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Abstract
From the world wide web, to genomics, to traffic analysis, graphs are central to many scientific, engineering, and societal 
endeavours. Therefore an important question is what hardware technologies are most appropriate to invest in and use for 
processing graphs, whose sizes now frequently reach terabytes. Non-Volatile Random Access Memory (NVRAM) tech-
nology is an interesting candidate enabling organisations to extend the memory in their systems typically by an order of 
magnitude compared to Dynamic Read Access Memory (DRAM) alone. From a software perspective, it permits to store a 
much larger dataset within a single memory space and avoid the significant communication cost incurred when going off 
node. However, to obtain optimal performance one must consider carefully how best to integrate this technology with their 
code to cope with NVRAM esoteric properties such as asymmetric read/write performance or explicit coding for deeper 
memory hierarchies for instance. In this paper, we investigate the use of NVRAM in the context of shared memory graph 
processing via vertex-centric. We find that NVRAM enables the processing of exceptionally large graphs on a single node 
with good performance, price and power consumption. We also explore the techniques required to most appropriately exploit 
NVRAM for graph processing and, for the first time, demonstrate the ability to process a graph of 750 billion edges whilst 
staying within the memory of a single node. Whilst the vertex-centric graph processing methodology is our main focus, not 
least due to its popularity since introduced by Google over a decade ago, the lessons learnt in this paper apply more widely 
to graph processing in general.

Keywords  NVRAM · DCPMM · Vertex-centric

Introduction

Large-scale graph processing is an important activity which 
underlies many technologies. Taking the internet as an 
example, the fact that so many patterns of web-based inter-
action, from likes and friends on social networking sites, to 
click throughs can be represented as a graph data structure 
means that companies generate vast value from analysing 
such structures. Further afield, many communities including 

biological research, transportation planners, and communi-
cation specialists, also derive significant benefits from graph 
processing. However with the explosion in data, which is 
only set to continue, graph sizes are growing exponentially 
and an important question is how we can support the pro-
cessing of next-generation graphs in the coming decades.

In graph processing, terabytes of memory can be 
required to hold large graphs which is orders of magni-
tude larger than what can be reasonably held within the 
DRAM of a single node. This is one of the key motivations 
underpinning the popularity of distributed memory graph 
processing [5] . In the distributed approach one is scal-
ing across nodes due to memory limits rather than being 
driven by computational concerns, but this can result in 
numerous disadvantages. The first of which is the need to, 
often entirely, rewrite the shared memory implementation, 
commonly into some form of message-passing abstrac-
tion which requires communications to be explicitly pro-
grammed. Such inter-node communications are likely to 
result in significant communication overhead if they are 
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unstructured, which is the case for graph processing. Fur-
thermore, graph processing is prone to heavy load imbal-
ance due to the power-law distribution underpinning many 
graphs, and this forms a major obstacle to efficient distrib-
uted graph partitioning. An alternative approach especially 
popular in graph processing is that of out-of-core solu-
tions [11], where the file system is used as a backing store 
for data and the DRAM as effectively a manual caching 
mechanism, fetching the data into DRAM as it is required 
and flushing unneeded data back to disk. Due to the disk 
being orders of magnitude slower than DRAM, the per-
formance of out-of-core solutions greatly depends on the 
careful scheduling of those operations. Unfortunately, 
predicting such behaviour with an irregular, variable, and 
imbalanced workload is not trivial [2]. In short, graph pro-
cessing is a prime example of an application where one 
would ideally stay within the memory space of a single 
node for as long as possible.

One possible solution to this challenge is the use of com-
modity Non-Volatile Random Access Memory (NVRAM) 
which has recently emerged on the market through Intel’s 
Optane DC Persistent Memory Modules (DCPMM). Whilst 
this is slightly slower than DRAM, although much faster 
than disk, the significantly increased per-DIMM capacity 
compared to DDR4 DRAM, means that byte-addressable 
NVRAM can provide much larger RAM-style memory pools 
than DRAM alone. Furthermore, NVRAM can act as an 
extension to DRAM in a totally transparent manner, mean-
ing applications can leverage this technology without any 
code changes required. Whilst DCPMM is Intel’s specific 
NVRAM implementation, in this paper we use these terms 
interchangeably. Therefore for large-scale graph process-
ing the use of NVRAM could be a game changer, enabling 
much larger graphs to be processed without incurring the 
performance overheads of moving inter-node or to out-of-
core solutions. In this paper, we explore the use of Intel’s 
DCPMM in the context of vertec-centric graph process-
ing, to understand the role that this could play and the most 
appropriate techniques to obtain optimal performance. Our 
contributions are:

•	 Experimenting with and analysing the scalability of 
shared memory vertex-centric graph processing using 
NVRAM. Resulting in, as far as we are aware, a new 
world record for the size of graph processed within a 
single node without the use of out-of-core computation.

•	 Evaluating the need for manual tuning of existing codes 
to most efficiently exploit NVRAM.

•	 Quantifying the impact of NVRAM data placement 
based on the type of memory access performed.

•	 Discussing the price and power properties of using 
NVRAM for large-scale graph processing compared to 
alternate distributed approaches.

The rest of this paper is organised as follows: “Related 
work” presents related work and introduces the persistent 
memory technology and vertec-centric, before “Persistent 
memory modes” focuses on the Intel Optane DC Persistent 
Memory Module. “Experimental environment” describes the 
environment in which experiments are conducted, followed 
by “Results” which analyses the results obtained, before we 
draw conclusions and discuss potential future work direc-
tions in “Conclusion”.

Related Work

Interest in non-volatile memory technologies has grown over 
the past decade [4], with hardware advances in the last two 
years now resulting in this technology becoming commod-
ity and a realistic proposition for use in the data-centre and 
High-Performance Computing (HPC) machines. One such 
recent NVRAM technology is Intel’s Optane DC Persistent 
Memory (DCPMM)  [9]. Released in April 2019, in addition 
to featuring byte-addressability and non-volatility, the prod-
uct is provided in a standard DRAM DIMM form-factor and 
at a significantly lower cost per byte than previous DRAM 
and NVRAM solutions. The byte-addressability means that 
the CPU can access any location in the DCPMM, effectively 
meaning that DCPMM has the ability to be used as either an 
extra storage disk, or an additional pool of RAM. The focus 
in this paper is most interested in the second benefit, where 
the between five and ten times increase in per-DIMM capac-
ity when compared to DDR4 DRAM, results in the ability 
to provide a very large memory spaces. Therefore, whilst 
DCPMM is slower than DRAM, it makes possible the ability 
to equip nodes with an additional layer of memory hierarchy 
of TBs in size, at much lower energy and purchase cost than 
if this was all DRAM. DCPMM’s read bandwidth is quoted 
as around 2.4 times lower than DDR4 DRAM and write 
bandwidth around 6 times lower than DDR4 DRAM  [18], 
however this is still far faster than disk and can often be ame-
liorated in an application either by using the node’s DRAM 
as an additional layer of cache (which is an automatic feature 
of the technology), or by the programmer explicitly control-
ling data placement.

Previous studies have been conducted around the use of 
NVRAM for a variety of applications, including [19] which 
specifically focuses on the use of DCPMM for scientific 
codes. An exciting result has been to show that applications 
which scale poorly in the distributed memory environment, 
can exploit NVRAM’s large memory space to significantly 
increase the local problem size (effectively the data which 
can fit into a node’s memory space) and ultimately improve 
performance. This has been highlighted as an important 
facet of the technology, extending the memory capacity of 
a node to enable applications most suited to shared memory 
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operation to reach a scale hitherto unobtainable with DRAM 
exclusively.

In recent years graph size has grown exponentially to 
reach today’s scale which routinely involves hundreds of bil-
lions of edges, and even over a trillion for the largest graphs 
reported [14, 16, 20]. The amount of memory required to 
process such graphs increases with graph size and now 
stands at TBs for the largest graphs. The actual computa-
tion required for processing the graph is typically fairly low, 
with the codes themselves limited by the amount of memory 
that can be provided. Whilst the ideal is to stay within a 
single node, when processing the largest graphs the memory 
required is beyond what the vast majority of machines can 
hold or reasonably affordable to provide. Traditionally, there 
have been two possible approaches to tackle processing such 
large graphs. The first is that of distributed parallelism, often 
via MPI, but graph processing applications tend to be com-
munication intensive, resulting in poor inter-node scaling. 
Furthermore, the high load-imbalance frequently found in 
graphs, especially within social networks, greatly increases 
the complexity of developing efficient distributed memory 
solutions. This was demonstrated in  [12], where a 70 tril-
lion edge graph (the overall world record for graph size in a 
distributed memory environment) was processed on 38,656 
compute nodes of Sunway TaihuLight (with each node con-
taining 260 CPU cores). This required over a million CPU 
cores to process the graph, and in their scaling experiments 
they highlighted that performance was limited by the bisec-
tion bandwidth due to static routing in InfiniBand, and the 
increasing volume of the graph cut in their distributed algo-
rithm. The second possible solution is the use of out-of-
core techniques, where significant chunks of a large graph 
are held on disk (typically SSDs) and the DRAM is effec-
tively used as a cache managed explicitly by the program-
mer. However, this approach also tends to perform poorly, 
because of the relatively long latencies and low bandwidth 
of disk accesses.

This is where we believe NVRAM can be of great benefit 
for graph processing, enabling one to process much larger 
graphs within a single node before being forced to move to 
distributed memory, based on a technology which is hun-
dreds of times faster than disk for access [19]. Furthermore, 
graph processing represents a workload with a highly irregu-
lar memory access pattern, which in itself is an important 
application pattern to explore within the context of how best 
one can leverage NVRAM most effectively, with lessons 
learnt applying more widely across other codes which also 
exhibit similar irregular memory access patterns. There have 
been a couple of previous studies of NVRAM with graph 
processing, for instance [8] where the authors compared a 
number of existing graph frameworks on NVRAM without 
optimising them specifically for this technology, and [6] 
where the authors developed their own placement algorithm 

exploiting the asymmetry between NVRAM read and write 
operation performance. Both these studies concluded that 
NVRAM is a worthwhile technology for graph processing, 
and in this paper we build upon the existing work, studying 
the use of NVRAM to hold much larger graphs (our largest 
graph contains 750 billion edges, compared to 128 billion 
and 225 billion edges respectively of these previous studies) 
and we undertake a more detailed exploration from the per-
spective of the programmer looking to obtain optimal perfor-
mance from the DCPMM technology for their graph code.

Vertex‑Centric and iPregel

The vertex-centric programming model is a popular 
approach for graph processing. This model, invented in 
2010 by Google [13], is designed so that one can express 
graph computation from a vertex perspective. The design 
of the vertex-centric programming model is inspired from 
the Bulk Synchronous Parallel (BSP) model developed by 
Valiant [17]. This choice is motivated by the fact that BSP 
makes it ”easier to reason about program semantics when 
implementing algorithms, and ensures that Pregel programs 
are inherently free of deadlocks and data races common in 
asynchronous systems” [13].

As a result, the vertex-centric execution flow consists of 
a sequence of iterations called supersteps, where the user-
defined function containing the logic of a given algorithm 
is applied to vertices conceptually in parallel. Vertices can 
communicate via messages, thanks to the message-passing 
abstraction provided. Each vertex has a mailbox from which 
it can read messages that were emitted by their senders dur-
ing the previous superstep. Similarly, vertices can send mes-
sages, which will be accessible by their recipient during the 
next superstep.

The application termination relies on the notion of active 
vertex. Every vertex begins the first superstep as active and 
has the ability to halt by calling a halt function from within 
the user-defined function. Upon halting, a vertex becomes 
inactive, and will stay so until it receives a message. At 
the beginning of a superstep, vertices that are inactive are 
skipped, and the user-defined function is applied to active 
vertices, conceptually in parallel. During execution, mes-
sages are sent and read as explained above, and inactive 
vertices having received a message are re-activated. When 
all vertices have been processed, every message transmitted 
and every inactive vertex re-activated where appropriate, the 
superstep ends, as illustrated in Fig. 1. If there is at least one 
active vertex, a new superstep begins, else the application 
terminates.

The vertex-centric programming model quickly gained 
traction due to the simplicity and programmer productivity 
of the interface it exposes. In the last decade, numerous ver-
tex-centric frameworks have been implemented, and a range 
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of solutions that span the shared memory, distributed mem-
ory, and out-of-core techniques have grown popular. This 
has become a popular graph processing model employed 
by numerous organisations including web companies, and 
continued advances in the vertex-centric methodology mean 
that this is likely to become even more prevalent in the com-
ing years.

One such framework is iPregel [1], which is arguably the 
most advanced shared memory vertex-centric framework, 
outperforming all other comparable technologies in its class 
both in terms of performance and memory usage. In [1] 
iPregel was tested against the distributed memory vertex-
centric framework Pregel+ then state-of-the-art. iPregel 
proved to outperform Pregel+ by a median factor of 6.5, as 
well as demonstrating a higher memory efficiency by need-
ing only 11GB of RAM to process a Twitter graph made of 
2 billion edges while Pregel+ needed 109GB, and Giraph 
264GB. iPregel is especially interesting here as it has been 
demonstrated to perform comparatively against other frame-
works having sacrificed vertex-centric features or abstraction 
layers for performance [3]. This addresses the traditional 
disadvantage of vertex-centric where previously some per-
formance was sacrificed for programmer productivity, while 
iPregel demonstrated that both performance and memory 
efficiency could be maintained while preserving the core 
advantage of vertex-centric: its programmability. Recent 
work with iPregel [2] focused on strategies to efficiently 
cope with the multiple challenges in vertex-centric program-
ming such as load balancing or fine-grain synchronisations. 
Notably, the introduction of a novel hybrid combiner auto-
matically switching from lock-based to lock-less execution 
permitting to go as far as quadrupling the performance of 
iPregel. This variety of techniques, aspects and problems 
investigated in these works mean that the lessons learnt in 
this paper can apply, not only to the vertex-centric model 
specifically but also more widely.

Persistent Memory Modes

In addition to the hardware itself, the Intel Optane DC 
persistent memory modules also ship with libraries that 
enable them to be used in different modes, offering dif-
ferent levels of granularity in the control of data place-
ment. These modes can be activated by rebooting the 
node, which usually takes approximately 20 min, making 
it relatively easy to switch between DCPMM modes with-
out hindering the overall throughput of jobs on a cluster.

Memory Mode

The first mode presented in this paper is referred to as 
memory mode, which is is very convenient due to it being 
entirely transparent to applications. This requires no 
application modification because the NVRAM provided 
by the DCPMM becomes the main memory space whist 
the DRAM effectively becomes the last level cache. By 
default, all allocations (both static and dynamic) take place 
on the DCPMM.

App‑Direct Mode

The app-direct mode is the second mode presented in this 
paper and, unlike memory mode, does not provide auto-
matic access to the DCPMM. Instead, existing DRAM 
remains main memory while the NVRAM can also be 
accessed by explicit load and store operations. Allocating 
memory on the DCPMM can be achieved by mounting a 
file system upon it, and using a special malloc interface 
from the libvmem library which is part of the Persistent 
Memory Development Kit (PMDK) [15].

DCPMM’s app-direct mode can also be used in con-
junction with the libvmmalloc library, which intercepts all 
dynamic allocations calls including malloc. These dynamic 
allocations, which without this library would have taken 
place in DRAM (as described in previous paragraph), will 
now take place within DCPMM. In other words, dynamic 
allocations now take place on the DCPMM while static 
allocation continue to be placed in DRAM. Furthermore, 
unlike the general app-direct mode and explicit use of 
PMDK, this mode does not require application rewriting 
other than the inclusion of the libvmmalloc.h header file.

Fig. 1   A bulk-synchronous parallel superstep
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Experimental Environment

This section describes the conditions in which our experi-
ments were run, from the hardware and software used, to 
the graphs and application selected.

Hardware and Software

The experiments presented in this paper have been run on 
the cluster built as part of the NextGenIO project whose per-
node specifications are given in Table 1. The cluster contains 
34 identical nodes totalling over 100 TB of NVRAM and 
6.5 TB of DRAM. Given the shared memory nature of the 
work presented in this paper, only one node of this cluster 
was used at any given time during the experiments discussed 
in “Results”.

The iPregel framework was compiled with GCC 8.3.0 
with support for OpenMP version 4.5 enabled. OpenMP 
threads are placed on physical cores and are pinned to them 
to prevent thread migration. Also, threads are placed on con-
secutive physical cores; meaning that the first 24 OpenMP 
threads are placed on the same NUMA region. The libraries 
libvmem and libvmmalloc have been used and these can be 
found in Intel’s Persistent Memory Development Kit [15].

Graphs Selected

Table 2 lists the graphs that have been used in the experi-
ments of “Results”. Of the five graphs, three of them have 
been created using a Kronecker graph generator, where the 
name of these Kronecker graphs contains the parameters to 

reproduce them. The first number represents the logarithm 
base 2 of the number of vertices, and the second number 
the logarithm base 2 of the average out-degree. The graphs 
generated vary in sparsity, with an average degree of up to 
500 which mimics those typically found in large social net-
work graphs [14].

The two other graphs have been generated using our own 
graph generator, which provides a finer control over ver-
tex adjacency lists. Each graph was generated in two forms; 
consecutive and scattered, where both versions comprise the 
same number of vertices, edges and degrees. The difference 
is in the locality of each vertex’s neighbours, where the con-
secutive version results in the neighbour list of each vertex 
containing consecutive vertex identifiers. For instance, given 
a vertex i, in this configuration, its neighbours would be 
i + 1, i + 2, ..., i + n , where n is the number of neighbours. 
By contrast, the scattered version inserts a gap between any 
two consecutive neighbours, such that the identifiers of two 
consecutive neighbours are widely separated. For example, 
in this configuration given a vertex i, its neighbours would 
be i + a, i + 2a, ..., i + na , with n the number of neighbours 
and a the gap length. These two configurations have been 
designed to represent extreme cases of memory locality, 
consecutive and non-consecutive access, which enables us 
to explore the impact of cache and page friendliness in the 
context of the NVRAM. These graphs are denoted as C-V for 
the consecutive version, and S-V for the scattered version, 
where V is the number of vertices in millions. The degree 
remains 500 in all cases and the gap a is set to 100,000 for 
the scattered versions. It can be seen that four out of our five 
graphs are larger than the largest experiments conducted in 
both previous studies of graph processing on NVRAM [8] 
and [6].

Application selected

The results presented in this paper are obtained by running 
ten iterations of the vertex-centric implementation of Pag-
eRank, whose code is illustrated in Fig. 2. PageRank is at 
the core of vertex-centric programming and has become a 
de-facto benchmark in the graph community. There are other 
commonly used graph processing applications, such as the 
Shortest Single-Source Path or the Connected Components, 
but PageRank provides a stable workload across iterations. 
Crucially for our purposes, this means that it minimises 
load-imbalance in the sense that every vertex participates 
towards the calculation at every superstep, whereas other 
graph applications deactivate vertices as the calculation pro-
gresses. This enables our experiments to remain focused on 
evaluating the performance of the NVRAM hardware and 
software, without being potentially biased by application or 
configuration specific logical behaviour. Moreover, PageR-
ank places the most pressure on the memory subsystem as 

Table 1   Hardware specification of a NextGenIO node

Metric Value

Processor 2 × Xeon Platinum 
8260M 24-core @ 2.4 
GHz

Volatile memory (DRAM) 192 GB (12 × 16 GB)
Non-volatile memory (NVRAM) 3072 GB (12 × 256 GB)

Table 2   Graphs selected

Name Number of vertices Number of directed edges

S-250 / C-250 250,000,000 250,000,000,000
S-750 / C-750 750,000,000 750,000,000,000
Kronecker 25 500 33,554,432 33,554,432,000
Kronecker 28 500 268,435,456 268,435,456,000
Kronecker 33 16 8,589,934,592 274,877,906,944
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every vertex broadcasts a message to all its neighbours at 
every superstep. Therefore the number of messages emit-
ted at every single superstep is equal to the total number 
of edges, placing a high degree of pressure on the memory 
system thus making it a challenging test of NVRAM per-
formance. As such, whilst it might seem somewhat narrow 
to focus on one specific graph application only, no addi-
tional applications were selected in our experiments because 
PageRank inherently exposes the characteristics that most 
accurately explore the role of NVRAM, with the conclusions 
then applicable to a wide variety of other graph applications.

The experiments presented in this paper were conducted 
on two versions of the iPregel vertex-centric framework. 
These are push and pull, where the versions are alterna-
tive implementations of iPregel, triggering specific opti-
misations by redesigning certain part of the vertex-centric 
features and tuning them for specific situations. The push 
version of iPregel consists of each sender manually writing 
into the recipient’s memory, where the thread that processes 
a vertex will write into the memory of each neighbouring 
vertex, typically held at random locations in memory. Of 
most interest to us, this version generates memory writes at 
multiple memory locations, in addition to the locks required 
to prevent potential data race. By contrast, the pull version 
consists in the recipient fetching messages from senders. 
The thread processing a vertex will therefore read from the 
memory locations of the sender vertices, before writing into 
the recipient vertex only. In addition to being lock-free, the 
pull version therefore generates writes that take place at a 

single memory location. These two versions thus make for 
two configurations that stress the memory in different ways 
and provide additional information to aid analysing the per-
formance of NVRAM under pressure.

Results

This section presents and analyses the results collected dur-
ing our experiments. We explore multiple data placement 
configurations to assess the different performance overheads 
related to the use of NVRAM, and by leveraging the mem-
ory modes presented in “Memory mode”, we control the 
placement of vertices and edges.

Experiment 1: Staying in DRAM

The first experiment presented in this paper compares pro-
cessing a graph which is stored exclusively in DRAM, and 
then exclusively in NVRAM. By comparing these runtimes 
we can then highlight any overhead imposed by the use of 
NVRAM.

To place a graph entirely in DRAM we use the app-direct 
mode presented in “App-direct mode”, where dynamic allo-
cations are by default placed on the DRAM. By contrast, to 
place the graph in NVRAM we use the libvmmalloc library 
(see “App-direct mode” ), where dynamic allocations are 
automatically intercepted and their NVRAM-equivalent are 
instead issued.

The graph selected is the Kronecker 25 500; a graph small 
enough to fit within the 192GB of DRAM available on a 
single node. Nonetheless, it remains a graph that has over 
30 billion edges which is larger than most graphs processed 
by shared memory frameworks or publicly available [7, 10].

The results gathered from this experiment are illustrated 
in Fig. 3, where it can be seen that there is always an over-
head observable between the DRAM and NVRAM place-
ment, as expected. Irrespective of the parallel configuration 
until 16 OpenMP threads included, NVRAM placement of 
the graph is approximately 2.5 times slower than its DRAM 
counterpart for pull version, and three times slower for the 
push version.

The performance exhibited by the NVRAM-only place-
ment at 32 and 48 threads deviates from the scaling pattern 
seen with smaller thread counts and there is also a notice-
able performance drop too. This is explained by how the 
NVRAM-only placement is implemented, where dynamic 
memory allocations are supplied from a memory pool built 
upon a memory-mapped file. This memory-mapped file can 
only be created on either the first or second socket, mean-
ing that only the NUMA region local to that socket will be 
local to that memory pool. A socket contains 24 physical 
cores on this NextGenIO cluster and utilising fewer than 24 

void IP_compute(struct IP_vertex_t* me) {
if(IP_is_first_superstep ()) {

me->val = 1.0/ IP_get_vertices_count ();
} else {

IP_MESSAGE_TYPE sum = 0.0;
while(IP_get_next_message(me , &me->val)) {

sum += me->val;
}
me->val = 0.15 / IP_get_vertices_count ()

+ 0.85 * sum;
}
if(IP_get_superstep () < ROUND) {

if(me->out_neighbour_count > 0) {
IP_broadcast(me,

me->val / me->out_neighbours_count );
}

} else {
IP_vote_to_halt(me);

}
}

void ip_combine(IP_MESSAGE_TYPE* old ,
IP_MESSAGE_TYPE new) {

*old += new;
}

Fig. 2   PageRank implemented in iPregel
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OpenMP threads, given the OpenMP placement configura-
tion adopted, results in those OpenMP threads being pinned 
to physical cores on the socket which is local to the memory-
mapped file. However, 32 and 48 OpenMP thread configura-
tions result in threads also being mapped to physical cores of 
the other socket, and hence accessing the memory-mapped 
file in a cross-NUMA fashion which impacts performance. 
Until this cross-NUMA configuration is reached, we can see 
that the use of NVRAM memory mode does not hinder par-
allel scaling, either for the push version, or the pull version.

Experiment 2: Scaling Up Graphs

Unlike the experiment presented in “Experiment 1: staying 
in DRAM”, our next experiment aimed to explore the use of 
DRAM and NVRAM working together. To achieve this, we 
use DCPMM’s memory mode (see “Memory mode”), which 
automatically places data in NVRAM and uses DRAM as 
a last level cache.

Our three Kronecker graphs (see Table 2) are used for 
this experiment, designed to gradually increase the pressure 
on the non-volatile memory as their size grows. The first 
graph is the Kronecker 25 500, the 30 billion edge graph 
used in experiment one and small enough to fit entirely in 
DRAM. The second graph selected is Kronecker 28 500, 
and with 270 billion edges requires more than 5 times the 
memory available in DRAM. The third graph is Kronecker 
33 16 which also contains approximately 270 billion edges, 
however, this graph holds 30 times more vertices; exceeding 
232 . Such a number of vertices requires vertex identifiers to 

be encoded using 64-bit integers instead of 32-bit, effec-
tively doubling the amount of memory required to store the 
edges. Moreover, the number of edges per vertex on this last 
graph is 30 times lower than that on the Kronecker 28 500 
where vertices are more densely interconnected, enabling us 
to evaluate the performance of the automatic cache feature 
on widely different graphs.

The timings collected during this experiment are reported 
in Fig. 4 and, as expected, runtime increases as the graph 
size grows. The Kronecker 25 500, which can fit entirely 
in DRAM, only requires a single movement of data from 
NVRAM to cache it in DRAM. The two other graphs, how-
ever, cannot fit in DRAM alone and therefore require multi-
ple data movements between NVRAM and DRAM as data 
is evicted from this last level cache.

It can be observed that whilst both the Kronecker 33 16 
and Kronecker 28 500 graphs contain a similar number of 
edges, processing of the former performs worse than the 
later. The crucial difference here is in the number of vertices, 
with Kronecker 33 16 containing 30 times more vertices 
than Kronecker 28 500. Storing the 280 million vertices of 
the Kronecker 28 500 graph requires approximately 10GB 
in iPregel, which can fit in DRAM. By contrast, storing 
30 times more vertices consumes over 300 GB of mem-
ory, exceeding the total amount of DRAM available. As a 
result, not all vertices can be held in DRAM at once and as 
a superstep processes vertices must be evicted from DRAM 
to NVRAM.

This experiment has allowed us to evaluate the perfor-
mance of using DRAM and NVRAM together. However, 
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Fig. 3   Evolution of the iPregel runtime against the number of threads, for the Kronecker 25 500 graph using different graph memory placements
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whilst DCPMM’s memory mode enables the use of a much 
larger memory pool without requiring application rewriting, 
the initial placement of all data on NVRAM regardless of 
their access pattern is likely sub-optimal. This can have seri-
ous implications for performance when edges evict vertices 
from the DRAM cache, since the NVRAM overhead of the 
latter is three to four times bigger.

Experiment 3: Read/Write Schism

The second experiment does not take into account the eso-
teric property of NVRAM, where the overhead involved in 
read and write operations is asymmetric (write operations 
being over twice as slow as read). Therefore, it was our 
hypothesis that to most optimally leverage NVRAM, one 
should understand these differences and tune their applica-
tion accordingly.

To minimise the penalty of NVRAM’s write overhead, 
data should be placed on DRAM or NVRAM based on its 
access pattern. It follows that DRAM should, therefore, be 
privileged for data that is read-write, while NVRAM should 
be ideally kept for read-only data. In the case of iPregel for 
instance, vertices are writable while edges are read-only. 
Therefore, this experiment relies on vertices being placed in 
DRAM and edges in NVRAM. Furthermore, since NVRAM 
modules are plugged to DRAM slots, they are subject to 
Non-Uniform Memory Access (NUMA) effects. There-
fore, to maximise performance, the placement of edges on 
NVRAM should be NUMA-aware; placing edges on the 

NVRAM NUMA region corresponding to that of the vertex 
from which they are outgoing.

App-direct mode (see “App-direct mode”) is used to man-
ually place data on the DRAM or NVRAM, where a file 
system is mounted on each NVRAM NUMA region which 
is then accessed via PMDK’s libvmmem library. The first 
step involves allocating a memory space on the NVRAM, 
from which a pointer is returned. Subsequently this pointer 
is then passed to a decorated set of functions equivalent to 
classic malloc functions, which perform the actual allocation 
on the NVRAM area pointed to.

Figure 5 reports the runtimes obtained by applying the 
read/write split technique on the Kronecker 25 500 graph 
(30 billion edges). We compare this runtime against those 
collected in previous experiments (DRAM-only, Memory 
mode, and NVRAM-only). The performance observed is 
bounded by the DRAM-only and NVRAM-only configura-
tions, where for both the push and pull versions the DRAM-
only configuration is the fastest, and NVRAM-only the 
slowest. It can be seen that the RW-split and memory mode 
experiments exhibit similar performance, with the memory 
mode approach being slightly slower in both cases. There-
fore, having vertices pinned in DRAM, by contrast to the 
memory mode that may evict them and flush them back to 
NVRAM, helps the RW-split configuration to offer improved 
performance. It should be highlighted that the fact that this 
graph fits in DRAM does smooth the data movements per-
formed by memory mode.

As expected, placing data while taking into the asymmet-
ric overhead of NVRAM allows us to obtain a performance 
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improvement. Nonetheless, the performance presented in 
the three experiments so far rely on Kronecker graphs made 
of random connections between vertices. As a result, the 
impact that memory locality has on performance must not 
be ignored.

Experiment 4: data locality and paging

To complement the experiments presented in “Experiment 1: 
staying in DRAM”, “Experiment 2: scaling up graphs” and 
“Experiment 3: read/write schism”, a fourth experiment was 
designed which evaluates the impact of memory locality. 
The experiment presented in this subsection involves two 
versions of each graph which share the same size, both in 
terms of vertices and edges but differ in terms of how they 
are connected. This is an important property as it influences 
the efficiency of caching during graph processing.

As described in “Experimental environment”, two graphs 
have been designed, each with a contiguous and scattered 
version. Contiguous versions contain vertices whose neigh-
bours are consecutive identifiers, whereas the scattered ver-
sions contain vertices with neighbours that are widely apart 
from each other. The NVRAM memory mode presented in 
“Memory mode” was selected so that its ability to auto-
matically paging data between NVRAM and DRAM can be 
explored. Furthermore, the graphs generated consisting of 
250 and 750 billion edges respectively, enabling us to evalu-
ate the performance of NVRAM under significant memory 
pressure.

Figure 6 depicts the runtimes collected when processing 
synthetic graphs C/S-250 and C/S-750 respectively. Whilst, 
as would be expected, absolute runtime is less for the 250 
billion edge graphs, scalability remains as high when tripling 
the graph size to 750 billion edges. The graphs with scat-
tered memory access patterns exhibit poorer performance 
than those with consecutive accesses. This is no great 

surprise and is due to the extra paging operations required 
when recipient vertices are not already in DRAM, which is 
much more likely to occur on the scattered configurations. 
The overhead witnessed varies between 3.19 and 6.85 times, 
with 4.99 times being the average, depending on the graph 
size and iPregel version used, albeit then remaining constant 
as the number of threads increases.

The performance observed on NVRAM for these graphs 
is reported in Table 3 in terms of billion edges traversed per 
second (GTEPS). As observed above, scattered neighbours 
result in a significant performance overhead compared to the 
contiguous graph versions, and to our knowledge, the 750 
billion edge graph runs are a new world record for the size 
of graph processed within a single node without the use of 
out-of-core computation. For comparison, PageRank with 
similarly sized synthetic large graphs when processed using 
the latest out-of-core solutions typically ranges between 0.07 
and 0.83 GTEPS [12], and distributed GraM over 64 servers 
results in 8.6 GTEPS [12]. GraM was the fastest reported 
PageRank implementation for large graphs until the ShenTu 
implementation which significantly out performs all of these 
approaches by two to three orders of magnitude over 38,656 
compute nodes. Whilst the performance of ShenTu is hugely 
impressive, realistically even for large companies such as 
Facebook or Google, such a specialist and expensive system 
is likely a difficult proposition.

Performance Summary

Across the four experimental configurations tested, certain 
performance patterns and overheads were observed. Table 3 
reports the performance in billion edges traversed per sec-
ond (GTEPS) observed in our experiments conducted in this 
section.

As expected, the highest performance is delivered for the 
contiguous version of the graph made of 250 billion edges 
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Fig. 5   Evolution of the iPregel runtime in seconds on the Kronecker 25 500, using multiple data placement configurations, for both push and 
pull versions at 16 threads



	 SN Computer Science           (2022) 3:385   385   Page 10 of 13

SN Computer Science

(C-250). This is due to the optimal data-locality and load-
balancing, and enables both iPregel versions to achieve 
approximately ten GTEPS. Between 85 and 90% of this 
performance was preserved when moving to the C-750 
graph which contains three times as many edges, resulting in 
approximately 8.6 GTEPS for both the pull and push iPregel 
versions.

The performance observed on their scattered counterparts 
however is noticeably lower due to poor data locality. Per-
formance achieved for the scattered graphs are 3.1 to 3.6 
times lower than those seen for contiguous graphs with the 
pull version, and 4.5 to 6.4 times lower for the push version. 
This difference is explained by the access pattern paired 
with the asymmetric read-write overhead of NVRAM. 
The pull version of iPregel fetches broadcast messages 
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Fig. 6   Evolution of the iPregel runtime against the number of threads used, on the contiguous and scattered versions of the 250 and 750 billion 
edge graphs

Table 3   Maximum number of billions of edges traversed per second 
(GTEPS) by the pull and push versions of iPregel, on all graphs con-
sidered in this section, running over 48 threads

Graph Pull version Push version

C-250 10.12 9.56
S-250 3.26 2.13
C-750 8.61 8.63
S-750 2.35 1.35
Kronecker 25 500 3.35 2.10
Kronecker 28 500 2.31 1.55
Kronecker 33 16 0.61 0.54
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from neighbours (read) and combines them on the vertex 
being processed (write). Thus all writes are located on the 
vertex which is being processed by the executing thread. 
Conversely, with the push version of iPregel, when a thread 
processes a vertex then as messages are produced by that 
vertex these are immediately placed into the recipient’s 
mailbox (or combined with an already present message). 
Therefore, writes are located on every neighbour of the ver-
tex being processed, and therefore no longer local but are 
instead remote. Although both iPregel versions encounter 
scattered memory accesses when processing the S-250 and 
S-750 graphs, only for the push version does the location 
of write accesses change. Therefore this version of iPregel 
is more impacted by the write-specific additional overhead 
imposed by NVRAM.

When considering the Kronecker graphs the pattern of 
performance for each iPregel version is initially similar. 
When moving from the K 25 500 to the K 28 500 graph, 
the later comprising 8 times as many vertices and edges, 
this results in a performance reduction of approximately 
30% for both iPregel versions. However, the performance 
reduces significantly, by approximately 70%, when mov-
ing from the K 28 500 to the K 33 16 graph. This perfor-
mance decrease is explained by the increased number of 
vertices, over 8 billions, for the K 33 16 graph. Whilst such 
an increase enlarges the workload, the main issue is that at 
this scale a change in the type used to identify vertices is 
required. Eight billion is beyond what can be encoded by 
a 32-bit unsigned integer type and therefore this number of 
vertices requires the use of a 64-bit type instead. Whilst the 
consequence for the vertex data structure is fairly negligible, 
requiring only an additional 4 bytes per vertex structure, it is 
far more significant for the edges. Such an increase in data-
type size results in each edge requiring double the amount of 
memory, resulting in longer loading times as well as worse 
data locality since the cache now contains 50% fewer edges.

It is also instructive to compare the performance for our 
approach on NVRAM reported in Table 3 with other popular 

graph processing frameworks which do not use NVRAM. 
Table 4 is reproduced from [12] and illustrates the perfor-
mance achieved by these other graph processing frameworks 
with similar-sized graphs. Whilst the exact configuration of 
these graphs is not made explicit in [12], and likely a number 
of different configurations are used between frameworks, 
a number of broad comparisons can still be made. Firstly 
frameworks including G-Store, Graphene, and Mosaic utilise 
an out-of-core approach for processing these large graphs 
within a single node. Irrespective, this results in very poor 
performance which is typically significantly lower than all 
our performance figures for graph processing with NVRAM, 
apart from when we run the Kronecker 33 16 graph due to 
the issues highlighted in this section. Whilst each of these 
frameworks is utilising a server with SSDs rather than spin-
ning hard disks, clearly the performance delivered by such 
hardware for large-scale graph processing falls significantly 
short of that delivered by NVRAM.

Whilst the parallelised in-memory frameworks Giraph 
and GraM deliver much greater performance than the out-
of-core solutions in Table 3, our results demonstrate that a 
single node NVRAM approach to graph processing is still 
competitive for a number of graph types. Moreover, Giraph 
and GraM deliver only 0.028 GTEPS and 0.134 GTEPS per 
node respectively. Performance wise the stand out frame-
work in Table 3 is that of ShenTu which, for a similar sized 
graph achieved 72.8 GTEPS over 1024 nodes. However, as 
we explore in “Additional metrics”, this is equivalent to only 
0.07 GTEPS per node.

Additional metrics

In addition to raw performance, other metrics such as pur-
chase cost and energy efficiency are also important when one 
is considering a specific hardware solution such as NVRAM. 
A node from the NextGenIO cluster contains hardware 
totalling £20,000. Comparatively, taking the example of the 
Sunway TaihuLight supercomputer, 96 nodes are needed 
to obtain the same amount of memory. With the total cost 
of the 40,960-node supercomputer estimated at 273 mil-
lion dollars [21], we estimate a per node price of 6665 dol-
lars (approximately £5000). Processing our graphs which 
occupy 3072 GB of memory therefore either require a single 
£20,000 NextGenIO node, or 96 × £5000 Sunway Taihu-
Light nodes totalling £480,000. From a cost perspective 
alone there would be an approximate saving of £460,000 by 
adopting a non-volatile memory approach. Of course in such 
a scenario, the amount of computational processing power 
that can be leveraged by 96 nodes of the Sunway TaihuLight 
supercomputer far exceeds that of a single NextGenIO node, 
however as described in “Related work”, typically vertex-
centric graph processing is not computationally bound and 

Table 4   Performance of other graph processing frameworks running 
with similar sized graphs to ours, data reported in [12] and repro-
duced here for comparison against NVRAM results

Framework In-memory or 
out-of-core

Configuration Perfor-
mance 
(GTEPS)

Giraph In-memory 200 nodes 5.6
GraM In-memory 64 nodes 8.6
ShenTu In-memory 1024 nodes 72.8
Chaos Out-of-core 32 nodes(480GB SSD each) 0.07
G-Store Out-of-core 1 node(8x512GB SSDs) 0.23
Graphene Out-of-core 1 node(16x500GB SSDs) 0.83
Mosaic Out-of-core 1 node(6 NVMe SSDs) 0.82
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there is a communication overhead involved in a distributed 
memory approach.

Energy and power usage is another metric that has 
become increasingly important over recent years. The 
NextGenIO and Sunway TaihuLight nodes share the same 
power consumption (approximately 400 W), therefore in 
terms of power draw, which can be a major limit for data-
centre machine rooms, NextGenIO will draw 96 times less 
power when at full load at any one point in time. It is also 
instructive to compare the overall energy consumption in 
terms of energy to solution, which also requires taking into 
account the execution time. The fact that NextGenIO and 
Sunway TaihuLight nodes share the same power consump-
tion allows the calculations to be simplified to runtime alone. 
When processing one iteration of PageRank on Kronecker 
34 16, which is twice as many vertices and edges of the 
Kronecker 33 16, the ShenTu framework using 1024 nodes 
from the Sunway TaihuLight supercomputer reaches 72.8 
GTEPS, equivalent to 0.07 GTEPS per node. By contrast, 
when processing one iteration of PageRank on Kronecker 33 
16, iPregel using a single node from the NextGenIO cluster 
reaches 0.60 GTEPS. This is 8.5 times more GTEPS for a 
graph twice as small. Unless the runtime grows as a quartic 
of the graph size, the NextGenIO node proves to be more 
efficient when considering the energy to solution.

Conclusion and Further Work

In this paper, we have discussed and analysed multiple 
experiments covering numerous scenarios in testing the 
performance of NVRAM for processing large-scale graphs. 
These experiments have been designed to evaluate the per-
formance of NVRAM when used in isolation, or in con-
junction with DRAM either implicitly or directly by the 
programmer. Two versions of the iPregel vertex-centric 
framework which exhibit different memory access patterns 
have been used as a vehicle to drive our experiments, with 
five different graphs including two specifically designed to 
provide fine control over data locality.

Whilst the focus of this paper has been on the vertex-
centric methodology, and such a study is highly interest-
ing in itself, we believe that the results and conclusions 
drawn can be more widely applied to both other graph 
processing technologies and codes with similar irregular 
memory access patterns. We found that NVRAM permits, 
without code rewriting, a shared memory framework such 
as iPregel to seamlessly scale to a graph of 750 billion 
edges, equivalent to 75% the Facebook graph [14]. To our 
knowledge, this is a new world record for the largest graph 
ever processed by a shared memory system without the use 
of out-of-core computation, and makes NVRAM a cru-
cial enabler in reaching new horizons in shared memory 

graph processing within reasonable purchase cost and 
energy usage. Therefore for technology companies, such 
as Facebook and Google, who have large graph process-
ing requirements and vast data centres, it is our opinion 
that NVRAM is a technology that should be considered 
a serious contender as having a role in their overarching 
hardware strategy. This is not least because such a step 
change in single-node graph processing capability can be 
delivered at a very reasonable price and power cost com-
pared with other options.

We observed the impact of data placement and con-
firmed that, if one is willing to invest time in tuning their 
code for NVRAM, then manually placing data based upon 
the access pattern provides a better performance than that 
of automatic placement. Nonetheless, the multiple modes 
available to make use of NVRAM allow non-experts to 
leverage this technology without having to rewrite their 
application or their framework, and experts to rewrite parts 
of their software to make the most of this technology.

Moving forwards, we believe that in addition to being 
an enabler for shared memory graph processing systems, 
NVRAM could very well prove revolutionary in distrib-
uted memory graph processing systems too. In contrast 
to the Sunway TaihuLight supercomputer, where the full 
Sogou graph (270 billion vertices and 12 trillion edges) 
required at least 10,000 nodes [12], holding the Sogou 
graph in NVRAM memory could be achieved with fewer 
than 50 nodes based upon the NextGenIO cluster specifica-
tions. Furthermore, it was demonstrated in “Performance 
summary” that on a node by node basis the performance 
of existing distributed in-memory graph processing frame-
works tends to be poor. As a next step, we believe it is 
important to explore how the emergence of clusters made 
of low-numbered large-memory nodes could also lead 
to the design of a new generation of distributed memory 
graph systems and algorithms. This will potentially deliver 
next generation extremely large graph processing perfor-
mance by combining the single-node performance enabled 
by NVRAM with the memory capabilities of multi-node 
NVRAM.
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