue po-
sitions. We therefore filtered the database by discarding
any sequence of length less than 1200 (the Wuhan refer-
ence variant is 1273 AA long (Huang et al., 2020)) or any
sequence containing an undetermined residue. After this,
4,438,573 sequences remained - 167,133 distinct spike pro-
tein sequences. We selected the top 65,000 most common
ones 1 and sequence aligned them using MUSCLE v.3.8
(Edgar, 2004). To make this tractable, we split and align
the sequences in batches of 5000 and then hierarchically

1In practice, this means that each of these sequences had been
detected in at least two individuals. The most common sequence
had been detected in over half a million individuals.

merged the aligned lists using MUSCLE’s merge function.
This produced aligned sequences of length 1,299 AAs.

For variant annotation we retrieved variant consensus se-
quences from Expasy (Duvaud et al., 2021) (Wuhan, Alpha,
Beta, Gamma, Delta, Epsilon, Omicron BA.1). Sequences
were then annotated with a variant based on the shortest
edit distance using BioPython (Cock et al., 2009) pairwise
alignment.

3.2. Embedding visualisations

In our report, we include visualisations of natural and syn-
thetic sequence datasets. The visuals are constructed in
three stages, described below.

Stage 1: Sequence encoding
Sequences, being text data, are challenging to directly vi-
sualise. Rather, it is convenient to first encode each se-
quence as a high-dimensional numerical vector. A range
of methods has been developed for this purpose (Jing et al.,
2020). At the broadest level, they are divided into position-
independent encodings (which assign the same numerical
encoding to each AA regardless of its location) and position-
dependent encodings (which encode residues based on their
contextual environment, and so may assign a different en-
coding to the same AA appearing at different locations).

Due to their simplicity of implementation, we settled on us-
ing position-independent encodings. We used BLOSUM62
encoding(Henikoff & Henikoff, 1992), an encoding derived
from AA evolutionary substitution data, since it has the best
performance in protein fold recognition tasks (Jing et al.,
2020); see also Appendix 7.1.

Stage 2: Sequence masking (optional)
In universal vaccine design, it is germane to map out con-
served epitope space. This space is different for B cells than
it is for T cells. For B cells, the epitope space is related to
those regions of the protein that are exposed on the surface
(Sanchez-Trincado et al., 2017). To visualise B-cell epitope
space, we apply an ‘epitope mask’ to each sequence. The
epitope mask effectively weights the importance of residues
by how proximal they are to the surface. We obtain and
apply the mask as follows: (1) Apply the DSSP program
(Touw et al., 2015) (Kabsch & Sander, 1983) to the PDB
of the original Wuhan variant (Cai et al., 2021) to obtain
a normalised (between 0 and 1) residue by residue surface
solvent accessibility (SAV) score. (2) Pairwise align each
sequence with the FASTA sequence of the original Wuhan
variant using BioPython (Cock et al., 2009) and use this to
compute an aligned SAV for each sequence2. (3) Apply the

2To make this alignment possible, we make the simplifying
assumption that AA mutations did not modify solvent accessibility
and that deletion mutations do not affect solvent accessibilities at
other residue locations. We also assume that the solvent accessi-



Generating Immune-aware SARS-CoV-2 Spike Proteins for Universal Vaccine Design (ICML 2022)

mask by multiplying a sequence’s encoding vector by the
solvent accessibility value of each residue. The mask has
the effect of biasing the visualisation towards displaying
only the variation in those residues that are proximal to the
protein surface.

Stage 3: Sequence embedding
There are many algorithms for embedding high-dimensional
data to lower dimensions for ease of visualisation (Van
Der Maaten et al., 2009). For simplicity we use just two
methods: PCA (Principal Component Analysis), a lin-
ear dimensionality reduction algorithm famed for its sim-
plicity(Jolliffe & Cadima, 2016), and t-SNE (t-distributed
Stochastic Neighbor Embedding), a non-linear dimensional-
ity reduction algorithm that has previously been extensively
used in protein visualisations (Maaten & Hinton, 2008). For
t-SNE, we pre-process by dimensionality-reducing down
to 50 dimensions with PCA and then further reduce to two
dimensions with t-SNE using a cosine metric, perplexity 30,
a learning rate of 200, and running for 1000 iteration steps.
We use these same parameters for all t-SNE visualisations.

3.3. Generative models

We investigate three classes of generative models. In order
of increasing complexity these are: (1) a random-mutator
model, (2) an N-gram language model, (3) a VAE model
with antigenicity constraints. Models (1) and (2) are used as
baselines when evaluating the sequences generated by the
more complex VAE model. Each model generates sequences
of the same length (1299aa).

Random-mutator model
This uses knowledge of positional AA variation in a dataset
to generate novel sequences that differ from a natural se-
quence by several, statistically independent single-point mu-
tations. Specifically, given a dataset of protein sequences,
the residue by residue AA probability distributions are cal-
culated and a ‘mode sequence’ is constructed by taking the
most common AA at each residue. The number of positional
differences between each sequence and the mode sequence
are then calculated. For the SARS-CoV-2 dataset, we find
that the number of mutational differences is approximately
exponentially distributed with a mean of 8.81. This leads
naturally to the following generative model:

1. Randomly select a natural sequence from the dataset.
2. Sample exponential variable N (mean 8.81, rounded).
3. Resample a random residue (from its AA distribution).
4. Repeat step 3 until exactly N positions changed.

N-gram language model
An N-gram language model is trained on the dataset defined
in Section 3.1. New sequences are generated based on an

bility of an insertion mutation can be estimated as the mean of the
solvent accessibility of its immediately adjacent residues.

N − 1 residue initialising sequence (we use the first N − 1
AA residues of the dataset’s modal sequence) followed by
the repeated sampling of the next AA in the sequence form
the language model’s probability distribution conditioned
on the preceding N − 1 residue tokens.

We used the NLTK library to experiment with N-gram mod-
els for N = 3, 5, 7, 9, 11, 13, 15, 17. The 11-gram model
produced sequences with a positional entropy distribution
most similar to the natural sequences3.

VAE model with antigenicity conditioning
Our VAE model is based on fixed-length multiple sequence
alignment (MSA) (1,299 positions) data, justifying the us-
age of a fully-connected neural network architecture similar
to Hawkins-Hooker et al.. We use one-hot encoding. In
addition to the 27,279 variables (1,299 positions times 20
amino acids + missing token) representing the sequence
the encoder receives an additional 3 variables encoding the
sequence antigenicity (low, medium, high).

A caveat of VAEs is that they can suffer from KL vanishing
- the loss function’s KL-divergence term gets optimized to
close to zero, while the regeneration loss stays high (Fu
et al., 2019). In extrema, the generator only outputs a single
example - similar to GANs’ mode collapse. We tried several
ways to counter this - for example slowly increasing the
weight of the KL divergence term in the loss function, cycli-
cal annealing (Fu et al., 2019) and the ControlVAE (Shao
et al., 2020) approach. The last one gave us the best control
over the training process and how to manage the trade-off
between reconstruction loss and generating normally dis-
tributed latent representations. It adapts the well-known PID
control process (J & H, 2006) to control the KL divergence’s
weight in the loss to keep it stable at a predefined level.

Antigenicity calculation: We used NetMHCpan-4.1 to as-
sess a spike protein’s antigenicity. It requires a peptide as
well as a MHC-I protein as input. We used its predicted
eluted ligand (EL) rank4 to assess antigenicity (presenta-
tion). Their online tool attributes weak antigenicity to the
top 2% of scores and strong antigenicity to the top 0.5%
(Nielsen, 2020).

We use the following algorithm to calculate a proxy (we
call antigenicity score (AS)) for how many peptides within
a sequence will be presented: For a sliding 9-AA window
over the sequence we calculate the NetMHCpan EL rank
for each of 12 common MHC alleles 5. If this EL rank is
below 2.0 (NetMHCpan’s standard value for weak-binding

3Section 4.3 has details on the positional entropy method.
4The rank of the predicted score in comparison to random

naturally occurring peptides.
5HLA-A01:01, HLA-A02:01, HLA-A03:01, HLA-A24:02,

HLA-A26:01, HLA-B07:02, HLA-B08:01, HLA-B27:05, HLA-
B39:01, HLA-B40:01, HLA-B58:01, HLA-B15:01
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peptides), then we count it as a hit. Our AS is the average
(over the 12 HLA alleles) count of these hits across the
spike protein. So, if there are 49 hits across the protein
in 4 HLA alleles and 50 in another 4 alleles and 51 in the
remaining ones, the AS of the sequence would be 50 (their
average). A sequence is categorised as low, medium, or high
antigenic, dependent on its rank in the ASs of all sequences
in our database. Sequences with an AS within the first
quartile (AS ≤ 49.833) are considered low antigenic, whilst
sequences with scores in the last quartile (AS ≥ 50.333)
are considered high antigenic and all others are considered
medium antigenic. This categorization is then fed into the
encoder and decoder.

There are 5 blocks in the encoder. The first encoder block
reduces the 27,282-dimensional representation (27,279 for
sequence, 3 for antigenicity) to a 512-dimensional one. Each
block we used has the same structure. It begins with a linear
layer followed by batch normalization and a leaky ReLU
(negative slope of 0.1). All but the last block end with a
dropout layer. Each block after the first one halves the output
dimension. So the last block outputs 32 dimensions, which
are then mapped via two linear layers to 30-dim values for
the expected latent variable and log variance.

Using those specifications, normally distributed latent vari-
ables are sampled and fed into the generator. It also con-
stitutes of 5 blocks with the same structure as the encoder
blocks. Only here they perform up-sampling. The first
one takes gets the 30-dimensional latent variable and the
3-dimensional antigenicity variable. The first block’s output
has 64 dimensions. Each block except for the last (which
outputs 27,279 dimensions) doubles the dimensions. Details
on the training and hyperparameter selection procedures of
our model are provided in the Appendix.

Sampling: We generated 30-dimensional multivariate Gaus-
sian distributed random variables (covariance matrix es-
timated from training sequences’ latent vectors) with ap-
pended one-hot encoded antigenicity to input into the gener-
ator. This delivers a probability distribution over the AAs
for each position. The sampled sequence is the maximum
likelihood estimate for this distribution.

3.4. Evaluation

Generative models for protein sequences, unlike those for
natural language, are difficult to evaluate through visual
inspection alone. Therefore, we have created an evaluation
pipeline to check that our approach is valid.

Firstly, we verify that the distribution of generated se-
quences is realistic, i.e. that they closely match the dis-
tribution of a representative sample of natural sequences.
We do this through PCA embedding visualisations and po-
sitional entropy comparisons of generated sequences with

natural sequences6.

Secondly, we evaluate whether individual generated se-
quences are valid, energetically stable, and have tertiary
structures similar to natural spike proteins. We do this with
three increasingly rigorous checks, at each stage rejecting
sequences that fail a check:

1. Conserved regions check From the sequence aligned
dataset we identify 77 residue positions that are conserved
amongst all natural sequences. Mutations in these regions
are therefore highly unlikely to occur and we reject any gen-
erated sequence having any of these ‘forbidden’ mutations.

2. Sequence stability check We align the remaining gen-
erated sequences with each natural sequence in turn, and
identify the natural sequence that has the highest alignment
score. We then compute the point mutational differences
between these two sequences. There are many bioinformat-
ics tools, such as MAESTRO (Laimer et al., 2015), Rosetta,
and DDGun (Pancotti et al., 2022), that use point mutational
differences to predict a thermodynamic stability difference
between two protein variants. We opted to use DDGun
(Montanucci et al., 2019), as it is the only tool that can oper-
ate on just sequence information and account for multiple
point mutations (Sanavia et al., 2020).

We supply DDGun with the FASTA file of the natural se-
quence as well as the point mutation list. The algorithm
then estimates the change in free energy of unfolding, also
known as ∆∆G (Fang, 2012), upon independently making
each mutation. A positive ∆∆G indicates a destabilizing ef-
fect, a value close to zero value indicates a neutral mutation,
whereas a negative value indicates a stabilizing effect. We
make the simplifying assumption that the thermodynamic
effects of the point mutations are independent, and estimate
the combined ∆∆G value to be the linear sum of the in-
dependent contributions. Applying this procedure to each
sequence enables us to rank generated sequences in order
of decreasing predicted stability (i.e. from most negative
∆∆G to most positive).

3. Verifying tertiary structure We then use AlphaFold2
to predict the tertiary structure of the top 10 most stable
sequences from each type of generative model. AlphaFold2
is a state-of-the-art, high accuracy protein folding algorithm
(Kwon et al., 2021). From sequence input, the algorithm

6The normalised positional entropy Sn at a residue position n
is defined as

Sn =

∑N
k=1

ck(n)
C

ln ck(n)
C

ln 1
N

,

where N is the number of possible tokens at each residue po-
sition (here N = 21; 20 possible naturally occurring AAs and
one alignment token, “-”), ck(n) is the number of times the kth

token appeared at the nth residue position in the dataset and
C =

∑N
k=1 ck(n) is the total number of sequences in the dataset.
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outputs plausible protein tertiary structures, ranked in or-
der of decreasing likelihood. We take the highest ranking
structure and use PyMol (Yuan et al., 2017) to compute the
root-mean-square deviation (RMSD) between the coordi-
nate positions of this structure and two different reference
SARS-CoV-2 structures: (1) an Alpha-Folded structure of
the reference Wuhan sequence (Duvaud et al., 2021), and (2)
an experimental SARS-CoV-2 PDB structure, 7NIU (Cai
et al., 2021). This particular structure was chosen since its
defining sequence has the highest similarity with the Wuhan
reference amongst all PDB structures.

To verify whether these RMSD values are reasonable, we
compare them to the expected range of RMSDs amongst nat-
ural sequences: we compute the maximum pairwise RMSD
value between the AlphaFolded structures of the consensus
sequences (found to be 0.94Å, Appendix Table 5). Addition-
ally, we compute the maximum RMSD value between these
consensus structures and the experimental 7N1U structure
(found to be 2.17Å, Appendix table 6). If the AlphaFolded
structure of a generated sequence has its RMSD values with
the SARS-CoV-2 reference structures to be smaller than the
above defined values (0.94Å and 2.17Å respectively), then
we consider it to be a plausible, stable spike protein.

4. Results
4.1. SARS-CoV-2 dataset visualisations

In Figure 1 we present t-SNE visualisations of the popu-
lation of SARS-CoV-2 spike proteins, with and without
epitope masking (Figure 1 (a) and (b) respectively).

Figure 1 (a) summarises several well-documented features
of SARS-CoV-2 viral diversity, namely (i) there are seven
main variants, but several of these, most notably delta, have
dozens of subvariants, (ii) each subvariant is dominated by
one sequence that is significantly more widespread, (iii)
for each subvariant, there may be several hundred, or even
thousands, of closely related ‘satellite sequences’ that are
circulating at much lower levels in the general population.

Also note that when we apply an epitope mask (Figure 1
(b)) , these satellite sequences spread out more, forming
prominent comet-like tails. This may reflect the presence
of selective pressure for spike protein mutations to occur

more frequently in regions visible to B-cell immunity, i.e.
surface epitopes. Alternatively, it may be a visual artifact
of the simplifying assumptions made when determining
a sequence’s solvent accessibility vector (see footnote 5,
Subsection 3.2)

4.2. Generated sequences

We generated 8,880 random sequence samples using the
random-mutator and language model. For the VAE model,
we generated 50,000 samples of each of low, medium, and
high antigenicity sequences by sampling from the latent
space as per the method in Section 3.3. In Table 1 below
we report the fraction of these sampled sequences that are
distinct (i.e. non-degenerate) and novel (i.e. not appearing
even once in the training data).

For the VAE-generated sequences, we additionally ran
NetMHCpan on each generated sequence to verify that anti-
genicity distributions were indeed skewed towards the de-
sired category. This confirmed that the conditioned VAE
was therefore working as expected (see Figure 3 (a)).

Overall, amongst the VAE-generated sequences, we identi-
fied 78 novel 9-mers that did not appear in the training data
sequences (see Appendix 7.3 for the list of 9-mers).

4.3. Evaluating and comparing the generative models

We compare the t-SNE and PCA embeddings of generated
sequences with natural sequences (Figure 3). We also fol-
low standard practice (see e.g. (Repecka et al., 2021)) and
compare the normalised positional entropy (Figure 2).

Although the VAE model performs the worst on entropy
similarity (the RMSD difference between the natural en-
tropy distribution and the VAE entropy distribution is nearly
double the respective RMSD values for the language model
or random mutator model, see Figure 2), an inspection of the
embedding visualisations clearly shows that it outperforms
the simpler generative models. This is perhaps most appar-
ent in the PCA plot in Figure 3 (b) where the VAE-generated
sequences nicely interpolate along the two principal axes de-
lineated by the natural sequences, whereas both the random-
mutator and language model tend to ‘fill in the square’ and
produce a large number of off-distribution sequences.

Table 1. COUNT STATISTICS OF SEQUENCES GENERATED FROM VARIOUS GENERATIVE MODELS.

MODEL SAMPLES DISTINCT SEQUENCES NOVEL SEQUENCES NOVEL (%)

VAE (LOW) 50,000 932 875 94
VAE (MEDIUM) 50,000 1,308 1,110 85
VAE (HIGH) 50,000 1,298 1,082 83
11-GRAM 8,880 8,686 8,446 97
RANDOM MUTATOR 8,800 4,225 1,830 43
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Figure 1. t-SNE visualisation of the 25,000 most common SARS-CoV-2 spike protein sequences. (a) shows the t-SNE embedding if no
mask is applied to the sequences, and (b) shows the t-SNE embedding if an epitope mask is applied.

0 200 400 600 800 1000 1200
Residue Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 200 400 600 800 1000 1200
Residue Number

0.15

0.10

0.05

0.00

0.05

0.10

0 200 400 600 800 1000 1200
Residue Number

0.15

0.10

0.05

0.00

0.05

0.10

0 200 400 600 800 1000 1200
Residue Number

0.15

0.10

0.05

0.00

0.05

0.10

N
o
rm

a
lis

e
d

 
E
n
tr

o
p

y
D

iff
e
re

n
ce

 i
n
 N

o
rm

a
lis

e
d

 
E
n
tr

o
p

y

Natural

VAE Model

Language Model

Random Mutator Model

RMSD=0.0101

RMSD=0.0052

RMSD=0.0057

(c)

(a)

(b)

(d)

Figure 2. Normalised entropy comparisons of natural and gen-
erated sequences. (a) Residue-wise normalised entropy of the
natural sequences. (b), (c), and (d) show the difference in residue-
wise normalise entropy vs the natural sequences for the three
generative models

Figure 3. PCA visualisation of the 1000 most commonly gener-
ated SARS-CoV-2 spike protein sequences from each of the three
generative models: random-mutator (yellow), language model
(red), and VAE model (blue). Shown in grey are the 3000 most
common naturally occurring sequences for comparison. Subfigure
(a) shows the density distributions of antigenicity scores (AS) of
low, medium and high antigenicity sequences sampled from the
VAE. Note how the VAE sequences cluster faithfully around the
natural sequences, whereas random-mutator and language model
sequences generate many ‘off-distribution’ sequences.
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Table 2. Mean values for RMSD compared to the Wuhan AlphaFold, RMSD compared to 7N1U, ∆∆G and AS — AS for each model
and the consensus sequences.

MODEL RMSD WA (Å) RMSD 7N1U (Å) ∆∆G (KCAL/MOL) AS

VAE 0.48± 0.28 2.15± 0.07 −5.17± 0.51 49.93± 0.34
RANDOM 0.32± 0.23 2.13± 0.03 −2.51± 0.31 50.96± 0.67
11GRAM 0.41± 0.26 2.11± 0.03 −3.37± 1.82 50.15± 0.59

This illustrates that positional entropy RMSD calculations,
one of the classical measures for evaluating sequence gen-
erative models, can be misleading. The reason being that
generative models can often achieve very low positional
entropy RMSD values without faithfully recreating the un-
derlying distribution. This disparity is most apparent for
simple models, such as N -gram language models or random-
mutator models, that are effectively trained by construction
to just mimic the global statistics of training data.

4.4. From Sequences to Structure

We follow the evaluation pipeline (Section 3.4) to investi-
gate the generated sequences’ tertiary structure: First, we
took the 1000 most common generated sequences from all
three generative models and checked that each sequence
had no mutations in conserved regions. This led to three
sequences from the low-antigenicity VAE model being re-
jected. Then, of the remaining sequences, we took the top
600 most common and calculated their ∆∆G with DDGun.
The ten sequences with the lowest ∆∆G from each model
were folded with AlphaFold2 and their RMSDs against ref-
erence SARS-CoV-2 structures were calculated (Table 2).

Notably, all three generative models produced stable struc-
tures with RMSD values falling in the expected natural
range (i.e. RMSD WA< 0.94Åand RMSD 7N1U< 2.17Å,
see Section 3.4). However, the VAE generated sequences
that were ranked most stable by DDGun (−5.17kcal/mol
compared to −2.51kcal/mol and −3.37kcal/mol for the ran-
dom and language models respectively) whilst also having
the lowest antigenicity of the three models, albeit marginally
(see Table 2). This indicates that the VAE model approach is
superior at generating stable, novel, structurally plausible se-
quences in addition to being superior at sampling sequences
from a known natural distribution (Section 4.3). In Figure
4, Appendix we contrast the AlphaFolded structure of one
of the most stably-ranked VAE proteins aligned with the
corresponding chain of the SARS-CoV-2 Spike protein.

5. Conclusions and Further Work
We designed and evaluated a conditional Variational Au-
toencoder (VAE) capable of selectively generating novel
SARS-CoV-2 spike proteins with low immune visibility.

We discover that the VAE model can generate stable, struc-
turally valid sequences that are smoothly distributed along
the principal variance directions of natural sequences.

As in most vaccine efforts, we focused on the spike protein
due to its high accessibility to antibodies. However, the
spike protein is one of the most rapidly mutating regions of
the genome. In contrast, the T-cell response that relies on the
MHC-I pathway can also incorporate internal proteins of the
virus; proteins that might be more evolutionarily stable. One
way to develop this project further would be to incorporate
more stable regions in the genome in a generative model,
possibly leading to the identification of better-conserved
peptides. Another direction of research would be to train a
model that incorporates data on spike proteins from multiple
viruses. This would increase generated sequence diversity
as well as the variance in their AS.

At this stage it is not clear how comprehensively we are
sampling the evolutionary space of SARS-CoV-2 spike pro-
teins. To better understand this future works may apply a
k-fold cross-validation by training on independent subsets of
sequences and evaluating what fraction of the novel peptide
9-mers in unseen data is predicted by our model. Individual
structures could then be experimentally investigated in vitro.

Finally, we note that the principles that underlie our con-
ditional VAE architecture are not specific to SARS-CoV-2
but could also be easily extended to other rapidly mutating
viruses such as MERS, influenza, and HIV.
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6. Acronyms
AA amino acid. 2–5, 13

AE Autoencoder. 2

AR autoregressive. 2

AS antigenicity score. 4, 5, 8, 17

CTL Cytotoxic T-lymphocytes. 2

DGR diversity-generating retro-element. 2

EL eluted ligand. 4

ER endoplasmic reticulum. 2

GAN Generative Adversarial Network. 2, 4

GISAID Global Initiative on Sharing All Influenza Data. 3

LSTM Long short-term memory. 2

MDH malate dehydrogenase. 2

MHC-I MHC class I. 2, 4, 8

MSA multiple sequence alignment. 4

pMHC peptide-MHC protein complex. 2

RMSD root-mean-square deviation. 6, 8

RNA ribonucleic acid. 2

RNN recurrent neural network. 2

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2. 1–4, 6–8, 14, 15

TCR T-cell receptor. 2

VAE Variational Autoencoder. 1–4, 6, 8, 15

7. Appendix
7.1. Sequence encoding preliminary experiments

We experimented with 13 different types of position-independent AA encodings and quantitatively compared these based on
the fraction of explained variance accounted for by the first two dimensions of their principal components analysis (Table 3).
By this metric, Meiler parameters performed best whilst most other methods were comparable. However, visual inspection
of t-SNE plots revealed that all methods, apart from Micheletti potentials (which performed noticeably worse), led to similar
clustering quality and appearance.

Since there was no visual basis on which to select one method over another, we followed the advice of Jing et al. 2020 and
used BLOSUM62; in tests, the authors showed that, amongst position-independent encodings, BLOSUM62 had the best
performance in protein fold recognition tasks (relevant for epitope visualisation).

7.2. VAE training and hyperparameter optimization

Training: We used Adam (Kingma & Ba, 2017) (β1 = 0.9, β2 = 0.999, learning rate of α = 3 × 10−4, weight decay
1 × 10−6) to optimize the VAE loss described in Section 2.3 including the control mechanism by Shao et al. (using
Kp = 0.001,Ki = 0.0005,Kd = 0 and a minimum beta of 0.0001 and a maximum beta of 1).
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Table 3. Percentage of variation of SARS-CoV-2 spike protein data explainable by the first two dimensions of PCA when using different
types of position-independent encodings. Higher is better. a) One hot, b) One hot 6 bit, c) Binary 5 bit, d) Hydrophobicity matrix,
e) Meiler parameters, f) Acthely factors, g) PAM250, h) BLOSUM62, i) Miyazawa energies, j) Micheletti potentials, k) AESNN3, l)
ANN4D, m) ProtVec.

A) B) C) D) E) F) G) H) I) J) K) L) M)

WITHOUT
EPITOPE
MASK

53 54 56 75 78 55 54 57 61 34 52 67 51

WITH EPI-
TOPE MASK

60 64 64 75 82 67 65 64 69 76 58 74 60

Hyperparameter optimization: We search for the hyper-parameters in Table 4 using the optuna framework (Akiba et al.,
2019). This utilizes a tree-structured Parzen estimator mechanism to enhance the search in this high-dimensional space. The
aim is to find hyper-parameters that result in the best generated sequences. As it would be unfeasible to perform all sequence
assessment steps we did after the model training for each candidate hyper-parameter setting, used a ballpark assessment
method. We decided to minimise the Euclidean distance between the position-wise entropy vector of our training dataset
to the position-wise entropy vector of a set of 100 randomly generated low antigenicity sequences utilizing a candidate
hyper-parameters setting. We ran 30 trials for 25 epochs each. The finally retrieved best parameters (column “selected” in
Table 4 of the Appendix 7.2) were trained for a total of 100 epochs.

Table 4. Result of the hyperparameter search.

HYPERPARAMETER OPTIONS SELECTED

NUMBER OF BLOCKS 2 TO 7 5
FIRST HIDDEN DIMENSION 512, 1024 OR 2048 512
LATENT SPACE DIMENSION 2 TO 50 30
DROPOUT PERCENTAGE 5% TO 50% 0.394
KL TARGET 0.01 TO 1.00 0.232
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7.3. New epitopes

The 78 novel 9-mers that were generated by the VAE model that did not appear in the training data sequences.

TPINLVDDL, FLPFFSNVW, TRFQLHRSY, LGHKNNKSW, TRFQHRSYL, DVHKNNKSW,
VEPDLPQGF, INITRFQTA, RSYDSSSGW, EPLPQGFSA, SCMESEFVY, HAINGTKRF,
TPIIVEPDL, FQTALHRSY, FLDVHKNNK, ALHDSSSGW, ITRFQHRSY, FFSNVWHAI,
EEPELPQGF, LHNSSGWTA, KSWMESERV, LVGGLPQGF, LPFFSNVWF, KSCMESEVY,
YLGDSSSGW, QTALHRSYL, KSWMESEFV, EPDELPQGF, IIVEPEEPL, PEEPLPQGF,
SWMESEFVY, SWMESERVY, SWMESESVY, VEPEEPEDL, IVEPEEPEL, FSNVITKRF,
SYGDSSSGW, HAISGNGTK, RFQLHRSYL, FHAISGNGT, ISGNGTKRF, HSGNGTKRF,
HRSDSSSGW, AISNGTKRF, NITRFQTAL, TRFQTALHR, PFFSNVKRF, HRSNSSSGW,
LALHNSSGW, HAISNGTKR, KSWMESESV, SWMESGFVY, CNDPFLDYY, LVDDLPQGF,
AISGNGTKR, LPGGSSSGW, NIVDLPQGF, EEPEEPEDL, TPINLVGGL, TPINLVDDL,
TRFQLHRSY, HTPINLVRL, LGHKNNKSW, TRFQHRSYL, DVHKNNKSW, INITRFQTA,
RSYDSSSGW, EPLPQGFSA, SCMESEFVY, FQTALHRSY, FLDVHKNNK, ALHDSSSGW,
ITRFQHRSY, EEPELPQGF, KSWMESERV, LVGGLPQGF, VRLPQGFSA, YLGDSSSGW,
NLVRLPQGF, QTALHRSYL, KSWMESEFV, IIVEPEEPL, PEEPLPQGF, SWMESGSVY,
SWMESEFVY, SWMESERVY, IVEDLPQGF, VEPEEPEDL, SWMESESVY, IVEPEEPEL,
SYGDSSSGW, RFQLHRSYL, HRSDSSSGW, AISNGTKRF, NITRFQTAL, TRFQTALHR,
FFSNVTKRF, HRSNSSSGW, HAISNGTKR, KSWMESESV, SWMESGFVY, CNDPFLDYY,
SCMESGFVY, VRDDLPQGF, NIVDLPQGF, LPGDSSSGW, EEPEEPEDL, TPINLVGGL,
VNFRNRTQL, TRFQLHRSY, HTPINLVRL, EPRDLPQGF, TPIIVERDL, LGHKNNKSW,
TRFQHRSYL, DVHKNNKSW, INITRFQTA, RSYDSSSGW, EPLPQGFSA, SCMESEFVY,
FQTALHRSY, FLDVHKNNK, ALHDSSSGW, ITRFQHRSY, EEPELPQGF, KSWMESERV,
VNRTNRTQL, VRLPQGFSA, NLVRLPQGF, QTALHRSYL, KSWMESEFV, IIVEPEEPL,
PEEPLPQGF, SWMESGSVY, SWMESEFVY, SWMESERVY, IVEDLPQGF, VEPEEPEDL,
IVEPEEPEL, SYGDSSSGW, KHTPIIVER, RFQLHRSYL, HRSDSSSGW, AISNGTKRF,
NITRFQTAL, VRDDLPQGF, YPGDSSSGW, TRFQTALHR, VERDLPQGF, VRGGLPQGF,
HAISNGTKR, SWMESGFVY, CNDPFLDYY, FSNVGTKRF, EPEPEPEDL, NIVDLPQGF,
LPGDSSSGW, EEPEEPEDL, LVDDLPQGF.

7.4. Evaluation outcomes

Figure 4. Aligned Spike proteins of SARS-CoV-2. Pink: 7N1U (chain A). Green: an example of a VAE model generated structure (VAE 9,
Table 7). Note the striking similarity between the structures, especially in the regions far away from the flexible terminus of the protein.
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Table 5. Root-mean-squared deviation (RMSD, Å) between all pairs of consensus sequence structures generated by AlphaFold.

SEQUENCE NAME WUHAN ALPHA BETA DELTA EPSILON GAMMA OMICRON

WUHAN 0.0
ALPHA 0.897 0.0
BETA 0.941 0.225 0.0
DELTA 0.274 0.799 0.830 0.0
EPSILON 0.931 0.228 0.186 0.834 0.0
GAMMA 0.408 0.840 0.903 0.227 0.898 0.0
OMICRON 0.336 0.831 0.825 0.270 0.875 0.329 0.0

Table 6. Root-mean-squared deviation (RMSD, Å) between the AlphaFolded Wuhan structure and the 7N1U structure compared to the
AlphaFolded structures of the consensus sequences.

SEQUENCE NAME WUHAN ALPHAFOLDED 7N1U

WUHAN - 2.135
ALPHA 0.897 2.164
BETA 0.941 2.168
DELTA 0.274 2.069
EPSILON 0.931 2.152
GAMMA 0.408 2.043
OMICRON 0.336 2.125
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Table 7. Evaluating the top 10 predicted most-stable generated sequences (according to DDGun) for each of the three generative models:
VAE, 11gram language model, and random mutator model. We present RMSD values of the generated sequence’s AlphaFolded structure
compared to the Wuhan AlphaFold and 7N1U. Also shown is the estimated change in stability (∆∆G), and the antigenicity score (AS) of
each generated sequence. Table 2 (main text) shows the average of these results across each model.

SEQUENCE NAME RMSD WITH WA (Å) RMSD WITH 7N1U (Å) ∆∆G (KCAL/MOL) AS

VAE 1 0.915 2.173 −6.2 50.00
VAE 2 0.263 2.078 −5.7 49.83
VAE 3 0.167 2.120 −5.7 50.17
VAE 4 0.343 2.135 −5.3 49.75
VAE 5 1.008 2.135 −5.0 50.67
VAE 6 0.216 2.095 −4.9 50.08
VAE 7 0.635 2.302 −4.8 49.50
VAE 8 0.381 2.166 −4.8 49.67
VAE 9 0.636 2.217 −4.7 49.50
VAE 10 0.282 2.081 −4.6 50.08

11GRAM 1 0.974 2.108 −8.3 50.17
11GRAM 2 0.227 2.137 −5.1 50.67
11GRAM 3 0.868 2.116 −2.9 49.25
11GRAM 4 0.469 2.096 −2.7 50.75
11GRAM 5 0.281 2.112 −2.7 51.25
11GRAM 6 0.216 2.144 −2.5 50.33
11GRAM 7 0.260 2.074 −2.4 49.42
11GRAM 8 0.298 2.050 −2.4 49.83
11GRAM 9 0.271 2.119 −2.4 49.75
11GRAM 10 0.270 2.109 −2.3 50.08

RANDOM MUT 1 0.216 2.074 −3.0 51.08
RANDOM MUT 2 0.982 2.211 −2.8 51.00
RANDOM MUT 3 0.214 2.109 −2.8 51.33
RANDOM MUT 4 0.221 2.114 −2.5 49.17
RANDOM MUT 5 0.209 2.142 −2.5 51.08
RANDOM MUT 6 0.173 2.129 −2.5 51.25
RANDOM MUT 7 0.386 2.137 −2.5 51.33
RANDOM MUT 8 0.190 2.128 −2.5 51.58
RANDOM MUT 9 0.340 2.120 −2.1 50.42
RANDOM MUT 10 0.222 2.105 −1.9 51.33


