

Edinburgh Research Explorer

NVRAM as an enabler to new horizons in graph processing

Citation for published version:
Capelli, LAR, Brown, N & Bull, JM 2022, 'NVRAM as an enabler to new horizons in graph processing', SN
Computer Science, vol. 3, no. 5, 385. https://doi.org/10.1007/s42979-022-01317-4

Digital Object Identifier (DOI):
10.1007/s42979-022-01317-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
SN Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1007/s42979-022-01317-4
https://www.research.ed.ac.uk/en/publications/541de3ee-3a58-4a61-b944-a2ea22f4d064

Vol.:(0123456789)

SN Computer Science (2022) 3:385
https://doi.org/10.1007/s42979-022-01317-4

SN Computer Science

ORIGINAL RESEARCH

NVRAM as an Enabler to New Horizons in Graph Processing

Ludovic Anthony Richard Capelli1 · Nicholas Brown2 · Jonathan Mark Bull2

Received: 24 June 2021 / Accepted: 7 July 2022
© The Author(s) 2022

Abstract
From the world wide web, to genomics, to traffic analysis, graphs are central to many scientific, engineering, and societal
endeavours. Therefore an important question is what hardware technologies are most appropriate to invest in and use for
processing graphs, whose sizes now frequently reach terabytes. Non-Volatile Random Access Memory (NVRAM) tech-
nology is an interesting candidate enabling organisations to extend the memory in their systems typically by an order of
magnitude compared to Dynamic Read Access Memory (DRAM) alone. From a software perspective, it permits to store a
much larger dataset within a single memory space and avoid the significant communication cost incurred when going off
node. However, to obtain optimal performance one must consider carefully how best to integrate this technology with their
code to cope with NVRAM esoteric properties such as asymmetric read/write performance or explicit coding for deeper
memory hierarchies for instance. In this paper, we investigate the use of NVRAM in the context of shared memory graph
processing via vertex-centric. We find that NVRAM enables the processing of exceptionally large graphs on a single node
with good performance, price and power consumption. We also explore the techniques required to most appropriately exploit
NVRAM for graph processing and, for the first time, demonstrate the ability to process a graph of 750 billion edges whilst
staying within the memory of a single node. Whilst the vertex-centric graph processing methodology is our main focus, not
least due to its popularity since introduced by Google over a decade ago, the lessons learnt in this paper apply more widely
to graph processing in general.

Keywords NVRAM · DCPMM · Vertex-centric

Introduction

Large-scale graph processing is an important activity which
underlies many technologies. Taking the internet as an
example, the fact that so many patterns of web-based inter-
action, from likes and friends on social networking sites, to
click throughs can be represented as a graph data structure
means that companies generate vast value from analysing
such structures. Further afield, many communities including

biological research, transportation planners, and communi-
cation specialists, also derive significant benefits from graph
processing. However with the explosion in data, which is
only set to continue, graph sizes are growing exponentially
and an important question is how we can support the pro-
cessing of next-generation graphs in the coming decades.

In graph processing, terabytes of memory can be
required to hold large graphs which is orders of magni-
tude larger than what can be reasonably held within the
DRAM of a single node. This is one of the key motivations
underpinning the popularity of distributed memory graph
processing [5] . In the distributed approach one is scal-
ing across nodes due to memory limits rather than being
driven by computational concerns, but this can result in
numerous disadvantages. The first of which is the need to,
often entirely, rewrite the shared memory implementation,
commonly into some form of message-passing abstrac-
tion which requires communications to be explicitly pro-
grammed. Such inter-node communications are likely to
result in significant communication overhead if they are

 * Ludovic Anthony Richard Capelli
 l.capelli@ed.ac.uk

 Nicholas Brown
 n.brown@epcc.ed.ac.uk

 Jonathan Mark Bull
 m.bull@epcc.ed.ac.uk

1 School of Informatics, The University of Edinburgh,
Edinburgh, UK

2 Edinburgh Parallel Computing Centre, The University
of Edinburgh, Edinburgh, UK

http://orcid.org/0000-0002-6578-2459
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01317-4&domain=pdf

 SN Computer Science (2022) 3:385 385 Page 2 of 13

SN Computer Science

unstructured, which is the case for graph processing. Fur-
thermore, graph processing is prone to heavy load imbal-
ance due to the power-law distribution underpinning many
graphs, and this forms a major obstacle to efficient distrib-
uted graph partitioning. An alternative approach especially
popular in graph processing is that of out-of-core solu-
tions [11], where the file system is used as a backing store
for data and the DRAM as effectively a manual caching
mechanism, fetching the data into DRAM as it is required
and flushing unneeded data back to disk. Due to the disk
being orders of magnitude slower than DRAM, the per-
formance of out-of-core solutions greatly depends on the
careful scheduling of those operations. Unfortunately,
predicting such behaviour with an irregular, variable, and
imbalanced workload is not trivial [2]. In short, graph pro-
cessing is a prime example of an application where one
would ideally stay within the memory space of a single
node for as long as possible.

One possible solution to this challenge is the use of com-
modity Non-Volatile Random Access Memory (NVRAM)
which has recently emerged on the market through Intel’s
Optane DC Persistent Memory Modules (DCPMM). Whilst
this is slightly slower than DRAM, although much faster
than disk, the significantly increased per-DIMM capacity
compared to DDR4 DRAM, means that byte-addressable
NVRAM can provide much larger RAM-style memory pools
than DRAM alone. Furthermore, NVRAM can act as an
extension to DRAM in a totally transparent manner, mean-
ing applications can leverage this technology without any
code changes required. Whilst DCPMM is Intel’s specific
NVRAM implementation, in this paper we use these terms
interchangeably. Therefore for large-scale graph process-
ing the use of NVRAM could be a game changer, enabling
much larger graphs to be processed without incurring the
performance overheads of moving inter-node or to out-of-
core solutions. In this paper, we explore the use of Intel’s
DCPMM in the context of vertec-centric graph process-
ing, to understand the role that this could play and the most
appropriate techniques to obtain optimal performance. Our
contributions are:

• Experimenting with and analysing the scalability of
shared memory vertex-centric graph processing using
NVRAM. Resulting in, as far as we are aware, a new
world record for the size of graph processed within a
single node without the use of out-of-core computation.

• Evaluating the need for manual tuning of existing codes
to most efficiently exploit NVRAM.

• Quantifying the impact of NVRAM data placement
based on the type of memory access performed.

• Discussing the price and power properties of using
NVRAM for large-scale graph processing compared to
alternate distributed approaches.

The rest of this paper is organised as follows: “Related
work” presents related work and introduces the persistent
memory technology and vertec-centric, before “Persistent
memory modes” focuses on the Intel Optane DC Persistent
Memory Module. “Experimental environment” describes the
environment in which experiments are conducted, followed
by “Results” which analyses the results obtained, before we
draw conclusions and discuss potential future work direc-
tions in “Conclusion”.

Related Work

Interest in non-volatile memory technologies has grown over
the past decade [4], with hardware advances in the last two
years now resulting in this technology becoming commod-
ity and a realistic proposition for use in the data-centre and
High-Performance Computing (HPC) machines. One such
recent NVRAM technology is Intel’s Optane DC Persistent
Memory (DCPMM) [9]. Released in April 2019, in addition
to featuring byte-addressability and non-volatility, the prod-
uct is provided in a standard DRAM DIMM form-factor and
at a significantly lower cost per byte than previous DRAM
and NVRAM solutions. The byte-addressability means that
the CPU can access any location in the DCPMM, effectively
meaning that DCPMM has the ability to be used as either an
extra storage disk, or an additional pool of RAM. The focus
in this paper is most interested in the second benefit, where
the between five and ten times increase in per-DIMM capac-
ity when compared to DDR4 DRAM, results in the ability
to provide a very large memory spaces. Therefore, whilst
DCPMM is slower than DRAM, it makes possible the ability
to equip nodes with an additional layer of memory hierarchy
of TBs in size, at much lower energy and purchase cost than
if this was all DRAM. DCPMM’s read bandwidth is quoted
as around 2.4 times lower than DDR4 DRAM and write
bandwidth around 6 times lower than DDR4 DRAM [18],
however this is still far faster than disk and can often be ame-
liorated in an application either by using the node’s DRAM
as an additional layer of cache (which is an automatic feature
of the technology), or by the programmer explicitly control-
ling data placement.

Previous studies have been conducted around the use of
NVRAM for a variety of applications, including [19] which
specifically focuses on the use of DCPMM for scientific
codes. An exciting result has been to show that applications
which scale poorly in the distributed memory environment,
can exploit NVRAM’s large memory space to significantly
increase the local problem size (effectively the data which
can fit into a node’s memory space) and ultimately improve
performance. This has been highlighted as an important
facet of the technology, extending the memory capacity of
a node to enable applications most suited to shared memory

SN Computer Science (2022) 3:385 Page 3 of 13 385

SN Computer Science

operation to reach a scale hitherto unobtainable with DRAM
exclusively.

In recent years graph size has grown exponentially to
reach today’s scale which routinely involves hundreds of bil-
lions of edges, and even over a trillion for the largest graphs
reported [14, 16, 20]. The amount of memory required to
process such graphs increases with graph size and now
stands at TBs for the largest graphs. The actual computa-
tion required for processing the graph is typically fairly low,
with the codes themselves limited by the amount of memory
that can be provided. Whilst the ideal is to stay within a
single node, when processing the largest graphs the memory
required is beyond what the vast majority of machines can
hold or reasonably affordable to provide. Traditionally, there
have been two possible approaches to tackle processing such
large graphs. The first is that of distributed parallelism, often
via MPI, but graph processing applications tend to be com-
munication intensive, resulting in poor inter-node scaling.
Furthermore, the high load-imbalance frequently found in
graphs, especially within social networks, greatly increases
the complexity of developing efficient distributed memory
solutions. This was demonstrated in [12], where a 70 tril-
lion edge graph (the overall world record for graph size in a
distributed memory environment) was processed on 38,656
compute nodes of Sunway TaihuLight (with each node con-
taining 260 CPU cores). This required over a million CPU
cores to process the graph, and in their scaling experiments
they highlighted that performance was limited by the bisec-
tion bandwidth due to static routing in InfiniBand, and the
increasing volume of the graph cut in their distributed algo-
rithm. The second possible solution is the use of out-of-
core techniques, where significant chunks of a large graph
are held on disk (typically SSDs) and the DRAM is effec-
tively used as a cache managed explicitly by the program-
mer. However, this approach also tends to perform poorly,
because of the relatively long latencies and low bandwidth
of disk accesses.

This is where we believe NVRAM can be of great benefit
for graph processing, enabling one to process much larger
graphs within a single node before being forced to move to
distributed memory, based on a technology which is hun-
dreds of times faster than disk for access [19]. Furthermore,
graph processing represents a workload with a highly irregu-
lar memory access pattern, which in itself is an important
application pattern to explore within the context of how best
one can leverage NVRAM most effectively, with lessons
learnt applying more widely across other codes which also
exhibit similar irregular memory access patterns. There have
been a couple of previous studies of NVRAM with graph
processing, for instance [8] where the authors compared a
number of existing graph frameworks on NVRAM without
optimising them specifically for this technology, and [6]
where the authors developed their own placement algorithm

exploiting the asymmetry between NVRAM read and write
operation performance. Both these studies concluded that
NVRAM is a worthwhile technology for graph processing,
and in this paper we build upon the existing work, studying
the use of NVRAM to hold much larger graphs (our largest
graph contains 750 billion edges, compared to 128 billion
and 225 billion edges respectively of these previous studies)
and we undertake a more detailed exploration from the per-
spective of the programmer looking to obtain optimal perfor-
mance from the DCPMM technology for their graph code.

Vertex‑Centric and iPregel

The vertex-centric programming model is a popular
approach for graph processing. This model, invented in
2010 by Google [13], is designed so that one can express
graph computation from a vertex perspective. The design
of the vertex-centric programming model is inspired from
the Bulk Synchronous Parallel (BSP) model developed by
Valiant [17]. This choice is motivated by the fact that BSP
makes it ”easier to reason about program semantics when
implementing algorithms, and ensures that Pregel programs
are inherently free of deadlocks and data races common in
asynchronous systems” [13].

As a result, the vertex-centric execution flow consists of
a sequence of iterations called supersteps, where the user-
defined function containing the logic of a given algorithm
is applied to vertices conceptually in parallel. Vertices can
communicate via messages, thanks to the message-passing
abstraction provided. Each vertex has a mailbox from which
it can read messages that were emitted by their senders dur-
ing the previous superstep. Similarly, vertices can send mes-
sages, which will be accessible by their recipient during the
next superstep.

The application termination relies on the notion of active
vertex. Every vertex begins the first superstep as active and
has the ability to halt by calling a halt function from within
the user-defined function. Upon halting, a vertex becomes
inactive, and will stay so until it receives a message. At
the beginning of a superstep, vertices that are inactive are
skipped, and the user-defined function is applied to active
vertices, conceptually in parallel. During execution, mes-
sages are sent and read as explained above, and inactive
vertices having received a message are re-activated. When
all vertices have been processed, every message transmitted
and every inactive vertex re-activated where appropriate, the
superstep ends, as illustrated in Fig. 1. If there is at least one
active vertex, a new superstep begins, else the application
terminates.

The vertex-centric programming model quickly gained
traction due to the simplicity and programmer productivity
of the interface it exposes. In the last decade, numerous ver-
tex-centric frameworks have been implemented, and a range

 SN Computer Science (2022) 3:385 385 Page 4 of 13

SN Computer Science

of solutions that span the shared memory, distributed mem-
ory, and out-of-core techniques have grown popular. This
has become a popular graph processing model employed
by numerous organisations including web companies, and
continued advances in the vertex-centric methodology mean
that this is likely to become even more prevalent in the com-
ing years.

One such framework is iPregel [1], which is arguably the
most advanced shared memory vertex-centric framework,
outperforming all other comparable technologies in its class
both in terms of performance and memory usage. In [1]
iPregel was tested against the distributed memory vertex-
centric framework Pregel+ then state-of-the-art. iPregel
proved to outperform Pregel+ by a median factor of 6.5, as
well as demonstrating a higher memory efficiency by need-
ing only 11GB of RAM to process a Twitter graph made of
2 billion edges while Pregel+ needed 109GB, and Giraph
264GB. iPregel is especially interesting here as it has been
demonstrated to perform comparatively against other frame-
works having sacrificed vertex-centric features or abstraction
layers for performance [3]. This addresses the traditional
disadvantage of vertex-centric where previously some per-
formance was sacrificed for programmer productivity, while
iPregel demonstrated that both performance and memory
efficiency could be maintained while preserving the core
advantage of vertex-centric: its programmability. Recent
work with iPregel [2] focused on strategies to efficiently
cope with the multiple challenges in vertex-centric program-
ming such as load balancing or fine-grain synchronisations.
Notably, the introduction of a novel hybrid combiner auto-
matically switching from lock-based to lock-less execution
permitting to go as far as quadrupling the performance of
iPregel. This variety of techniques, aspects and problems
investigated in these works mean that the lessons learnt in
this paper can apply, not only to the vertex-centric model
specifically but also more widely.

Persistent Memory Modes

In addition to the hardware itself, the Intel Optane DC
persistent memory modules also ship with libraries that
enable them to be used in different modes, offering dif-
ferent levels of granularity in the control of data place-
ment. These modes can be activated by rebooting the
node, which usually takes approximately 20 min, making
it relatively easy to switch between DCPMM modes with-
out hindering the overall throughput of jobs on a cluster.

Memory Mode

The first mode presented in this paper is referred to as
memory mode, which is is very convenient due to it being
entirely transparent to applications. This requires no
application modification because the NVRAM provided
by the DCPMM becomes the main memory space whist
the DRAM effectively becomes the last level cache. By
default, all allocations (both static and dynamic) take place
on the DCPMM.

App‑Direct Mode

The app-direct mode is the second mode presented in this
paper and, unlike memory mode, does not provide auto-
matic access to the DCPMM. Instead, existing DRAM
remains main memory while the NVRAM can also be
accessed by explicit load and store operations. Allocating
memory on the DCPMM can be achieved by mounting a
file system upon it, and using a special malloc interface
from the libvmem library which is part of the Persistent
Memory Development Kit (PMDK) [15].

DCPMM’s app-direct mode can also be used in con-
junction with the libvmmalloc library, which intercepts all
dynamic allocations calls including malloc. These dynamic
allocations, which without this library would have taken
place in DRAM (as described in previous paragraph), will
now take place within DCPMM. In other words, dynamic
allocations now take place on the DCPMM while static
allocation continue to be placed in DRAM. Furthermore,
unlike the general app-direct mode and explicit use of
PMDK, this mode does not require application rewriting
other than the inclusion of the libvmmalloc.h header file.

Fig. 1 A bulk-synchronous parallel superstep

SN Computer Science (2022) 3:385 Page 5 of 13 385

SN Computer Science

Experimental Environment

This section describes the conditions in which our experi-
ments were run, from the hardware and software used, to
the graphs and application selected.

Hardware and Software

The experiments presented in this paper have been run on
the cluster built as part of the NextGenIO project whose per-
node specifications are given in Table 1. The cluster contains
34 identical nodes totalling over 100 TB of NVRAM and
6.5 TB of DRAM. Given the shared memory nature of the
work presented in this paper, only one node of this cluster
was used at any given time during the experiments discussed
in “Results”.

The iPregel framework was compiled with GCC 8.3.0
with support for OpenMP version 4.5 enabled. OpenMP
threads are placed on physical cores and are pinned to them
to prevent thread migration. Also, threads are placed on con-
secutive physical cores; meaning that the first 24 OpenMP
threads are placed on the same NUMA region. The libraries
libvmem and libvmmalloc have been used and these can be
found in Intel’s Persistent Memory Development Kit [15].

Graphs Selected

Table 2 lists the graphs that have been used in the experi-
ments of “Results”. Of the five graphs, three of them have
been created using a Kronecker graph generator, where the
name of these Kronecker graphs contains the parameters to

reproduce them. The first number represents the logarithm
base 2 of the number of vertices, and the second number
the logarithm base 2 of the average out-degree. The graphs
generated vary in sparsity, with an average degree of up to
500 which mimics those typically found in large social net-
work graphs [14].

The two other graphs have been generated using our own
graph generator, which provides a finer control over ver-
tex adjacency lists. Each graph was generated in two forms;
consecutive and scattered, where both versions comprise the
same number of vertices, edges and degrees. The difference
is in the locality of each vertex’s neighbours, where the con-
secutive version results in the neighbour list of each vertex
containing consecutive vertex identifiers. For instance, given
a vertex i, in this configuration, its neighbours would be
i + 1, i + 2, ..., i + n , where n is the number of neighbours.
By contrast, the scattered version inserts a gap between any
two consecutive neighbours, such that the identifiers of two
consecutive neighbours are widely separated. For example,
in this configuration given a vertex i, its neighbours would
be i + a, i + 2a, ..., i + na , with n the number of neighbours
and a the gap length. These two configurations have been
designed to represent extreme cases of memory locality,
consecutive and non-consecutive access, which enables us
to explore the impact of cache and page friendliness in the
context of the NVRAM. These graphs are denoted as C-V for
the consecutive version, and S-V for the scattered version,
where V is the number of vertices in millions. The degree
remains 500 in all cases and the gap a is set to 100,000 for
the scattered versions. It can be seen that four out of our five
graphs are larger than the largest experiments conducted in
both previous studies of graph processing on NVRAM [8]
and [6].

Application selected

The results presented in this paper are obtained by running
ten iterations of the vertex-centric implementation of Pag-
eRank, whose code is illustrated in Fig. 2. PageRank is at
the core of vertex-centric programming and has become a
de-facto benchmark in the graph community. There are other
commonly used graph processing applications, such as the
Shortest Single-Source Path or the Connected Components,
but PageRank provides a stable workload across iterations.
Crucially for our purposes, this means that it minimises
load-imbalance in the sense that every vertex participates
towards the calculation at every superstep, whereas other
graph applications deactivate vertices as the calculation pro-
gresses. This enables our experiments to remain focused on
evaluating the performance of the NVRAM hardware and
software, without being potentially biased by application or
configuration specific logical behaviour. Moreover, PageR-
ank places the most pressure on the memory subsystem as

Table 1 Hardware specification of a NextGenIO node

Metric Value

Processor 2 × Xeon Platinum
8260M 24-core @ 2.4
GHz

Volatile memory (DRAM) 192 GB (12 × 16 GB)
Non-volatile memory (NVRAM) 3072 GB (12 × 256 GB)

Table 2 Graphs selected

Name Number of vertices Number of directed edges

S-250 / C-250 250,000,000 250,000,000,000
S-750 / C-750 750,000,000 750,000,000,000
Kronecker 25 500 33,554,432 33,554,432,000
Kronecker 28 500 268,435,456 268,435,456,000
Kronecker 33 16 8,589,934,592 274,877,906,944

 SN Computer Science (2022) 3:385 385 Page 6 of 13

SN Computer Science

every vertex broadcasts a message to all its neighbours at
every superstep. Therefore the number of messages emit-
ted at every single superstep is equal to the total number
of edges, placing a high degree of pressure on the memory
system thus making it a challenging test of NVRAM per-
formance. As such, whilst it might seem somewhat narrow
to focus on one specific graph application only, no addi-
tional applications were selected in our experiments because
PageRank inherently exposes the characteristics that most
accurately explore the role of NVRAM, with the conclusions
then applicable to a wide variety of other graph applications.

The experiments presented in this paper were conducted
on two versions of the iPregel vertex-centric framework.
These are push and pull, where the versions are alterna-
tive implementations of iPregel, triggering specific opti-
misations by redesigning certain part of the vertex-centric
features and tuning them for specific situations. The push
version of iPregel consists of each sender manually writing
into the recipient’s memory, where the thread that processes
a vertex will write into the memory of each neighbouring
vertex, typically held at random locations in memory. Of
most interest to us, this version generates memory writes at
multiple memory locations, in addition to the locks required
to prevent potential data race. By contrast, the pull version
consists in the recipient fetching messages from senders.
The thread processing a vertex will therefore read from the
memory locations of the sender vertices, before writing into
the recipient vertex only. In addition to being lock-free, the
pull version therefore generates writes that take place at a

single memory location. These two versions thus make for
two configurations that stress the memory in different ways
and provide additional information to aid analysing the per-
formance of NVRAM under pressure.

Results

This section presents and analyses the results collected dur-
ing our experiments. We explore multiple data placement
configurations to assess the different performance overheads
related to the use of NVRAM, and by leveraging the mem-
ory modes presented in “Memory mode”, we control the
placement of vertices and edges.

Experiment 1: Staying in DRAM

The first experiment presented in this paper compares pro-
cessing a graph which is stored exclusively in DRAM, and
then exclusively in NVRAM. By comparing these runtimes
we can then highlight any overhead imposed by the use of
NVRAM.

To place a graph entirely in DRAM we use the app-direct
mode presented in “App-direct mode”, where dynamic allo-
cations are by default placed on the DRAM. By contrast, to
place the graph in NVRAM we use the libvmmalloc library
(see “App-direct mode”), where dynamic allocations are
automatically intercepted and their NVRAM-equivalent are
instead issued.

The graph selected is the Kronecker 25 500; a graph small
enough to fit within the 192GB of DRAM available on a
single node. Nonetheless, it remains a graph that has over
30 billion edges which is larger than most graphs processed
by shared memory frameworks or publicly available [7, 10].

The results gathered from this experiment are illustrated
in Fig. 3, where it can be seen that there is always an over-
head observable between the DRAM and NVRAM place-
ment, as expected. Irrespective of the parallel configuration
until 16 OpenMP threads included, NVRAM placement of
the graph is approximately 2.5 times slower than its DRAM
counterpart for pull version, and three times slower for the
push version.

The performance exhibited by the NVRAM-only place-
ment at 32 and 48 threads deviates from the scaling pattern
seen with smaller thread counts and there is also a notice-
able performance drop too. This is explained by how the
NVRAM-only placement is implemented, where dynamic
memory allocations are supplied from a memory pool built
upon a memory-mapped file. This memory-mapped file can
only be created on either the first or second socket, mean-
ing that only the NUMA region local to that socket will be
local to that memory pool. A socket contains 24 physical
cores on this NextGenIO cluster and utilising fewer than 24

void IP_compute(struct IP_vertex_t* me) {
if(IP_is_first_superstep ()) {

me->val = 1.0/ IP_get_vertices_count ();
} else {

IP_MESSAGE_TYPE sum = 0.0;
while(IP_get_next_message(me , &me->val)) {

sum += me->val;
}
me->val = 0.15 / IP_get_vertices_count ()

+ 0.85 * sum;
}
if(IP_get_superstep () < ROUND) {

if(me->out_neighbour_count > 0) {
IP_broadcast(me,

me->val / me->out_neighbours_count);
}

} else {
IP_vote_to_halt(me);

}
}

void ip_combine(IP_MESSAGE_TYPE* old ,
IP_MESSAGE_TYPE new) {

*old += new;
}

Fig. 2 PageRank implemented in iPregel

SN Computer Science (2022) 3:385 Page 7 of 13 385

SN Computer Science

OpenMP threads, given the OpenMP placement configura-
tion adopted, results in those OpenMP threads being pinned
to physical cores on the socket which is local to the memory-
mapped file. However, 32 and 48 OpenMP thread configura-
tions result in threads also being mapped to physical cores of
the other socket, and hence accessing the memory-mapped
file in a cross-NUMA fashion which impacts performance.
Until this cross-NUMA configuration is reached, we can see
that the use of NVRAM memory mode does not hinder par-
allel scaling, either for the push version, or the pull version.

Experiment 2: Scaling Up Graphs

Unlike the experiment presented in “Experiment 1: staying
in DRAM”, our next experiment aimed to explore the use of
DRAM and NVRAM working together. To achieve this, we
use DCPMM’s memory mode (see “Memory mode”), which
automatically places data in NVRAM and uses DRAM as
a last level cache.

Our three Kronecker graphs (see Table 2) are used for
this experiment, designed to gradually increase the pressure
on the non-volatile memory as their size grows. The first
graph is the Kronecker 25 500, the 30 billion edge graph
used in experiment one and small enough to fit entirely in
DRAM. The second graph selected is Kronecker 28 500,
and with 270 billion edges requires more than 5 times the
memory available in DRAM. The third graph is Kronecker
33 16 which also contains approximately 270 billion edges,
however, this graph holds 30 times more vertices; exceeding
232 . Such a number of vertices requires vertex identifiers to

be encoded using 64-bit integers instead of 32-bit, effec-
tively doubling the amount of memory required to store the
edges. Moreover, the number of edges per vertex on this last
graph is 30 times lower than that on the Kronecker 28 500
where vertices are more densely interconnected, enabling us
to evaluate the performance of the automatic cache feature
on widely different graphs.

The timings collected during this experiment are reported
in Fig. 4 and, as expected, runtime increases as the graph
size grows. The Kronecker 25 500, which can fit entirely
in DRAM, only requires a single movement of data from
NVRAM to cache it in DRAM. The two other graphs, how-
ever, cannot fit in DRAM alone and therefore require multi-
ple data movements between NVRAM and DRAM as data
is evicted from this last level cache.

It can be observed that whilst both the Kronecker 33 16
and Kronecker 28 500 graphs contain a similar number of
edges, processing of the former performs worse than the
later. The crucial difference here is in the number of vertices,
with Kronecker 33 16 containing 30 times more vertices
than Kronecker 28 500. Storing the 280 million vertices of
the Kronecker 28 500 graph requires approximately 10GB
in iPregel, which can fit in DRAM. By contrast, storing
30 times more vertices consumes over 300 GB of mem-
ory, exceeding the total amount of DRAM available. As a
result, not all vertices can be held in DRAM at once and as
a superstep processes vertices must be evicted from DRAM
to NVRAM.

This experiment has allowed us to evaluate the perfor-
mance of using DRAM and NVRAM together. However,

1 2 4 8 16 32 48
101

102

103

104

105

Number of threads

R
un

ti
m
e
in

se
co

nd
s

Pull version

1 2 4 8 16 32 48
101

102

103

104

105

Number of threads

Push version

DRAM-only NVRAM-only

Fig. 3 Evolution of the iPregel runtime against the number of threads, for the Kronecker 25 500 graph using different graph memory placements

 SN Computer Science (2022) 3:385 385 Page 8 of 13

SN Computer Science

whilst DCPMM’s memory mode enables the use of a much
larger memory pool without requiring application rewriting,
the initial placement of all data on NVRAM regardless of
their access pattern is likely sub-optimal. This can have seri-
ous implications for performance when edges evict vertices
from the DRAM cache, since the NVRAM overhead of the
latter is three to four times bigger.

Experiment 3: Read/Write Schism

The second experiment does not take into account the eso-
teric property of NVRAM, where the overhead involved in
read and write operations is asymmetric (write operations
being over twice as slow as read). Therefore, it was our
hypothesis that to most optimally leverage NVRAM, one
should understand these differences and tune their applica-
tion accordingly.

To minimise the penalty of NVRAM’s write overhead,
data should be placed on DRAM or NVRAM based on its
access pattern. It follows that DRAM should, therefore, be
privileged for data that is read-write, while NVRAM should
be ideally kept for read-only data. In the case of iPregel for
instance, vertices are writable while edges are read-only.
Therefore, this experiment relies on vertices being placed in
DRAM and edges in NVRAM. Furthermore, since NVRAM
modules are plugged to DRAM slots, they are subject to
Non-Uniform Memory Access (NUMA) effects. There-
fore, to maximise performance, the placement of edges on
NVRAM should be NUMA-aware; placing edges on the

NVRAM NUMA region corresponding to that of the vertex
from which they are outgoing.

App-direct mode (see “App-direct mode”) is used to man-
ually place data on the DRAM or NVRAM, where a file
system is mounted on each NVRAM NUMA region which
is then accessed via PMDK’s libvmmem library. The first
step involves allocating a memory space on the NVRAM,
from which a pointer is returned. Subsequently this pointer
is then passed to a decorated set of functions equivalent to
classic malloc functions, which perform the actual allocation
on the NVRAM area pointed to.

Figure 5 reports the runtimes obtained by applying the
read/write split technique on the Kronecker 25 500 graph
(30 billion edges). We compare this runtime against those
collected in previous experiments (DRAM-only, Memory
mode, and NVRAM-only). The performance observed is
bounded by the DRAM-only and NVRAM-only configura-
tions, where for both the push and pull versions the DRAM-
only configuration is the fastest, and NVRAM-only the
slowest. It can be seen that the RW-split and memory mode
experiments exhibit similar performance, with the memory
mode approach being slightly slower in both cases. There-
fore, having vertices pinned in DRAM, by contrast to the
memory mode that may evict them and flush them back to
NVRAM, helps the RW-split configuration to offer improved
performance. It should be highlighted that the fact that this
graph fits in DRAM does smooth the data movements per-
formed by memory mode.

As expected, placing data while taking into the asymmet-
ric overhead of NVRAM allows us to obtain a performance

1 2 4 8 16 32 48
102

103

104

105

Number of threads

R
un

ti
m
e
in

se
co

nd
s

Pull version

1 2 4 8 16 32 48
102

103

104

105

Number of threads

Push version

K-25-500 K-28-500 K-33-16

Fig. 4 Evolution of the iPregel runtime against the number of threads used, for different graph configurations, using NVRAM memory mode

SN Computer Science (2022) 3:385 Page 9 of 13 385

SN Computer Science

improvement. Nonetheless, the performance presented in
the three experiments so far rely on Kronecker graphs made
of random connections between vertices. As a result, the
impact that memory locality has on performance must not
be ignored.

Experiment 4: data locality and paging

To complement the experiments presented in “Experiment 1:
staying in DRAM”, “Experiment 2: scaling up graphs” and
“Experiment 3: read/write schism”, a fourth experiment was
designed which evaluates the impact of memory locality.
The experiment presented in this subsection involves two
versions of each graph which share the same size, both in
terms of vertices and edges but differ in terms of how they
are connected. This is an important property as it influences
the efficiency of caching during graph processing.

As described in “Experimental environment”, two graphs
have been designed, each with a contiguous and scattered
version. Contiguous versions contain vertices whose neigh-
bours are consecutive identifiers, whereas the scattered ver-
sions contain vertices with neighbours that are widely apart
from each other. The NVRAM memory mode presented in
“Memory mode” was selected so that its ability to auto-
matically paging data between NVRAM and DRAM can be
explored. Furthermore, the graphs generated consisting of
250 and 750 billion edges respectively, enabling us to evalu-
ate the performance of NVRAM under significant memory
pressure.

Figure 6 depicts the runtimes collected when processing
synthetic graphs C/S-250 and C/S-750 respectively. Whilst,
as would be expected, absolute runtime is less for the 250
billion edge graphs, scalability remains as high when tripling
the graph size to 750 billion edges. The graphs with scat-
tered memory access patterns exhibit poorer performance
than those with consecutive accesses. This is no great

surprise and is due to the extra paging operations required
when recipient vertices are not already in DRAM, which is
much more likely to occur on the scattered configurations.
The overhead witnessed varies between 3.19 and 6.85 times,
with 4.99 times being the average, depending on the graph
size and iPregel version used, albeit then remaining constant
as the number of threads increases.

The performance observed on NVRAM for these graphs
is reported in Table 3 in terms of billion edges traversed per
second (GTEPS). As observed above, scattered neighbours
result in a significant performance overhead compared to the
contiguous graph versions, and to our knowledge, the 750
billion edge graph runs are a new world record for the size
of graph processed within a single node without the use of
out-of-core computation. For comparison, PageRank with
similarly sized synthetic large graphs when processed using
the latest out-of-core solutions typically ranges between 0.07
and 0.83 GTEPS [12], and distributed GraM over 64 servers
results in 8.6 GTEPS [12]. GraM was the fastest reported
PageRank implementation for large graphs until the ShenTu
implementation which significantly out performs all of these
approaches by two to three orders of magnitude over 38,656
compute nodes. Whilst the performance of ShenTu is hugely
impressive, realistically even for large companies such as
Facebook or Google, such a specialist and expensive system
is likely a difficult proposition.

Performance Summary

Across the four experimental configurations tested, certain
performance patterns and overheads were observed. Table 3
reports the performance in billion edges traversed per sec-
ond (GTEPS) observed in our experiments conducted in this
section.

As expected, the highest performance is delivered for the
contiguous version of the graph made of 250 billion edges

DRAM-only RW split Memory mode NVRAM-only

500

1,000

207 250 278

711

309 325 353

1,123
R
un

ti
m
e
in

se
co

nd
s

Pull Push

Fig. 5 Evolution of the iPregel runtime in seconds on the Kronecker 25 500, using multiple data placement configurations, for both push and
pull versions at 16 threads

 SN Computer Science (2022) 3:385 385 Page 10 of 13

SN Computer Science

(C-250). This is due to the optimal data-locality and load-
balancing, and enables both iPregel versions to achieve
approximately ten GTEPS. Between 85 and 90% of this
performance was preserved when moving to the C-750
graph which contains three times as many edges, resulting in
approximately 8.6 GTEPS for both the pull and push iPregel
versions.

The performance observed on their scattered counterparts
however is noticeably lower due to poor data locality. Per-
formance achieved for the scattered graphs are 3.1 to 3.6
times lower than those seen for contiguous graphs with the
pull version, and 4.5 to 6.4 times lower for the push version.
This difference is explained by the access pattern paired
with the asymmetric read-write overhead of NVRAM.
The pull version of iPregel fetches broadcast messages

1 2 4 8 16 32 48
102

103

104

105

[2
50

B
ed

ge
gr
ap

hs
]

R
un

ti
m
e
in

se
co

nd
s

Pull version

1 2 4 8 16 32 48
102

103

104

105
Push version

1 2 4 8 16 32 48
102

103

104

105

Number of threads

[7
50

B
ed

ge
gr
ap

hs
]

R
un

ti
m
e
in

se
co

nd
s

1 2 4 8 16 32 48
102

103

104

105

Number of threads

Contiguous Scattered

Fig. 6 Evolution of the iPregel runtime against the number of threads used, on the contiguous and scattered versions of the 250 and 750 billion
edge graphs

Table 3 Maximum number of billions of edges traversed per second
(GTEPS) by the pull and push versions of iPregel, on all graphs con-
sidered in this section, running over 48 threads

Graph Pull version Push version

C-250 10.12 9.56
S-250 3.26 2.13
C-750 8.61 8.63
S-750 2.35 1.35
Kronecker 25 500 3.35 2.10
Kronecker 28 500 2.31 1.55
Kronecker 33 16 0.61 0.54

SN Computer Science (2022) 3:385 Page 11 of 13 385

SN Computer Science

from neighbours (read) and combines them on the vertex
being processed (write). Thus all writes are located on the
vertex which is being processed by the executing thread.
Conversely, with the push version of iPregel, when a thread
processes a vertex then as messages are produced by that
vertex these are immediately placed into the recipient’s
mailbox (or combined with an already present message).
Therefore, writes are located on every neighbour of the ver-
tex being processed, and therefore no longer local but are
instead remote. Although both iPregel versions encounter
scattered memory accesses when processing the S-250 and
S-750 graphs, only for the push version does the location
of write accesses change. Therefore this version of iPregel
is more impacted by the write-specific additional overhead
imposed by NVRAM.

When considering the Kronecker graphs the pattern of
performance for each iPregel version is initially similar.
When moving from the K 25 500 to the K 28 500 graph,
the later comprising 8 times as many vertices and edges,
this results in a performance reduction of approximately
30% for both iPregel versions. However, the performance
reduces significantly, by approximately 70%, when mov-
ing from the K 28 500 to the K 33 16 graph. This perfor-
mance decrease is explained by the increased number of
vertices, over 8 billions, for the K 33 16 graph. Whilst such
an increase enlarges the workload, the main issue is that at
this scale a change in the type used to identify vertices is
required. Eight billion is beyond what can be encoded by
a 32-bit unsigned integer type and therefore this number of
vertices requires the use of a 64-bit type instead. Whilst the
consequence for the vertex data structure is fairly negligible,
requiring only an additional 4 bytes per vertex structure, it is
far more significant for the edges. Such an increase in data-
type size results in each edge requiring double the amount of
memory, resulting in longer loading times as well as worse
data locality since the cache now contains 50% fewer edges.

It is also instructive to compare the performance for our
approach on NVRAM reported in Table 3 with other popular

graph processing frameworks which do not use NVRAM.
Table 4 is reproduced from [12] and illustrates the perfor-
mance achieved by these other graph processing frameworks
with similar-sized graphs. Whilst the exact configuration of
these graphs is not made explicit in [12], and likely a number
of different configurations are used between frameworks,
a number of broad comparisons can still be made. Firstly
frameworks including G-Store, Graphene, and Mosaic utilise
an out-of-core approach for processing these large graphs
within a single node. Irrespective, this results in very poor
performance which is typically significantly lower than all
our performance figures for graph processing with NVRAM,
apart from when we run the Kronecker 33 16 graph due to
the issues highlighted in this section. Whilst each of these
frameworks is utilising a server with SSDs rather than spin-
ning hard disks, clearly the performance delivered by such
hardware for large-scale graph processing falls significantly
short of that delivered by NVRAM.

Whilst the parallelised in-memory frameworks Giraph
and GraM deliver much greater performance than the out-
of-core solutions in Table 3, our results demonstrate that a
single node NVRAM approach to graph processing is still
competitive for a number of graph types. Moreover, Giraph
and GraM deliver only 0.028 GTEPS and 0.134 GTEPS per
node respectively. Performance wise the stand out frame-
work in Table 3 is that of ShenTu which, for a similar sized
graph achieved 72.8 GTEPS over 1024 nodes. However, as
we explore in “Additional metrics”, this is equivalent to only
0.07 GTEPS per node.

Additional metrics

In addition to raw performance, other metrics such as pur-
chase cost and energy efficiency are also important when one
is considering a specific hardware solution such as NVRAM.
A node from the NextGenIO cluster contains hardware
totalling £20,000. Comparatively, taking the example of the
Sunway TaihuLight supercomputer, 96 nodes are needed
to obtain the same amount of memory. With the total cost
of the 40,960-node supercomputer estimated at 273 mil-
lion dollars [21], we estimate a per node price of 6665 dol-
lars (approximately £5000). Processing our graphs which
occupy 3072 GB of memory therefore either require a single
£20,000 NextGenIO node, or 96 × £5000 Sunway Taihu-
Light nodes totalling £480,000. From a cost perspective
alone there would be an approximate saving of £460,000 by
adopting a non-volatile memory approach. Of course in such
a scenario, the amount of computational processing power
that can be leveraged by 96 nodes of the Sunway TaihuLight
supercomputer far exceeds that of a single NextGenIO node,
however as described in “Related work”, typically vertex-
centric graph processing is not computationally bound and

Table 4 Performance of other graph processing frameworks running
with similar sized graphs to ours, data reported in [12] and repro-
duced here for comparison against NVRAM results

Framework In-memory or
out-of-core

Configuration Perfor-
mance
(GTEPS)

Giraph In-memory 200 nodes 5.6
GraM In-memory 64 nodes 8.6
ShenTu In-memory 1024 nodes 72.8
Chaos Out-of-core 32 nodes(480GB SSD each) 0.07
G-Store Out-of-core 1 node(8x512GB SSDs) 0.23
Graphene Out-of-core 1 node(16x500GB SSDs) 0.83
Mosaic Out-of-core 1 node(6 NVMe SSDs) 0.82

 SN Computer Science (2022) 3:385 385 Page 12 of 13

SN Computer Science

there is a communication overhead involved in a distributed
memory approach.

Energy and power usage is another metric that has
become increasingly important over recent years. The
NextGenIO and Sunway TaihuLight nodes share the same
power consumption (approximately 400 W), therefore in
terms of power draw, which can be a major limit for data-
centre machine rooms, NextGenIO will draw 96 times less
power when at full load at any one point in time. It is also
instructive to compare the overall energy consumption in
terms of energy to solution, which also requires taking into
account the execution time. The fact that NextGenIO and
Sunway TaihuLight nodes share the same power consump-
tion allows the calculations to be simplified to runtime alone.
When processing one iteration of PageRank on Kronecker
34 16, which is twice as many vertices and edges of the
Kronecker 33 16, the ShenTu framework using 1024 nodes
from the Sunway TaihuLight supercomputer reaches 72.8
GTEPS, equivalent to 0.07 GTEPS per node. By contrast,
when processing one iteration of PageRank on Kronecker 33
16, iPregel using a single node from the NextGenIO cluster
reaches 0.60 GTEPS. This is 8.5 times more GTEPS for a
graph twice as small. Unless the runtime grows as a quartic
of the graph size, the NextGenIO node proves to be more
efficient when considering the energy to solution.

Conclusion and Further Work

In this paper, we have discussed and analysed multiple
experiments covering numerous scenarios in testing the
performance of NVRAM for processing large-scale graphs.
These experiments have been designed to evaluate the per-
formance of NVRAM when used in isolation, or in con-
junction with DRAM either implicitly or directly by the
programmer. Two versions of the iPregel vertex-centric
framework which exhibit different memory access patterns
have been used as a vehicle to drive our experiments, with
five different graphs including two specifically designed to
provide fine control over data locality.

Whilst the focus of this paper has been on the vertex-
centric methodology, and such a study is highly interest-
ing in itself, we believe that the results and conclusions
drawn can be more widely applied to both other graph
processing technologies and codes with similar irregular
memory access patterns. We found that NVRAM permits,
without code rewriting, a shared memory framework such
as iPregel to seamlessly scale to a graph of 750 billion
edges, equivalent to 75% the Facebook graph [14]. To our
knowledge, this is a new world record for the largest graph
ever processed by a shared memory system without the use
of out-of-core computation, and makes NVRAM a cru-
cial enabler in reaching new horizons in shared memory

graph processing within reasonable purchase cost and
energy usage. Therefore for technology companies, such
as Facebook and Google, who have large graph process-
ing requirements and vast data centres, it is our opinion
that NVRAM is a technology that should be considered
a serious contender as having a role in their overarching
hardware strategy. This is not least because such a step
change in single-node graph processing capability can be
delivered at a very reasonable price and power cost com-
pared with other options.

We observed the impact of data placement and con-
firmed that, if one is willing to invest time in tuning their
code for NVRAM, then manually placing data based upon
the access pattern provides a better performance than that
of automatic placement. Nonetheless, the multiple modes
available to make use of NVRAM allow non-experts to
leverage this technology without having to rewrite their
application or their framework, and experts to rewrite parts
of their software to make the most of this technology.

Moving forwards, we believe that in addition to being
an enabler for shared memory graph processing systems,
NVRAM could very well prove revolutionary in distrib-
uted memory graph processing systems too. In contrast
to the Sunway TaihuLight supercomputer, where the full
Sogou graph (270 billion vertices and 12 trillion edges)
required at least 10,000 nodes [12], holding the Sogou
graph in NVRAM memory could be achieved with fewer
than 50 nodes based upon the NextGenIO cluster specifica-
tions. Furthermore, it was demonstrated in “Performance
summary” that on a node by node basis the performance
of existing distributed in-memory graph processing frame-
works tends to be poor. As a next step, we believe it is
important to explore how the emergence of clusters made
of low-numbered large-memory nodes could also lead
to the design of a new generation of distributed memory
graph systems and algorithms. This will potentially deliver
next generation extremely large graph processing perfor-
mance by combining the single-node performance enabled
by NVRAM with the memory capabilities of multi-node
NVRAM.

Acknowledgements The authors would like to thank the Edinburgh
Parallel Computing Centre (EPCC) for providing computing time on
the NextGenIO cluster.

Funding This research is supported by the UK Engineering and Physi-
cal Sciences Research Council under grant number EP/L01503X/1,
CDT in Pervasive Parallelism.

Data availability All data generated or analysed during this study are
included in this published article. Requests for material should be made
to the corresponding author.

Code availability The code used in this paper is publicly accessible at
https://github.com/capellil/iPregel.

SN Computer Science (2022) 3:385 Page 13 of 13 385

SN Computer Science

Declarations

 Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Capelli LAR, Hu Z, Zakian TAK. ipregel: a combiner-based in-
memory shared memory vertex-centric framework. In: Proceed-
ings of the 47th international conference on parallel processing
companion—ICPP ’18; 2018.

 2. Capelli LAR, Brown N, Bull JM. ipregel: strategies to deal with
an extreme form of irregularity in vertex-centric graph process-
ing. In: Proceedings of the the international conference for high
performance computing, networking, storage, and analysis—SC
’19; 2019.

 3. Capelli LAR, Hu Z, Zakian TAK, Brown N, Bull JM. ipregel:
vertex-centric programmability vs memory efficiency and per-
formance, why choose? Parallel Comput. 2019;86:45–56.

 4. Caulfield AM, Coburn J, Mollov T, De A, Akel A, He J, Jagath-
eesan A, Gupta RK, Snavely A, Swanson S. Understanding the
impact of emerging non-volatile memories on high-performance,
io-intensive computing. In: SC ’10: proceedings of the 2010
ACM/IEEE international conference for high performance com-
puting, networking, storage and analysis; 2010. p. 1–11.

 5. Ching A, Edunov S, Kabiljo M, Logothetis D, Muthukrishnan
S. One trillion edges: graph processing at Facebook-scale. Proc
VLDB Endowment. 2015;8(12):1804–15.

 6. Dhulipala L, McGuffey C, Kang H, Gu Y, Blelloch GE, Gib-
bons PB, Shun J. Semi-asymmetric parallel graph algorithms for
nvrams. arXiv preprint arXiv: 1910. 12310; 2019.

 7. For Discrete Mathematics TC (DIMACS) TCS. 9th DIMACS
implementation challenge. http:// www. dis. uniro ma1. it/ chall enge9/
downl oad. shtml; 2006.

 8. Gill G, Dathathri R, Hoang L, Peri R, Pingali K. Single machine
graph analytics on massive datasets using Intel Optane DC per-
sistent memory. arXiv preprint arXiv: 1904. 07162; 2019.

 9. Intel announces broadest product portfolio for moving, storing
and processing data. https:// newsr oom. intel. com/ news- relea ses/
intel- data- centr ic- launc h/# gs. no8yic. Accessed 10 Dec 2020.

 10. Kunegis J. Konect: the Koblenz network collection. In: Proceed-
ings of the 22nd international conference on world wide web.
WWW ’13 companion. New York: ACM. . p. 1343–1350; 2013.
https:// doi. org/ 10. 1145/ 24877 88. 24881 73.

 11. Kyrola A, Blelloch G, Guestrin C. Graphchi: large-scale graph
computation on just a pc. In: Proceedings of the 10th USENIX
conference on operating systems design and implementation.
OSDI’12. Berkeley: USENIX Association. p. 31–46; 2012. http://
dl. acm. org/ citat ion. cfm? id= 23878 80. 23878 84.

 12. Lin H, Zhu X, Yu B, Tang X, Xue W, Chen W, Zhang L, Hoefler
T, Ma X, Liu X, Zheng W, Xu J. Shentu: processing multi-trillion
edge graphs on millions of cores in seconds. In: Proceedings of
the international conference for high performance computing, net-
working, storage, and analysis. SC ’18. Piscataway: IEEE Press.
p. 56:1–56:11; 2018.

 13. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N,
Czajkowski G. Pregel: a system for large-scale graph processing.
In: Proceedings of the 2010 ACM SIGMOD international confer-
ence on management of data. SIGMOD ’10. New York: ACM. p.
135–146; 2010.

 14. Martella C, Logothetis D, Loukas A, Siganos G. Spinner: scalable
graph partitioning in the cloud. In: 2017 IEEE 33rd international
conference on data engineering (ICDE). p. 1083–1094; 2017.

 15. Persistent memory development kit. https:// pmem. io/ pmdk/.
Accessed 11 Dec 2020.

 16. Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J. From
“think like a vertex’’ to “think like a graph’’. Proc VLDB Endow.
2013;7(3):193–204.

 17. Valiant LG. A bridging model for parallel computation. Commun
ACM. 1990;33(8):103–11.

 18. Weiland M. Evaluation of Intel Optane DCPMM for memory and
i/o intensive HPC applications. In: iXPUG workshop at HPC Asia
2020. https:// www. ixpug. org/ resou rces/ downl oad/ miche lewei
land- hpcas ia2020. Accessed 21 Dec 2020; 2020.

 19. Weiland M, Brunst H, Quintino T, Johnson N, Iffrig O, Smart S,
Herold C, Bonanni A, Jackson A, Parsons M. An early evaluation
of Intel’s Optane DC persistent memory module and its impact
on high-performance scientific applications. In: Proceedings of
the international conference for high performance computing,
networking, storage and analysis. p. 1–19; 2019.

 20. Wu M, Yang F, Xue J, Xiao W, Miao Y, Wei L, Lin H, Dai Y,
Zhou L. Gram: scaling graph computation to the trillions. In:
Proceedings of the sixth ACM symposium on cloud computing.
SoCC ’15. New York: ACM. p. 408–421; 2015.

 21. Zhe G. Sunway taihulight: things you may not know about China’s
supercomputer. https:// news. cgtn. com/ news/ 3d517 a4d32 4d444e/
share_p. html (2017)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1910.12310
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://arxiv.org/abs/1904.07162
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.no8yic
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.no8yic
https://doi.org/10.1145/2487788.2488173
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://pmem.io/pmdk/
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://news.cgtn.com/news/3d517a4d324d444e/share_p.html
https://news.cgtn.com/news/3d517a4d324d444e/share_p.html

	NVRAM as an Enabler to New Horizons in Graph Processing
	Abstract
	Introduction
	Related Work
	Vertex-Centric and iPregel

	Persistent Memory Modes
	Memory Mode
	App-Direct Mode

	Experimental Environment
	Hardware and Software
	Graphs Selected
	Application selected

	Results
	Experiment 1: Staying in DRAM
	Experiment 2: Scaling Up Graphs
	Experiment 3: ReadWrite Schism
	Experiment 4: data locality and paging
	Performance Summary
	Additional metrics

	Conclusion and Further Work
	Acknowledgements
	References

