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This study focuses on characterizing the bifurcation scenario and the underlying synchrony behaviour in a nonlin-

ear aeroelastic system under deterministic as well as stochastic inflow conditions. Wind tunnel experiments are

carried out for a canonical pitch-plunge aeroelastic system subjected to dynamic stall conditions. The system is

observed to undergo a subcritical Hopf bifurcation, giving way to large-amplitude limit cycle oscillations (LCOs)

in the stall flutter regime under the deterministic flow conditions. At this condition, we observe intermittent phase

synchronization between pitch and plunge modes near the fold point; whereas, synchronization via phase trapping

is observed near the Hopf point. Repeating the experiments under stochastic inflow conditions, we observe two

different aeroelastic responses; low amplitude noise-induced random oscillations (NIROs) and high amplitude

random LCOs (RLCOs) during stall flutter. The present study shows asynchrony between pitch and plunge modes

in the NIRO regime. At the onset of RLCOs, asynchrony persists even though the relative phase distribution

changes. With the further increase in flow velocity, we observe intermittent phase synchronization in the flutter

regime. To the best of the authors’ knowledge, this is the first study reporting the experimental evidence of

phase synchronization between pitch and plunge modes of an aeroelastic system, which is of great interest to the

nonlinear dynamics community. Furthermore, given the ubiquitous presence of stall behaviour and stochasticity

in a variety of engineering systems, such as wind turbine blades, helicopter blades, and unmanned aerial vehi-

cles (UAVs), the present findings will be directly beneficial for the efficient design of futuristic aeroelastic systems.

A variety of aeroelastic structures used in engineering ap-

plications, such as wind turbine blades, helicopter blades,

UAVs, and many more are prone to dynamical instabil-

ities when subjected to nonlinear fluid-structure interac-

tion. A specific form of nonlinearity, commonly observed

in these aeroelastic structures, comes from the oncoming

unsteady fluid loads due to dynamic stall. The associated

bifurcations are complex and often make the system sus-

ceptible to instabilities like stall flutter. Especially, the oc-

currence of the subcritical genre of instabilities can lead

to operational perilousness and can be critical from the

viewpoint of structural safety. Given the typical presence

of two or more dominant structural modes in aeroelastic

structures, a description of the physical mechanism that

underlies in the bifurcation scenarios can be adeptly de-

scribed from the vantage of synchronization theory. The

present study is geared towards this end. From wind tun-

nel experiments performed on a NACA 0012 airfoil under

deterministic and stochastic flow conditions, we demon-

strate bifurcation scenarios that are of interest to the en-

gineering community. In specific, we demonstrate sub-

critical Hopf bifurcation route to stall flutter under de-

terministic flow conditions. Further, near the fold point,

intermittent phase synchronization between the pitch and

plunge modes is observed; whereas, we observe synchro-

nization through phase trapping near the Hopf point. Un-

der stochastic inflow conditions, the transition from low

amplitude NIRO to high amplitude RLCOs (during stall

flutter) corresponds to a shift from asynchrony to in-

termittent phase synchronization between the pitch and

plunge modes.

I. INTRODUCTION

A plethora of engineering systems, such as aircraft wings,

wind turbine blades, helicopter blades, bridge decks, build-

ings, UAVs, and natural systems, such as vocal-fold physiol-

ogy, cardiac rhythms, and lung functioning involve the inter-

action of fluid loads with elastic structures, and hence can be

categorized as fluid-elastic systems. Notably, these systems

comprise diverse nonlinearities, instrumental in triggering a

wide variety of dynamical instabilities. Thus, the bifurcation

analysis of aeroelastic systems with a proper understanding

of the underlying physical mechanisms is of seminal impor-

tance in engineering parlance. Of these nonlinear aeroelas-

tic instabilities, perhaps one of the most crucial is the stall

flutter1,2, which may cause the aeroelastic systems to oscillate

with high-amplitude LCOs. Stall flutter arises due to aerody-

namic nonlinearity in terms of dynamic stall. Dynamic stall

is a source of aerodynamic nonlinearity, which is triggered by

various events like flow separation, vortex formation, vortex

shedding, and flow reattachment. The different stages of dy-

namic stall events have been experimentally investigated in

the literature for a periodically pitching wing3,4. Stall flutter,
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on the other hand, is typically investigated on freely oscillat-

ing airfoils in wind tunnel experiments5–8.

Identifying the onset of stall flutter along with the under-

lying physics has been of pivotal concern in the aeroelastic

community. Dimitriadis and Li5 analysed the bifurcation be-

haviour of a wing undergoing stall flutter and reported the

route to stall flutter to be through a subcritical Hopf bifur-

cation. Poirel et al.7 conducted stall flutter experiments on

NACA 0012 airfoil using different frequency ratios (plunge

to pitch). Observing the pitch and plunge frequency content,

they showed that stall flutter is essentially pitch dominant ex-

cept at a frequency ratio close to one, where plunge motion

drives the pitch motion. Subsequently, they drew an inter-

esting analogy that aeroelastic systems exhibit the frequency

lock-in phenomenon akin to vortex-induced vibration systems

for frequency ratios close to one. Similar analyses were car-

ried out by Benaissa et al.8 who reported beating phenomenon

during frequency lock-in, resulting from the phase shift be-

tween pitch and plunge mode. In essence, most of the studies

pertaining to stall flutter report highly complex dynamical sig-

natures with varying underlying physics - leaving ample room

for further investigations.

Inferring the physical mechanisms behind the complex bi-

furcation signatures arising due to dynamic stall and stall flut-

ter becomes further elusive due to the stochasticity associated

with the oncoming flow. In field conditions, flow-field pos-

sesses random fluctuations, which give rise to ‘noise-induced’

instabilities9. These noise-induced instabilities can signifi-

cantly alter the bifurcation route and the aeroelastic response

dynamics10–13. It is thus very important to investigate the role

of noise on the mode-coupling of aeroelastic systems and to

understand the underlying mechanism through which the re-

sponse dynamics is altered in the presence of the noise. In

other words, throwing light on the nature of dynamical tran-

sitions occurring under stall conditions for deterministic and

stochastic input flow conditions is a needful venture. Address-

ing this end of the hitherto gap is the prime focus of this pa-

per. Dynamic transitions in nonlinear systems (be it determin-

istic or stochastic) can be directly correlated with the transi-

tions in relative phases and frequencies between the oscilla-

tors and their mutual synchronization13–16. Deriving impetus

from the same, the present study focuses on experimental in-

vestigations on the nonlinear dynamics of stall flutter with and

without the input noise, from the viewpoint of synchronization

framework.

Synchronization is a well-known nonlinear phe-

nomenon and has been widely reported in different

nonlinear dynamical systems, such as cardiorespiratory

systems17, electrochemical oscillators18,19, electronic

circuits20, thermoacoustics15,21–24, vortex-induced vi-

bration systems16,25, and aeroelastic systems13,26,27.

Synchronization phenomenon can be classified in a variety

of forms, such as complete synchronization, lag synchro-

nization, intermittent phase synchronization, imperfect phase

synchronization, among others13,14,28–30. The response

dynamics of such nonlinear dynamical systems show rich

bifurcation behaviour with different phase relationships such

as phase locking, phase drifting, phase slips13,14,16,18,27,31

and a switch between in-phase to anti-phase synchronization,

known as phase-flip bifurcation19,20,32; see Section II for

further details.

The synchronization theory was very recently applied for

the two degrees-of-freedom (DOF) pitch-plunge aeroelastic

systems13,27. Raaj et al.13 numerically obtained the responses

of a nonlinear aeroelastic system undergoing classical flutter

and investigated the role of synchronization in pre- and post-

flutter regimes in the presence of noise. They showed that,

during classical flutter, the frequencies coalesce via frequency

locking, and the intermittent responses are caused by an inter-

mittent phase synchronization between the pitch and plunge

modes. Vishal et el.27 modelled a coupled nonlinear aeroelas-

tic system by incorporating the nonlinearities in structure and

the flow. The authors reported that frequency coalescence un-

der linear aerodynamics occurs via a frequency locking mech-

anism, which is in agreement with that reported by Raaj et

al.13. On the other hand, under nonlinear aerodynamics (dy-

namic stall conditions), the route to synchronization was re-

ported to be through the suppression of one of the natural dy-

namical modes. Under coupled interactions between different

types of nonlinearities, the authors reported the presence of

a phase-locking mechanism at lower speeds which transits to

the suppression of natural dynamics via a brief period of asyn-

chrony. Both of these studies adopt numerical approaches,

and experimental evidence of the same is missing in the liter-

ature to the best of the authors’ knowledge.

Furthermore, critical questions pertaining to the routes to

instability (both in deterministic and stochastic input flows),

along with the identification of subcritical regimes have re-

mained unanswered in the hitherto studies. A unified descrip-

tion of these dynamical transitions to instabilities, occurring

under stall, therefore remains still elusive. With the ever-

growing need for slender structures in a variety of aeroelas-

tic applications ranging from UAVs to wind turbine blades,

which are in turn rife with susceptibility to dynamic stall, it

is prohibitive to have limited clarity on the routes to dynam-

ical instability. The present study assuages this end of the

gap. This study focuses on experimentally investigating the

stall-induced responses of a pitch-plunge aeroelastic system

from a synchronization framework. To that end, wind tun-

nel experiments are conducted on a NACA 0012 wing under

deterministic (suction) and stochastic (blowing) inflow con-

ditions. The obtained responses from the pitch and plunge

modes are analyzed using the synchronization theory. Flutter

boundaries are estimated by systematically varying the flow

speed. The underlying synchronization characteristics are in-

vestigated by evaluating the phase and frequency of the re-

sponses using Hilbert and Fourier transforms, respectively.

The organization of the rest of the paper is as follows. Sec-

tion II provides a brief overview of the necessary concepts in

synchronization theory. Section III provides the details of the

experimental setup. The results that emerge from experimen-

tal investigation and synchronization studies are discussed in

Section IV. Finally, the salient outcomes emerging from this

study are summarized in Section V.
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II. A CURSORY GLANCE INTO SYNCHRONIZATION

THEORY

Though the notion of synchronization33,34 has now been

established comprehensively in the dynamical systems liter-

ature, a cursory glimpse into the terminologies of synchro-

nization theory in the context of aeroelastic systems is pre-

sented here for the sake of completeness. The synchroniza-

tion of mutually coupled oscillators can occur through two

different mechanisms such as phase locking and suppression

of natural dynamics27. Several oscillators are said to be phase

synchronized29, when their instantaneous phases are seen to

be perfectly locked, (i.e., the relative phases remain constant),

but the amplitudes are uncorrelated. For synchronized oscilla-

tors, if the average relative phase value (RPV) becomes close

to 0, it is termed in-phase synchronization; whereas, an av-

erage RPV value close to π indicates anti-phase synchroniza-

tion.

Typically, the presence of synchronization is analyzed by

examining the instantaneous phases and the frequency of the

interacting oscillators. The instantaneous phases of the os-

cillations are generally obtained by adopting an analytic sig-

nal approach, wherein the analytic signal, ζ (t), is a complex

quantity with the real part being the original signal, z(t) and

the imaginary part being its corresponding Hilbert transform

(HT)34 given by

zH(t) =
1

π
P.V.

∫ ∞

−∞

z(τ)dτ

(t − τ)
, (1)

where P.V. is the Cauchy principal value of the integral. Thus,

the analytic signal can be written as

ζ (t) = z(t)+ izH(t) = A(t)eiφ(t)
, (2)

where φ(t) represents the instantaneous phase, and A(t) is the

instantaneous amplitude of the signal. Further, to characterize

phase synchronization, the phase locking value (PLV) of the

responses is also estimated as PLV = N−1 |∑N
j=1 exp(i△φ j)|,

where △φ j = φ j,plunge −φ j,pitch is the instantaneous RPV be-

tween the plunge and pitch responses at the jth instant. A

perfectly synchronized state gives a PLV of one, while a com-

pletely asynchronous state gives a PLV close to zero. The PLV

for an imperfect synchronization gives a value between zero

and one13.

Qualitatively, the extent of the mutual synchronization be-

tween the oscillators can be best understood from the changes

in RPV (∆φ ) over time. If the oscillators are perfectly

synchronized, the RPV becomes constant, representative of

‘phase locking’. However, it is often seen for the experimental

data that the RPV is fluctuating but bounded in nature13,15,16

(see Fig. 1(a)). Such bounded but oscillatory RPVs, termed

as ‘phase trapping’15, are also representative of synchroniza-

tion as their corresponding PLV is generally close to one13,27.

On the contrary, a monotonous increase or decrease in RPV is

called ‘phase drifting’ (see Fig. 1(b)), representative of asyn-

chrony, with the corresponding PLV being close to zero13,27.

However, in many cases, the PLVs are neither close to zero

FIG. 1: Schematic representations of different phase

synchronization characteristics showing (a) Phase locking/

trapping, (b) phase drifting, (c) intermittent phase

synchronization, and (d) phase flip transition.

nor to one. One of the most commonly seen events in this

class is intermittent phase synchronization, wherein phase-

locked regions are mixed with phase drifting regions (see

Fig. 1(c)). Intermittent phase synchronization is accompanied

by ‘phase slips’13,14,16, having jumps of integer multiples of

2π . Such phase slips mark an imperfect or weak phase syn-

chronization. Furthermore, perfectly synchronized coupled

oscillators can undergo phase slips when noise is added to

the systems13,15,16,18. Sometimes the state of synchronization

between oscillators suddenly changes from in-phase to anti-

phase or vice versa with a variation in the coupling param-

eter. Thus, a phase jump of π in average RPV is observed

(see Fig. 1(d)), accompanied by a simultaneous jump in their

frequencies. This kind of transition is known as phase flip

bifurcation19,20.

With these descriptions of the synchronization terminolo-

gies, we proceed next to obtain the dynamical signatures, i.e.

the aeroelastic responses from the wind tunnel experiments.

The culmination of instability under nonlinear aerodynamic

loading will be cast using the synchronization framework to

gain deeper insight into the physics behind the transition to

stall flutter under deterministic and stochastic inflow condi-

tions. To that end, details of the experimentation are presented

next.

III. EXPERIMENTAL SETUP

The experiments are conducted on a NACA 0012 airfoil

having a chord length (c) of 100 mm and a span of 500 mm.

The airfoil is mounted horizontally in the low-speed wind tun-

nel (see Fig. 2(a)) at Shiv Nadar University. The tunnel is ca-

pable of operating at a speed of up to 25 m/s and has a test

section of dimensions 0.8 m x 0.8 m x 1.2 m. A schematic

of the experimental setup inside the wind tunnel test section

is shown in Fig. 2(b) and an actual photograph of the setup is

also provided in Fig. 2(c). The support mechanism was de-

signed to facilitate two independent degrees-of-freedom for

the airfoil motion, namely, pitch and plunge movements and

is similar to the ones found in Venkatramani et al.10–12.
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FIG. 2: (a) Photograph of the low-speed closed-section, wind tunnel, (b) schematic depiction of the mechanism that permits

pitch-plunge oscillations of the airfoil, (c) photograph of the experimental mechanism. In (d) and (e), the load vs deflection plot

for pitch and plunge stiffness respectively are shown. In (f), a sample variation of wind speed with time under suction and

blowing conditions is shown.

Restoring force was provided by a pair of tension springs on

either side of the airfoil for both pitch and plunge. From the

static tests, stiffness in both pitch and plunge springs is found

to behave almost linearly (see Figs. 2(d)-(e)). The plunge

motion is governed by a translating carriage comprising two

shafts that pass through a rectangular aluminium profile via

linear ball bushing-guide ways. Rigid hooks are attached to

the top frame and the aluminium profile, for attaching plunge

springs. The pitching motion of the airfoil is made possible

by a pulley-like cam attached to the aluminium profile via a

central bearing. The pitch springs are connected to a nylon

belt wrapped around the cam.

The motion of the airfoil was measured and recorded by

means of two NCDT-type laser displacement sensors having a

resolution of 1 micron and a range of 50-350 mm. The sensors

were installed below the airfoil, illuminating a spot on the alu-

minium section and one near the trailing edge. To obtain the

plunge displacement, the distance between the lower face of

the aluminium section and the elastic axis was measured and

added to the sensor reading. A pair of Delta HD 4V3 TS3 type

air velocity sensors are used to obtain the flow velocity in the

wind tunnel test section. Additionally, a stand-alone hot wire

anemometer is used to monitor the flow velocities inside the

test section. The signal from the sensors is acquired using an

8-channel Data Acquisition system having a 24-bit resolution.

The wind tunnel is open type and operable in two modes:

suction and blowing. In suction mode, the test section is sub-

jected to streamlined flow with minimal fluctuations owing to

a honeycomb mesh at the entrance. While in blowing mode,

TABLE I: Structural parameters for the experiment estimated

from static tests.

Parameter value description

my (kg) 1.908 Total moving mass in plunge

mα (kg) 0.937 Total moving mass in pitch

fy (Hz) 2.28 Natural frequency of the plunge mode

fα (Hz) 4.01 Natural frequency of the pitch mode

xEA 0.25c Position of rotational (elastic) axis from mid-chord

Iα (kg−m2) 0.0017 Mass moment of inertia in pitch about elastic axis

the absence of any mesh gives rise to continuous flow dis-

turbances as the flow enters the test section directly from the

fan. Given that the focus of the study involves both deter-

ministic (sterile) and stochastic (fluctuating) flows, we show

two sample wind speed time histories for the sake of read-

ers’ clarity. As shown in Fig. 2(f), the flow data obtained

under suction conditions at speed U = 14.7 m/s is predomi-

nantly invariant with time. On the other hand, the flow time

history at mean speed Um = 14.7 m/s measured under blow-

ing conditions shows much higher fluctuations. Note that,

the fluctuation intensity of the noisy input flow in blowing

mode changes spatio-temporally as well as with the mean

flow speed. However, the variation of fluctuation intensity

has not been explicitly reported here, as we feel that the
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full information of flow fluctuations in the test section can

be best discerned from particle image velocimetry (PIV)

- which is currently unavailable with us. The experiments

were performed for airspeed in the range of 2-16 m/s, corre-

sponding to the Reynolds number ranging from 1.2 x 104 to 1

x 105. Table I contains various experimental parameters.

IV. RESULTS AND DISCUSSIONS

A. With deterministic flows

We carry out two isolated methodologies of wind tunnel

testing, namely, in suction mode and blowing mode of the fan

operation. The latter mode of tunnel fan operation augments

flow fluctuations, and the former mode of tunnel fan opera-

tion gives rise to largely sterile/deterministic flows. The re-

sults and discussions in this subsection are pertaining to the

findings obtained from sterile/deterministic flows. The results

on stochastic flows are presented in a later subsection.

The initial measurement of airfoil position is taken at zero

airspeed to set the reference and subsequently, the wind speed

is increased systematically. Under the suction test, two spe-

cific forms of experiments are conducted - namely, without

and with an impulsive change in the initial conditions to the

airfoil. The impulsive change here refers to a manual per-

turbation to the airfoil to displace it from its initial condi-

tions - which in turn serves as an avenue to trigger the sub-

criticality in the aeroelastic system if present.

As a first step, the airspeed is increased without changing

the initial conditions, and the bifurcation of the response dy-

namics from a fixed point to sustained high-amplitude LCOs

is tracked. Since the above is obtained via an increase in the

flow speed, we term the transition of input flow speed from a

small value to the critical value as the forward sweep exercise.

Since aeroelastic systems are prone to exhibit subcritical

bifurcations, identifying the same in wind tunnel experiments

can be pragmatically done by either providing an impulsive

change in initial conditions to trigger the subcriticality or

decreasing the flow speed from the critical value - an exer-

cise termed here as backward sweep. Should LCOs persist

even in the backward sweep, subcriticality in the system can

be implicitly deciphered35 (see Fig. 3). In this study, we do

both, providing manual impulsive change in the initial con-

ditions as well as carrying out a backward sweep to infer the

presence of subcriticality. In the methodology involving man-

ual impulse, flow speed in the wind tunnel is increased from

zero to critical speed, albeit that a considerable initial per-

turbation is given to the airfoil at each increment of airspeed

and the resulting responses are observed. It must be remem-

bered that the need to identify subcritical branches stems from

its imminent danger to the structure it poses from operational

parlance and the possibility of subcritical bifurcations giving

rise to rich synchronization characteristics. The latter will be

captured and elaborated on in later parts of this study.

The airfoil response without perturbing the system from

its initial conditions is plotted against U for pitch (Fig. 3(a))

and plunge (Fig. 3(b)). As U approaches Ucr, the response

dynamics transforms from a state of rest to large ampli-

tude LCOs, marking the onset of stall flutter instability (see

regime-iii in Fig. 3(a)). It is worth noting that the presence of

large-amplitude pitch oscillations (higher than the stall value

for a NACA 0012 airfoil) is one of the reasons to term these

large-amplitude LCOs as stall flutter. The other reason is

the close match of LCO frequency with the pitch natural fre-

quency of the system. The above two are usually viewed as

traditionally established markers for identifying and charac-

terizing stall flutter.

Here, Ucr represents the critical flow speed which is ≈ 13.7

m/s in our case. Increasing U >Ucr results in a considerable

increase in the amplitude of LCOs. We refrain from exceeding

U too much above the Ucr, owing to the practical constraints

associated with the experimental framework. Indeed, the pitch

amplitudes are high enough (≈ 35◦) and may possibly jeop-

ardize the setup assembly, hence the maximum flow speed for

the forward sweep tests is kept below 16 m/s.

Subsequently, resolving the presence of subcritical dynam-

ics is undertaken. As elaborated earlier, a two-pronged ap-

proach is undertaken here. First, we systematically reduce U

to the values well below Ucr and in turn enable a backward

sweep. As shown in Fig. 4, a backward sweep captures the

presence of LCOs well below the Hopf point - in specific, till

the fold point. In consistent trend with the dynamical sys-

tems literature, the amplitudes of the LCOs in the backward

sweep reduce as U <Ucr, and eventually the response dynam-

ics shifts to a fixed point signature at the fold point. Such

behaviour is attributed to the presence of subcriticality in the

system35. One can also trigger the responses to jump from the

stable, fixed-point regime to stable LCOs, by changing the

initial conditions via manual perturbation in the proximity

of the fold point. It is speculated that a stable fixed point is

surrounded by an unstable LCO, which is bounded by a sta-

ble LCO as shown in Fig. 4. The lowest airspeed at which

the LCOs are observed is approximately U = 9.5 m/s and can

be observed in regime-ii of Fig. 3(a). Next, an initial con-

dition of ≈ 20◦, large enough to exceed the static stall angle

of NACA 001236 is provided via manual impulse to the air-

foil at different flow speeds. We note that for U < U f ld , the

manual impulse merely perturb the response dynamics and

culminate in a decaying signature (see inset of regime-i of

Fig. 3(a)). Note that U f ld refers to the fold point as being ap-

proximately 9.5 m/s. At U ≥U f ld , the manual impulse trig-

ger the response dynamics to jump to the stable LCO branch

and display LCOs (see inset of regime-ii of Fig. 3(a)). Larger

is the increase in U from the fold point, larger is the amplitude

of LCOs; see regimes-ii and iii shown in Fig. 3(a).

It is clear that there is a coexistence of a stable fixed point

attractor (without excitation) and a stable LCO attractor (with

excitation) at the flow speeds shown in regime-ii. The lowest

value of flow speed is approximately the same as the mini-

mum speed at which the LCOs are obtained during the back-

ward sweep experiment and corresponds to the fold point (see

schematic in Fig. 4). Though observations of a jump to stable

LCOs were made in stall flutter experiments by Dimitriadis

and Li5, our study here conclusively demonstrates the pres-

ence of a subcritical Hopf bifurcation in aeroelastic systems
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FIG. 3: Bifurcation plots for (a) pitch response, and (b) plunge response, showing the subcritical Hopf bifurcation. Regime (i)

shows stable FP attractor, regime (ii) shows coexisting stable FP and stable LCO attractors and regime (iii) shows stable LCO

attractor.

FIG. 4: Schematic of subcritical Hopf followed by fold

bifurcation.

undergoing dynamic stall.

Enarmed with the clarity of a subcritical Hopf bifurcation

in stall flutter problem, we proceed to investigate the synchro-

nization characteristics. Before embarking on the same, a re-

iteration of the key findings observed so far is collated here.

The present fluid-structure interaction, owing to the physi-

cal parameters of the experimental framework, displays large-

amplitude LCOs in the pitch DoF. This is possibly indicative

of a nonlinear aerodynamic load (dynamic stall) giving rise

to large-amplitude LCOs marked by the stall flutter onset. In

subsequent sections, we will demonstrate that these oscilla-

tions are indeed from a nonlinear aerodynamic loading condi-

tion.

The nonlinear aeroelastic system undergoing dynamic stall

possesses subcritical characteristics. Sensitivity to initial con-

ditions and the existence of LCOs in the backward sweep are

tell-tales of the existence of subcritical behaviour. To discern

the physics behind these nonlinear oscillatory signatures, the

same is described from the vantage of synchronization theory

next.

1. Dynamic characterization of flutter

Overall, the pitch LCO amplitudes obtained from suction

tests are in the range 18◦ - 32◦. These oscillations are higher

than the experimentally reported range of static stall angles36

and hence possibly are dynamic stall-induced7,27,37. To in-

vestigate the same, a frequency-based approach is taken up

next. Stall flutter is pitch driven and can be experimentally

obtained even for a purely pitching airfoil as well and usually,

the stall flutter LCO frequency is closer to the pitch natural

frequency37,38.

Route to frequency coalescence is shown in Fig. 5(a) as

U increases. For estimating the frequency content below

U f ld , it is necessary to offer initial perturbations and in

turn obtain the decaying signatures of the time responses.

Once the decaying time responses for U <U f ld are obtained,

the frequency of the decaying oscillations is evaluated (see

Figs. 5(b)-(e)). We observe that with the increase in U , the

pitch response frequency remains almost invariant, whereas

the plunge frequency peak shrinks and coalesces with the

pitch frequency as U f ld is approached. Indeed, at U f ld = 9.5

m/s, pitch and plunge frequencies coalesce perfectly at 4.01

Hz which is same as the pitch natural frequency. This feat

is usually a strong indicator of stall flutter5,7,27,37. Further

increasing the speed above U f ld , minimal but gradual in-

crease in coalesced frequency is observed and can be at-

tributed to the increase in positive aerodynamic stiffness

and the negative value of aerodynamic damping39.

Additionally, below U f ld , a secondary peak is also present

in both pitch and plunge frequency contents which is very

close to the natural frequencies of the other mode (see Fig 5(c)

and Fig 5(e)). This is perhaps due to the simultaneous man-
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FIG. 5: (a) Variation in the dominant frequency ( fdom) of pitch and plunge with U ; (b) damped response at U = 5.5 m/s, (c)

frequency content at U = 5.5 m/s, (d) damped response at U = 7.6 m/s, (e) frequency content at U = 7.6 m/s, (f) LCO response

at U = 9.5 m/s, (g) frequency content at U = 9.5 m/s, (h) LCO response at U = 14.5 m/s, (i) frequency content at U = 14.5 m/s.

ual perturbation given in pitch mode triggering the plunge

mode as well7. At U >U f ld these secondary peaks disappear

and only single dominant peak remains near pitch natural fre-

quency (see Fig. 5(g) and Fig. 5(i)). Hence, it is evident that

the frequency at flutter onset is pitch dominant and LCOs in

Fig. 5(f) and Fig. 5(h) can be characterized as suppression of

natural dynamics and is hitherto reported in stall flutter prob-

lems addressed numerically27.

2. Investigation into synchronization between pitch and
plunge mode

Now we look into the synchronization characteristics of ex-

perimentally obtained pitch and plunge responses. Towards

this, we simultaneously inspect (i) frequency contents of re-

sponses, and (ii) phase difference (RPVs) between pitch and

plunge responses. In Fig. 5(c), Fig. 5(e), Fig. 5(g) and

Fig. 5(i), we observe that the dominant frequency peak of

pitch mode is almost stationary and that of the plunge mode

gradually shrinks and finally they coalesce near the pitch nat-

ural frequency. This mechanism of synchronization is called

suppression of natural dynamics and has been reported for

the stall-induced aeroelastic systems by Vishal et al.27 using a

semi-empirical numerical model albeit experimentally we ob-

serve a far closer coalescence of the flutter frequency with the

pitch natural frequency in this study.

Next, we analyse the dynamics of RPV (∆φ ) of pitch and

plunge modes. First, we inspect the same in the vicinity of

the fold point, U f ld . To that end, we obtain the aeroelas-

tic data from the backward sweep experiments. Repeating

this exercise for the data generated in the forward sweep with

initial perturbations gives rise to the same set of findings,

and hence are not shown here for the sake of brevity. We

observe that at U = 11.1 m/s (see Fig. 6(a)), the RPVs are

bounded with minimal fluctuations and has a PLV of 0.95 (see

Fig. 6(b)) - which is representative of phase locking between

pitch and plunge oscillations. Such bounded fluctuations in

RPVs are also characterized as phase trapping15. Correspond-

ing radial distribution of relative phase shown in Fig. 6(c) in-

dicates dense RPVs. As the flow speed is decreased to U =

10.3 m/s, the RPVs are still bounded (Fig. 6(a)), however, its

radial distribution is visibly more scattered (Fig. 6(d)) and the

PLV is reduced to 0.91 (Fig. 6(b)) implying a slight loss in

synchronization strength. Further decreasing the flow speed

to 9.5 m/s, there is a sudden transition as the RPVs instead

of being bounded, undergo phase slips (of integer multiples

of 2π). The corresponding PLV is further reduced to approx-

imately 0.85 (Fig. 6(b)) and the radial distribution is highly

scattered (Fig. 6(e)) - this indicates the state of intermittent

phase synchronization14. This regime is closely represented

in Fig. 7(a) where the epochs of phase-locking are separated

by phase slips (see Fig. 7(b)). This indicates that the instanta-

neous phases of pitch and plunge are trapped (see Figs. 7(c)-

(d)) except for the short duration where the momentary slips

jeopardize the phase locking. The flow speed at which phase

slip occurs is perhaps the fold point (or close to it) and there

is an unstable (LCO) branch associated with it (see Fig. 4).

The presence of this unstable branch is possibly the reason

that leads to the phenomenon called imperfect phase synchro-

nization with associated phase slips14. It is worth mentioning

that this point is the minimum value of U for which subcritical

LCOs are encountered and for U <U f ld the system has only

a single attractor i.e. the stable fixed point.
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FIG. 6: (a) Time evolution of RPV(∆φ ) near fold point (U = 11.1 - 9.5 m/s); (b) Change in PLV during backward sweep

experiment (subcritical stable LCO branch); Radial distribution of ∆φ at (c) U = 11.1 m/s, (d) U = 10.3 m/s, and (e) U = 9.5

m/s.

FIG. 7: (a) The phase slips at U = 9.5 m/s (fold point); (b) a

closer look at the phase slips shows 2π (or its multiples)

jumps. Figures (c)-(d) show normalized pitch-plunge time

histories at various instances.

On the other hand, we observe phase synchronization post

Hopf point region from the forward sweep experiments. Cor-

responding RPV and PLV variations are shown in Fig. 8(a)

and Fig. 8(b), respectively. At U = 13.7 m/s, the RPVs are

bounded but oscillatory in time. The same is also depicted

in Fig. 8(c) through the radial variation of RPVs. This rep-

resents phase trapping between pitch and plunge modes. As

the flow speed is increased to higher values (14.4 m/s - 15.3

m/s), phase trapping (or synchronization) is observed. The

radial distribution for U = 14.4 - 15.3 m/s are less scattered

(Figs. 8(d)-(f)) compared to that at U = 13.7 m/s, representing

a higher coherence between the two oscillators. Correspond-

ing PLVs for the range U = 13.7 - 15.3 m/s are above 0.98

which indicates an occurrence of stronger phase synchroniza-

tion. The overlapped time histories are shown in Figs. 9(a)-

(c) corroborate the same. Note that the frequencies of pitch-

plunge oscillators are perfectly coalesced for this range of

speeds (see corresponding amplitude spectra in Fig. 9).

In short, stall flutter with large amplitude LCOs corre-

sponds to phase synchronization (through phase trapping) be-

tween pitch and plunge modes. The synchronization (or fre-

quency locking) happens through the mechanism known as

suppression of natural dynamics (of the plunge mode). Fur-

ther, near the fold point, intermittent phase synchronization

between pitch and plunge modes is observed, wherein the

epochs of phase trapping are segregated by the phase slips.

Having characterized the synchronization behaviour during

the bifurcation to stall flutter with the deterministic flow, we

now turn our attention to the same with stochastic inflow con-

ditions.

B. With stochastic flows

In this subsection, the response dynamics of the aeroelas-

tic system under stochastic inflow conditions is obtained and

subsequently, the underlying synchronization characteristics

of pitch and plunge modes are investigated. The stochastic

conditions are provided by the fluctuations in the inflow when

the experiments are carried out under the blowing mode.

1. Dynamic characterization of flutter

It is observed that the pitch-plunge response dynamics is

significantly altered in the presence of noise and we observe

small-amplitude NIRO at Um = 12.8 m/s, even below Ucr (≈
13.7 m/s), as shown in Fig. 10(a). Upon increasing the flow

speed above Ucr (to Um = 14.6 m/s), these small-amplitude

NIRO persist (see Fig. 10(b)), indicating that the onset of

LCOs under stochastic conditions is perhaps delayed. The

frequency content of these oscillations shows a broadband
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FIG. 8: (a) Time evolution of RPV(∆φ ) post Hopf bifurcation (U = 13.7 - 15.3 m/s); (b) Change in PLV post Hopf point during

forward sweep experiment; Radial distribution of ∆φ at (c) U = 13.7 m/s, (d) U = 14.4 m/s, (e) U = 14.8 m/s, and (f) U = 15.3

m/s.

FIG. 9: Sample overlapped time histories of pitch and plunge

responses (normalized) and corresponding frequency

response post Hopf bifurcation at (a) U = 13.7 m/s, (b) U =

14.8 m/s, and (c) U = 15.3 m/s.

response where multiple frequency peaks are observed (see

Figs. 10(a)-(b)) to be concentrated about the respective nat-

ural frequencies of pitch and plunge modes. In other words,

noise-induced oscillations are observed with some character-

istic frequency in the pre-flutter regime.

At Um = 15.0 m/s, the small amplitude NIRO transforms

into large amplitude random LCOs or RLCOs (see Fig. 10(c)).

With further increase in flow speed, these RLCOs grow into

well-developed LCOs (see Fig. 10(d)). The corresponding

frequency response of these RLCOs has a single dominant

peak closer to fα . This implies that the two modes coalesce

near fα resulting in pitch dominant LCOs akin to the deter-

ministic scenario, and hence these LCOs can be termed as

stochastic stall flutter40.

2. Investigation into synchronization between pitch and
plunge mode

Since the pitch-plunge time histories under fluctuating in-

flow depict a different class of dynamical signatures than those

obtained under deterministic inflow, it is imperative to sepa-

rately investigate the synchronization characteristics of two

modes in a stochastic framework. Akin to the deterministic

scenarios shown in Fig. 6 and Fig. 8, an attempt to describe the

synchronization characteristics with the bifurcation behaviour

was made here. To that end, the temporal evolution of RPVs

corresponding to small amplitude NIRO responses are plotted

in Fig. 11 and those corresponding to large amplitude RLCO

responses are plotted in Fig. 12.

It is observed from Fig. 11(a) that the RPV in the range be-

tween Um = 12.8-14.6 m/s has a random variation with time,

where many plateaus of phase-locking amidst phase drifting

are observed which denotes asynchrony between the pitch

and plunge modes. For clarity, a zoomed section of RPV

time histories is shown in Figs. 11(b)-(d). The phase differ-

ence does not show a monotonically increasing or decreas-

ing trend over time but rather keeps drifting to a higher or

a lower value arbitrarily amidst many phase-trapping epochs.

The NIROs are observed to contain broad band frequency

spectrum with multiple dominant peaks (see Fig. 10(a) and

Fig. 10(b)) and therefore correlated in nature. For such

signals, a perfect asynchrony cannot be expected as there

might be some common dominant frequencies. Therefore,

the weak phase synchrony observed between pitch and

plunge responses in this regime might be due to such com-

mon frequency content between pitch and plunge mode.

Figure 12(a) shows the time variation of RPV for Um = 15.0

- 15.7 m/s, which corresponds to the large amplitude RLCOs
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FIG. 10: Aeroelastic response time histories and corresponding frequency response under blowing conditions at (a) Um = 12.8

m/s, (b) Um = 14.2 m/s, (c) Um = 15.0 m/s, and (d) Um = 15.7 m/s.

FIG. 11: (a) RPV(∆φ ) time histories under blowing conditions, corresponding to NIROs (before the onset of stochastic stall

flutter); a zoomed section of ∆φ time history at (b) Um = 12.8 m/s, (c) Um = 13.6 m/s, and (d) Um = 14.6 m/s.

during stochastic stall flutter (see Figs. 10(c)-(d)). At Um =

15.0 m/s (stochastic bifurcation point), we see a sudden tran-

sition in relative phase dynamics as the ∆φ monotonously de-

creases over the time (see Figs. 12(b)-(c)). Here the phase-

locking epochs are very short-lived and rarely occurring im-

plying an asynchronous phase dynamics between pitch and

plunge modes. On further increasing the flow speed, the

appearance of phase-locking epochs becomes more frequent

and visibly longer in duration, which is separated by phase

slips. Closer looks into the RPVs at Um = 15.7 m/s for arbi-

trarily chosen time instances are presented in Figs. 12(d)-(e),

which shows multiple phase-locking epochs along with the

phase slips (of integer multiples of 2π) indicative of intermit-

tent phase synchronization. Such 2π phase slips are ‘noise-

enhanced’13,16,18 and in the absence of noise we encounter the

phase trapping characteristics akin to the deterministic case

shown in Fig. 8 for this flow speed range. Therefore, in the

stochastic stall flutter regime, a transition from asynchrony to

intermittent phase synchronization between pitch and plunge

modes is observed. With a view to quantifying this transition,

we resort to the phase-locking values (PLV) in this flow speed

range.

The variation in PLV with mean flow speed is shown in

Fig. 13(a), which shows that the PLVs in the stochastic flut-

ter regime (Um > = 15 m/s) are much lower than those ob-

tained under suction conditions. This indicates that the noise



11

FIG. 12: (a) RPV(∆φ ) time histories under blowing conditions after the onset of high amplitude RLCOs; a zoomed section of

∆φ time history at Um = 15.0 m/s (b)-(c) and 15.7 m/s (d)-(e).

has a significant effect on mutual phase locking between pitch

and plunge modes. The PLV at Um = 12.8 m/s is 0.49 which

increases to 0.59 at Um = 13.2 m/s and subsequently attains

approximately a constant value (0.63) between Um = 13.6 -

14.6 m/s. This is due to the short-lived weak phase locking

between pitch and plunge modes observed amidst the overall

phase asynchrony (Figs. 13(b)-(d)). At Um = 15.0 m/s, we see

a sudden dip in PLV from 0.63 to 0.57. This justifies the asyn-

chronous phase dynamics with very short-lived and rarely oc-

curring phase-locking epochs observed at the onset of stochas-

tic stall flutter. Upon further increasing the inflow speed up

to Um = 15.7 m/s, PLV gradually increases up to 0.74, quan-

tifying the intermittent phase synchronization in post flutter

regime.

Note that, up to Um = 14.6 m/s, the aeroelastic responses

depicts NIRO of small amplitudes which then transition to

RLCO at Um = 15.0 m/s. This transition is highlighted in

Fig. 13 and more clearly depicted via stationary joint proba-

bility density function (j-pdf) of pitch and its instant derivative

(α ′) in Fig. 13(b) and Fig. 13(c). The topological changes in

j-pdf from uni-modal at Um = 14.6 m/s (representing NIRO)

to crater-like structure at Um = 15.0 m/s (representing RL-

COs) are indicative of a stochastic phenomenological or P-

bifurcation41. However, it is worth noting that the depiction of

the stochastic bifurcation points in Fig. 13 is rather based on

visual inspections and in turn qualitative. Quantitative mea-

sures such as Shannon entropy and Lyapunov exponents12,41

can offer better insights into the stochastic bifurcations, how-

ever, they are beyond the scope of this study.

There are two major differences in relative phase (∆φ ) dy-

namics shown in Fig. 11 (corresponding to NIRO) and Fig. 12

(corresponding to RLCOs). First, during NIRO, the RPV is ar-

bitrarily increasing or decreasing over time where noise plays

a dominant role in leading to epochs of weak phase locking.

While, during RLCO, the RPV monotonically decreases with

the intermittent appearance of the phase-locking epochs. The

other difference is that although the 2π phase slips are present

in both the cases, during NIRO, the average relative phase dif-

ference, 〈∆φ〉t during the phase-locking epochs appears to be

even multiples of π , while during RLCO, 〈∆φ〉t becomes the

odd multiples of π . To understand this more comprehensively,

the probability density function (pdf) of RPVs are plotted for

the range Um = 12.8 - 15.7 m/s in Fig. 14. Up to Um = 14.6

m/s, the pdfs have two peaks one near 0 and the other near

2π , indicating the dominance of in-phase characteristics. At

Um = 15.0 m/s, these two peaks disappear and a single promi-

nent peak is seen near π , indicating the qualitative change in

mutual phase synchronization as the phase characteristics are

anti-phase. Beyond this flow speed, the peak remains close to

π and the synchronization dynamics remain anti-phase.

The point, where the phases transition from in-phase to

anti-phase (i.e. Um = 15.0 m/s) is accompanied by a tran-

sition in frequency response as the broadband frequency re-

sponse transitions to a coalesced single peak (see Fig. 10).

The phase jumps of π and a simultaneous jump in frequency

in synchronized oscillators is characterized as ‘phase flip tran-

sition’ in-phase synchronization theory19,20. The oscillations

in this study are not completely synchronized under noise but

have a π jump in radial phase distribution and a sudden transi-

tion in frequency response simultaneously. More importantly,

the transition in phase dynamics occurs at the onset of RLCOs

and hence it can be a useful marker for stochastic stall flutter

prediction and can be explored further in a separate study.

In short, the transition to stall flutter under stochastic inflow

conditions corresponds to the transition from asynchrony with

weak phase-locking epochs to intermittent phase synchroniza-

tion between pitch and plunge modes. Further, a characteristic

of phase-flip bifurcation is observed at the onset of RLCOs.
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FIG. 13: (a) Variation of PLV of the pitch and plunge responses with flow speed under blowing conditions. The j-pdfs are

shown at (b) Um = 14.6 m/s (corresponding to small amplitude NIROs), and (c) Um = 15.0 m/s (corresponding to RLCOs) to

depict the transition (highlighted) from noise-induced oscillations to stochastic stall flutter.

FIG. 14: Cyclic distribution of ∆φ depicted via its probability density function. For Um = 12.8 - 14.6 m/s, two pronounced

peaks are observed close to 0 ans 2π (in-phase), respectively. At Um = 15.0 m/s, a single pronounced peak is observed close to

π (anti-phase) and remains as such for Um = 15.5 m/s and 15.7 m/s.

In wake of recent findings by Tripathi et al.1, that the fatigue

damage in nonlinear aeroelastic systems is the highest under

the dynamic stall, the present insights towards characterizing

stall-induced dynamical signatures can be potentially relevant

in the design of futuristic nonlinear aeroelastic systems.

V. CONCLUDING REMARKS

This study presents the physical mechanism of the stall-

induced instabilities in the aeroelastic systems through a syn-

chronization framework. The passive pitch and plunge re-

sponses of the NACA 0012 foil are measured from wind tun-

nel experiments under deterministic (suction) and stochastic

(blowing) inflow conditions. The aeroelastic system is found

to be sensitive to initial conditions due to the presence of co-

existing attractors through a subcritical Hopf bifurcation. The

frequency response analysis shows that the dominant pitch

and plunge frequencies coalesce via the suppression of plunge

mode by the pitch mode. Under deterministic inflow con-

ditions, we observe intermittent phase synchronization with

phase slips near the fold point; whereas, near the Hopf point,

we observe synchronization via phase trapping.

The study is further extended to understand the underlying
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synchronization mechanism that gives rise to noise-induced

instabilities. Blowing conditions provide higher turbulent in-

tensity, enabling the stochastic scenario with inflow acting as

input noise. Consequently, the response dynamics was seen

to be very distinct from those under suction conditions. The

bifurcation route is altered and the small amplitude NIROs

are seen to presage the RLCOs during stall flutter. The role of

noise is crucial in altering aeroelastic responses and is well un-

derstood from the RPV and PLV observations. The arbitrary

phase slips owing to the noise explain the presence of small

amplitude NIRO prior to the onset of stochastic stall flutter.

Post the stochastic stall flutter onset, noise jeopardizes the

phase-locking and we observe intermittent phase synchroniza-

tion. At the stochastic bifurcation point, changes in the distri-

bution of RPV are observed, as the dominant peaks of RPV

become anti-phase from in-phase, a characteristic of phase-

flip bifurcation.

This study is perhaps the first to invoke the synchroniza-

tion theory for experimentally observed stall flutter responses

and to provide insights into the transitions in mutual synchro-

nization that take place when the wing undergoes stall flutter,

NIRO, and RLCO. The findings presented here can be further

extended for developing precursors (via time series analysis10

or machine learning algorithms42) for various aeroelastic in-

stabilities by examining synchronization mechanisms of other

nonlinear aeroelastic systems possessing complex response

dynamics such as period-doubling and chaos.
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