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Summary
Background Real-time prediction is key to prevention and control of infections associated with health-care settings. 
Contacts enable spread of many infections, yet most risk prediction frameworks fail to account for their dynamics. 
We developed, tested, and internationally validated a real-time machine-learning framework, incorporating dynamic 
patient-contact networks to predict hospital-onset COVID-19 infections (HOCIs) at the individual level.

Methods We report an international retrospective cohort study of our framework, which extracted patient-contact 
networks from routine hospital data and combined network-derived variables with clinical and contextual information 
to predict individual infection risk. We trained and tested the framework on HOCIs using the data from 51 157 hospital 
inpatients admitted to a UK National Health Service hospital group (Imperial College Healthcare NHS Trust) between 
April 1, 2020, and April 1, 2021, intersecting the first two COVID-19 surges. We validated the framework using data 
from a Swiss hospital group (Department of Rehabilitation, Geneva University Hospitals) during a COVID-19 surge 
(from March 1 to May 31, 2020; 40 057 inpatients) and from the same UK group after COVID-19 surges (from April 2 
to Aug 13, 2021; 43 375 inpatients). All inpatients with a bed allocation during the study periods were included in the 
computation of network-derived and contextual variables. In predicting patient-level HOCI risk, only inpatients 
spending 3 or more days in hospital during the study period were examined for HOCI acquisition risk.

Findings The framework was highly predictive across test data with all variable types (area under the curve 
[AUC]-receiver operating characteristic curve [ROC] 0·89 [95% CI 0·88–0·90]) and similarly predictive using only 
contact-network variables (0·88 [0·86–0·90]). Prediction was reduced when using only hospital contextual 
(AUC-ROC 0·82 [95% CI 0·80–0·84]) or patient clinical (0·64 [0·62–0·66]) variables. A model with only three 
variables (ie, network closeness, direct contacts with infectious patients [network derived], and hospital COVID-19 
prevalence [hospital contextual]) achieved AUC-ROC 0·85 (95% CI 0·82–0·88). Incorporating contact-network 
variables improved performance across both validation datasets (AUC-ROC in the Geneva dataset increased from 0·84 
[95% CI 0·82–0·86] to 0·88 [0·86–0·90]; AUC-ROC in the UK post-surge dataset increased from 0·49 [0·46–0·52]  
to 0·68 [0·64–0·70]).

Interpretation Dynamic contact networks are robust predictors of individual patient risk of HOCIs. Their integration 
in clinical care could enhance individualised infection prevention and early diagnosis of COVID-19 and other 
nosocomial infections.

Funding Medical Research Foundation, WHO, Engineering and Physical Sciences Research Council, National 
Institute for Health Research (NIHR), Swiss National Science Foundation, and German Research Foundation.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
Transmission of COVID-19 associated with health-care 
settings has been well documented across the pandemic.1 
Hospital-onset COVID-19 infections (HOCIs) have been 
reported to account for 12·0–15·0% of all COVID-19 
cases in health-care settings and up to 16·2% at the peaks 
of the pandemic.2 Although their effect is yet to be fully 
quantified, HOCIs amplify the pandemic by seeding 
further outbreaks.

Predicting which patients are at risk of health-care-
associated infection (HCAI) can prevent onward 
transmission to patients and staff, also minimising 

workload during outbreaks. Traditionally, predicting 
HCAI has relied on identifying risk factors from 
combinations of patient clinical variables (eg, age, gender 
identity, and comorbidities) and hospital contextual 
variables (eg, colonisation pressure and patients’ length 
of stay).3 Although these approaches alone can perform 
reasonably well in identifying predictive risk factors of 
HCAIs, they overlook the fact that nosocomial spread of 
infection depends largely on the patient’s contacts,4 
which are heterogeneous5 and vary over time.6

Isolating and grouping patients who are infected, or 
suspected to be infected, to one area prevents onward 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00093-0&domain=pdf
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spreading by interrupting transmission chains.7 Contact 
tracing of infected patients is effective at identifying 
disease super-spreaders,8 who are strong HOCI drivers,9,10 
and secondary cases and has played a pivotal role in 
national COVID-19 responses.11–13 However, exploiting the 
entire contact network, rather than direct contacts to 
individuals with known infection alone, provides greater 
information to characterise transmission.14 Indeed, early in 
the COVID-19 pandemic, population mobility and inter
actions guided national policy to reduce transmission.15 In 
health-care settings, the overall number of direct contacts 
of a patient is predictive of HCAI.16–19 Yet, these studies16–19 
fail to use the full dynamic information of contacts.20

In this study, we combine dynamic networks of patient 
contacts (based on bed allocation records) with clinical 

attributes and hospital contextual data into a novel 
forecasting framework to predict patient risk of HOCI 
acquisition for targeting preventive interventions. As a 
proof of principle, we perform a retrospective cohort 
study to assess the predictive power of risk factors that 
were extracted from patient-contact networks, 
constructed from routinely collected hospital data. We 
train and test models on a large London hospital dataset 
spanning the first two major UK surges of COVID-19 
(ie, March 23–May 30, 2020 and Sept 7, 2020–
April 24, 2021). We then validate the predictive gain 
from contact-network risk factors by applying the 
framework to an external dataset from a university-
affiliated geriatric hospital in Geneva during surge one 
(ie, March 1–May 31, 2020) and to data from the same 

Research in context

Evidence before this study
Throughout the COVID-19 pandemic, health-care facilities have 
had considerable numbers of hospital-onset COVID-19 
infections (HOCIs). Despite substantially higher rates of 
COVID-19 morbidity and mortality among hospitalised 
patients, predictive models of HOCI are yet to be fully used in 
health-care settings. To address this gap, we have designed a 
machine-learning framework that integrates dynamic patient 
contact-networks with traditional patient clinical risk factors 
and contextual hospital variables. Patient contact networks are 
a natural approach to model the contact-mediated 
transmission of COVID-19 and other infectious diseases. Our 
study investigates the use of contact-network variables in 
predicting HOCIs at the patient level and their generalisability 
to various hospital settings. We performed two searches on 
PubMed (Sept 22, 2021) for English-language articles. Search 
one was on prediction of HOCIs, using the search terms 
“hospital-onset COVID-19 infections”, “nosocomial COVID-19”, 
“prediction”, and “forecasting”; search two was on the use of 
contact-networks for prediction of infections acquired in 
health-care settings, based on the search terms “healthcare-
acquired infections”, “nosocomial infections”, “prediction”, 
“forecasting”, “contact networks”, and “dynamic contact 
networks”. Search one identified no studies performing a 
comprehensive investigation into risk factors of HOCI at the 
patient level. Although several works examined HOCI 
epidemiology, providing characterisation of contacts, these 
studies were performed at single hospital sites, with few 
patients, and did not include a risk-factor analysis. Other studies 
examined risk factors for predicting patient risk of COVID-19 on 
hospital admission; however, by definition, these studies target 
only community-onset COVID-19 infections and not HOCIs and 
thus do not capture the in-hospital sources of exposure risk. 
Search two identified studies that used the total number of 
patient contacts or the total number of contacts with infectious 
cases. However, no studies of infections acquired in health-care 
settings incorporated contact connectivity beyond a patient’s 
immediate contacts to predict infection risk. Furthermore, the 

studies found in our searches did not use sophisticated 
network-theoretical measures or modelling techniques to 
predict individual patient risk, nor did they account for the 
time-varying nature of the contacts.

Added value of this study
To our knowledge, this is the first study to forecast HOCIs at 
the patient level by constructing contact-networks from 
routinely collected hospital bed records. To investigate the 
predictive use of patient contact-networks, we used a large 
multinational hospital dataset collected throughout extended 
periods of the COVID-19 pandemic in two hospital groups; 
one in London, UK, and one in Geneva, Switzerland. Using 
these datasets, we constructed and generalised models to 
predict HOCIs at the patient level both with and without 
measures of patient centrality calculated using the dynamic 
patient contact-networks. Our results show that variables 
extracted from patient contact-networks are strong 
predictors of HOCI in both testing and validation. Such 
network measures lead to improved prediction over standard 
risk-factor models on the basis of patient clinical data or 
hospital contextual variables. Most network-derived variables 
were significantly elevated in HOCIs, emphasising their 
importance as risk factors.

Implications of all the available evidence
This study shows that dynamic contact-networks provide 
novel sources of predictive power for respiratory infections 
acquired in health-care settings, improving the performance 
of traditional risk-factor prediction models for HOCIs. 
Contact-network-derived risk factors have the potential to 
enhance individualised infection prevention and early 
diagnosis. We designed a machine-learning framework to 
extract contact risk factors using routinely available bed 
administrative data and showed its novel and generalisable 
prediction power. The framework can be used in real time to 
generate daily risk predictions as part of a suite of surveillance 
tools in modern, data-driven infection prevention and control 
strategies.
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London hospital group after surge two (ie, after April 2–
Aug 13, 2021) in the UK, when COVID-19 had become 
endemic.

Methods 
Study design and participants 
This international retrospective cohort study consists of 
a complete case analysis including all hospital 
inpatients with bed allocations. For training and testing 
we used data from a large London hospital group 
(Imperial College Healthcare NHS trust) (with 
approximately 1200 inpatient beds across five sites) 
from April 1, 2020, to April 1, 2021, capturing the UK’s 
first surge (ie, March 23–May 30, 2020) and second 
surge (ie, Sept 7, 2020–April 24, 2021; appendix p 2). For 

validation, we applied the framework to a non-UK 
hospital group in the Department of Rehabilitation and 
Geriatrics, Geneva University Hospitals, Geneva, 
Switzerland (with approximately 600 inpatient beds 
across three sites), during Switzerland’s first surge 
(ie, March 1–May 31, 2020), and to data from the same 
London hospital group after the second surge in the UK 
(ie, April 2–Aug 13, 2021). The infection prevention and 
control (IPC) measures are detailed in the appendix (p 2).

Patient data were extracted and de-identified by the 
business intelligence system (London), iCARE (London), 
and from in-house electronic health records (Geneva).

Inclusion criteria were any inpatient with an allocated 
bed during the study period. All inpatients were included 
in the formation of the dataset, whereas only patients See Online for appendix

Panel: Model variable interpretation 

Patient clinical variable* 
Age 
Current age was specified in years.

Gender identity 
Gender identity as recorded on hospital electronic health record 
at the time of study.

Patient type† 
The specialities visited were cardiology, critical care, elderly 
care, gynaecology, haematology, infectious diseases, 
medicine (general), neurology, obstetrics, oncology, 
paediatrics, renal, respiratory, and surgery.

Hospital contextual variable‡ 
Length of stay (total) 
Total length of stay in hospital (days).

Length of stay (consecutive) 
Total consecutive (ie, uninterrupted) days in hospital.

Length of stay (side rooms) 
Total length of stay (days) in a side room (ie, isolation).

Background hospital COVID-19 prevalence 
Background number of COVID-19 (hospital-onset COVID-19 
infection and community-onset COVID-19 infection) cases in the 
hospital group.

Background prevalence of hospital-onset COVID-19 infection in 
hospital 
Background number of hospital-onset COVID-19 infection 
cases in the hospital group.

Total hospital bed occupancy 
Total number of hospitalised patients recorded in a room.

Bed, room, ward, and site moves 
Number of times the patient moved between beds, rooms, 
wards, and sites.

Contact-network variable§ 
Infected degree 
Total number of direct contacts with infectious patients.

Infected degree centrality 
Days spent in direct contact with infectious patients, 
normalised by the total number of patients in hospital.

Infected closeness centrality 
Measure of network distance relative to all infectious patients, 
normalised by the total number of patients in hospital.

Degree 
Total number of direct contacts.

Degree centrality 
Days spent in direct contact with other patients, normalised by 
the total number of patients in hospital.

Clustering coefficient 
Measure of likelihood that a patient is also connected to the 
contacts of their immediate contacts.

Closeness centrality 
Measure of network distance relative to all other patients, 
normalised by the total number of patients in hospital.

Betweenness centrality 
Centrality of a patient with respect to the shortest paths 
through the contact network.

Page rank 
Centrality measure of a patient in the contact network given by 
the importance of their neighbours in the network.

K-core number 
Measure of how central a patient is to the most connected 
region of the graph.

*Variables attributable to individual patients. All variables were extracted from patient 
electronic health records at the time of the study. †Patients can be recorded as more than 
one patient type. ‡Length of stay variables are at a maximum of 14 days, and background 
prevalence of COVID-19 in hospital and hospital-onset COVID-19 infections capture the 
number of patients with COVID-19, or the total number of hospital patients, over the past 
14 days. Each variable is computed over a given time window. §For each variable extracted 
from the contact network we provide the relative scale (ie, the spatial scale of the network 
considered by the variable during its calculation—eg, degree considers only its direct 
neighbours). A mathematical explanation of each variable is given in the appendix 
(pp 3–5). Each variable is also computed over a given time window.
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spending 3 consecutive days or more in the hospital were 
used to predict HOCI acquisition (appendix p 2).

Individual patient consent was waived under the 
study’s ethical approval covering non-consented pseudo
nymised patient data.

All analyses were approved by ethical committees 
(London: Imperial College London National Health 
Service [NHS] Trust service evaluations [Ref: 386,379,473] 
and ethics approval under 15\LO\0746; Geneva: Cantonal 
Ethics Committee [number CCER 2020–00827]).

Procedures 
The consecutive days that a patient has spent in hospital 
before testing positive for SARS-CoV-2 reflects the 
likelihood of health-care acquisition because of the 
2–14 days incubation period.21 Hence, we defined HOCIs 
in line with European and UK definitions, using the date 
of the first positive test for SARS-CoV-2 and symptom 
onset synonymously.22 We defined HOCI as infections in 
patients with a positive SARS-CoV-2 test sample 3 or 
more days after admission. We used this definition as a 
single category for HOCIs, which covers three types of 
HOCIs: indeterminate (ie, positive sample between 
3 days and 6 days), probable (ie, positive sample between 
7 days and 13 days), and definite (ie, positive sample after 
14 days or more).22 These categories follow from genomic 
evidence,10 suggesting that a substantial proportion of low 
likelihood HOCIs (ie, patients who meet the definition of 

community-onset COVID-19 infection [COCI] and some 
who are allocated to intermediate HOCIs on the basis of 
days spent in hospital) are still hospital acquired, and the 
comprehensive admission screening policy in our study 
(appendix p 2). We defined COCI as infection in patients 
with a positive SARS-CoV-2 test sample up to 2 days after 
admission. We defined non-COVID-19 (ie, control) as 
patients with a negative SARS-CoV-2 test sample or 
patients who were not tested because of having had a 
positive test for SARS-CoV-2 in the past 90 days with no 
new symptoms or exposure to SARS-CoV-2.

Patient contacts were established by use of movement 
pathways from hospital electronic health records. We 
investigated three definitions of contact: patients 
coinciding on the same day in the same room, ward, and 
building, regardless of COVID-19 prevention measures, 
such as environmental ventilation (appendix p 2). The 
infectious period for patients with SARS-CoV-2 infection 
is defined as the 14 days before and 10 days after their 
first positive SARS-CoV-2 test result.21

Dynamic forecasting framework 
We developed a framework to predict infections 
(appendix pp 2–6), enabling risk stratification, that com
bined dynamic patterns of contact, exposure to infection, 
and standard risk factors (R package). Fixed patient 
variables (eg, demographics) were collected, and 
dynamic, time-dependent variables (eg, contact-network 
graph-theoretical centrality for each patient and hospital 
contextual variables) were computed from a sliding time 
window to be used as model predictors over a forecasting 
horizon. In alignment with the maximum incubation 
period of COVID-19, we set the window length to 14 days21 
and the forecasting horizon to 7 days.

For each time window, we extracted patient clinical 
variables, hospital contextual variables (relating to the 
hospital inpatient context), and contact-network variables 
(centrality measures) using network-theoretical analytics 
from each of the room, ward, and building contact 
networks derived from the data (panel; appendix pp 3–4).

Evaluation of machine learning models 
We constructed and evaluated models to predict HOCI 
(appendix p 7), using a 70 to 30 training to testing data 
split (where 70% of patients were randomly selected and 
allocated to the training set, and the remaining 30% were 
allocated to the test set). Following an unbiased 
comparison (appendix p 7), we report results of the best 
machine learning model (eXtreme Gradient Boosting 
[XGBoost]).

Performance was measured by prediction on the test 
set, quantified by area under the receiver operating curve 
(AUC-ROC); balanced accuracy; sensitivity; specificity; 
and positive predictive values, negative predictive values, 
and positive and negative likelihood ratios, adjusted for 
multiple prediction bias (appendix p 7). To aid 
interpretation, we ranked variables by their predictive 

Figure 1: Background hospital infections and contact structure across the study period
Daily number of new patients who tested positive for COVID-19 within the hospital (COCI and HOCI) varied 
substantially across the study period. A peak of 59 cases was reached on March 30, 2020, and a peak of 64 cases 
was reached on Jan 6, 2021, dipping to zero new daily cases over days during July, August, September, and October. 
The patient-contact network also varied across the study period, with differences in connectivity and size of 
patient-contact clusters between each of the infection surges and during the summer period. COCI=community-
onset COVID-19 infection. HOCI=hospital-onset COVID-19 infection.
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For more on the R package see 
https://github.com/barahona-

research-group/Dynamic-
contact-infection-forecast

https://github.com/barahona-research-group/Dynamic-contact-infection-forecast
https://github.com/barahona-research-group/Dynamic-contact-infection-forecast
https://github.com/barahona-research-group/Dynamic-contact-infection-forecast
https://github.com/barahona-research-group/Dynamic-contact-infection-forecast
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contribution using a recursive elimination strategy 
(appendix p 8).23

Two validation datasets were used: one external dataset 
from a non-UK hospital with three sites (ie, three sites of 
the Department of Rehabilitation and Geriatrics, Geneva 
University Hospitals, Geneva, Switzerland) collected 
during the first epidemic surge in Switzerland and one 
internal dataset from the same London hospital group 
from which data were initially collected after UK surges  
in COVID-19 was endemic. The same inclusion criteria 
were used for the training and testing dataset and the 
validation datasets (ie, all inpatients with a bed allocation 
during the dates of study were included in the formation 
of the dataset, whereas assignment of control and HOCI 
labels was restricted to patients who had spent 3 days or 
more in hospital).

To perform validation, we used the XGBoost model 
with hyper parameters optimised on the training data 
and then applied to the new data with available risk-
factor variables. Due to the smaller size of the validation 
datasets compared with the test dataset, we report 5-fold 
cross validation performance.

Statistical analysis 
Univariate variables analysis was performed to identify 
risk factors by comparing values between HOCI and 
control groups in patients who were in hospital for 3 days 
or more (appendix pp 2, 9). All inpatients with a bed 
allocation during the study periods were included in the 
computation of network-derived and contextual variables. 
In predicting patient-level HOCI risk, only inpatients 
spending 3 or more days in hospital during the study 
period were included. To establish significance, we used 
either Mann-Whitney U or χ² tests and report p values 
adjusted for length of patient stay in hopsital 
(appendix p 5). Statistical analyses were done with R 
(version 4.0.4).

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results 
A total of 51 157 patients were admitted to the London 
hospital group during the study’s training and testing 
period (April 1, 2020–April 1, 2021). Of these patients, 
3439 (6·7%) patients tested positive for SARS-CoV-2, 
including 2950 (5·8%) COCIs and 489 (1·0%) HOCIs 
(appendix p 9). Together, 21 576 (42·2%) patients had 
stayed at least 3 days in hospital and were included in the 
forecasting data (489 HOCIs and 21 087 non-HOCIs).

The prevalence of in-hospital COVID-19 cases had 
two surges congruent with national UK cases (figure 1). 
Surge one peaked on March 30, 2020 (ie, one day before 
the study period), at 59 new daily positive hospital cases 
(50 COCIs and nine HOCIs); surge two peaked on 

Jan 6, 2021, at 64 new daily cases (50 COCIs and 
14 HOCIs). The two surges differed when analysing the 
time series (appendix p 10): the proportion of HOCIs 
was higher during surge two (17·8% HOCIs [406 of 
2276 infections were HOCIs]) than during surge one 
(15·1% HOCIs [167 of 1107 infections were HOCIs]) and 
the correlation between HOCIs and COCIs was higher 

Control group (n=21 353) HOCI group (n=465) p value*

Patient clinical variables

Age, years 50·4 (27·3) 69·2 (19·6) <0·0001

Gender identity

Female 12 083 (57·3%) 214 (43·8%) <0·0001

Male 9004 (42·7%) 275 (56·2%) <0·0001

Patient type

Cardiology 1476 (7·0%) 13 (2·7%) 0·0003

Critical care 1497 (7·1%) 44 (9·0%) 0·12

Elderly care 1645 (7·8%) 76 (15·5%) <0·0001

Gynaecology 3037 (14·4%) 14 (2·9%) <0·0001

Haematology 443 (2·1%) 9 (1·8%) 0·82

Infectious diseases 232 (1·1%) 4 (0·8%) 0·77

Medicine (general) 6136 (29·1%) 217 (44·4%) 0·0009

Neurology 527 (2·5%) 9 (1·8%) 0·44

Obstetrics 5208 (24·7%) 12 (2·5%) <0·0001

Oncology 633 (3·0%) 11 (2·2%) 0·41

Paediatrics 1097 (5·2%) 8 (1·6%) 0·0011

Renal 1202 (5·7%) 67 (13·7%) <0·0001

Respiratory 738 (3·5%) 15 (3·1%) 0·68

Surgery 4829 (22·9%) 142 (29·0%) 0·0023

Hospital contextual variables

Length of stay, days 5·3 (2·6) 7·3 (3·7) <0·0001

Length of stay (consecutive), days 3·8 (2·4) 5·9 (3·6) <0·0001

Length of stay (side rooms), days 1·1 (2·6) 2·7 (5·6) <0·0001

Background hospital COVID-19 
prevalence

127 (174) 372 (252) <0·0001

Background hospital HOCI 
prevalence

54·6 (35·6) 19·1 (25·8) <0·0001

Total hospital bed occupancy 13 587 (3020) 15 645 (2832) <0·0001

Bed moves 0·94 (0·81) 1·00 (0·86) 0·39

Room moves 0·92 (0·79) 0·96 (0·84) 0·34

Ward moves 0·66 (0·67) 0·64 (0·66) 0·57

Site moves 0·04 (0·17) 0·06 (0·23) 0·11

Network variables

Room-contact network

Infected degree 0·10 (0·55) 0·74 (1·30) <0·0001

Infected degree centrality 0·00007 (0·00047) 0·00063 (0·00130) <0·0001

Infected closeness centrality 0·0019 (0·0047) 0·010 (0·010) <0·0001

Degree 5·4 (4·2) 6·3 (4·2) <0·0001

Degree centrality 0·0020 (0·0016) 0·0022 (0·0015) 0·0001

Closeness centrality 0·041 (0·034) 0·064 (0·034) 0·0002

Betweenness centrality 0·0016 (0·0045) 0·0018 (0·0035) 0·16

PageRank 0·00039 (0·00022) 0·00039 (0·00024) 0·58

Clustering coefficient 0·073 (0·080) 0·11 (0·10) <0·0001

K-core number 3·37 (2·34) 3·71 (2·18) 0·0010

(Table 1 continues on next page)
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during surge two (R=0·79; p<0·0001) than during surge 
one (R=0·59; p<0·0001). The background variant 
makeup also varied between the UK surges, with the 
alpha (B.1.1.7) variant making up 59·3% and the delta 
(B.1.617.2) variant making up 1·1% of all nationally 
sequenced COVID-19 cases during surge two, whereas 
they were absent during surge one (appendix p 10).

The patient-contact network structure also varied 
throughout the pandemic (figure 1). The median number 
of contacts (degree) over networks across time was four 
in rooms (ie, the number of people sharing a room), 
22 in wards (ie, the number of people sharing a ward), 
and 67 in buildings (ie, the number of people located in 
the same building at the same time), with an increasing 
trend over time (appendix p 12). Surge one had lower 
median degrees (three in rooms, 18 in wards, and 57 in 
buildings) than did surge two (four in rooms, 23 in 
wards, and 70 in buildings). Other network measures 
also varied over the study period (appendix p 12), with 
network metrics reflecting a denser contact-network in 
surge two than in surge one (figure 1).

Univariate analysis identified ten clinical variables that 
were differentially represented in patients with HOCI 
versus controls (table 1). Both age and gender identity 
were significantly different between patients with HOCI 
and controls, with HOCIs over-represented in older 
patients and those who identified as male. Regarding 
specialities, HOCIs were found in a higher proportion of 
patients in elderly care, general medicine, renal, and 
surgery compared with controls, and significantly lower 
proportions in patients from cardiology, gynaecology, 
obstetrics, and paediatrics.

Six of ten hospital contextual variables were 
significantly different between the HOCI and control 
groups (table 1). Relative to controls, patients with HOCI 
were associated with longer length of stay before testing 
positive and were in hospital during times of higher 
hospital-bed occupancy and during periods of increased 
background incidence of COVID-19. No significant 
difference between the HOCI and control groups was 
observed for variables related to movement rates 
(between beds, rooms, wards, and sites).

For network variables, 24 of 30 centrality measures 
were significantly higher in HOCI patients (eight of 
ten from each room-contact, ward-contact, and building-
contact network; table 1). Network variables that were 
significantly higher in the HOCI group than in the 
control group across the three contact networks included 
measures accounting for infectious COVID-19 cases 
(ie, infected degree, infected degree centrality, and 
infected closeness centrality) and general network 
connectivity (ie, degree, closeness centrality, clustering 
coefficient, and K-core number).

We trained different models on our London data using 
sets of variables of different types (panel). All models had 
high predictive power (table 2; figure 2A, B). In particular, 
the model based solely on contact-network variables 
(AUC-ROC 0·88 [95% CI 0·86–0·90]) performed 
similarly to the model based on all variables (0·89 
[0·88–0·90]) and yielded more predictive power than 
models using solely hospital context variables (0·82 
[0·80–0·84]) or clinical variables (0·64 [0·62–0·66]). To 
ascertain the predictive power of different types of 
contacts, separate models were trained on variables from 
each of the three contact networks (ie, room, ward, and 
building). The model based on ward-contact network 
variables had the highest predictive power (0·87 
[0·85–0·89]); yet building-contact (0·85 [0·83–0·87]) and 
room-contact (0·82 [0·80–0·84]) network models also 
yielded high performance.

We then investigated models with fewer variables, by 
using only risk factors (ie, variables identified as significant; 
p<0·05 in table 1) among hospital contextual and ward-
contact network variables. Clinical, room-contact network, 
and building-contact network variables were excluded due 
to comparably lower performance. Models based only on 
risk factors have equal performance to models including 
all variables (table 2; figure 2). Furthermore, the combined 

Control group (n=21 353) HOCI group (n=465) p value*

(Continued from previous page)

Ward-contact network

Infected degree 1·4 (3·7) 7·3 (8·3) <0·0001

Infected degree centrality 0·0010 (0·0031) 0·0063 (0·0074) <0·0001

Infected closeness centrality 0·0088 (0·013) 0·03010 (0·022) <0·0001

Degree 38 (25) 41 (18) 0·0080

Degree centrality 0·012 (0·0080) 0·012 (0·0050) 0·54

Closeness centrality 0·17 (0·050) 0·20 (0·036) <0·0001

Betweenness centrality 0·0021 (0·0093) 0·0017 (0·0040) 0·022

PageRank 0·00041 (0·00017) 0·00040 (0·00017) 0·10

Clustering coefficient 0·10 (0·074) 0·14 (0·093) <0·0001

K-core number 3·4 (2·3) 3·7 (2·2) 0·0011

Building-contact network

Infected degree 9·8 (24) 43 (51) 0·0009

Infected degree centrality 0·0090 (0·026) 0·042 (0·058) <0·0001

Infected closeness centrality 0·31 (0·062) 0·34 (0·047) <0·0001

Degree 150 (130) 210 (180) <0·0001

Degree centrality 0·046 (0·040) 0·060 (0·050) <0·0001

Closeness centrality 0·31 (0·062) 0·34 (0·047) <0·0001

Betweenness centrality 0·0014 (0·0047) 0·0011 (0·0030) 0·090

PageRank 0·00041 (0·00019) 0·00042 (0·00021) 0·48

Clustering coefficient 0·12 (0·064) 0·14 (0·072) 0·0019

K-core number 85 (71) 120 (88) <0·0001

Data are median (IQR) or n (%). Network, hospital contextual, and clinical variables were investigated for discriminatory 
power for HOCI (sample positive for SARS-CoV-2 at least 3 days after admission) versus control (sample not positive for 
SARS-CoV-2). Due to the sliding window, each patient can have multiple datapoints representing them on different days 
over the duration of their hospital stay. In addressment, patient variables are aggregated and averaged across time 
(appendix p 5). The significance test results show how the varying temporal profiles of patients could be used to classify 
HOCI versus control. Statistical analyses were performed using the Mann-Whitney U or the χ² test. For clinical and 
contextual variables results are reported to 1 decimal point, whereas for network centralities results are given to 
2 significant figures. HOCI=hospital-onset COVID-19 infection. *p values are adjusted for multiple testing as described in 
the the appendix (p 5). 

Table 1: Univariate analysis of variable sets for control versus HOCI data
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risk-factor model has the highest positive predictive 
value (0·87) and positive likelihood ratio (9·67) compared 
with all other variable-set models (table 2), in addition to 
high calibration (appendix p 14).

Using a stepwise-variable-elimination approach 
(appendix p 17), we ranked the combined set of risk 
factors (ie, hospital contextual plus ward-contact 
network). The hospital contextual variable “background 
hospital COVID-19 prevalence” was most predictive, 
followed by two ward-contact network variables: the 
infected contact network, which measures the network 
distance to all infectious cases, and the infected degree 
and degree centrality, which measures the direct contacts 
to infectious cases. A parsimonious model based on 
these three variables alone achieved AUC-ROC of 0·85 
(95% CI 0·82–0·88), amounting to 95·5% of the 
combined model performance (appendix p 17). The same 
top three variables were also found when applying 
stepwise variable elimination to the entire variable set 
and to all the risk factors (table 2 and appendix p 17).

To validate the predictive power of contact-network 
variables, we applied our risk-factor models (without 
recalibrating the hyperparameters) to a Geneva-based 
geriatric hospital group during their first surge in cases 
(March 1–May 31, 2020). Over that period, 281 COVID-19 

cases (138 COCIs and 143 HOCIs) were reported. Cases 
peaked on March 26, 2020, with 15 newly identified cases 
(nine HOCIs and six COCIs), reflecting the height of the 
early epidemic in Switzerland (figure 3A). In this dataset, 
ward-level and building-level data were unavailable; 
hence, we constructed room-contact networks. On the 
basis of only hospital contextual risk factors, the model 
achieved a high prediction accuracy, but the inclusion of 
room-contact risk factors further increased performance 
(table 2).

For further validation, we used additional data from the 
same London hospital group collected during an endemic 
period following surge two in the UK (April 2–
Aug 10, 2021). During this time, 1·4 daily cases were 
reported on average, with no surging behaviour 
(figure 3B). Compared with UK surges 1 and 2, HOCIs 
constituted a lower percentage of all cases (186 [12·9%] 
of 1446 COVID-19 cases were HOCI compared with 
167 [15·1%] of 1107 in UK surge one, and 406 [17·8%] 
of 2276 in UK surge two; appendix p 10). In this endemic 
setting, we found that the hospital contextual risk-factor 
model performed poorly with low sensitivity and 
specificity (table 2). The ward-contact network risk-factor 
model had substantially improved performance 
compared with the hospital contextual model. By further 

AUC-ROC (95% CI) Balanced accuracy Sensitivity Specificity Positive 
predictive value

Negative 
predictive value

Positive 
likelihood ratio

Negative 
likelihood ratio

Test set performance models based on variable sets

All types: patient clinical, hospital 
contextual, and network-derived

0·89 (0·88–0·90) 0·85 0·85 0·84 0·78 0·41 5·31 0·18

Patient clinical 0·64 (0·62–0·66) 0·61 0·46 0·75 0·55 0·44 1·84 0·72

Hospital contextual 0·82 (0·80–0·84) 0·80 0·87 0·73 0·68 0·37 3·22 0·18

Contact networks (all) 0·88 (0·86–0·90) 0·84 0·85 0·83 0·77 0·40 5·00 0·18

Room 0·82 (0·80–0·84) 0·80 0·77 0·82 0·74 0·41 4·28 0·28

Ward 0·87 (0·85–0·89) 0·85 0·90 0·80 0·75 0·39 4·50 0·13

Building 0·85 (0·83–0·87) 0·84 0·90 0·79 0·74 0·38 4·29 0·13

Test set risk-factor variable models

Hospital contextual risk factors 0·82 (0·80–0·84) 0·80 0·89 0·70 0·66 0·36 2·97 0·16

Network (ward) risk factors 0·87 (0·85–0·89) 0·85 0·91 0·79 0·86 0·42 9·44 0·16

Combined (hospital contextual 
and network [ward]) risk factors

0·89 (0·88–0·90) 0·87 0·91 0·82 0·87 0·42 9·67 0·14

Validation set performance for models from surge 1 in Geneva hospital (epidemic)*

Hospital contextual risk factors 0·84 (0·82–0·86) 0·82 0·97 0·66 0·68 0·31 2·85 0·05

Network (room) risk factors 0·80 (0·77–0·83) 0·80 0·76 0·84 0·78 0·39 4·75 0·29

Hospital contextual and network 
(room) risk factors

0·88 (0·86–0·90) 0·84 0·97 0·71 0·72 0·32 3·34 0·04

Validation set performance for London hospital group after surge 2 in the UK (endemic)†

Hospital contextual risk factors 0·49 (0·46–0·52) 0·62 0·56 0·68 0·56 0·38 1·75 0·65

Network (ward) risk factors 0·63 (0·60–0·66) 0·71 0·66 0·76 0·67 0·39 2·75 0·45

Hospital contextual and network 
(ward) risk factors

0·68 (0·64–0·70) 0·74 0·70 0·78 0·70 0·39 3·18 0·38

Performance is measured using AUC-ROC, balanced accuracy, sensitivity, specificity, positive predicted value, negative predicted value, the positive likelihood ratio, and the negative likelihood ratio, which 
operate on a collapsed confusion matrix to reduce bias (appendix p 7). AUC-ROC=area under the receiver operating characteristic curve. *For this non-UK hospital, contact-network risk factors are derived from 
the available room-contact network. †Contact-network variables were derived by use of the ward contact network (ie, the most predictive contact definition identified in training and testing).

Table 2: Summary of test and validation set performance across variable groups
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variable integration, performance was marginally 
improved with the combined risk-factor model and 
achieved higher AUC-ROC, sensitivity, and specificity as 
compared with the previous two models (table 2).

Discussion 
We used network analysis in combination with machine 
learning to predict patient-level HOCI using routinely 
captured hospital data. To our knowledge, this is the first 
study to forecast individual patient HOCIs by extracting 
patient contact networks from bed records. Together with 
hospital contextual variables, we report patient contact-
network centrality as a significant HOCI risk factor, able 
to increase predictive performance across all datasets 
analysed.

Transmission of SARS-CoV-2 in health-care settings 
has been associated with features such as limited 
isolation capacity, suboptimal individual infection 
prevention practices,24 physical distancing, presenteeism, 
environmental ventilation, and contaminated fomites, 

which can all be linked to particular patient groups.25 In 
our training and testing data, patients managed in elderly 
care, general medicine, renal, and surgical units were 
significantly over-represented in the HOCI group 
(table 1). Staffing levels and stress in critical care; complex 
pathways and excess movements, resulting in high 
contacts amongst surgery patients; and the strong 
community links in renal wards might have exacerbated 
transmission. Older patients and male gender identity 
being significantly over-represented in HOCIs reflects 
known features of the wider pandemic.26 Although IPC 
focuses on demographic and individual clinical risk 
variables,27,28 our results show that such fixed variables 
are least predictive overall. Modern IPC might therefore 
improve management of outbreaks by including 
contextual and dynamic risk factors.

Behavioural factors, contact density, and ventilation 
between locations are known to affect risk of COVID-19 
acquisition.29 These factors are consistent with the hospital 
contextual risk factors identified in our work. We found 
that background COVID-19 prevalence within the hospital 
group was the most predictive variable in our training and 
test data collected during pandemic surges. Although 
high case numbers increase transmission sources, back
ground prevalence can also be a proxy for staffing stress 
and density changes, acting as potential exacerbators. 
Similarly, high HOCI risk from increased hospital-bed 
occupancy could be due to high patient loads, increased 
density, and staffing pressures, which make IPC 
challenging. Similar to other HCAIs, length of stay was 
significantly higher for HOCIs (table 1).3,20 Length of stay 
and consecutive length of stay both being significantly 
longer in HOCIs than in controls also supports genomic 
analysis suggesting COVID-19 acquisition can be linked 
to previous admissions.10 Increased movement rates 
(ie, bed, room, ward, and site moves) were reported as a 
risk factor for HCAI locally,30 yet it was not significantly 

Figure 2: Model performance by variable set
(A) AUC-ROC (area under the curve [AUC]-receiver operating characteristic curve [ROC]) test set performance for models broken down by the major feature groups 
(ie, full, clinical, hospital contextual, and network). (B) A further network feature decomposition by network variables computing from all, room, ward, and building 
patient-contact networks. (C) Risk-factor model test set performance for the contextual risk-factor model, the network (ward) risk-factor model, and a combined 
model from both the contextual and network (ward) risk factors identified in table 2.
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different for HOCIs in our data (table 1). The risk from 
movement rates alone is likely to be too general for HOCI, 
without specificity, and better captured via measures of 
contact-network centrality. Altogether, models based on 
hospital contextual variables showed strong predictive 
performance across epidemic surges. However, including 
network variables increased performance most notably in 
the endemic validation data (table 2).

Most contact-network variables (24 of 30 investigated, 
eight from each contact definition) were significantly 
higher in HOCIs (table 1), and the model based only on 
contact-network variables was as predictive as the model 
containing all variables (table 2; figure 2). The underlying 
network structure might, therefore, hold features 
exploitable for HOCI prediction with network mining 
tools.31 HOCIs were significantly more central in contact 
networks. Few studies have used contact data to 
investigate HCAI, and most have considered only direct 
contacts (ie, network degree).16–19,27 Similarly, COVID-19 
transmission analysis outside hospital settings has been 
limited to direct contacts.12,27 Consistent with these 
studies, our results show direct contacts as a strong risk 
factor of infection. Yet, the infected contact network 
(ward), measuring network connectedness to all known 
infections, was more predictive than direct infectious 
contacts (ie, infected degree), suggesting the presence of 
longer and indirect transmission chains that can affect 
contact tracing. Alternatively, disrupting underlying 
network connectivity by targeting patients with high 
centrality, together with screening and isolation based on 
risk factors, could be effective to reduce onward 
transmission.

To show generalisability, we applied our framework to 
data gathered from a hospital group that differed in both 
type (ie, geriatric vs long-term care) and country 
(ie, Switzerland vs the UK). Despite scarce contact data 
(ie, only room-level data were available), the framework 
was still highly predictive, and importantly, performance 
increased through the inclusion of contact-network risk 
factors. To further showcase its generalisability, we 
analysed data from the same London hospital group at a 
later date under differing epidemiological (ie, endemic) 
conditions (appendix p 10), changing IPC measures, newly 
emerging variants, and increasing vaccination rates. 
Although our framework achieved weaker performance on 
the endemic validation dataset, the inclusion of patient 
contact-network risk factors at the ward level substantially 
increased performance as compared with hospital-
contextual risk factors, which did not have predictive 
capability (table 2).

The emergence of large databases with granular detail 
has allowed the construction and application of contact 
networks that can be integrated into routine IPC and 
public health policy. For instance, recorded movements 
within hospital (as studied here) or Bluetooth interactions 
of mobile users (eg, Corona-Warn-App in Germany) 
provide informative datasets that account for various 

underlying proxies in human interaction. The ubiquity 
of such data to construct contact networks is likely only 
to expand, with select hospitals introducing radio
frequency-identification tracking.32 Aimed at exploiting 
these emerging sources of data, our dynamic disease 
forecasting framework is designed to be portable to a 
range of settings and variables. The framework offers 
precise individual predictions of risk of infection 
acquisition and is thus amenable for risk stratification in 
real time, which can serve to guide dynamic IPC resource 
allocation for rapid screening, isolation, and grouping of 
patients at high risk of infection acquisition. By incor
porating complex multimodal data sources into a single 
measure of predicted risk, our framework produces 
relevant and actionable outputs preventing disease 
acquisition.

Major challenges to effective IPC activity are low bed 
capacity and inadequate and overwhelmed isolation 
capacity, in addition to insufficient staffing and 
microbiological testing resources. These challenges to 
IPC were vastly exacerbated by the COVID-19 pandemic. 
We envisage the proposed framework to be used within a 
modern, data-driven IPC patient management system 
and able to assist optimal decisions in real-world 
scenarios. The predicted risk score for each patient can 
be used by clinicians to rank and prioritise (eg, identify 
patients at high risk for infection for isolation or grouping 
followed by targeted enhanced testing). In this way, 
HOCIs could be identified at the earliest opportunity, 
which in turn could optimise IPC measures and 
treatment. Patients at low risk of infection acquisition 
could also be potentially moved back to regular patient 
management faster, saving resources that are in demand. 
However, further work is needed to evaluate the direct 
implications (ie, clinical and economic) of identifying 
patients at high risk of infection. In addition to actionable 
clinical points, a key aspect of this framework is its 
dynamism and its ability to generate insight on demand. 
By aggregating complex data sources into single 
interpretable risk scores, a range of risk sources and their 
interactions are made accessible to hospital teams. Such 
data-driven insights, always integrated within human 
decision making, can enable hospital teams to become 
more flexible and responsive to complex, rapidly 
emerging disease threats.

Our study has several limitations. First, our contact 
definitions might not fully capture transmission 
(eg, connections via health-care workers);33,34 indirect 
transmission over surfaces; non-room, ward, or building 
contact; or interactions from visitors. However, routinely 
collected patient bed allocations have been shown to 
capture implicitly non-patient interactions that align with 
organisational and speciality hospital structures.35 Staff 
and visitor contact data were not available in our data due 
to privacy restrictions, but such data should be investi
gated, in accordance with privacy preservations. Second, 
since our training and testing period occurred largely 
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before the UK’s vaccination rollout, we were unable to 
include vaccination status as a patient variable. With 
increasing levels of natural and induced immunity, 
inclusion of vaccination and recovery status might 
improve predictions; emerging new variants and incom
plete vaccine coverage36 make the levels of susceptibility 
uncertain. Third, patient ethnicity was not available in 
our study. Due to its contextual complexities, and being a 
previously identified risk factor,37 ethnicity warrants 
specific and increased investigation in the future. Fourth, 
our data did not include ventilation or specific infor
mation about room arrangements (appendix p 2), which 
contribute to COVID-19 transmission.38 However, without 
accounting for ventilation, our models were highly 
predictive. Finally, various aspects of hospital organisation 
were altered across the pandemic, including changes in 
screening practice, personal protective equipment, or bed 
placement, which were not encoded here as variables.

Overall, our study emphasises that dynamic networks 
of patient contacts can aid personalised predictions of 
infection. Our study applies to respiratory virus trans
mission in hospital, using widely available patient bed 
records. Further work is needed to extend this framework 
to other infectious diseases, assessing the types of contact 
required for transmission, evaluating the implications of 
identifying a patient at high risk of infection acquisition, 
and understanding how it could be integrated into IPC 
more generally.
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