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A B S T R A C T   

Silent gesture studies, in which hearing participants from different linguistic backgrounds produce gestures to 
communicate events, have been used to test hypotheses about the cognitive biases that govern cross-linguistic 
word order preferences. In particular, the differential use of SOV and SVO order to communicate, respec
tively, extensional events (where the direct object exists independently of the event; e.g., girl throws ball) and 
intensional events (where the meaning of the direct object is potentially dependent on the verb; e.g., girl thinks of 
ball), has been suggested to represent a natural preference, demonstrated in improvisation contexts. However, 
natural languages tend to prefer systematic word orders, where a single order is used regardless of the event being 
communicated. We present a series of studies that investigate ordering preferences for SOV and SVO orders using 
an online forced-choice experiment, where English-speaking participants select orders for different events i) in 
the absence of conventions and ii) after learning event-order mappings in different frequencies in a regularisation 
experiment. Our results show that natural ordering preferences arise in the absence of conventions, replicating 
previous findings from production experiments. In addition, we show that participants regularise the input they 
learn in the manual modality in two ways, such that, while the preference for systematic order patterns increases 
through learning, it exists in competition with the natural ordering preference, that conditions order on the 
semantics of the event. Using our experimental data in a computational model of cultural transmission, we show 
that this pattern is expected to persist over generations, suggesting that we should expect to see evidence of 
semantically-conditioned word order variability in at least some languages.   

1. Introduction 

All languages can use the ordering of the major constituents of 
subject (S), object (O) and verb (V) to signal who does what to whom. 
However, while all 6 possible combinations of S, O and V, are found 
cross-linguistically, two in particular — SOV and SVO are most common, 
used as the preferred word order in the majority of documented lan
guages (Dryer, 2013; Napoli & Sutton-Spence, 2014). How has this 
strong typological trend come about? 

Silent gesture research, in which hearing participants without 
knowledge of a sign language are asked to communicate using gesture 

and no speech, has tried to shed light on the cognitive biases that shape 
our preferences for some word orders over others. For example, Goldin- 
Meadow, So, Ozyürek, and Mylander (2008) found that speakers from 
different language backgrounds overwhelmingly produced SOV-like 
sequences when gesturing. Other work has suggested that the picture 
is somewhat more complex, with word order preferences suggested to be 
affected by, for example, event reversibility (Gibson et al., 2013; Hall, 
Mayberry, & Ferreira, 2013), animacy (Meir et al., 2014), salience 
(Kirton, Kirby, Smith, Culbertson, & Schouwstra, 2021). Schouwstra and 
de Swart (2014) proposed differing word order preferences based on the 
semantics of the events being described. They asked Dutch- and Turkish- 
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speaking participants to produce gestures to communicate two types of 
events: extensional events, involving the manipulation of a direct object, 
usually with movement through space (e.g. throw, carry) and intensional 
events, where the meaning of the arguments, and the meaning of the 
direct object in particular, are interpreted in relation to the event itself, 
such as creation events like bake and paint and perception events like 
think, imagine and dream. That is, the direct object does not necessarily 
exist independently of the event.1 They found that participants from 
both language backgrounds produced gesture sequences with different 
orders, conditioned on the semantics of the event — extensional events 
were produced most frequently with SOV-like order, while intensional 
events were produced with SVO-like order. We, among others (Goldin- 
Meadow et al., 2008; Schouwstra, Smith, & Kirby, 2020), suggest that 
this pattern represents a natural preference, reflecting the preferences 
for ordering patterns at the level of the item (here individual events) that 
occur in the absence of conventions. Proposals for why SOV and SVO 
orders represent a natural preference have been made based on a 
cognitive bias to present entity information (i.e. agents and patients) 
before relational information (i.e. actions; Gentner & Boroditsky, 2001). 
For intensional events, the entity information becomes more relational 
and is therefore presented later, resulting in an SVO preference 
(Schouwstra & de Swart, 2014). An iconic account was proposed by 
Christensen, Fusaroli, and Tylén (2016). In a study that elicited gestures 
for creation events (a sub-type of intensional events), they argued that 
SOV and SVO respectively can iconically represent the structure of 
different events. For events such as “the doctor eats the cake” (i.e. 
extensional events) both the subject and direct object must be co-present 
for the event to take place, while for events such as “the doctor bakes a 
cake” (i.e. intensional events), the event must take place for the direct 
object to exist. The two accounts have in common that they postulate a 
direct relation between meaning and structure. A different explanation 
is offered by (e.g.) Kline Struhl, Salinas, Lim, Fedorenko, and Gibson 
(2017) and Hall and colleagues (Hall, Ahn, Mayberry, & Ferreira, 2015; 
Hall et al., 2013), who suggest that production related biases are 
responsible for word order alternation in silent gesture. 

While evidence of this type of semantically-conditioned word order 
has recently been discovered in two sign languages, Brazilian Sign 
Language (Libras; Napoli, Spence, & de Quadros, 2017) and Nicaraguan 
Sign Language (NSL; Flaherty, Schouwstra, & Goldin-Meadow, 2018), 
differential ordering patterns based on verb semantics is not commonly 
found cross-linguistically.2 Rather, languages tend to use one word order 
across different events, regardless of the semantic properties of those 
events, which we refer to as systematic ordering. The question remains 
then, how we get from the natural ordering preference found in 
improvisation tasks to the systematic ordering preference found most 
commonly cross-linguistically. 

Natural ordering occurs in improvisation tasks when participants are 
asked to communicate without existing conventions, while languages in 
the real-world are conventional systems that have been learnt by lan
guage users over many generations. We suggest that learning may play a 
role in shifting ordering preferences from natural to systematic order, 

with both ordering preferences representing biases that are at play in 
different contexts. For example, a body of previous work has shown that, 
in learning tasks, adult participants regularise the input they receive 
(Culbertson, Smolensky, & Legendre, 2012; Ferdinand, Kirby, & Smith, 
2019; Saldana, Smith, Kirby, & Culbertson, 2018; Smith et al., 2017; 
Smith & Wonnacott, 2010). In the face of unpredictable variation, par
ticipants in these studies reduce variability for a particular item or 
category in the output they produce. For example, Smith and Wonnacott 
(2010) used an iterated learning paradigm to demonstrate that, through 
learning over generations of participants, systems that had different 
variants to mark plurality became more regular, with systems on the 
whole becoming more predictable. Regularisation behaviours have been 
shown in different levels of language (Saldana et al., 2018), and in both 
linguistic and non-linguistic domains (Ferdinand et al., 2019). However, 
a shift away from naturalness preferences would not necessarily 
constitute reduction of unpredictable variation, but a move away from 
semantic conditioning. Instead, the preference for systematic ordering 
patterns demonstrates a reduction in variation across all categories, 
including conditioned variation reflected in the preference for natural 
orders. 

We suggest that the preference for naturalness appears in the absence 
of conventions, and reflects the gesturer’s ordering preference for indi
vidual items. However, once conventions are established, the relations 
between form (here, order) and meaning (here, event) can be viewed as 
a system of mappings, leading to the simplest system to learn — sys
tematic ordering in which a single order is used for all events (Cul
bertson & Kirby, 2016). To investigate our hypotheses, we conducted a 
set of online experiments in which participants are shown gesture se
quences for extensional and intensional events. The gesture sequences 
they see are identical, differing only in the ordering of the constituent 
parts, which appear in either SOV or SVO order. Across four studies, 
participants are asked to select the gesture sequence which best conveys 
the target event, either in a task where participants have no previous 
experience with the gesture sequences (i.e. no conventional mappings) 
or in a learning task in which participants are first shown mappings 
between events and gesture sequences in different frequencies. Finally, 
we model the cultural evolution of the ordering preferences from our 
two learning experiments, to understand how ordering patterns might 
evolve through transmission to new learners over many generations. 
Across our experiments, we focus on 3 main measures that characterise 
the output participants produce: i) regularisation, which we define as the 
reduction of variation within a category, ii) systematicity, defined as the 
reduction in variation across categories, and iii) naturalness, which we 
define as an item-level preference at play in the absence of communi
cative conventions. We hypothesise that word order alternation based 
on intensionality is rooted in general cognitive preferences rather than 
production related constraints. Therefore we predict that in experiments 
1a and 1b, in which participants select word orders in the absence of 
conventions, but without producing any gestures themselves, we will 
replicate the finding from Schouwstra and de Swart, in which partici
pants prefer semantically-conditioned orders that reflect the structure of 
extensional and intensional events. In contrast, when participants are 
given variable input, we expect them to regularise that input, reducing 
variation for each event type. We also expect that learning will lead to a 
stronger preference for systematic languages that reduce variability 
across all events, and that the preference for natural, semantically- 
conditioned ordering patterns will substantially reduce following 
learning, reflecting the typological tendencies found in natural 
languages. 

2. Experiment 1a: ordering preferences for events in the absence 
of conventions 

2.1. Methods 

Participants were recruited (N = 160) from the crowdsourcing 

1 In the literature, intensional transitive verbs have been defined as verbs in 
which the object argument is understood more in terms of its meaning than in 
terms of its reference. This has as a consequence that the objects of intensional 
verbs are potentially non-existent or nonspecific (Forbes, 2020), although there 
are several potential ways to distinguish intensionals from other verbs (Saul, 
2002). The class of verbs has caused semanticists to rethink how verbs and their 
arguments combine, and has challenged conceptions of meaning in which 
reference plays a central role (Moltmann, 2020; Schwarz, 2020). Some have 
claimed a satisfactory definition of meaning in natural language depends solely 
on a correct analysis of intensional verbs (D’Ambrosio, 2019).  

2 There is evidence that similar semantic distinctions can condition form 
(including constituent order) in sign languages – e.g. psych-verbs (denoting an 
emotional state) in Sign Language of the Netherlands (NGT; Oomen, 2017) and 
animacy in Swedish Sign Language (SSL; Bjerva & Börstell, 2016). 
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platform Prolific for an online task in which they were shown two videos 
of gesture sequences describing an event, and asked to select which 
video they thought best conveyed the event. The experiment took 4 min 
to complete and participants were paid £1 for participation. We filtered 
participants using Prolific’s screening options, including participants 
who were native English speakers and who had not completed a similar 
task posted by the authors. Participants were randomly assigned to one 
of two conditions in which they were shown gestures to describe either 
an extensional or an intensional event. 

In the experiment, participants were presented with a line drawing 
(Fig. 1) showing one of two events: either nun-throws-ukelele (exten
sional event) or nun-thinks-about-ukelele (intensional event). The line 
drawing was shown in the upper middle part of the screen, with two 
videos showing the gesture descriptions positioned below the image, 
side by side (shown in Fig. 2). The two videos showed identical gesture 
descriptions with 3 iconic constituent gestures depicting, respectively, 
the actor, the action and the patient involved in the event. The only 
difference between the two gesture descriptions is the order in which the 
3 gestures appear. One video showed the gestures in Actor-Action- 
Patient order (SVO), while the other showed the gestures in Actor- 
Patient-Action order (SOV), giving a total of 4 gesture description 
videos (2 for each event) with each video being 4.5 s in length (videos 
can be viewed at https://osf.io/b9nm6/). During the task, the two 
videos onscreen played in a continuous loop and were synchronised with 
each other, with the timing of each element within each video being 
such that the point of segmentation between S, V, and O is the same in 
both. The location of each video (left or right) was randomised for each 
participant. 

Participants were asked to select which of the two gesture de
scriptions best conveyed the event shown in the image by clicking on the 
video to make their selection. Following selection, participants were 
presented with a screen showing a slider with a gesture description 
video at each end, the location of each video consistent with the selec
tion task from the previous screen (Fig. 2). Participants were told to 
move the slider to indicate the strength of their preference for the se
lection they had made previously. 

Following completion of the task, we excluded participants who a) 
made a selection in the selection task more quickly than the combined 
length of the two videos (9 s), suggesting that they did not attend to both 
completely, and/or b) expressed a preference in the slider task that was 
inconsistent with their choice in the selection task (i.e. expressed a 
preference for the SVO video when they had selected the SOV video in 
the selection task). This resulted in 31 excluded participants, leaving a 
total of 129 participants (Nextensional = 63, Nintensional = 66). 

Data wrangling, visualisation and analysis was completed for 
experiment 1a and throughout using R (R Core Team, 2013). We used a 
logistic regression to model the responses from the selection task (as 
how often participants selected the SVO-variant), and a linear model to 
analyse responses from the slider task, which were transformed to 
represent the strength of preference for the selected variant. We include 
event-type as a deviation-coded predictor (extensional = − 0.5, inten
sional = 0.5), such that the intercept represents the overall preference 
for the SVO-ordered sequence. Our method and analysis plan was pre- 
registered prior to data collection on the Open Science Framework 
(https://osf.io/b9nm6/). 

2.2. Results 

Fig. 3 shows the proportion of participants who selected the SVO- 
ordered sequence in the selection task for each event type. Our find
ings indicate that we do not find a significant preference overall for the 
SVO-ordered sequence (β = − 0.35, SE = 0.19, z = − 1.86, p = 0.06), but 
preference for the SVO-ordered sequence is greater when participants 
see the intensional event compared to the extensional event (β = 1.45, 
SE = 0.38, z = 3.78, p < 0.001). As in the click task, participants pref
erence for the SVO-ordered sequence of the SOV sequence was higher 

when they saw the intensional event compared to the extensional event 
(β = 0.20, SE = 0.05, t = 4.32, p < 0.001). 

Our findings from experiment 1a therefore replicate in an online 
forced-choice selection task the natural ordering pattern observed in the 
gesture production task reported by Schouwstra and de Swart (2014), in 
which participants produced gestures for extensional events in SOV 
order and for intensional events in SVO order. This means that the 
preference is not dependent on production and is likely rooted in general 
cognitive biases. However, we only used one pair of events for the whole 
study. In experiment 1b, we test whether this preference holds across 
multiple extensional and intensional events. 

3. Experiment 1b: ordering preferences for event categories in 
the absence of conventions 

3.1. Methods 

We recruited 162 participants from Prolific, according to the same 
payment and exclusion criteria described for experiment 1a. The 
experimental procedure was identical to experiment 1a, except that 
participants were randomly assigned to complete the task for one of 
eight events, 4 extensional events and 4 intensional events, given in 
Table 1. As in experiment 1b, we excluded participants who responded 
too quickly in the selection task, and whose slider task responses were 
inconsistent with their click task response, leaving 141 participants in 
total (Nextensional = 70, Nintensional = 71). The procedure and analysis of 
results was otherwise identical to that for experiment 1a. 

3.2. Results 

Our findings for experiment 1b are illustrated in Fig. 4. Our findings 
do not indicate a clear overall preference for the SVO-ordered gesture 
sequence compared to the SOV-ordered sequence (β = 0.31, SE = 0.17, z 
= 1.79, p = 0.07), though, across both event types, preference for the 
SVO sequence is higher than for experiment 1a (Ma = 0.43, Mb = 0.57). 
Consistent with experiment 1a, we find an increased preference for the 
SVO-ordered sequence for intensional events, compared to extensional 
events (β = 0.97, SE = 0.35, z = 2.77, p < 0.001), with this finding 
similarly reflecting in the strength of preference for the SVO sequence as 
indicated by the slider task (β = 0.14, SE = 0.04, z = 3.40, p < 0.001).3 

3.3. Interim summary 

We have used an online forced-choice selection task to replicate 
findings from a silent gesture production task (Schouwstra & de Swart, 
2014). While a forced-choice selection task is not in itself equal to 
gesture production,4 we demonstrate that constituent ordering prefer
ences are conditioned on the semantics of the event in the absence of 
existing conventions. In both experiments 1a and 1b, participants 
demonstrated an increased preference for SVO-ordered gesture se
quences when shown intensional events (in which the direct object is 
inherently linked to the event denoted by the verb), compared to 
extensional events (where the direct object exists independently of the 
event). Our experiment shows that the biases that drive this cannot be 
purely production related, and the naturalness preference must be 
rooted in general cognitive biases. 

In experiments 2a and 2b, we investigate preferences for SVO and 
SOV-ordered gesture sequences for extensional and intensional events 

3 Stimuli, data and analysis files can be accessed at https://osf.io/b9nm6 
4 We have previously run a version of experiment 1a with different in

structions, in which participants were first asked to imagine producing their 
own gestures to communicate the target event, before completing the forced- 
choice selection task. We find no difference in the results compared to the re
sults we report here (see https://osf.io/dpm34 for analysis of this study). 
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beyond improvisation, using an artificial language learning experiment 
to test whether participants preferences change as an effect of learning 
gestural descriptions with different frequencies of SOV and SVO. 

4. Experiment 2a: ordering preferences for events in a silent 
gesture learning task 

4.1. Methods 

Participants (N = 200) were recruited from Prolific to take part in an 
online gesture learning study in which they were first shown single 
gesture videos for different events in a training stage, and then asked to 
select gesture videos in a 2-alternative forced-choice task in a selection 
stage. The experiment took approximately 9 min to complete and par
ticipants were paid £1.31 for completion of the study. All participants 
were native speakers of English and had not taken part in any previous 
online gesture studies posted by the authors. 

Materials used in experiment 2a are identical to those used in 
experiment 1a. Participants were shown line drawings of one exten
sional and one intensional event (as shown in Fig. 1), and two videos for 

each event showing gesture sequences depicting the events in two or
ders, analogous to SVO-order and SOV-order. 

Participants were randomly assigned to one of four conditions, which 
determined the input they received during the training stage of the 
experiment. During training, participants completed 20 trials in which 
an event image was shown with a single corresponding gesture video 
underneath, which could be SVO- or SOV-ordered. The frequency with 
which they saw each order was determined by the experimental con
dition (explained in detail below). For each event, each condition had a 
majority order in which participants saw the gesture sequence video in 
that order in 7 out of 10 trials. 

4.2. Procedure 

The experiment consisted of 3 stages: a training stage, a selection 
stage and an estimation stage. In the training stage, participants 
completed 20 trials in which they saw either an extensional or an 
intensional event (10 trials for each event), with a gesture video shown 
on screen underneath the event image, and asked to watch the video 
carefully. Throughout training, participants saw gesture videos where 

Fig. 1. Event images used in the experiment, showing an extensional event (left), nun-throws-ukelele, and an intensional event (right), nun-thinks-about-ukelele.  

Fig. 2. Screenshots of the experiment, showing the forced-choice task (left) and the slider task (right).  

Y. Motamedi et al.                                                                                                                                                                                                                              
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the constituent gestures appeared in both SVO and SOV order, but the 
frequency with which they saw each order depended on the condition 
they were randomly assigned to. Each condition had a majority order for 
each event, shown in 7 out of the 10 training trials for that event. In the 
natural condition, the majority order reflected the natural semantically- 
conditioned ordering preference found in experiments 1a and 1b and in 
previous work (Schouwstra & de Swart, 2014; Schouwstra, de Swart, & 
Thompson, 2019), such that participants saw a majority order of SOV for 
the extensional event and SVO for the intensional event. In the unnatural 
condition, the majority order was the inverse of the natural condition, 

Fig. 3. (A) Proportion of participants who selected the SVO variant in experiment 1a, for each event type (A left), and the strength of preference for the SVO selection 
on the slider task (A right). (B) Proportion of SVO gesture sequences produced by participants in the study reported by Schouwstra and de Swart (2014) are added for 
comparison. All graphs show a main effect of event type (though the effect is strongest in the original experiment). 

Table 1 
English descriptions of events used in experiment 1b.  

Extensional Intensional 

Nun throws ukulele Nun thinks about ukulele 
Burglar cuts scarf Burglar knits scarf 
Chef pushes pram Chef dreams about pram 
Gnome eats banana Gnome paints banana  

Fig. 4. Proportion of participants who selected the SVO variant in experiment 1b, for each event type (left), and the strength of preference for the SVO selection on 
the slider task (right). 
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seeing a majority order of SVO for the extensional event and SOV for the 
intensional event.5 In the two remaining conditions, majority SVO and 
majority SOV, the majority order was the same for both event types (SVO 
and SOV, respectively), modelling a situation with systematic rather 
than semantically-conditioned ordering. For each participant, we 
randomised the order of presentation of event-gesture order combina
tions. The ordering patterns in each condition are given in Table 2. 

In the selection stage, participants completed trials similar to the 
selection tasks in experiments 1a and 1b. At each trial, participants saw 
either an extensional or an intensional event with both the SVO- and the 
SOV-ordered videos underneath the image in a forced-choice task. 
Participants were asked to select the video “like they saw in the first part 
of the experiment [the training stage]”. Participants completed 20 trials 
in total, 10 trials for the extensional and 10 trials for the intensional 
event. Trial order was randomised for each participant, as was the 
location of the SVO- and SOV-ordered videos in each trial. Finally, in the 
estimation stage, participants were shown both event images accom
panied by both of their corresponding videos (see Fig. 5), next to a nu
merical scale arranged from 0 to 10. Participants were asked to estimate, 
for each event and each video, how many times they saw the video 
during the training stage. The order of each event image (top, bottom) 
and each corresponding video was randomised per participant. 

The design of the estimation stage closely follows that reported by 
Ferdinand et al. (2019), which tested how participants learnt from 
variable input in a non-linguistic task and a linguistic task using written 
stimuli. If participants modify the input they receive in training, those 
modifications (and in particular, regularisation behaviour) could be due 
to difficulties encountered during encoding, or during retrieval, or both. 
Our selection stage models the production/retrieval stage, while the 
estimation stage models how participants encode the frequencies they 
saw in training. Testing whether the frequencies participants approxi
mate are different in the selection and estimation stages will allow us to 

ascertain whether the difference between input and output is driven by 
encoding (estimation stage) or retrieval (selection stage). 

The design and analysis plans were pre-registered on the OSF 
framework prior to data collection; documentation relating the pre- 
registered study can be found at https://osf.io/4wnjv. 

4.3. Results 

An overview of participants’ output from the selection stage is shown 
in Fig. 6, showing the proportion of trials in which each participant 
selected the SVO variant for the intensional and extensional event. First, 
we aim to test whether the output participants produce in the selection 
task and the estimation task reflect the input frequencies seen in 
training. This allows us to determine whether participants learn word 
order in the gestural domain. We measure learning as the proportion of 
the output trials that match their input. Secondly, we are also interested 
in whether — as in other frequency learning paradigms such as those 
used by Culbertson et al. (2012) and Ferdinand et al. (2019) — partic
ipants will regularise by overproducing the majority order in their 
output. This would indicate that the regularisation process is modality 
agnostic. Finally, we want to know whether learning leads to systems 
that consistently use one word order across both events, or whether the 
preference for semantically-conditioned orders based on event type 
found in experiments 1a and 1b persists following learning. As such, our 
remaining analyses provide measures of regularisation (reduction of 
variation for a given event), systematicity (reduction of variation across 
events) and naturalness (semantic conditioning). Additionally, to test if 
participants learned the input languages they were given, we tested if 
their responses reflected the majority orders in these languages. 

4.3.1. Selection stage 

4.3.1.1. Learning. Firstly, we analysed whether participants learned 
from the input they received, measuring whether participants selected 
the majority order seen in training in each selection trial (Fig. 7A). We 
used a logistic mixed effects model6 predicting reproduction of the 
majority order, including deviation-coded fixed effects of condition and 
event type (intensional/extensional) with a by-participant random 
intercept and a random slope of event type. The model including con
dition improved fit over the null model (χ2 = 29.61, p < 0.001); the 
inclusion of event type and the interaction between condition and event 
type did not improve model fit. The model intercept showed that, on 
average, participants select the majority order seen in training more 

Fig. 5. Screenshot of the estimation stage of the experiment. Participants are shown each event with each gesture variant, and must estimate how often they saw 
each variant in training. 

Table 2 
Frequency of order variants shown in training for each event type and each 
condition in experiment 2a.  

Condition Extensional event Intensional event 

SOV SVO SOV SVO 

Natural 7 3 3 7 
Unnatural 3 7 7 3 
Majority SVO 3 7 3 7 
Majority SOV 7 3 7 3  

5 We use the term ‘unnatural’ here to refer to the converse of the natural 
order in the context of these experiments. These terms are not used to evaluate 
relative ordering patterns in natural languages, nor should they be. 

6 Mixed-effects models here and throughout were implemented using lme4 
(Bates, Bolker, Machler, & Walker, 2015). 
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often than would be expected by chance (β = 0.83, SE = 0.16, z = 5.32, 
p < 0.001). Analysis of the fixed effects revealed that participants in the 
unnatural condition reproduced their majority order less frequently 
compared to the average across all conditions (β = − 1.45, SE = 0.27, z 
= − 5.32, p < 0.001), while participants in the SVO-majority condition 
reproduced their majority order more frequently on average (β = 0.94, 
SE = 0.28, z = 3.39, p < 0.001). We found no reliable differences for 
either the natural or SOV-majority conditions. 

4.3.1.2. Regularisation. Here we follow Ferdinand et al. (2019) in 
defining regularisation as the reduction of variation in selected re
sponses related to a given event. As such, we measure regularisation as 
the reduction in conditional entropy, which takes into account the 
probability of variants appearing in different contexts, given as: 

H(V|C) = −
∑

Cj∈C
p
(
cj
)∑

vi∈V
p
(
vi|cj

)
log2p(vi|ci)

where v is the set of variants (here SVO/SOV) and c the set of contexts 
they appear in (here the intensional or extensional event). We calculated 
the change in conditional entropy between participants’ selection out
puts and the input they received (H(V|C) = 0.88 across all conditions; 
conditional entropy change shown in Fig. 7B). Inspection of the distri
bution of entropy change indicated that our data were non-normal and 
did not meet the assumptions for a linear modelling analysis. As such, we 
calculated 95% bootstrapped confidence intervals around the mean of 
each condition, as well as around the differences between condition 
means. To calculate our confidence intervals, we used the boot package 
in R (Canty & Ripley, 2021), generating 10,000 samples. We use the 
accelerated bias-corrected method as recommended by Puth, Neu
häuser, and Ruxton (2015). Across conditions, the confidence intervals 
around the mean (Table 3) did not contain zero, indicating a drop in 
conditional entropy in each condition. Analysing differences across 
conditions, the confidence intervals given in Table 4 all contain zero, 
indicating that we do not find reliable differences in entropy change 
across conditions. 

4.3.1.3. Systematicity. We analysed systematicity as the reduction in 
variation across both events in the system,7 which we measure using 
Shannon entropy, where the entropy of a system is given as: 

H(V) = −
∑

vi∈V
p(vi)log2p(vi)

where V is the set of variants (here SOV and SVO orders). The most 
systematic ordering preference would use the same order for all event 
descriptions, giving an entropy value of 0; in contrast the natural and 
unnatural conditions have an input entropy of 1 because each order 
occurs in half of all trials. We calculated the entropy change between the 
input participants receive and the output they produce, illustrated in 
Fig. 7C. We also calculated 95% bootstrapped confidence intervals 
around the mean for each condition (. 

Table 5) and the difference between means across conditions 
(Table 6), following the same procedure as for the regularisation anal
ysis. We find a reduction in overall entropy across conditions, such that 
the confidence intervals around the mean for each condition do not 
contain zero, but no reliable differences between conditions. That is, 
participants in all 4 conditions show evidence of systematisation. 

4.3.1.4. Naturalness. Finally, we analysed the proportion of selection 
trials in which participants select the natural order based on the event 
(Fig. 7D), such that SVO is considered natural for intensional events and 
SOV for extensional events. We ran a logistic mixed effects model ana
lysing whether selection order matched natural order, with a model 
structure identical to that used for our learning measure. Model com
parison revealed that the full model with the interaction term repre
sented the best fit in this case (χ2 = 34.6, p < 0.001). The model results 
showed a significant positive intercept (β = 0.62, SE = 0.11, z = 5.52, p 
< 0.001), indicating that, on average, participants selected the natural 
order more often than we would expect by chance (collapsed across 
conditions, natural order occurred in the input 50% of the time). The 
model revealed no significant main effects, but did show interactions 
between event type and the two majority order conditions, such that 
natural order is used more often on average for intensional events in the 
majority SVO condition (β = 3.64, SE = 0.71, z = 5.16, p < 0.001) and 
more for extensional events in the majority SOV condition (β = − 2.99, 
SE = 0.68, z = − 4.40, p < 0.001). That is, natural order is favoured in 
the systematic conditions when it is consistent with the majority input 
order. 

4.3.2. Estimation stage 
We compare output from the selection stage with participants’ esti

mations of how often they saw each variant during training, to reveal the 
relative contributions of retrieval and encoding processes to changes 
made as a result of learning from variable input. 

4.3.2.1. Learning. We used a logistic mixed effects model to analyse 
how well participants output reflected the frequency of the majority 
order seen in training (Fig. 8A). To ensure our output variables were 
comparable (as we do not have trial-by-trial binary values for the esti
mation stage), we took the total frequency of the SVO-variant selected, 
weighted by the number of trials (i.e. in the estimation trial, participants 
estimated how many times they saw the SVO variant out of the total 
number of trials). We included condition, event type and response type 
(selection/estimation) as deviation-coded fixed effects along with their 
interactions, with a by-participant random intercept and a random slope 
of event type. Model comparison indicated that the full model (with all 

Fig. 6. Overview of selection stage results in experiment 2a, showing the 
proportions of SVO selections for both extensional (x-axis) and intensional (y- 
axis) events. Small shapes represent each individual participant, while large 
shapes represent the input values for each condition. 

7 Note that this measure differs from the planned measure described in our 
pre-registration, which operationalised harmonisation as the extent to which 
participants produced either of the two orders as a majority order. All analysis 
files, including the pre-registered analysis, can be found at https://osf.io/rz7ea. 
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interactions) improved fit over a reduced model without the three-way 
interaction (χ2 = 12.63, p = 0.006). Analysis of the model results8 

indicated that, overall, participants reproduced the frequencies seen in 

training less often in the estimation stage than the production stage (β =
− 0.28, SE = 0.05, z = − 5.44, p < 0.001), though responses for the 
estimation stage were higher than selection on average for the unnatural 
condition (β = 0.60, SE = 0.09, z = 6.78, p < 0.001), and lower for both 
the majority SVO (β = − 0.32, SE = 0.09, z = − 3.50, p < 0.001) and the 
majority SOV conditions (β = − 0.35, SE = 0.09, z = − 4.04, p < 0.001). 
Finally the three-way interaction term indicated that the difference 
between event types was larger in the estimation stage for the unnatural 

Fig. 7. Experiment 2a selection stage results. A) Proportion of trials in which participants select the majority order seen in training, for each condition and event 
type, as well as the overall mean in relation to chance performance (0.5). B) Regularisation results showing a reduction in conditional entropy in each condition. C) 
Proportion of trials in which participants select the natural order, for each condition and event type, as well as the overall mean in relation to chance performance 
(0.5). D) Systematicity results showing a reduction in entropy in each condition. All error bars represent bootstrapped 95% confidence intervals around the mean. 

Table 3 
Mean conditional entropy change in each condition, with lower and upper 
bounds for bootstrapped 95% confidence intervals around the mean.  

Condition x Lower 95% CI Upper 95% CI 

Natural − 0.41 − 0.50 − 0.30 
Unnatural − 0.44 − 0.52 − 0.34 
Majority SVO − 0.43 − 0.52 − 0.33 
Majority SOV − 0.51 − 0.60 − 0.42  

Table 4 
Mean difference in conditional entropy change between conditions, with lower 
and upper bounds for bootstrapped 95% confidence intervals around the mean 
difference.  

Conditions xa − xb Lower 95% CI Upper 95% CI 

Natural - unnatural 0.03 − 0.10 0.17 
Natural - SVO 0.02 − 0.12 0.16 
Natural - SOV 0.10 − 0.04 0.23 
Unnatural - SVO − 0.01 − 0.15 0.12 
Unnatural - SOV 0.07 − 0.06 0.20 
SVO - SOV 0.08 − 0.05 0.21  

Table 5 
Mean entropy change in each condition, with lower and upper bounds for 
bootstrapped 95% confidence intervals around the mean.  

Condition x Lower 95% CI Upper 95% CI 

Natural − 0.30 − 0.42 − 0.21 
Unnatural − 0.38 − 0.49 − 0.28 
Majority SVO − 0.31 − 0.42 − 0.20 
Majority SOV − 0.36 − 0.47 − 0.26  

Table 6 
Mean difference in entropy change between conditions, with lower and upper 
bounds for bootstrapped 95% confidence intervals around the mean difference.  

Conditions xa − xb Lower 95% CI Upper 95% CI 

Natural - unnatural 0.07 − 0.08 0.22 
Natural - SVO 0.001 − 0.15 0.16 
Natural - SOV 0.06 − 0.10 0.20 
Unnatural - SVO − 0.07 − 0.23 0.08 
Unnatural - SOV − 0.02 − 0.17 0.13 
SVO - SOV 0.05 − 0.10 0.21  

8 For clarity, we do not report all model results here. Full model results can be 
found at https://osf.io/rz7ea. 
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condition (β = 0.49, SE = 0.18, z = 2.78, p = 0.005) and smaller for the 
majority SVO condition (β = − 0.53, SE = 0.18, z = − 2.87, p = 0.004). 

4.3.2.2. Regularisation. We compared change in conditional entropy 
between the input participants received and their responses in the se
lection and estimation stages (Fig. 8B illustrates results for the estima
tion stage). We calculated 95% confidence intervals around the mean for 
each condition in the estimation stage (Table 7), as well as around the 
mean differences between selection and estimation for each condition 
(Table 8). Our analysis indicates a small reduction in conditional en
tropy in the natural condition, but no reliable change in the other con
ditions. Comparison with the selection stage indicates a significantly 
smaller reduction in conditional entropy across conditions in estimation 
than selection. 

4.3.2.3. Systematicity. We compared change in overall entropy (i.e., not 
conditioned on event) between the input participants received and their 
responses in the selection and estimation stages (estimation stage results 

shown in Fig. 8C). We calculated 95% confidence intervals around the 
mean for each condition in the estimation stage (Table 9), as well as 
around the mean differences between selection and estimation for each 
condition (Table 10). Our analysis indicates a small reduction in entropy 
in the natural and unnatural conditions, but no reliable change in the 
two majority order conditions. Comparison with the selection stage in
dicates a significantly smaller reduction in entropy across conditions in 
estimation than selection. 

Fig. 8. Experiment 2a estimation stage results. A) Proportion of trials in which participants select the majority order seen in training, for each condition and event 
type, as well as the overall mean in relation to chance performance (0.5). B) Regularisation results showing a reduction in conditional entropy in each condition. C) 
Proportion of trials in which participants select the natural order, for each condition and event type, as well as the overall mean in relation to chance performance 
(0.5). D) Systematicity results showing a reduction in entropy in each condition. All error bars represent bootstrapped 95% confidence intervals around the mean. 

Table 7 
Mean conditional entropy change in each condition in the estimation stage, with 
lower and upper bounds for bootstrapped 95% confidence intervals around the 
mean.  

Condition x
_ 

Lower 95% CI Upper 95% CI 

Natural − 0.08 − 0.18 − 0.004 
Unnatural − 0.003 − 0.09 0.04 
Majority SVO − 0.05 − 0.15 0.004 
Majority SOV − 0.04 − 0.12 0.01  

Table 8 
Mean difference in conditional entropy change between the selection and esti
mation stage for each condition, with lower and upper bounds for bootstrapped 
95% confidence intervals around the mean difference.  

Condition xest − xselect Lower 95% CI Upper 95% CI 

Natural − 0.33 − 0.45 − 0.20 
Unnatural − 0.43 − 0.54 − 0.32 
Majority SVO − 0.37 − 0.49 − 0.24 
Majority SOV − 0.47 − 0.57 − 0.34  

Table 9 
Mean entropy change in each condition in the estimation stage, with lower and 
upper bounds for bootstrapped 95% confidence intervals around the mean.  

Condition x Lower 95% CI Upper 95% CI 

Natural − 0.09 − 0.17 − 0.04 
Unnatural − 0.07 − 0.15 − 0.03 
Majority SVO 0.02 − 0.06 0.05 
Majority SOV 0.04 − 0.03 0.07  
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4.3.2.4. Naturalness. We use the same procedure as our learning mea
sure to analyse to what extent participants’ responses in the selection 
and estimation stages indicate a preference for natural ordering patterns 
(Fig. 8D shows results from the estimation stage). Model structure was 
identical to that described for our learning measure. The full model with 
the three-way interaction term demonstrated a significantly better fit 
over a reduced model (χ2 = 75.75, p < 0.001). Overall, we found that 
participants exhibit less preference for natural order in the estimation 
stage than in the selection stage (β = − 0.22, SE = 0.05, z = − 4.23, p <
0.001). In addition, inspection of the three-way interaction indicates 
that the difference between event types was smaller in the estimation 
stage than in selection for both the majority SVO condition (β = − 1.07, 
SE = 0.18, z = − 5.77, p < 0.001) and the majority SOV condition (β =
1.41, SE = 0.18, z = 8.00, p < 0.001). 

In summary, we have found that participants trained on SOV and 
SVO gesture variants communicating a single extensional and a single 
intensional event regularise the variable input they receive in training, 
in two ways. Participants show both a preference for naturalness, such 
that they produce the natural ordering pattern more often than would be 
expected by chance, and also systematising behaviour, where one order 
is used more frequently to describe both events. Moreover, the change 
between input and output is primarily driven by the retrieval biases 
tested in the selection task, rather than the encoding bias tested in the 
estimation task. In experiment 2b, we ask whether these behaviours hold 
when participants are trained on gestures for multiple events that can be 
grouped into extensional and intensional events. 

5. Experiment 2b: ordering preferences for event categories in a 
silent gesture learning task 

Participants (N = 200) were recruited from Prolific to take part in an 
online experiment almost identical in procedure to experiment 2a, 
where they were first trained on gesture sequences for events and then 
asked to select gesture sequences for events in the selection stage. Our 
findings from study 2a suggested that differences between the input and 
output were driven primarily by selection/retrieval and not estimation/ 
encoding; as such, we did not include the estimation stage in study 2b. 
All participants were native speakers of English and had not taken part 
in any previous online gesture studies posted by the authors. While in 
experiment 2a the task used only 1 intensional-extensional pair of 
events, here we used 4 intensional-extensional event pairs and corre
sponding gesture sequences, identical to those used in experiment 1b. 
This allows us to test whether the same patterns hold where condi
tioning is on event type, rather than specific events. 

The design of experiment 2b, including assignment to the 4 condi
tions was identical to that of experiment 2a, with one exception. In the 
present experiment, participants saw a randomised set of 3 out of the 4 
event pairs (to reduce the total duration of the experiment). As such, 
they completed 8 trials for each event in training and selection (48 trials 
in total in each stage) and, in training, saw the majority order in 6/8 
trials (75% majority). 

5.1. Results 

Fig. 9 gives an overview of participants’ output in experiment 2b. We 

apply the same measures here as in experiment 2a, measuring i) learning 
ii) regularisation, iii) systematicity and iv) the preference for natural 
order. All analysis procedures, including model structure, are identical 
to those used for experiment 2a. Pre-registration, data files and analysis 
scripts can be found at https://osf.io/smvwp. 

5.1.1. Learning 
Learning results are shown in Fig. 10A. Model comparison indicated 

that the model with the interaction term improved fit over a reduced 
model (χ2 = 10.60, p = 0.01). Analysis of the model revealed a signifi
cant positive intercept (grand mean; β = 1.02, SE = 0.09, z = 11.36, p <
0.001), indicating that participants selected the majority order seen in 
training more often than we would expect by chance. As in experiment 
2a, participants in the unnatural condition selected the majority order 
seen in training less often than average (β = − 0.60, SE = 0.15, z =
− 3.90, p < 0.001), while participants in the majority SVO condition 
selected the training majority more often than average (β = 0.49, SE =
0.15, z = 3.17, p = 0.002). In addition, we found an interaction between 
condition and event type, such that for the majority SOV condition, 
participants demonstrated lower reproduction of the input majority for 
intensional compared to extensional events (β = − 0.60, SE = 0.29, z =
− 2.04, p = 0.04). 

5.1.2. Regularisation 
The reduction in conditional entropy in each condition is illustrated 

in Fig. 10B. Mean values and 95% confidence intervals around the mean 
for each condition are given in Table 11; mean differences between 
conditions and 95% confidence intervals are given in Table 12. We find a 
reduction in conditional entropy in all conditions except for the unnat
ural condition, though overall this reduction is lower on average than for 
experiment 2a. Inspection of the differences between conditions suggest 
that the two majority order conditions show a higher average reduction 
in conditional entropy than the unnatural condition. 

5.1.3. Systematicity 
Fig. 10D illustrates the reduction in Shannon entropy in each con

dition, with mean values and 95% confidence intervals given in 
Table 13. Participants in each condition demonstrate a reduction in 
entropy, though lower on average compared to that found in experiment 
2a (x

_ 
= − 0.15), with no reliable differences between conditions (see 

Table 14). 

5.1.4. Naturalness 
The proportion of selection trials in which participants selected the 

natural order is shown in Fig. 9C. A model analysing natural order 

Table 10 
Mean difference in entropy change between the selection and estimation stage 
for each condition, with lower and upper bounds for bootstrapped 95% confi
dence intervals around the mean difference.  

Condition xest − xselect Lower 95% CI Upper 95% CI 

Natural − 0.22 − 0.34 − 0.10 
Unnatural − 0.31 − 0.43 − 0.19 
Majority SVO − 0.32 − 0.45 − 0.20 
Majority SOV − 0.40 − 0.51 − 0.28  

Fig. 9. Overview of selection task results in experiment 2b.  
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selection including the full fixed effects structure (including the inter
action between condition and event type) improved fit over the model 
without the interaction term (χ2 = 64.94, p < 0.001). Inspection of the 
model results revealed a significant positive intercept (β = 0.28, SE =
0.06, z = 4.96, p < 0.001), indicating an overall preference for the 
natural ordering pattern. Model results suggest that participants in the 
unnatural condition selected the natural order less often than on average 

(β = − 0.69, SE = 0.10, z = − 7.12, p < 0.001), while the interaction 
terms suggested, as in experiment 2a, that the majority order conditions 
demonstrated a greater preference for the natural order when it was 
consistent with the training majority (majority SVO: β = 2.57, SE = 0.37, 
z = 6.88, p < 0.001, majority SOV: β = − 2.82, SE = 0.39, z = − 7.29, p <
0.001). 

Fig. 10. Experiment 2b results. A) Proportion of trials in which participants select the majority order seen in training, for each condition and event type, as well as 
the overall mean in relation to chance performance (0.5). B) Regularisation results showing a reduction in conditional entropy in each condition. C) Proportion of 
trials in which participants select the natural order, for each condition and event type, as well as the overall mean in relation to chance performance (0.5). D) 
Systematicity results showing a reduction in entropy in each condition. All error bars represent bootstrapped 95% confidence intervals around the mean. 

Table 11 
Mean conditional entropy change in each condition, with lower and upper 
bounds for bootstrapped 95% confidence intervals around the mean.  

Condition x Lower 95% CI Upper 95% CI 

Natural − 0.15 − 0.23 − 0.09 
Unnatural − 0.06 − 0.15 0.002 
Majority SVO − 0.19 − 0.28 − 0.11 
Majority SOV − 0.21 − 0.31 − 0.13  

Table 12 
Mean difference in conditional entropy change between conditions, with lower 
and upper bounds for bootstrapped 95% confidence intervals around the mean 
difference.  

Conditions xa − xb Lower 95% CI Upper 95% CI 

Natural - unnatural − 0.09 − 0.19 0.02 
Natural - SVO 0.04 − 0.07 0.15 
Natural - SOV 0.06 − 0.06 0.18 
Unnatural - SVO 0.13 0.02 0.24 
Unnatural - SOV 0.15 0.03 0.27 
SVO - SOV 0.02 − 0.10 0.15  

Table 13 
Mean entropy change in each condition, with lower and upper bounds for 
bootstrapped 95% confidence intervals around the mean.  

Condition x Lower 95% CI Upper 95% CI 

Natural − 0.17 − 0.25 − 0.12 
Unnatural − 0.17 − 0.26 − 0.11 
Majority SVO − 0.12 − 0.21 − 0.05 
Majority SOV − 0.16 − 0.26 − 0.07  

Table 14 
Mean difference in entropy change between conditions, with lower and upper 
bounds for bootstrapped 95% confidence intervals around the mean difference.  

Conditions xa − xb Lower 95% CI Upper 95% CI 

Natural - unnatural 0.001 − 0.09 0.10 
Natural - SVO − 0.05 − 0.15 0.06 
Natural - SOV − 0.01 − 0.13 0.11 
Unnatural - SVO − 0.05 − 0.16 0.06 
Unnatural - SOV − 0.01 − 0.13 0.11 
SVO - SOV 0.04 − 0.10 0.17  

Y. Motamedi et al.                                                                                                                                                                                                                              



Cognition 228 (2022) 105206

12

5.2. Discussion 

In experiment 2a and 2b, participants reduced the variability in the 
word order patterns that they learned, both within event type, and 
across event types. In other words, they both regularise and systematise 
the input. At the same time, however, participants show an overall 
preference for naturalness: the selected responses were more likely to be 
natural than unnatural. This preference interacted with the rules of the 
input language, such that participants were more likely to choose a 
natural order if that was the majority order in the language they had 
been trained on. However, while these preferences occur after a single 
period of learning, languages are transmitted from one generation of 
learners to the next, for many generations. In the following section, we 
use our experimental results to model this process of cultural evolution, 
to understand how these preferences might evolve over longer 
timescales. 

6. Predicting the evolution of ordering preferences 

As languages are transmitted from one generation to the next, the 
learning preferences of each consecutive generation has an effect on the 
data produced, so over generations the language is shaped by accumu
lating learning preferences (Kirby, Griffiths, & Smith, 2014). The data 
from experiments 2a and 2b describe one generation of observing, 
processing and producing SOV and SVO word orders for multiple events 
(where we take the choice of two gesture videos as a stand-in for full 
production that we might see in a lab-based artificial sign language 
learning experiment). However, these results do not inform us directly 
about how these processes shape word-order after multiple generations. 
To investigate this, we use an iterated learning model of cultural 
transmission in which the produced data of one learner serves as the 
training data for another learner. Griffiths and Kalish (2007) have 
shown that iterated learning is equivalent to a finite Markov chain, 
which is a discrete-time random process over a sequence of variants 
(vt=1, vt=2,… vt=n), in which only the previous value (vt− 1), has an in
fluence on the current value (vt): 

P
(
vt=1, vt=2,…vt=n

)
= P( vt | vt− 1)

A Markov process is specified by a transition matrix, which defines 
the probabilities of each possible observation state (Si) to transition to 
each possible production state (Sj) after one step of time (t). In the 
Markov process of experiments 2a and 2b, we make the simplifying 
assumption that there are only four possible states corresponding to each 
of the four experimental conditions: natural, unnatural, majority SOV, 
majority SVO.9 The transition probabilities of each state were deter
mined by the productions of participants in the respective condition. So, 
for example, if a participant produced majority SOV, irrespective of 
what proportion they actually produced, they would be treated as pro
ducing an output state corresponding to the majority SOV state in the 
transition matrix. A word order was considered the majority order for an 
event type when it was produced in >50% of the trials. Data from par
ticipants without a majority order for either event type (i.e., who pro
duced equal proportions of each word order) were excluded from the 
transition matrices (experiment 2a: n = 24; experiment 2b: n = 9). 
Transition matrices for are shown in the top panels of Fig. 11 for 
experiment 2a (A) and experiment 2b (B). 

We can take a distribution of different language types represented as 
a vector and multiply this by the transition matrix to get the distribution 
of different language types expected after one generation of learning. 
Repeating this process n times models the change in distribution after n 

generations. For most cases of language evolution that can be modelled 
this way, there will be some distribution of language types that remain 
unchanged if they are multiplied by the transition matrix, and further
more this distribution will eventually be reached by the process of 
transmission given enough generations. This is termed the stationary 
distribution and can be thought of as the probability of different lan
guages over time after the influence of the starting state has been 
washed out by sufficient generations of language change. In the context 
of experiment 2a and 2b, the stationary distribution is a distribution 
over the four states of the system, where each probability corresponds to 
the proportion of time the system will spend in each production state. 
The stationary distribution of a transition matrix is proportional to its 
first eigenvector. Stationary distributions are shown in the bottom 
panels of Fig. 11, for experiment 2a (A) and 2b (B). 

These results suggest that, while all output states (i.e. language 
types) are possible, they vary in their probability in the stationary dis
tribution, with the majority orders being overall most common 
(comprising around 75% output languages), but with natural systems 
also likely to occur (in approximately 20% output languages). In 
contrast, unnatural systems are expected to be very unlikely to persist 
over time (< 5% of cases). 

7. Discussion 

Previous experimental work has shown that, when asked to produce 
gestures without speech, the order in which participants produce ges
tures is conditioned on the semantics of the events, with extensional 
events tending to appear in SOV sequences and intensional events 
appearing in SVO sequences (Schouwstra & de Swart, 2014). Here, we 
replicate and extend that finding. In experiments 1a and 1b, we find a 
similar preference for natural semantically-conditioned orders in a 
forced choice task, demonstrating that the preference for natural 
ordering is not solely a production bias, but a preference that operates in 
the absence of existing conventions. 

In experiments 2a and 2b, we asked whether this naturalness pref
erence persists following learning, or whether learning would lead to a 
shift towards a preference for systematic orders, where a single order is 
used regardless of event semantics. We found that participants do show 
increasing systematisation following learning, with entropy reducing 
across both extensional and intensional event categories. This possibly 
reflects a general bias for simplicity (Culbertson & Kirby, 2016), where 
the simplest system is one in which all events are expressed with a single 
order. However, we also find that the preference for natural systems still 
persists and appears to exist in competition with a preference for sys
tematic ordering patterns, contrary to our predictions. 

Our learning task also replicates previous findings from regularisa
tion experiments in a new modality, finding that participants are able to 
learn from gestural input in an online artificial language learning 
experiment and that participants regularise variable input in the manual 
modality to a similar extent as written or spoken stimuli (Culbertson 
et al., 2012; Ferdinand et al., 2019). In particular, the reduction in 
conditional entropy we find across conditions is comparable to that 
found by Ferdinand et al. (2019) for their linguistic task (i.e. with a more 
extreme reduction in entropy than the non-linguistic task). Moreover, 
our results from experiment 2a showing greater change between input 
and output in the production task compared to the estimation task, 
suggest, in line with Ferdinand et al. (2019) and Saldana et al. (2018), 
that the changes we see between input and output are better explained 
as operating during retrieval than during encoding. 

Our finding that naturalness can persist beyond learning suggests 
that the preference for semantically-conditioned ordering patterns 
continues even once conventions are established. Importantly, this does 
not appear to be the case in the unnatural condition, where the input 
frequencies were not learned well by participants, suggesting that the 
preference for natural ordering (where extensional events are preferred 
in SOV order and intensional events in SVO order) is about the specific 

9 Note that, in the context of the current experiment, this is a substantial 
simplification of the possible input - output space, which, in reality, would 
contain 2n states for all possible sequences of n responses (here 10 per event in 
experiment 2a, 8 per event in experiment 2b). 
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mapping between event and order rather than a general preference for 
consistent conditioned variation. Previous explanations for the natural 
preference have relied on iconicity; for extensional events, subject and 
object must be co-present before the event takes place, but for inten
sional events the direct object is a product of the event itself (i.e. the cake 
does not exist until you bake it). That is, the preferred orders reflect the 
temporal or conceptual structure of the events themselves. In this way, 
the unnatural mapping is dispreferred because it is anti-iconic and runs 
counter to participants’ expectations. In addition, we find little differ
ence in participants’ behaviours in experiment 2a, where they see ges
tures for only 2 events and experiment 2b, where they see multiple 
instances of extensional and intensional events. Therefore, we assert that 
the natural ordering preference can be regular, such that it applies across 
whole categories and not just to individual items, as we found in ex
periments 1a and 1b. 

We also used the data from our learning experiments to model the 
cultural transmission of word order preferences over time. Previous 
work has shown that weak bias can be amplified through cultural 
transmission (Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 
2007; Reali & Griffiths, 2009; Thompson, Kirby, & Smith, 2016), so 
learning at a single time point may not be sufficient to explain the types 
of structures we see in natural languages. Our work suggests that both 
preferences for systematic and natural ordering patterns will be pre
served over time, but that languages with unnatural orders will be 
strongly dispreferred relative to the other biases at play. 

Our finding that naturalness does persist beyond learning runs 
counter to our expectations that a preference for natural ordering would 
give way to a preference for systematic languages, given that most of the 
world’s languages are characterised as having one dominant word order. 
Instead, our findings suggest that languages should be able to evolve 
regular ordering patterns that are either natural or systematic, and we 
should expect to see both types of languages in the real world. Recent 
data from two sign languages, NSL (Flaherty et al., 2018) and Libras 
(Napoli et al., 2017) have offered evidence of the natural ordering 
pattern, in line with this prediction. This demonstrates that, while it may 
be rare in natural languages, it is nevertheless possible. Furthermore, it 
is possible that natural ordering patterns cross-linguistically, though 
they may not be most frequent for a given language, may be present at 
some level if a gradient view of word order is taken, such that different 

ordering preferences may be evident in different contexts. For example, 
Levshina et al. (2021) strongly advocate for a gradient approach as the 
default approach to word order, with (for example) animacy, informa
tion structure and dependency length affecting processing and produc
tion of word orders in natural languages. Indeed, previous silent gesture 
research has uncovered similarly varied factors affecting the ordering of 
gesture sequences in the lab (Gibson et al., 2013; Hall et al., 2013; Kirton 
et al., 2021; Meir et al., 2014). At present, more work is needed to un
derstand the contexts that shape and shift ordering preferences over 
time. Future work should investigate how different interacting factors 
may lead to the types of gradient ordering systems we see in languages 
today. Also, it should be noted that word order is by no means the only 
strategy for conveying who does what to whom; alternative strategies 
include case marking, and (particularly in signed languages) usage of 
space. Another important line of work is collecting evidence (from 
corpora as well as experiments) to investigate the tradeoff between word 
order and other strategies (e.g., Bjerva & Börstell, 2016; Fedzechkina, 
Newport, & Jaeger, 2017; Hörberg, 2018; Levshina, 2021; Tal & Arnon, 
2022). 

8. Conclusion 

In the absence of existing conventions, participants prefer orders that 
are semantically conditioned on the semantics of the event — SOV order 
for extensional events and SVO order for intensional events. In a 
learning task, participants regularised the variable input they received, 
suggesting that linguistic regularisation operates similarly across mo
dalities. However, the output participants produced demonstrated 
preferences for both the natural semantically-conditioned order, as well 
as systematic ordering that used the same word order across events. We 
show that natural ordering patterns can persist beyond communication 
without conventions, appearing in competition with a bias for system
aticity. The observations from NSL and Libras have shown us what these 
languages can look like, and an important direction for future research is 
to investigate how other natural languages combine natural and sys
tematic ordering in one and the same system. 

Fig. 11. Transition matrices (top) and stationary distribution (bottom) for experiments 2a (A) and 2b (B).  
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