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Federated Learning in Massive MIMO 6G
Networks: Convergence Analysis and

Communication-Efficient Design
Yuchen Mu, Navneet Garg, Member, IEEE, and Tharmalingam Ratnarajah, Senior Member, IEEE.

Abstract—In Federated learning (FL), model weights must be
updated at local users and the base station (BS). These weights
are subjected to uplink (UL) and downlink (DL) transmission
errors due to the limited reliability of wireless channels. In
this paper, we investigate the impact of imperfections in both
UL and DL links. First, for a multi-user massive multi-input-
multi-output (mMIMO) 6G network, employing zero-forcing (ZF)
and minimum mean-squared-error (MMSE) schemes, we analyze
the estimation errors of weights for each round. A tighter
convergence bound for the communication-efficient FL algorithm
is derived with O

(
T−1σ−2

z

)
behavior, where σz denotes the vari-

ance of overall communication error including the quantization
noise. The analysis shows that the reliability of DL links is more
critical than that of UL links; and the transmit power can be
varied in training process to reduce energy consumption. We
also vary the number of local training steps, average codeword
length after quantization and scheduling policy to improve the
communication efficiency. Simulations with image classification
problems on MNIST, EMNIST and FMNIST datasets verify the
derived bound and are useful to infer the minimum SNR required
for successful convergence of the FL algorithm.

Index Terms—Deep learning, federated learning, massive
MIMO (mMIMO), 6G networks.

I. INTRODUCTION

Rapid evolutions in the field of machine and deep learning
during past few years [1] along with tremendous applications
including computer vision [2], natural language processing
[3] and medical images analysis [4] have introduced a great
impact on our daily lives. For the proper working of a machine
(deep) learning based application, deep learning requires a
powerful machine with huge computational resource, and a
significant amount of data in order to learn reliable models,
which not only incurs the higher costs, but also damages
the privacy while sharing users’ data. Recently, federated
learning (FL) [5] models have been studied, where models
are learned in a distributed manner with limited cooperation
without sharing data. Thus, compared with traditional “one
node learning”, where a central server/device collects all the
data needed and performs training, federated learning has the
benefits of utilizing local users’ computing resources, such
as graphics processing unit (GPU) on a local user’s PC or
central processing unit (CPU) on a smart phone. Since FL
is a privacy-preserving algorithm [6]–[9], each user’s dataset
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never leaves its local device. This is especially helpful in
privacy critical scenarios, where local users’ data contains
sensitive or personal information that they may not be willing
to share, e.g., medical images, different users’ keyboard typed
letters, browser and searching history, etc. Another advantage
of FL algorithm in practical communication setting is the
requirement of significantly fewer physical resources (transmit
power and bandwidth), which are limited in a typical wireless
system.

Regarding FL methods, averaging based FL algorithm (FE-
DAVG) was first proposed in [5] and was mathematically
analyzed in [5] and [10], where local users run several local
stochastic gradient descents in parallel on their local training
sets, respectively and send the trained model weights to the
central server. The server aggregates the received weights by
averaging or combining linearly, followed by broadcasting of
the updated global model weights back to users for further
training. Such iterations continue until the weights converge.

A. Communication-efficient FL frameworks

Further, recently, trend in distributed learning is pushing the
deployment of training and computing towards the network
edge. In this way, the process of data acquisition and compu-
tation are decoupled, which is of interest to both academia and
industry. Motivated by this, emergence of FL also pushes to
integrate two originally decoupled areas: machine learning and
wireless communications. The advanced signal processing and
communication techniques can be utilized and applied to speed
up the convergence of FL model and help to train a global
model with better performance accounting the reliability of
wireless links.

With rapid deployment of fifth generation (5G) communi-
cation infrastructures and networks on a worldwide scale, both
industry and academia have begun to transfer their research fo-
cus to beyond 5G and sixth generation (6G) communications.
Compared with 5G, in 6G communications, penetration of
Artificial Intelligence (AI) into every aspect of heterogeneous
and massive-scale networks is required; that is, achieving
ubiquitous AI in 6G [11]. With its privacy-preserving nature,
FL has been recognized as one of the most promising solutions
to resolve and fulfill the challenges in 6G communication
networks [12]. In this way, works like [13]–[18] investigate
FL framework under a 5G or 6G scenario. Among these, the
data privacy leakage issues are given in [13] and [14], while
authors in [15]–[18] provides the key technical challenges that
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FL may face in 6G scenarios. Meanwhile, these works have
also demonstrated that the advantages provided by 6G, such as
high performance networking, hyper-flexible architecture and
AI-enhanced security [18], are also vital for accomplishing
the requirements of FL frameworks in future communication
networks; that is, 6G communication and FL can benefit each
other mutually.

In the direction to integrate FL algorithms with
communication-efficient framework under different wireless
network settings, a general discussion can be seen in [19].
These design investigations can be categorized as follows.

1) Quantization schemes: This includes the effective quan-
tization scheme for model weights in order to optimize the
number of symbols for transmissions. The work in [20] consid-
ers a layered quantization scheme for downlink transmission,
where various quantization gains are used to quantize the
weights of different layers inside a deep learning model.
Similarly, lattice quantization [21], sparsification [22], ternary
gradients [23] and sparse ternary compression [24] are em-
ployed. These quantization schemes show their effectiveness
in making the FL framework efficient. Among those, sparse
ternary compression [24] outperforms others since it not
only compresses both uplink and downlink streams with high
compression rate, but also stays robust to the scenario where
non-i.i.d. local users data is considered.

2) Resource allocation: Optimizing the communication re-
sources, such as transmit energy and local computation energy
consumption, is investigated in [25]–[30]. In [25], the loss
function is minimized with the constraints on packet loss as
well as bandwidth of wireless medium, and optimal transmit
power for each user is derived. The work in [26] decomposes
the non-convex energy optimization problem into several sub-
problems and derives corresponding closed-form solutions.
The convergence analysis in [26] was later conducted by
authors in [27]. In [28], a local computation latency con-
straint was considered in the optimization, and it was shown
that training completion time in [28] was less than that in
[26]. Two communication protocols namely, non-orthogonal
multiple access (NOMA) and time division multiple access
(TDMA) were considered in [29] to optimize the transmission
rate and CPU frequency of local user devices. In [30], a
resource-constrained FL framework for heterogeneous data
is proposed and corresponding convergence analysis is also
provided. Another resource allocation problem is to design the
scheduling policies to allow a subset of the users to update the
model such that the overall cost of resources can be reduced. In
[31], an age-based scheduling policy has been proposed, which
accounts for the recency of updates and the instantaneous
channel quality of users. Proportional fair based scheduling
policy is considered in [32], where users are selected based
on signal-to-noise ratio (SNR). In [33], A greedy algorithm
for scheduling the devices is proposed by analyzing the trade-
off between local computation, communication latencies and
whole FL system learning time. In [34], scheduling problem
in FL is investigated under a unmanned aerial vehicles (UAVs)
communication scenario. A joint optimization problem, which
includes device selection, UAVs placement, and resource man-
agement, is formulated and solved to speed up the conver-

gence. Similarly, [35] investigates user scheduling problem
in a UAV-assisted FL framework. In this work, based on the
multi-dimensional contract incentive design, a subset of the
users will be selected by UAV in each global communication
round. In [36], differences between transmitting model weights
and the weights updates are compared analytically and in
simulations.

3) Imperfect links: Many of the existing literature [37]–
[40] assume only UL links to be imperfect and error-prone,
while considering DL links to be error-free; that is, the fact
that the aggregated model being broadcasted in DL links also
experiences fading and interference, has not been taken into
consideration in the existing works. In this work, we focus
on the massive MIMO scenario, where both the UL and DL
links are error-prone, which is of interest, since our results
show that the reliability of DL-links have higher impact on
the performance of FL algorithm.

B. Contributions

In this paper, we consider a massive MIMO 6G network
consisting of a base station (BS) and multiple single antenna
users. In this system, we integrate FL framework, where
the parameters of deep learning models are updated at both
BS (or server) side and local user side. In FL, at regular
intervals, weights are transmitted via UL channels, updated by
aggregation and transmitted back via DL channels. Fading and
interference caused by the communication links will degrade
the training performance compared with baseline, where error-
free perfect links are considered. The main contributions of
this paper can be summarized as follows.

1) FL with massive MIMO 6G network: We design and
implement a FL framework with massive MIMO 6G
communication network, considering imperfections in
both UL and DL links. Employing zero-forcing (ZF)
and minimum mean-squared-error (MMSE) precod-
ing/combining methods, we analyze the communication
performance of this system and compare it with two
simulation baselines in existing literature.

2) Simpler convergence proof and tighter bound: For the
system considered, we derive the upper bound on the
convergence rate, which is tighter than that of FEDAVG.
The bound also provides interesting insights about UL
and DL communications. Our analysis shows that SNR
in UL-DL communications can be kept lower at the
lower iterations. This leads to improved power consump-
tion and is also analyzed. It can also be concluded that
reliability of DL links is more important than that of
UL links. These analytical conclusions are verified via
simulations.

3) Communication-efficient system design: Motivated by
the convergence analysis, several variants of proposed
FL framework with different degrees of communication-
efficiency are designed and implemented where we
adjust local training steps, transmit power, scheduling
policy and average codeword length after quantization.
These modifications could be leveraged to reduce the to-
tal communication cost incurred during training process.
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Work Convergence
Analysis

Non-i.i.d.
Dataset

Design Focus Uplink Downlink Scheduling Datasets

TP TS P/C QS SP RSN CF IU RSN CF IU FP/RS CSI l2 Others MNIST EMNIST FMNIST Others

[20] ✓ ✓ – – – ✓ – ✓ – – ✓ – – ✓ – – – ✓ – – ✓

[21] ✓ – – – – ✓ – ✓ – – ✓ – – ✓ – – – – – – ✓

[22] – – – – – ✓ – ✓ – – ✓ – – ✓ – – – ✓ – – ✓

[23], [41] ✓ – – – – ✓ – ✓ – – – – – ✓ – – – ✓ – – ✓

[24] ✓ ✓ – – – ✓ ✓ ✓ – – ✓ – – ✓ – – ✓ ✓ – ✓ ✓

[25] ✓ – ✓ – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – –
[27], [28] ✓ ✓ ✓ – – – – ✓ ✓ – – – – ✓ – – – ✓ – – ✓

[29] ✓ – ✓ – – – – ✓ ✓ ✓ – – – ✓ – – – ✓ – – –
[31] – – – – – – ✓ – ✓ – – – – ✓ ✓ – ✓ ✓ – – –
[32] ✓ – – – – – ✓ ✓ ✓ ✓ – – – ✓ – – ✓ ✓ – – –
[33] – ✓ – – – – ✓ ✓ ✓ – – – – ✓ – – ✓ ✓ – – –
[38] ✓ ✓ ✓ – – – ✓ ✓ ✓ ✓ – – – ✓ – – ✓ ✓ – – –
[40] ✓ ✓ ✓ – – – ✓ ✓ ✓ ✓ – – – ✓ ✓ – ✓ ✓ – – –
[42] ✓ ✓ – – ✓ – – ✓ ✓ ✓ – – – ✓ ✓ – – ✓ – – –
[43] – ✓ – – – – ✓ – – – – – – ✓ – – ✓ – ✓ – ✓

Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ –

TABLE I
COMPARISON WITH OTHER COMMUNICATION-EFFICIENT FL SYSTEMS. ABBREVIATIONS IN THE TABLE ARE DEFINED AS: “TP”: TRANSMIT POWER,

“TS”: TRAINING STEP, “P/C”: PRECODER/COMBINER, “QS”: QUANTIZATION SCHEME, “SP”: SCHEDULING POLICY, “RSN”: RECEIVER SIDE NOISE,
“CF”: CHANNEL FADING, “IU”: INTERFERENCE FROM OTHER USERS, “FP”: FULL PARTICIPATION, “RS”: RANDOM SCHEDULING POLICY, “CSI”:

CHANNEL STATE INFORMATION-BASED SCHEDULING POLICY, “l2”: l2-NORM-BASED SCHEDULING POLICY.

Detailed analysis and corresponding simulation results
are provided, communication cost comparison is also
presented.

We consider image classification problem with MNIST,
EMNIST and FMNIST datasets for deep federated learning,
both i.i.d. and non-i.i.d. training dataset distributions are
considered. Extensive simulations are carried out to include the
effects of quantization, modulation, number of antennas, up-
link and downlink SNR, ZF and MMSE precoding/combining,
scheduling policy, fading and noise. Performance of the pro-
posed system is also evaluated at different values of non-
i.i.d. factor, which is a metric that quantitatively evaluates the
non-i.i.d.-ness of users’ training dataset distributions and will
be explained in details later in Section IV. The connection
between our theoretical and simulation results is highlighted.
We compare our simulation results with two baselines: 1)
Both communication links (DL and UL) are assumed to be
error-free. 2) Only the UL is considered to be error-prone;
that is, DL is assumed to be error-free. It is demonstrated
that with UL-DL imperfections, FL converges similar to the
convergence of baseline, with a very small constant gap. To
the best of authors’ knowledge, we are the first to evaluate FL
algorithm under a comprehensive massive MIMO communi-
cation scenario with all imperfections considered and conduct
corresponding convergence analysis rigorously. In Table I,
we compare our communication-efficient FL framework with
existing works in the literature, the comparison is made
for convergence analysis, simulation settings, types of noise
considered for communication, techniques used for improving
communication-efficiency, datasets used for evaluations, etc.
It can be witnessed that most of the work listed above try to
improve communication-efficiency of a FL framework from

only one perspective. On the other hand, some of the existing
work investigate on multiple aspects, such as the work in [24]
(quantization scheme and scheduling policy) and the work
in [25], [38], [40] (transmit power and scheduling policy).
However, the importance of DL transmission is not included
or highlighted in the corresponding convergence analysis (the
work in [25] considers the imperfections in DL channel, but
non-i.i.d. dataset distribution is not discussed and the proposed
framework is only evaluated on one dataset).

Organization

The rest of this paper is organized as follows. Section II
and III detail the proposed system model and communication
process included in the proposed framework, respectively.
Simulation results are presented in Section IV. Section V
concludes this paper.

Notations

B, B,b, b represent a set, a matrix, a vector, and a scalar,
respectively. BH and B−1 are the Hermitian transpose and the
inverse of B, respectively. ∥B∥F and tr(B) are the Frobenius
norm and the trace of B, respectively. ℜ[b] means the real
part of b. ∥b∥2 is the l2-norm of b. Cov(b) is the covariance
matrix of zero mean b, i.e., E{bbH}, where E{·} denotes
the expectation operator. CN (b,B) represents a circularly
symmetric complex Gaussian random vector with mean b and
covariance matrix B. The notation IK is the identity matrix
of size K ×K.

II. SYSTEM MODEL

We consider a wireless single-cell multi-user cellular 6G
network, in which N users and a server or base station
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UL UL UL

DL DLDL

UL noise  

DL noise  

Post-processing
Pre-processing

...

...

Massive MIMO BS

...

Global model aggregation

User N

Local training

DL noise  

User 2

Local training

DL noise  

User 1

Local training

Fig. 1. Architecture of the federated learning framework with imperfect
wireless links, where channel fading, intra-cell interference, quantization noise
and receiver side noise are considered.

(BS) are included, as illustrated in Fig. 1. Details about the
procedures presented in Fig. 1 are given in the subsequent
subsections. The BS has NBS number of antennas, while each
user device is equipped with ND antennas. The kth user stores
a local training dataset Dk = {di}Dk

i=1 with size denoted by
Dk. Each training data point d is stored as input-output pair
{x, y}, where x is the input to the model and y denotes the
corresponding output. Total dataset size of all users within this
cell can be defined as D =

∑N
k=1 Dk. We also assume all

users’ datasets are not independent and identically distributed
(non-i.i.d.). Let f(w,d) denote the loss function to measure
the loss between the model output based on w and labeled
data point d. For the kth user, the loss function is calculated
over all its local training data as

Fk(w) :=
1

Dk

∑
d∈Dk

f(w,d). (1)

The overall loss function for the data Dk,∀k can be defined
as

F (w) :=
1

D

N∑
k=1

∑
d∈Dk

f(w,d) =

N∑
k=1

αkFk(w), (2)

where αk = Dk/D is the weight of the kth device such that
αk ≥ 0,∀k and

∑N
k=1 αk = 1. The optimization problem for

finding optimal model parameters w∗ such that minimizes the
overall loss function can be given as

w∗ = argmin
w

F (w). (3)

Therefore, the BS minimizes the overall loss F (w), while each
user optimizes its local loss function Fk(w). Accounting the
imperfections in UL-DL links, the major procedures of the FL
algorithm for a typical (say tth) communication round can be
described as follows.

A. Local training

Let S denotes the number of steps in one commu-
nication round, and T =

{
S1, S1 + S2, . . . ,

∑T
r=1 Sr

}

Local training Local trainingLocal training ...

Fig. 2. Illustration of the timeline of communication rounds in federated lean-
ing. Up and down arrows signify the uplink and downlink communications,
respectively.

denote the time instances for each round. Then, the
instances for local updates can be given as S ={
0, 1, 2, . . . , S1, . . . , S1 + S2, . . . ,

∑T
r=1 Sr

}
\ T , where T is

the total number of communication rounds. In literature, T
is selected uniformly, i.e., Sr = S, r = 1, . . . , T , However,
we set non-uniformly based on the training dataset and the
communication errors.

At the start of tth round, each kth user initializes the local
weights by the received model from BS, sent via DL channels
in the (t − 1)th round. After initialization, each kth user
performs local stochastic gradient decent (SGD) steps using
its local dataset as

wk
t+1 = wk

t − ηt∇Fk(w
k
t , ξ

k
t ), t ∈ S, (4)

where ηt is learning rate; ξkt denotes a mini-batch, that is a
subset chosen uniformly and independently from kth user’s
local training dataset Dk. This local training process is also
presented in Fig. 1. At the end of S steps, the locally trained
model, wk

t , is evaluated on the local testing set, and the
averaged testing accuracy over all users is defined as the local
testing accuracy for the tth round.

B. Uploading model weights

Each user uploads the local trained model wk
t to the central

server or BS through UL channel (red dotted line in Fig.
1). For uplink transmissions, each user quantizes the local
weights and employs suitable modulation (e.g., QPSK or
QAM). Through the multi-path fading channel, the BS receives
the noisy and distorted version of weights wk

t ,∀k = 1, . . . , N .
This uplink process can be represented using the mapping
ϕUL

(
wk

t ,∀k
)
.

C. Aggregation

After receiving uploaded parameters from all users, the
BS first combines, demodulates and dequantizes the received
weights (“post-processing” in Fig. 1), and the new updated
global weights are obtained via aggregating these noisy
weights. This aggregation step can be represented using the
mapping ϕav (·). At the end of aggregation, the BS has
ϕav

(
ϕUL

(
wk

t ,∀k
))

. At this point, the global testing accuracy
is defined as the accuracy of the aggregated model tested on
the testing set at server, which is different from the testing sets
of users. Note that for the simplicity of aggregation, it is also
assumed that the model weights of each user (wk

t ∈ RW×1)
are real-valued and of same size W × 1.
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D. Downloading updated weights

In this step, BS broadcasts the aggregated model to all
users via DL channel (blue dotted line in Fig. 1). The
received model at the kth user is denoted by the mapping
ϕk,DL

(
ϕav

(
ϕUL

(
wk

t ,∀k
)))

, where ϕk,DL (·) represents the
downlink communication process for user k. This pro-
cess includes quantization, modulation and precoding (“pre-
processing” in Fig. 1) at BS, and the effects of transmission
through the kth multi-path downlink channel.

In this way, each round progresses until the global (or local)
testing accuracy reaches convergence. An illustration of the
FL timeline can be found in Fig. 2. In this figure, t denotes
the time index for local step. S1, S1 + S2, . . . ,

∑T
r=1 Sr ∈ T

are time instances when UL communication (red up arrow),
weights aggregation and DL communication (blue down ar-
row) take place. Detailed analysis about these three mappings
will be explained in the following section.

III. UPLINK AND DOWNLINK COMMUNICATION

Since BS is equipped with a large number of antennas, we
consider ZF approach at the BS, and analyze the impacts on
model weights using channel hardening effect. Performance of
ZF techniques in massive MIMO system has been investigated
in [44] and [45]. First, the update step of FL algorithm in a
round can be expressed as

vk
t+1 = wk

t − ηt∇Fk(w
k
t , ξ

k
t ), (5)

wk
t+1 =

{
vk
t+1, if t+ 1 /∈ T ,

ϕk

(
vk
t+1,∀k

)
, if t+ 1 ∈ T ,

(6)

where the variable vt is introduced to denote the immediate re-
sult of one step SGD. We define gt =

∑N
k=1 αk∇Fk(w

k
t , ξ

k
t )

and ḡt =
∑N

k=1 αk∇Fk(w
k
t ). Therefore, E {gt − ḡt} = 0.

The function ϕk(·) represents the distortion arising due to
uplink and downlink communications, which can be decom-
posed into uplink operation ϕUL(·), averaging ϕav(·), and
downlink broadcast operation ϕk,DL(·), i.e., a composition of
three mappings as ϕk

(
wk

t ,∀k
)
= ϕk,DL◦ϕav◦ϕUL

(
wk

t ,∀k
)
.

A. Uplink mapping

In the uplink process, W real-valued weights are resized
into complex-valued data streams for transmissions, say Wk

t ∈
CND×τUL , where τ = W

2ND
. The received signal at the massive

MIMO BS can be written as

Y
(UL)
t =

N∑
k=1

Hk
tW

k
t

√
PUL

NDσ2
w

+ Z
(UL)
t , (7)

where entries of Wk
t are assumed to have zero mean and

σ2
w variance; Zt denotes zero-mean Gaussian noise with σ2

variance, and PUL is the transmit power constraint for each
device, i.e., trE

{
Wk

tW
kH
t

}
= τNDσ2

w. With the zero

forcing receiver with NBS ≥ N · ND number of antennas,
the estimated weights at the BS can be given as

Ŵt =

√
NDσ2

w

PUL

(
HH

t Ht

)−1
HH

t Y
(UL)
t

= Wt +

√
NDσ2

w

PUL

(
HH

t Ht

)−1
HH

t Z
(UL)
t ,

where Ht =
[
H1

t , . . . ,H
N
t

]
and WT

t =
[
W1T

t , . . . ,WNT
t

]
.

Each column of the estimation error term has zero mean and
covariance matrix as NDσ2

wσ2

PUL

(
HH

t Ht

)−1
. Owing to channel

hardening 1
NBS

HH
t Ht → I, we simplify the covariance matrix

of the effective noise above as NDσ2
wσ2

PUL
N−1

BSIND
. The variable

Ŵt can be used to express the estimated model weight for
each user at the BS as ŵk

t = wk
t + zkt,UL, where zkt,UL ∼

N
(
0,

NDσ2
wσ2

2PULNBS
I
)

and the factor of 2 comes from converting
the complex random variables to the real ones.

B. Aggregation mapping
Having Ŵt at the BS, the averaging operation can be given

as

ϕav

(
Ŵt

)
=

N∑
k=1

αkŵ
k
t (8)

= w̄t + z̄t,UL, (9)

where w̄t =
∑N

k=1 αkw
k
t , z̄t,UL ∼ N

(
0,

∥α∥2
2σ

2
w

2
σ2ND

PULNBS
I
)

and ∥α∥22 =
∑N

k=1 α
2
k.

C. Downlink mapping

The aggregated vector, say ˆ̄wt = ϕav

(
Ŵt

)
, is then

broadcasted to each user device via the base station through
the DL channel. Since each device can receive only ND data
streams, the vector ˆ̄wt is resized into a complex-valued matrix
ˆ̄Wt ∈ CND×τ with τ = W

2ND
. The received signal at the kth

device can be given as

Y
(DL)
k,t = HkH

t Ft
ˆ̄WtpDL + Z

(DL)
k,t ,

where channel reciprocity is assumed; and Ft denotes the
NBS×ND precoder such that FH

t Ft = I. The transmit power
constraint (PDL) is given as

p2DL =
PDLτ

trE
{
Ft

ˆ̄Wt
ˆ̄WH

t FH
t

} =
PDL

σ̂2
wND

,

where σ̂2
w = ∥α∥22σ2

w

(
1 + σ2ND

PULNBS

)
. Then, the estimates

at the kth user can be obtained as
(
HkH

t Ft

)−1
Y

(DL)
k,t p−1

DL.
The corresponding covariance matrix for each column of the
estimation error

(
HkH

t Ft

)−1
Z

(DL)
k,t p−1

DL can be computed as

σ̂2
wNDσ2

PDL

(
HkH

t Ft

)−1 (
HkH

t Ft

)−H

=
σ̂2
wNDσ2

PDL

(
FH

t Hk
tH

kH
t Ft

)−1

≈ σ̂2
wNDσ2

PDL
N−1

D I =
σ̂2
wσ

2

PDL
I,
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where Hk
tH

kH
t is approximated to NDIBS , owing to channel

hardening effect. Thus, we can write ϕk,DL

(
ˆ̄wt

)
= ˆ̄wt +

z̄kt,DL, where z̄kt,DL ∼ N
(
0,

σ̂2
wσ2

2PDL
I
)

is the Gaussian noise at
the typical user.

Overall, one can express the composite uplink-downlink
aggregation process as

ϕk

(
vk
t ,∀k

)
= ϕk,DL ◦ ϕav ◦ ϕUL

(
vk
t ,∀k

)
(10a)

= ϕk,DL ◦ ϕav

(
V̂t

)
(10b)

= ϕk,DL (v̄t + z̄t,UL) (10c)

= v̄t + z̄t,UL + z̄kt,DL︸ ︷︷ ︸
z̄k
t

, (10d)

where v̄t =
∑N

k=1 αkv
k
t , and the variance for the effective

noise z̄kt , σ2
z , can be seen in the proof of Lemma 1.

Remark: In the above mapping, the weights can be consid-
ered with quantization and modulation by introducing quan-
tization error, e.g., with uniform quantization for real and
imaginary parts in Eqn. (7), the resulting error variance can
be given as sum of noise variance σ2 and the variance of
the quantization error ∆2

6 , where ∆ is the quantization step
size. The total effective variance can be obtained similarly
with additive quantization error variance, which affects the
convergence in the same way as the noise variance σ2

z .

Lemma 1. For UL-DL imperfect communication, given any
model w∗, the l2-norm of the model error is bounded as

E ∥w̄t+1 −w∗∥22 ≤ E ∥v̄t+1 −w∗∥22 +Wσ2
zδt+1∈T , (11)

σ2
z =

∥α∥22σ2
w

2

σ2

PDL

[(
PDL

σ2
+ ∥α∥22

)
σ2ND

PULNBS
+ ∥α∥22

]
,

where δt∈T is an indicator function, taking value 1, when
t ∈ T , and 0 otherwise.

Proof: Proof is given in Appendix-A.
The above result shows that if the UL-DL links are perfect,

i.e., σ2
z = 0, the models can be aggregated perfectly, and leads

to similar errors. In other words, when σ2
z = 0, v̄t+1 = w̄t+1.

Regarding the effective noise variance σ2
z , it can be seen that

the downlink reliability is more important than the uplink’s,
since in the above expression of σ2

z , the downlink SNR PDL

σ2

is the main factor in division.

D. Assumptions on the loss function

Following assumptions for the loss function Fk(·), k =
1, . . . , N are made for the convergence analysis [10], [20],
[46], [47].

Assumption 1. (Smoothness): F1, . . . , FN are all L-smooth,
for ∀v,w, Fk(v) ≤ Fk(w)+(v−w)T∇Fk(w)+ L

2 ∥v−w∥22.

Assumption 2. (Convexity): F1, . . . , FN are all µ-strongly
convex, for ∀v,w, Fk(v) ≥ Fk(w) + (v − w)T∇Fk(w) +
µ
2 ∥v −w∥22.

Assumption 3. (Bounded variance for SGD): The variance of
SGD satisfies

E
∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2
2
≤ σ2

k, (12)

which leads to E
∥∥∥∑N

k=1 αk∇Fk(w
k
t , ξ

k
t )−∇F (w̄t)

∥∥∥2
2

≤∑
k α

2
kσ

2
k.

Assumption 4. (Uniformly bounded gradient): l2-norm of
gradients satisfies

E
∥∥∇Fk

(
wk

t , ξ
k
t

)∥∥2
2
≤ G2,∀k, (13)

which provides E ∥∇F (w̄t)∥22 ≤ ∥α∥22G2.

Assumptions 1 and 2 are the standard ones for l2-norm
regularized linear regression, logistic regression, and softmax
classifier. Assumptions 3 and 4 are based on bounded gradients
and are helpful in bounding the model-error variance while
analyzing the convergence. The following result utilizes µ-
strong convexity assumption (Assumption 2) to bound the next
step error.

Lemma 2. Let Assumption 1-4 hold. Then, with respect to
the optimized model weights w∗, the l2-norm of the next step
model update error can be bounded as

E ∥v̄t+1 −w∗∥22 ≤ (1− ηtµ)E ∥w̄t −w∗∥22 (14a)

+ η2t

(∑
k

α2
kσ

2
k +G2

)
. (14b)

Proof: Proof is provided in Appendix-B.
The above result shows that if ηt and µ are chosen properly,

one can show the model updates leads to non-increasing errors.
This important result is proved in the following theorem,
which employs the smoothness of Fk (Assumption 1).

Theorem 3. Let Assumption 1-4 hold and σ2
z be defined

therein. Then, the proposed FL algorithm satisfies

E {F (w̄T )} − F ∗ ≤ L

2
· ν

T + β1
, (15)

where ηt =
β0

t+β1
, ν ≥ β2

0C
β0µ−1 , β1 > 0, and

C =
∑

k α
2
kσ

2
k +G2 +W

σ2
z

η2
t
δt+1∈T , β0 > 1

µ .

Proof: Proof is provided in Appendix-C.
Theorem 3 tells that the modeling error for the UL-DL

FL algorithm reduces in O
(
T−1σ−2

z

)
manner, that is the

algorithm converges in time, and the accuracy is inversely
proportional to communication error variance σ2

z , whose ex-
pression accounts for and explains the effects of the commu-
nication constraints on the convergence. We can reduce the
communication cost via two factors, viz., varying the transmit
power (equivalently varying SNRs) and reducing the number
of communicating rounds (equivalently varying the number of
local steps). Note that the quantization error also affects the
variance σ2

z , proving the number of quantization bits to be the
third factor. The convergence bound linearly depends on the
L-smoothness, whereas it is inversely proportional to the µ-
convexity; that is, the stronger the convexity is, the lower the
convergence error is. For a FL training process, we can define
the overall learning cost as:

Overall communication cost
= # of communication rounds × # of model parameters
× # quantization bits × normalized transmit power. (16)
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In our simulation, we make attempt to vary these factors as
follows.

Communication rounds: From the convergence analysis,
we see that weights converge as iterations progress, which
means there is less need to communicate weights at later
iterations. Keeping this fact in mind, we set two modifications
for improving the communication cost. The first one includes
the decreasing number of local steps, i.e., S1 ≥ S2 ≥ · · · ≥
ST , where the equality Sr = Sr+1 implies that for much
larger iterations near convergence, reducing local iterations
cannot further improve the performance, e.g., including the
case Sr = 1 for r large. The second modification is to select
users by comparing the l2-norm of difference in weights, that
is, at t =

∑r
r̂=1 Sr̂, sort the values of

∥∥wk
t −wk

t−Sr

∥∥
2
,∀k

and choose N0 < N users with higher values. It provides
more opportunities to users who have less convergence with
respect to others. These modifications not only improve the
communication cost of transmission, but also provide other
users to have more diversity in physical layer communications,
i.e., more reliable channels.

Remark: Since in practice, distances between users and BS
are different, thus, it could be more reasonable to design a
update policy (Sk1, . . . , SkT ) based on a user’s local situation
rather than the global updating policy (S1, . . . , ST ), e.g.,
within a global communication round, users that are closer
to the BS may be able to perform more local training steps
compared with those who are far from the BS.

Transmit power: Since σ2
z depends on uplink and down-

link SNRs, this gap reduces to a constant if σ2
z ∝ T . It

also shows that the SNR in UL-DL communications can
be increased as the iterations progress, that is, the effective
noise variance σ2

z should be proportional to the step size
η2t , that is, σ2

z ∝ η2t ∝ 1
(t+β1)2

. At the same time, In the
learning process, at lower iterations, when weights are not
converged, we can decrease the transmit power, since they
are being averaged for more updates. Similarly, for higher
iterations, when weights are close to convergence, one can
increase the transmit power for accurate communications and
averaging. Towards that, let PDL,r = PDL,0(1 − exp(−γr))
and PUL,r = PUL,0(1− exp(−γr)).

Therefore, for T rounds, the incurred energy consumption
is given as

E1T = N

T∑
r=1

PUL,0(1− exp(−γr))

+

T∑
r=1

PDL,0(1− exp(−γr)) (17)

= (NPUL,0 + PDL,0)

(
T − e−γ 1− e−γT

1− e−γ

)
. (18)

On the other hand, conventionally, when constant power
P0 is used for all communication rounds, the total incurred
power consumption is E2T = (NPUL,0 + PDL,0)T > E1T .
Therefore, the above analysis shows that by varying SNR, the
energy consumption of the system can be improved without

Algorithm 1 Communication-efficient FL algorithm
1: Initialization:
2: Initialize T,N,N0, PUL,0, PDL,0,
3: for r = 1, . . . , T do
4: if r = 1 then
5: All users initialize its local weights wk

0 ,∀k
6: else
7: Downlink transmission:
8: 1. BS quantizes, modulates and precodes ˆ̄wt

9: 2. Value of PDL,r is updated as:
10: PDL,r = PDL,0(1− exp(−γr))
11: 3. BS broadcasts ˆ̄wt with power PDL,r.
12: end if
13: for k = 1, . . . , N do
14: if r ̸= 1 then
15: wk

t = ϕk,DL( ˆ̄wt)
16: end if
17: for t =

∑r
r̂=1 Sr̂ − Sr, . . . ,

∑r
r̂=1 Sr̂ − 1 do

18: Update local weights as:
19: wk

t+1 = wk
t − ηt∇Fk(w

k
t , ξ

k
t )

20: end for
21: end for
22: Sort the values of

∥∥wk
t+1 −wk

t+1−Sr

∥∥
2
,∀k.

23: Select N0 < N users with higher values.
24: Uplink transmission:
25: 1. Selected users quantize and modulate weights.
26: 2. Value of PUL,r is updated as:
27: PUL,r = PUL,0(1− exp(−γr))
28: 3. Users upload weights with power PUL,r.
29: 4. BS combines, demodulates and dequantizes the

received weights.
30: 5. BS performs aggregation to produce ˆ̄wt+1.
31: end for

losing the performance at the convergence. The normalized
value of transmit power P can be defined as:

P =
E1T
E2T

=

(
T − e−γ 1−e−γT

1−e−γ

)
T

. (19)

In our communication cost comparison (see in next section),
this variable serves as a weighting factor that reflects the
improvement of transmit power consumption introduced by
varying Pr during training.

Quantization: We employ the uniform quantization scheme
for the model weights prior to transmission. We vary the
number of quantization bits to reduce the overhead in each
round. In subsubsection IV-D5, we also consider another
quantization scheme based on stochastic rounding [20]. Specif-
ically, the procedures of this quantization scheme include scale
up, stochastic rounding, limit and scale down.

Overall, the aforementioned features and factors in our
system can be summarized in the Algorithm 1. Similar to
Fig. 1, Algorithm 1 explains the procedures of proposed FL
framework, where lines 9 − 10 and 26 − 27 denote transmit
power variation, followed by the transmission process (line 11
and line 28, for DL and UL, respectively). At local user side,
lines 17 − 20 represent the local training procedures, where
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local steps variation is applied. Lines 22 − 23 stand for the
l2-norm scheduling policy before UL transmission.

Further, in Theorem 3, as t → ∞, ηt → 0, that is, for
convergence of FL, the UL-DL communication links should
be reliable, where the importance of DL links’ reliability can
be inferred from Lemma 1. Moreover, it can be noted that
the above bound in Eqn. (15) is much tighter than the one,
originally expressed in literature [10]1.

The following result expresses the convergence bound for
the case when the learning rate is constant throughout the
training process.

Corollary 4. When learning rate is set to be a constant
through whole training process, i.e., ηt = η, the average model
accuracy is bounded by a constant gap with respect to the
optimum model as

E {F (w̄T )} − F ∗ ≤ L

2
· ηC
µ

, (20)

where C =
∑

k α
2
kσ

2
k +G2 +W

σ2
z

η2 δt+1∈T .

Proof: Proof is derived in Appendix-D.
The above bound shows that for the constant learning rate

η, the FL learning algorithm converges to a constant gap.

IV. SIMULATION RESULTS

A. Simulations setup

For an image classification task, we choose MNIST [48],
EMNIST [49] and FMNIST [50] datasets for both i.i.d. and
non-i.i.d. training data distributions. MNIST contains gray-
scale images of size 28 × 28 for handwriting of numbers,
ranging from 0 to 9. EMNIST is a more challenging dataset,
from which we choose EMNIST-letters dataset containing
gray-scale images of size 28 × 28 for handwriting of English
letters, i.e., 26 classes. Similar to but more challenging than
MNIST, FMNIST also has 10 classes, which correspond to 10
categories of clothes.

1) Training data preparation: For data augmentation pur-
pose, we apply random rotation (ranging from −20 degree to
20 degree), random horizontal translation (ranging from −3
pixels to 3 pixels) and random vertical translation (ranging
from −3 pixels to 3 pixels) for each training image of MNIST,
EMNIST and FMNIST datasets.

2) Communication setup: As practiced and investigated in
[25], [40] and [51], we consider N = 25 users, each with
single ND = 1 antennas. The learning weights of local
and global models are stored in 32-bit float point format.
A uniform quantization is employed to quantize the model
weights, followed by Quadrature Phase Shift Keying (QPSK)
for modulation. For i.i.d. Rayleigh fading model, channel state
information (CSI) is assumed constant within each communi-
cation round, and is known at the BS side. Note that for the
purpose of simplicity, in this paper we only consider perfect

1For perfect UL-DL links (σ2
z = 0), the bound from [10] can be written

as E {F (w̄T )} − F ∗ ≤ L
2

ν
T+β1

,

where ηt =
β0

t+β1
, ν = 2

µ

(
2
µ
C + µ

2
γE ∥w1 −w∗∥22

)
, β1 = γ, β0 = 2

µ
,

Γ = F ∗ −
∑N

k=1 αkF
∗
k and C =

∑
k α2

kσ
2
k + 6LΓ + 8(S − 1)2G2.

CSI. For the scenario with imperfect CSI, such as [52], similar
convergence analysis and simulations can be conducted by
including the channel estimation error in the noise variance.

3) Local model: For MNIST dataset, the local deep learn-
ing model comprises of a convolutional neural network (CNN)
model with three convolutional layers, a fully connected layer,
and a final classification layer with softmax function. Each
convolutional layer is followed by a batch normalization layer,
a ReLU activation layer, and a 2 × 2 max-pooling layer. Three
convolutional layers contain 8, 16 and 32 filters, respectively.
All filters are of size 3 × 3. When EMNIST and FMNIST
datasets are considered, the local deep learning model is
same to that used in MNIST scenario except that no batch
normalization layers are used.

4) MNIST: Each user has 50 training samples locally, and
has a testing set of 200 samples. For i.i.d. case, overall
training and testing sets are randomly shuffled and evenly
splitted up among users in the cell, whereas in the non-i.i.d.
case, for each local user, two labels are randomly selected
for dominating labels. We define the fraction of the training
set occupied by the samples with dominating labels as “non-
i.i.d. factor”. Note that the testing images in testing sets still
have uniform distribution, that is, i.i.d. testing data samples.
At each user, training parameters are set as follows. In the
“fix local steps” scheme, learning rate is set to be 0.01, the
number of local epochs is set to be 3 and for 50 training
images, batch size is 10, leading to a total number of local
updates to be S = 3× 5 = 15. In the scenario where number
of local steps is varied, learning rate and batch size are set
to be 0.01 and 10, respectively. Sr decreases according to
Sr = Dk

|ξkt |
(
6− ⌊ r−1

15 ⌋
)
, where ⌊⌋ denotes floor operation.

5) EMNIST and FMNIST: For these two datasets, each user
has 100 training samples locally, and has a testing set of 200
samples. At each user, training parameters are set as follows.
Local learning rate 0.01, the numbers of local training epochs
and batch size are 7 and 10, respectively.

6) Server/BS setup: The server, or the massive MIMO base
station, is considered to be equipped with 64 of antennas
(except in subsections IV-C and IV-D, where 128 antennas are
considered at BS). Note that 64 and 128 are common choices
for 5G and 6G massive MIMO communication scenario [53]–
[55]. Unless otherwise noted, the number of global commu-
nication rounds is set to T = 100. The BS contains a global
testing set, which contains 200 testing samples, and is used
for getting global server side testing accuracy in each round.

In the following subsections, we will present our simulation
results. We start with simulations on i.i.d. MNIST dataset
(subsections IV-B and IV-C), where we mainly focus on the
impacts introduced by UL and DL transmission errors with
different values of SNRs. After that, simulation results on
non-i.i.d. MNIST under different system schemes proposed
in this paper are compared and analyzed (subsection IV-D),
where transmit power, number of local steps, quantization bits
and non-i.i.d. factor are varied. Simulations on EMNIST and
FMNIST datasets are provided in subsection IV-E.

B. Testing accuracy for fixed learning rate
1) For different UL-SNRs and a fixed DL-SNR:
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Fig. 3. Testing accuracy of the training progress at server side in (a), and
local user side in (b), for different SNRs of UL links while DL-SNR is fixed
to 10 dB; that is, PDL,0/σ2 = 10 dB.

Fig. 3 plots the progress of testing accuracy in different
communication rounds at both server and user sides (in (a)
and (b) respectively), when UL-SNR is varied and DL-SNR
is kept fixed to 10 dB. Simulations are averaged over 10 times.

From both Figs. 3 (a) and (b), it can be seen that increasing
the SNR improves the performance of the trained models. At
higher SNRs, testing accuracy is similar to that of baseline ap-
proach (perfect links). In the Fig 3, the gap at the convergence,
is due to an additional term of σ2

z arising in Theorem 3 and
Corollary 4. At the server side, there are more fluctuations in
accuracy as compared to that at user side. It is due to the fact
that the server receives the noisy version of locally updated
weights owing to imperfect UL links. Also, the model at the
server side is updated once every S steps. The almost steady
behavior at local users is due to the reason that the accuracy is
computed just before uplink transmission, that is, after the S
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Fig. 4. Testing accuracy of the training progress at server side in (a), and
local user side in (b), for different SNRs of DL links while UL-SNR is fixed
to −3 dB; that is, PUL,0/σ2 = −3 dB.

steps local updates of received model weights. Note that green
curves in Figs. 3 (a) and (b) denote the baseline considered
in [10], where both UL and DL channels are considered to be
error-free.

2) For different DL-SNRs and a fixed UL-SNR:
Fig. 4 depicts the plots of testing accuracy progress when

UL-SNR is fixed to −3 dB, and downlink SNR is varied
between 7 dB to 10 dB. Similar to Fig. 3, the accuracy at the
sever side has more fluctuations that that at the users’ side, and
the accuracy is increased close to that of baseline approach for
positive increments in DL-SNRs. The notable fact here is that
the DL-SNR has a direct impact on the accuracies at both
sides, as inferred in Lemma 1 and Theorem 3. This can be
observed by comparing Fig. 4 with Fig. 3. At the server side,
the fluctuations become less in Fig. 4 (a) as SNR is increased,
as compared to Fig. 3 (a). Similar observations can be seen
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Fig. 5. Converged local testing accuracy versus SNRs after T = 100 global
communication rounds.

for Fig. 4 (b) and Fig. 3 (b). In this figure, the decline and rise
of the accuracy at the first several rounds is due to random
initialization of weights. When DL channel quality is relatively
bad, e.g., DL-SNR equals 6 dB, such trend is more obvious
and thus again, verifying our claim that DL channel quality
is more important than that of UL. Similar to Fig. 3, green
curves in Figs. 4 (a) and (b) denote the baseline with perfect
communication links introduced in [10]

Figure 5 shows the converged local testing accuracy versus
UL-SNRs with different plots depicting different DL-SNRs. It
can be seen that the testing accuracy increases with increase
in any of UL or DL SNR, and for higher SNR, it reaches
close to the perfect case, i.e., the baseline approach. In this
figure, apart from comparing our system’s performance with
baseline (green curve) introduced by [10], we also plot the
simulation results based on the assumption that only DL
links are considered to be error-free (black curve) and this
assumption has been made in many existing work [37]–[40].

3) For different precoding methods:
In Fig. 6, we plot the average testing accuracy on i.i.d.

MNIST dataset with ZF and MMSE precoding/combining
methods. It can be witnessed that as compared with ZF, MMSE
is able to achieve a slightly better performance and converges
faster. In high SNR regime, this difference becomes negligible,
therefore, for the rest of simulations, we adopt the ZF strategy.
It can also be noted that the convergence bound depends on
the statistical error variance which is approximately similar in
high SNR regime for both the precoding strategies.

4) Scheduling policy:
In Fig. 7, the average testing accuracies at local user

side are compared under full participation (magenta curve),
UL-channel-state-based scheduling policy (red curve) and l2-
norm-based scheduling policy (blue curve). In both partial
participation cases, within each global communication round,
15 users out of 25 are selected. In UL channel state scheduling
policy, users with better UL communication links quality are
selected, while in the l2 scheduling policy, such selection
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Fig. 6. Testing accuracy at local user side on MNIST i.i.d. dataset when
different precoding methods are implemented. NBS = 64. Values of DL-SNR
and UL-SNR are 8 dB and −8 dB, respectively; that is, PDL,0/σ2 = 8 dB,
PUL,0/σ2 = −8 dB.
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Fig. 7. Testing accuracy at local user side on MNIST i.i.d. dataset when full
participation, UL-channel-state-based scheduling policy and l2-norm-based
scheduling policy are considered. Values of DL-SNR and UL-SNR are 8 dB
and −8 dB, respectively; that is, PDL,0/σ2 = 8 dB, PUL,0/σ2 = −8 dB.

is based on the criteria explained in Algorithm 1. Thus,
UL channel state and l2 scheduling policy can reduce the
communication cost at the expense of testing performance
reduction, that is, local models converge slower with less
participations.

C. Testing accuracy for varying SNR and learning rate

In this subsection, we vary learning rate ηt, UL-SNR and
DL-SNR through the training process. The value of ηt is
decreased according to Theorem 3, i.e., ηt = β0

t+β1
with

β0 = 2, β1 = 100, and both DL and UL SNRs are in-
creased as PUL,r = PUL,0(1 − exp(−γr)) and PDL,r =
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Fig. 8. Progresses of testing accuracy (left-axis) and testing loss F (w)
(right axis) at the sever side to compare the effects of varying and fixed
SNRs through training process. The fitted line for varying SNR shows
O

(
T−1σ−2

z

)
behavior as proved in Theorem 3.

TABLE II
AVERAGED TESTING ACCURACY OF LOCAL USER MODELS AT END OF

TRAINING WHEN I.I.D. TRAINING DATASET IS USED.

Schemes
Quantization bits

16 14 12 10

Vary Sr
Vary Pr 95.52% 94.28% 95.44% 92.82%
Fix Pr 95.32% 96.30% 95.90% 92.60%

Fix Sr
Vary Pr 94.14% 93.68% 93.62% 91.70%
Fix Pr 94.86% 94.26% 94.66% 91.28%

TABLE III
AVERAGED TESTING ACCURACY OF LOCAL USER MODELS AT END OF

TRAINING WHEN NON-I.I.D. TRAINING DATASET IS USED.

Schemes
Quantization bits

16 14 12 10

Vary Sr
Vary Pr 79.01% 77.36% 76.82% 70.16%
Fix Pr 82.42% 82.80% 81.32% 75.50%

Fix Sr
Vary Pr 73.29% 73.06% 71.56% 60.04%
Fix Pr 80.27% 80.12% 79.00% 70.36%

PDL,0(1 − exp(−γr)) with γ = 0.2, PUL,0/σ2 = −7 dB,
PDL,0/σ2 = 7 dB. Number of antennas at BS NBS = 128.

Fig. 8 plots the testing accuracy on i.i.d. MNIST (left-axis)
and the values of the loss-function F (w) for the testing set
(right-axis) versus the communication rounds. By comparing
the performance for varying SNRs with the scenario where
SNRs are fixed, it can be observed that in the former, models
converge slower than that in the latter. However, varying SNR
provides the advantage of energy efficiency improvement. The
value of γ can be adjusted to trade-off energy efficiency with
the convergence rate. To show the loss function decreases by
O
(
T−1σ−2

z

)
, we fit the curve with the function a + b

T+c ,
which verifies the theorem 3.
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Fig. 9. Testing accuracy on non-i.i.d. MNIST dataset versus system running
time under different system schemes. Number of quantization bit is 16.
NBS = 128. Non-i.i.d. factor = 70%. Values of DL-SNR and UL-SNR are 7
dB and −7 dB, respectively; that is, PDL,0/σ2 = 7 dB, PUL,0/σ2 = −7 dB.

D. Simulations on non-i.i.d. MNIST

1) Effects of varying local steps and transmit power:
In Fig. 9, we plot the averaged local testing accuracy versus

the system running time as training progresses under different
schemes with non-i.i.d. training data. Number of communica-
tion rounds is set to be T = 60 and non-i.i.d. factor is 70%.
We average the accuracy of each scenario for 10 instances.
It can be observed that under same system running time,
varying local step scheme with fixed transmit power (green
curve) gives best model performance at the end of training.
While magenta and blue curves show similar testing accuracy
through training process, the difference is that the scheme
corresponding to blue curve incurs less communication cost
since both transmit power and number of local steps are
varied in this scheme. Black curve represents the scheme
where transmit power is varied and number of local steps is
fixed, it can be witnessed that it returns worst result among
all schemes under consideration, implying that the learning
algorithm requires more iterations to converge, based on the
transmit power variation model.

2) Effects of varying quantization bits:
In Table II and Table III, we summarize the averaged testing

accuracy of local user models at the end of training under
different system schemes and quantization bits conditions on
both i.i.d. and non-i.i.d. training datasets. For the same simu-
lation setup in the previous subsubsection with NBS = 128,
PDL,0/σ2 = 7 dB, PUL,0/σ2 = −7 dB and 70% non-i.i.d. factor,
we can observe that in both i.i.d. and non-i.i.d. cases, as
number of quantization bits is increased, better testing per-
formance can be seen at the expense of more communication
cost. Since the difference introduced by varying number of
local steps and transmit power can hardly be witnessed in the
i.i.d. case, in the non-i.i.d. scenario, this difference stands out
and becomes more obvious as shown in Fig. 9 and Table III.
Fixing transmit power through whole training process gives
better performance than “varying power” policy, this is due to
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Fig. 10. Visualization of communication cost under different systems
schemes. Non-i.i.d. MNIST dataset is considered.
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Fig. 11. Testing accuracy on MNIST dataset with different non-i.i.d. factors.
Number of quantization bit is 16. NBS = 128. Values of DL-SNR and
UL-SNR are 7 dB and −7 dB, respectively; that is, PDL,0/σ2 = 7 dB,
PUL,0/σ2 = −7 dB.

the fact that on average, higher SNR values introduce fewer
transmission errors.

Another interesting finding is that, in non-i.i.d. case, varying
number of local steps not only accelerates the convergence
but also leads to apparently better testing results at the end of
training compared with its “fix local steps” counterpart. For
instance, if we compare first and third rows of Table III (where
transmit power is varied), we can observe 5% and 10% better
testing performance in the former case when the constrains for
quantization bits are 12 and 10, respectively. Similar trend can
also be witnessed when second and fourth rows are compared
in Table III, where the transmit power is fixed.

3) Comparison of communication cost:
In Fig. 10, communication cost incurred by different system

schemes in Table III is visualized and compared by utilizing a
bar chart. Since all local users’ models have same architecture,
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Fig. 12. Testing accuracy on non-i.i.d. MNIST dataset when two quantization
schemes are used. NBS = 128. Values of DL-SNR and UL-SNR are 7 dB
and −7 dB, respectively; that is, PDL,0/σ2 = 7 dB, PUL,0/σ2 = −7 dB.

when plotting the bar chart, we do not consider “# of model
parameters” as shown in Eqn. (16), leaving the remaining three
factors under considerations:

1) Communication rounds: As stated in subsubsection
IV-D1, number of communication rounds T is set to
be 60 for all system schemes.

2) Normalized transmit power: For T = 60 and γ = 1
5 ,

P = 0.9247. When “fix Pr” strategy is used, normalized
power is 1.

3) Quantization bits: We use the same values B as the ones
we present in Table. III, that is, 16, 14, 12 and 10 bits,
respectively.

As shown in Fig. 10, for a given system scheme, decreasing
number of quantization bits leads to less communication cost.
While “vary Sr vary Pr” and “fix Sr vary Pr” yield same
communication cost, the former scheme is able to provide
better performance in terms of testing accuracy (as shown
in Fig. 9). At the same time, even though system schemes
with “fix Pr” characteristic incur more communication cost,
higher testing accuracy can be witnessed at the end of training,
compared with their “vary Pr” counterparts.

4) Different values of non-i.i.d. factors:
In Fig. 11, we vary the non-i.i.d. factor and results are aver-

aged over 10 instances. With 16 quantization bits, NBS = 128,
PDL,0/σ2 = 7 dB, and PUL,0/σ2 = −7 dB, the performance
degradation can be witnessed as the value of non-i.i.d. factor
is increased.

5) Different quantization schemes:
In this subsubsection, we consider another quantization

scheme based on stochastic rounding [20]. The corresponding
result for 8 bits quantization is plotted in Fig. 12 and compared
with the uniform quantization (16 bits). We utilize two differ-
ent values (70% and 90%) of non-i.i.d. factor and it can be seen
from Fig. 12 that for both quantization schemes, the system
performances in terms of testing accuracy are approximately
same; that is, saving half of communication cost.
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Fig. 13. Testing accuracy at local user side on MNIST, EMNIST and FMNIST
datasets. NBS = 64 and number of local epochs is 7. Value of UL-SNR is
fixed to −3 dB; that is, PUL,0/σ2 = −3 dB.

E. Simulations on EMNIST and FMNIST dataset

In Fig. 13, testing accuracies are plotted for i.i.d. MNIST,
FMNIST and EMNIST datasets with different DL-SNRs and
a fixed UL SNR −3 dB. Number of local epochs is set to be
7. Compared with MNIST and FMNIST, training history for
EMNIST dataset has more fluctuations, since EMNIST dataset
has more classes (26).

Similarly, FMNIST is also more challenging to classify as
compared with MNIST, despite the same number of classes
(10) in these two datasets. This is due to the fact that
when dimension reduction techniques, e.g., uniform manifold
approximation and projection (UMAP) [56] and minimum-
distortion embedding (MDE) [57] are used, FMNIST samples
with different labels are more densely distributed than that
of MNIST, leading to overlapped classes and reduced testing
accuracy.

V. CONCLUSION

In this paper, we have integrated the federated learning
framework with a multi-user massive MIMO 6G network,
considering the imperfections of both UL and DL links.
At the massive MIMO BS, ZF and MMSE schemes have
been used to null the co-channel interference. The tighter
convergence rate bound has been derived in a simpler manner
incorporating these imperfections, than the one in literature.
This O

(
T−1σ−2

z

)
bound also has revealed that DL-SNR and

UL-SNR can be increased as training goes on, motivated
by which we improve the communication-efficiency of the
system by adjusting local training steps, transmit power and
quantization bits. Moreover, it has been shown that compared
with the reliability of UL links, quality of DL links plays
a more significant role in this system. Simulation results for
images recognition task with MNIST, EMNIST and FMNIST
datasets have verified the theoretical insights for fixed and
varying SNRs. The testing accuracy has been compared with

the scenario with the perfect links. Value of loss function has
also been plotted to verify the O

(
T−1σ−2

z

)
performance.

Future work includes expanding the proposed framework
to multi-cell scenario, conducting corresponding convergence
analysis and investigating new quantization schemes for the
proposed FL framework.

APPENDICES

A. Proof of Lemma 1

Proof: The left hand side of lemma can be simplified as

E ∥w̄t+1 −w∗∥22

=

E ∥v̄t+1 −w∗∥22 , if t+ 1 /∈ T ,

E
∥∥∥v̄t+1 +

∑N
k=1 αkz̄

k
t −w∗

∥∥∥2
2
, if t+ 1 ∈ T ,

= E ∥v̄t+1 −w∗∥22 + E

∥∥∥∥∥
N∑

k=1

αkz̄
k
t

∥∥∥∥∥
2

2

δt+1∈T

= E ∥v̄t+1 −w∗∥22 +Wσ2
zδt+1∈T ,

where the variance of the effective noise
∑N

k=1 αkz̄
k
t is

obtained as

Wσ2
z = E

∥∥∥∥∥
N∑

k=1

αkz̄
k
t

∥∥∥∥∥
2

2

= E

∥∥∥∥∥
N∑

k=1

αk

(
z̄t,UL + z̄kt,DL

)∥∥∥∥∥
2

2

=

N∑
k,j=1

αkαjtrE
(
z̄t,UL + z̄kt,DL

) (
z̄Ht,UL + z̄jHt,DL

)

=

N∑
k,j=1

αkαjtrE
{
z̄t,ULz̄

H
t,UL + z̄kt,DLz̄

jH
t,DL

}

=
∥α∥22σ2

w
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σ2ND

PULNBS
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N∑
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ktrE

{
z̄kt,DLz̄

kH
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∥α∥22σ2
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∥α∥22σ2
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σ2
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[
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PULNBS
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σ̂2
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σ2
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]
W

=
∥α∥22σ2
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[
PDLND

PULNBS
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(
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∥α∥22σ2
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σ2
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[(
PDL

σ2
+ ∥α∥22

)
σ2ND

PULNBS
+ ∥α∥22
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B. Proof of Lemma 2

Proof: The left hand side of lemma can be simplified as

E ∥v̄t+1 −w∗∥22
= E ∥w̄t − ηtgt −w∗ ± ηt∇F (w̄t)∥22
(a)
= E ∥w̄t − ηt∇F (w̄t)−w∗∥22 + η2tE ∥gt −∇F (w̄t)∥22
= E ∥w̄t −w∗∥22 + η2tE ∥gt −∇F (w̄t)∥22 + η2t ∥∇F (w̄t)∥22

− 2ηtE (w̄t −w∗)
T ∇F (w̄t)

(b)

≤ E ∥w̄t −w∗∥22 + η2tE ∥gt −∇F (w̄t)∥22 + η2t ∥∇F (w̄t)∥22
+ 2ηtE

[
F (w∗)− F (w̄t)−

µ

2
∥w̄t −w∗∥22

]
(c)

≤ (1− ηtµ)E ∥w̄t −w∗∥22 + η2t
∑
k

α2
k

(
σ2
k +G2

)
+ 2ηtE [F (w∗)− F (w̄t)]

(d)

≤ (1− ηtµ)E ∥w̄t −w∗∥22 + η2t
∑
k

α2
k

(
σ2
k +G2

)
,

where in (a), gt =
∑N

k=1 αk∇Fk(w
k
t , ξ

k
t ) with E {gt − ḡt} =

0 is used; (b) is obtained from µ-strong convexity, i.e., −2(w−
v)T∇F (w) ≤ 2F (v)−2F (w)−µ∥v−w∥22; in (c), the result
from Assumption 3 and 4 is used; in (d), the fact F (w∗) ≤
F (w̄t) is used.

C. Proof of Theorem 3

Proof: For the L-smooth function, we write

E {F (w̄t+1)} − F ∗ (21)

≤ E
{
(w̄t+1 −w∗)T∇Fk(w

∗)
}
+

L

2
∆t+1 (22)

(a)
=

L

2
∆t+1 (23)

(b)

≤ L

2
· ν

t+ 1 + β1
, (24)

where in (a), zero mean result E {w̄t −w∗} = 0 is used,
and ∆t = E∥w̄t −w∗∥22; the inequality, ∆t ≤ ν

t+β1
in (b) is

proved via induction as follows. Let C =
∑

k α
2
kσ

2
k + G2 +

W
σ2
z

η2
t
δt+1∈S , ν ≥ β2

0C
β0µ−1 , ηt =

β0

t+β1
, where β0 > 1

µ , β1 > 0.
Then, definition of ν guarantees that the inequality in (b) holds
for t = 0, assume the conclusion holds for some t > 0, by
using the results of Lemma 1 and Lemma 2, we write

∆t+1 ≤ (1− ηtµ)∆t + η2tC (25)

≤ ν

t+ β1
− β0µν

(t+ β1)
2 +

β2
0C

(t+ β1)
2 (26)

=
ν(t+ β1)− ν

(t+ β1)
2 +

ν − β0µν + β2
0C

(t+ β1)
2 (27)

≤ ν

t+ 1 + β1
+ 0. (28)

D. Proof of Corollary 4

Proof: When learning rate η is a constant, the model also
converges, however, with fixed gap from the optimal values.
From Eqn. (25) in the proof of Theorem 3 above, we replace
ηt = η and prove ∆t ≤ ηC

µ via induction as follows

∆t+1 ≤ (1− ηµ)∆t + η2C (29)

≤ (1− ηµ)
ηC

µ
+ η2C =

ηC

µ
. (30)

Then, from the inequality in Eqn. (23), it follows that using
the L-smooth function, we have

E {F (w̄t+1)} − F ∗ ≤ L

2
∆t+1 ≤ L

2

ηC

µ
.
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