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  Abstract

Word count: 250

 

Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown.
Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a
Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of
Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in
vivo and in vitro.
Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing
regimen. GB0139 (1−30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology,
broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of
GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines.
Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil
activation. GB0139 reduced LPS‐mediated increases in interleukin (IL)‐6, tumor necrosis factor alpha (TNF  and macrophage
inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell
apoptosis and the upregulation of pro‐inflammatory genes encoding for IL‐8, TNF , IL‐6 in alveolar epithelial cells in response to
mechanical stretch.
Conclusions: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports
the development of GB0139, as a potential treatment approach in ALI.

   

  Contribution to the field

bacterial and viral infection and others, is a condition with limited treatment options so identifying novel therapeutic targets is
essential. The accumulation and activation of neutrophils is considered key to the progression of ALI into acute respiratory
distress syndrome (ARDS). Our work has identified the beta galactoside binding lectin galectin-3 (Gal-3) as being a key regulator of
chronic inflammation in the lung and the novel, inhaled Gal-3 inhibitor GB0139 is currently undergoing Phase 2b clinical
development for idiopathic pulmonary fibrosis. However, the effect of Gal-3 inhibition on ALI/ARDS has not been assessed. This
current article describes the effect of GB0139 on ALI models in mice, and on neutrophil and epithelial cell activation in vitro. We
show that inhibition of Gal-3 with GB0139 reduces neutrophil recruitment and activation in the lung GB0139 reduces inflammatory
and profibrotic cytokines in the BAL fluid (TNF, IL‐ 6, MIP‐1 , MMP8) culminating in reduced lung damage and accelerated
resolution. As repetitive alveolar injury leads to aberrant wound healing, GB0139 administration may reduce the likelihood of
developing chronic pulmonary fibrosis in response to continued acute insults. These studies support the development of the Gal-3
inhibitor, GB0139, as a potential treatment approach in ALI
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ABSTRACT  

Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in 

acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for 

ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 

inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary 

fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with 

GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in 

vitro.  

Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in 

C57BL/6 mice to support the daily dosing regimen. GB0139 (1−30 µg) was then assessed 

following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, 

broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests 

and BALf were performed. The impact of GB0139 on cell activation and apoptosis was 

determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines.  

Results: GB0139 decreased inflammation severity via a reduction in neutrophil and 

macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases 

in interleukin (IL)-6, tumor necrosis factor alpha (TNFa) and macrophage inflammatory 

protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-

8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-

8, TNFa, IL-6 in alveolar epithelial cells in response to mechanical stretch.  

Conclusions: These data indicate that Gal-3 adopts a pro-inflammatory role following the early 

stages of lung injury and supports the development of GB0139, as a potential treatment 

approach in ALI. 

Abstract word count: 249 
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Introduction 

 

Galectin-3 (Gal-3) is a pro-fibrotic, mammalian ß-galactoside binding lectin, which is highly 

upregulated in the injured lung (MacKinnon et al., 2012). Gal-3 is elevated in the plasma and 

broncho-alveolar lavage fluid (BALf) of patients with idiopathic pulmonary fibrosis (IPF) 

(Nishi et al., 2007; MacKinnon et al., 2012), and is further upregulated in the plasma of patients 

undergoing an acute exacerbation of IPF (AE-IPF) (MacKinnon et al., 2012). Furthermore, in 

a cohort of 2025 patients from the Framingham Heart study, elevated plasma Gal-3 was 

associated with restrictive lung disease, decreased lung volumes and altered gas exchange (Ho 

et al., 2016), suggesting a potential role for Gal-3 in the early stages of pulmonary fibrosis. 

 

Preclinical data supports the role of Gal-3 as an important regulator of lung fibrosis; global 

deletion of Gal-3 in mice was shown to reduce bleomycin-induced fibrosis compared to wild-

type mice (MacKinnon et al., 2012). In vitro findings also suggest a role for Gal-3 in 

fibrogenesis as Gal-3 stimulates migration and collagen synthesis in fibroblasts(Nishi et al., 

2007), and promotes alternative, pro-fibrotic, macrophage activation (MacKinnon et al., 2008). 

Gal-3 is also a key regulator in the induction of epithelial to mesenchymal transition (EMT) in 

lung epithelial cells (MacKinnon et al., 2012), and has a role in neutrophil activation and 

neutrophil apoptosis (Yamaoka et al., 1995; Kuwabara and Liu, 1996; Almkvist and Karlsson, 

2002; Farnworth et al., 2008; Sundqvist et al., 2018). In mouse models of inflammation, 

elevated levels of Gal-3 in exudates correlates with increased neutrophil recruitment to the 

inflammatory site (Sano et al., 2000); such persistent neutrophil activation and delay of 

apoptosis could result in an overall exacerbation of tissue injury and failure of resolution.   
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In lung epithelial cells, Gal-3 activates ERK, AKT and JAK/STAT1 signaling pathways, 

leading to the release of pro-inflammatory cytokines during influenza and Streptococcus 

pneumoniae co-infection (Nita-Lazar et al., 2015), and enhances the pathogenic effects of 

H5N1 avian influenza virus by promoting host inflammatory responses via an interaction with 

NLRP3 inflammasome in macrophages (Chen et al., 2018). Mice deficient in Gal-3 develop 

less severe inflammation and interleukin (IL)-1β production than wild-type mice (Chen et al., 

2018). In dendritic cells (DC) Gal-3 serves as a pattern-recognition receptor, regulating 

proinflammatory cytokine production and downregulation of Gal-3 in DCs inhibits expression 

of IL-6, IL-1β, and IL-23 and subsequent Th17 and Th2 development(Chen et al., 2015). 

   

Currently, no targeted therapies exist for ALI and so treatment is limited to best supportive care. 

Based on available data, the combined effects of Gal-3 on macrophages, lung epithelial cells 

and neutrophil function, suggest that the inhibition of Gal-3 may serve as a potential strategy 

for the treatment of ALI.  Recently we showed that conditional myeloid deletion of Gal-3 led 

to a significant reduction in Gal-3 expression in alveolar macrophages and neutrophils which 

decreased pulmonary inflammation and neutrophil recruitment into the interstitium (Humphries 

et al., 2021). GB0139 (formerly TD139), is a novel, inhalable, small molecule Gal-3 inhibitor, 

which reduces bleomycin-induced fibrosis in mice (MacKinnon et al., 2012; Delaine et al., 

2016). In a Phase I/IIa study, GB0139 had a manageable safety profile and demonstrated good 

target engagement with alveolar macrophages in patients with IPF (Hirani et al., 2017). GB0139 

is currently undergoing Phase IIb clinical evaluation for the treatment of IPF (NCT03832946). 

Here, we investigate the impact of Gal-3 and GB0139, on ALI models in mice, and on 

neutrophil and epithelial cell activation in vitro. 
 

Methods and Materials 

In-vivo studies 

Animals: 8-week-old male C57BL/6 mice were purchased from Harlan (Harlan Ltd, UK) and 

given 1 week to acclimatize prior to experimentation. Mice were maintained in 12-hour (h) 
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light/12-h dark cycles with free access to food and water. All experimental animal procedures 

were approved by the University of Edinburgh and were performed in accordance with Home 

Office guidelines [Animal (Scientific Procedures) Act 1986]. 

 

GB0139 pharmacokinetics: For full details on GB0139 lung and plasma pharmacokinetics 

following intra-tracheal (i.t.) delivery see online supplement.   

 

Induction of ALI and administration of GB0139: To induce ALI, mice received 10 μg 

lipopolysaccharide ([LPS] serotype 0127:B8, L4516, Sigma-Aldrich, Missouri, USA) from E. 

coli, or 33 μg bleomycin (BI3543, Apollo Scientific, UK), respectively, via i.t. administration. 

LPS/bleomycin ± GB0139 (in 50 μL 0.9% NaCl), was inserted into the needle via a pipette, 

and delivered into the lungs with a 2 x 100 μL bolus of air (using a 1 mL syringe). GB0139 was 

subsequently administered every 24 h until sacrifice.  

 

Bronchoalveolar lavage: BALf was collected as previously described (Dhaliwal et al., 2012).  

 

Histology and immunohistochemistry preparation: For full details of histology and 

immunohistochemistry preparation, see online supplement. Total inflammation score and 

fibrosis score were assessed according to protocols (Murao et al., 2003; Hübner et al., 2008).  

Quantitative analysis of histological and immunohistochemical samples was performed blinded 

to the investigator. 

  

Total protein: Total protein within BALf was performed using a Pierce BCA Total Protein 

Assay Kit (23227; ThermoFisher Scientific, Waltham, MA, USA) as per the manufacturer’s 

instructions.  
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Flow cytometric analysis of lung digests: Tissue digests and flow cytometry methods were 

performed according to published methodology (Humphries et al., 2018). See online 

supplement for further details. 

 

Cytokine analysis: The mouse magnetic luminex assay (LXSAMSM, R&D Systems, 

Minneapolis, MN, USA) was used according to the manufacturer’s instructions.  

 

Enzyme Linked Immunosorbent Assay (ELISA): ELISA kit for the measurement of IL-8 or Gal-

3 in BALf samples (DuoSet; R&D Systems) was used according to the manufacturer’s 

instructions.  

 

Gal-3 synthesis: Gal-3 was synthesized in house. Recombinant human full length Gal-3 was 

produced in E. Coli BL21 Star (DE3) cells and purified by affinity chromatography on lactosyl-

sepharose columns, as previously described (Salomonsson et al., 2010). To remove endotoxin 

contamination, 1% Triton X114 (X114, Sigma-Aldrich) was added to Gal-3 solution for 30 

minutes (min) at 4 °C prior to 10 min incubation at 37 °C. After centrifugation at 5000 x g for 

5 min, the aqueous solution was removed. This process was repeated 3 times. GB0139 (Bis (3-

deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-β-D-galactopyranosyl) sulfane) was provided 

by Galecto Inc. The purity of GB0139 was >99% as determined by analytical high-performance 

liquid chromatography. 

 

Cell culture: Cell lines (THP-1, A549 and Jurkat E6 cells) were purchased from the European 

Collection of Authenticated Cell Cultures and were cultured at 37 °C in 5% CO2 (95% air) in 

Dulbecco’s Modified Eagle’s Medium (A549) or Roswell Park Memorial Institute medium 
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(THP1, Jurkat E6) supplemented with 10% fetal calf serum, 1% l-glutamine, and 1% 

penicillin/streptomycin.  

 

Monocyte IL-8 secretion: THP-1 monocyte-like cells (ATCC, Middlesex, UK) were activated 

with 10 nM phorbol 12-myristate 13-acetace ([PMA] P8139, Sigma-Aldrich) overnight and 

allowed to adhere. The following day cells were washed x 3 phosphate buffered saline (PBS) 

and treated with Gal-3 ± 10 µM GB0139 for 24 h. Levels of IL-8 within media were quantified 

using IL-8 ELISA (DY208, R&D Systems).    

 

Isolation of human neutrophils/monocytes: Peripheral human neutrophils and mononuclear 

cells were isolated from whole blood using Percoll gradients (Dorward et al., 2017). To isolate 

monocytes, the pan monocyte isolation kit (130-096-537, Miltenyi Biotec, Germany) was used 

as per the manufacturer’s instructions.  

 

Macrophage RNA analysis: For full details of macrophage polarization and RNA analysis, see 

online supplement.  

 

Luminol ROS assay: Human peripheral neutrophils were primed with 10 ng/mL tumor necrosis 

factor alpha ([TNFa] 210-TA, R&D Systems) for 30 min at 37 ºC prior to addition of GB0139 

for a further 10 min. To quantify reactive oxygen species (ROS) release, neutrophils were 

mixed with Horse Radish Peroxidase (P8375, Sigma-Aldrich)/Luminol (A8511, Sigma-

Aldrich) and incubated with 30 µg/mL Gal-3, with luminescence measured using a Synergy 

plate reader (BioTek, Winooski, VT, USA). 
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Neutrophil/Jurkat apoptosis: Neutrophils or Jurkat cells were cultured for 20 h in the presence 

of 10 µg/mL or 20 µg/mL Gal-3, respectively, ± GB0139. Rates of apoptosis were determined 

using Annexin V (11828681001, Roche, Switzerland)/PI (P4170, Sigma-Aldrich) staining. 

Samples were assessed using the FACSCalibur flow cytometer (BD Biosciences, UK) and 

analyzed using FlowJo software (Tree Start Inc., OR, USA).  

 

Stretch-induced gene changes in human lung epithelial cells in vitro: Human lung epithelial 

A549 cells were plated in 6-well collagen Bioflex culture plates (Flexcell International 

Corporation, Germany) ± 10 µg/mL Gal-3 ± 10 µM GB0139. Cyclic mechanical stretch was 

applied using a Flexcell FX-4000T Tension Plus system (Flexcell International Corporation, 

Germany) set to deliver 15% elongation at 1 Hz for 4 h. After the stretch procedure, RNA was 

isolated from the cells and analyzed by quantitative polymerase chain reaction array.  For full 

details of the gene set see online supplement. 

 

Statistics: Data are represented as mean ± the standard error of the mean (SEM). Statistical 

comparisons were made using two-tailed Students t-test or one-way/two-way analysis of 

variance (ANOVA) with Bonferroni post-test for multiple comparisons. A P value < 0.05 was 

considered statistically significant (*= P < .05, **= P < .01, ***= P < .001). All graphs and 

statistics were performed using the statistical package GraphPad Prism 5 for Windows 

(GraphPad Software, CA, USA). 

 

Results 

 
GB0139 pharmacokinetic data support i.t. daily dosing 
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The pharmacokinetic profile of GB0139 was assessed in naïve mice. GB0139 was retained at 

high concentrations in the lung for up to 48 h following i.t. dosing of 0.5 mg/kg and 2 mg/kg 

(Fig. 1). This supported daily dosing of 0.3–1 mg/kg (9–30 µg per mouse) to be taken forward 

into ALI models.  

 

GB0139 reduces inflammatory cell recruitment following LPS-induced ALI 

 

LPS administration resulted in significant pulmonary inflammation at 24 h, as seen by alveolar 

membrane thickening, capillary congestion, intra-alveolar hemorrhage and interstitial and 

alveolar neutrophil infiltration. Histology inflammation score was significantly reduced in a 

dose-dependent manner with GB0139 when compared with the LPS treatment only group (Fig. 

2A−D). No significant differences in vascular permeability were observed, however a trend of 

increased BALf total protein was seen following LPS, which was partially reduced following 

GB0139 (Fig. 2E). Although absent following PBS, neutrophils were detected within the 

alveolar space following LPS administration and were reduced with 30 µg/mL GB0139 (Fig. 

2F).  

 

LPS administration upregulated several pro-inflammatory and pro-fibrotic cytokines within 

BALf, however administration of 10−30 µg GB0139 significantly reduced TNFa, IL-6, 

granulocyte-colony stimulating factor, C-C motif chemokine ligand (CCL) 5, macrophage 

inflammatory protein-1-alpha (MIP-1a), and matrix metallopeptidase 8 (MMP8) in a dose-

dependent manner (Fig. 2G–L, Supplementary Fig. 1A–B). 

 

The reduction of pulmonary inflammation seen with 30 µg GB0139 was associated with a 

significant decrease in interstitial neutrophil recruitment (identified as CD11b+, LY-6G+) and 
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activation, as seen by a significant reduction in CD11b expression (Fig. 3A–C) – for gating 

strategies see Supplementary Figures 2−4. A significant reduction in interstitial cytotoxic T 

cells (CD3+, CD8+) was also seen with LPS, which was reversed with 30 µg GB0139 (Fig. 3D).  

 

To identify alveolar and interstitial macrophage populations, a flow cytometric staining 

protocol was used (Misharin et al., 2013). LPS-induced ALI significantly reduced alveolar 

macrophage numbers whilst increasing inflammatory interstitial macrophage recruitment 

(measured as both % of total interstitial cells and proportion of total macrophages) (Fig. 3E–

F). Both effects were partially inhibited with 30 µg GB0139, although the data were not 

statistically significant. CD80, a marker of inflammatory M1 macrophages, was seen to increase 

following LPS treatment and was significantly reduced with 30 µg GB0139 (Fig. 3G).  

 

Similar results were also seen at the 48 h timepoint, with GB0139 reducing histology 

inflammation score, pulmonary neutrophil number and activation level (Supplementary Fig. 

5A−C). A significant increase in the proportion of alveolar macrophages alongside a significant 

reduction in interstitial macrophage recruitment was observed with GB0139 compared with the 

LPS only group (Supplementary Fig. 5D-E). Analysis of the prototypical markers for M1 

(CD80) and M2 (CD206) macrophages showed that Gal-3 inhibition was also found to non-

significantly reduce CD80 expression on both alveolar and interstitial macrophages, whilst 

significantly increasing CD206 expression on interstitial macrophages. This suggests Gal-3 

inhibition may have an M2-mediated protective role following LPS-induced ALI.  

 

Flow cytometric analysis of BALf (Fig. 4A–D) revealed GB0139 treatment did not affect the 

overall numbers of neutrophils but did reduce neutrophil activation as measured by a reduction 

in neutrophil CD62L and increase in CD11b expression when compared with LPS-treated mice 
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(Fig. 4E–F). Cell surface Gal-3 expression (geometric mean fluorescence intensity measured 

via flow cytometry) was also decreased by GB0139 and there was a reduction in both 

recruitment and Gal-3 expression on CD11b+, LY-6G-, inflammatory monocytes in BALf (Fig. 

4G–H). 

 

Bleomycin-induced acute lung injury 

 

We have previously shown that global genetic deletion of Gal-3 and therapeutic administration 

of GB0139 reduces chronic inflammation and fibrosis induced by bleomycin (MacKinnon et 

al., 2012; Delaine et al., 2016). We examined the effect of GB0139 on the acute inflammatory 

phase following bleomycin injury in mice treated daily with 30 µg GB0139. Following 

bleomycin-induced injury, significantly lower inflammation scores were observed at day 3 in 

the GB0139-treated group versus the bleomycin only group (Fig. 5A–C). Flow cytometric 

analysis of lung digests showed that GB0139 significantly reduced Gal-3 expression on 

interstitial neutrophils and macrophages and reduced interstitial neutrophil accumulation 

following bleomycin (Fig. 5D–F). GB0139 reduced neutrophil activation as determined by an 

increase in CD62L expression (Fig. 5G) and reduced inflammatory M1 macrophage 

polarization (decrease in CD80 expression; Fig. 5H). 

 

GB0139 has anti-inflammatory properties in vitro 

 

We sought to define the mechanism of action of GB0139 on cell types known to drive ALI. In 

vitro addition of 10–30 µg/mL Gal-3 to human THP-1 monocyte-like cells led to a significant 

increase in IL-8 secretion, which was inhibited with 10 µM GB0139 (Fig. 6A). Human 

monocyte-derived macrophages upregulated TNFa gene expression when polarized towards 
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an M1 phenotype by culturing in the presence of LPS and interferon gamma (IFNg), which was 

reduced with 10 µM GB0139 (Fig. 6B). Human neutrophils primed with TNFa increased ROS 

production in response to 30 µg/mL Gal-3 (Fig. 6C). This was significantly inhibited with 

GB0139 (IC50 0.8 µM; Fig. 6D). Gal-3 also significantly delayed rates of neutrophil apoptosis 

that was partially inhibited with GB0139 (Fig. 6E). The opposite was seen in Jurkat cells (an 

immortalized human T-cell line). Gal-3 (20 µg/mL) significantly accelerated apoptosis from 

11% to 65% (Fig. 6F). This was inhibited with GB0139 (IC50 0.54 µM) 

 

Epithelial cells play a key role in inflammation and repair in the diseased lung. To assess the 

effects of epithelial damage in vitro, human lung epithelial (A549) cells were exposed to a 

period of cyclic mechanical stretch. Stretch induced a significant upregulation of several genes 

encoding for pro-inflammatory cytokines, in particular IL-8, IL-6 and TNFa, and chemokines 

such as CCL20 and regulatory molecules (vascular endothelial growth factor, transforming 

growth factor beta-2) (Fig. 6G). The addition of 10 µg/mL Gal-3 produced a further 

upregulation of IL-6, IL-8 and TNFa, and chemokines C-X-C motif chemokine ligand (CXCL) 

1 and CXCL2 (Fig. 6H). Co-incubation with 10 µM GB0139 abolished these Gal-3-mediated 

changes and further reduced colony-stimulating factor-2 (CSF2) expression (Fig. 6I). Gal-3 

inhibition therefore reduces inflammation by inhibiting neutrophil activation, accelerating 

neutrophil apoptosis and inhibiting pro-inflammatory M1 macrophage activation, whilst 

reducing pro-inflammatory cytokine release from injured epithelial cells.  

 

Discussion 

 

ALI is a condition with limited treatment options and so identifying novel therapeutic targets 

is essential. The accumulation and activation of neutrophils is considered key to the progression 
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of ALI into the life-threatening acute respiratory distress syndrome (ARDS) (Abraham, 2003). 

This study examined the effect of the Gal-3 inhibitor, GB0139, on LPS- and bleomycin-induced 

ALI in mice and explored its mechanism of action in vitro in human inflammatory cell types 

known to trigger ALI. When evaluated in vivo and in vitro, GB0139 was found to decrease 

inflammation severity whilst accelerating neutrophil apoptosis to promote resolution. Gal-3 

may serve as a potential therapeutic target for ALI and should be explored further. 

 

GB0139 reduced interstitial neutrophil accumulation following LPS-induced lung 

inflammation. GB0139 was found to reduce both interstitial and alveolar neutrophil recruitment 

at least at the highest dose of GB0139. This is in keeping with our previous observations that 

global Gal-3 deletion reduced  neutrophil recruitment into both compartments, whereas myeloid 

specific deletion only impacted interstitial recruitment (Humphries et al., 2021). This would 

suggest that GB0139 can additionally inhibit Gal-3 in the alveolar space derived from other 

non-myeloid cells (Humphries et al., 2021).  Gal-3 derived from stromal cells has also been 

shown to mediate neutrophil extravasation into the alveolar space following Aspergillus 

fumigatus infection (Snarr et al., 2020).  We also show that GB0139 inhibits Gal-3-induced 

delay of neutrophil apoptosis, which may be one mechanism whereby GB0139 reduces LPS-

induced inflammation. The expression of Gal-3 and the number of inflammatory monocytes 

recruited into the alveolar space was also inhibited by GB0139.  The reduction in CSF2 

expression in injured alveolar epithelial cells suggests a mechanism whereby GB0139 may 

inhibit monocyte and neutrophil recruitment into the lung.  

 

GB0139 also demonstrates affinity for Gal-1 (Mackinnon et al., 2012, Peterson et al., 2018).  It 

is therefore conceivable that GB0139 may also target Gal-1 in the lung, however, we have not 

shown significant upregulation of Gal-1 in the BALf or on the surface of BAL cells following 
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LPS or bleomycin acute injury (data not shown).  Our view is that the activated cells that are 

recruited into the lung in response to LPS or bleomycin injury have elevated Gal-3 (principally 

from monocytes).  GB0139 inhibits recruitment and activation of these cells and as a result Gal-

3 is itself reduced whereas the level of soluble Gal-1 in BALf is not elevated by injury or 

inhibited by GB0139.  In addition, the effect we see is similar to that seen in the global Gal-3 

deficient mouse (Humphries et al., 2021) so we conclude the effect of GB0139 is largely down 

to inhibition of Gal-3.  Increased Gal-1 has however been associated with worse prognosis in 

ILD (d’Alessandro et al., 2020) and COVID-19 induced inflammation (Markovic et al., 

2022).  We would therefore surmise that a co-inhibition of galectin-1 would have a beneficial 

effect although this requires further study.  

 

We have shown that Gal-3 deletion and inhibition of Gal-3 with GB0139 inhibits IL-4-induced 

M2 macrophage activation (MacKinnon et al., 2008). However, in human monocytes, 

exogenously added Gal-3 induces production of superoxide (Liu et al., 1995) and acts as an 

autocrine ligand for toll-like receptor (TLR)4 and induces TLR4-mediated activation 

(Burguillos et al., 2015). We show that GB0139 reduced the predominance of the pro-

inflammatory M1 phenotype, as seen via a reduction in CD80 expression on interstitial 

macrophages and reduced the recruitment of inflammatory monocytes into the alveolar space. 

Therefore, in response to M1 macrophage stimuli, Gal-3 may adopt a pro-inflammatory role. 

Previous studies have shown that Gal-3 binding to M1 and M2 macrophages has differential 

carbohydrate dependence (Lepur et al., 2012). Based on our findings, we propose that GB0139 

inhibits M1 macrophage responses during acute injury whilst reducing the profibrotic M2 

macrophage phenotype during chronic injury. Modulation of macrophage polarization has 

important implications during ALI such as in AE-IPF where cytokines produced by both M1- 

and M2-like macrophages are elevated (Schupp et al., 2015).   
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In addition, GB0139 maintained alveolar macrophage numbers, which have been shown to 

inhibit neutrophil recruitment following LPS-induced lung injury (Beck-Schimmer et al., 

2005), preserved CD8+ T-cell populations and inhibited T-cell apoptosis in vitro. GB0139 may 

have a role in preserving CD8+ T-cell function and so promote the resolution of inflammation. 

Plasma levels of Gal-3 are significantly elevated in patients with COVID-19 infection (de Biasi 

et al., 2020) and it has been suggested that GB0139 may have utility in reducing viral-induced 

lung injury and preventing fibrosis following COVID-19 infection (George et al., 2020).  

 

GB0139 inhibited several pro-inflammatory cytokines/chemokines, including IL-6, IL-8 and 

TNFa, which are considered typical biomarkers of ALI (Parsons et al., 2005). IL-8 predicts 

ARDS following major trauma (Donnelly et al., 1993; Folkesson et al., 1995) and is considered 

one of the most potent neutrophil chemo-attractants in inflammation (Hoffmann et al., 2002), 

and blocking IL-8 has been shown to protect rabbits from acid-aspiration-induced lung injury 

(Folkesson et al., 1995). Here, we show that GB0139 inhibits Gal-3-induced IL-8 secretion 

from monocytes. IL-6 is an important cytokine in ALI and stimulates profibrotic M2 

macrophage activation during the fibrotic phase of bleomycin-injury (Ayaub et al., 2017). IL-

6 may therefore be an important mediator of pro-fibrotic signaling in response to an acute 

injury. GB0139 decreased several pro-fibrotic mediators in the BALf including MMP8, tissue 

inhibitor matrix metalloproteinase 1 and MIP-1a, which are indicative of an early fibrotic 

signature (Marshall et al., 2000; Kolb et al., 2001). This suggests that GB0139 may inhibit an 

early fibrotic response to an acute injury.  

 

Consistent with our findings, clinical data from a Phase I/IIa clinical trial in patients with IPF 

demonstrated that inhaled GB0139 impacts on several key inflammatory cell types. As well as 
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having an acceptable safety profile, GB0139 is able to reach the alveolar compartment to reduce 

alveolar macrophage Gal-3 expression and reduce biomarkers associated with IPF progression 

(Hirani et al., 2017). GB0139 has a manageable safety profile and is associated with a favorable 

cytokine profile in patients with SARS-CoV-2 infection (Gaughan et al., 2021). 

In conclusion, our data show that when Gal-3 levels are high (such as following ALI), GB0139 

decreases inflammation and promotes resolution by reducing inflammatory cell recruitment and 

pro-inflammatory cytokine release whilst accelerating neutrophil apoptosis. These data indicate 

a potential opportunity to exploit Gal-3 as a therapeutic target in ALI and support the 

progression of GB0139 into the Phase IIb GALACTIC-1 study (NCT03832946) in patients 

with IPF. 
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Figure Legends 
 

Fig. 1. Pharmacokinetic profile of GB0139 in female C57BL/6 mice following i.t. 

administration. BAL cell and total blood concentrations of GB0139 were determined by LC-

MS/MS overtime following single i.t. administrations of 0.5 mg/kg and 2 mg/kg. Data shown 

are the mean values of 3 animals in each time point. BAL = broncho-alveolar lavage; i.t. = 

intra-tracheal; LC-MS/MS = liquid chromatography-tandem mass spectrometry; LLOQ = 

lowest level of quantification (1 ng/mL).  

 

Fig. 2. Histological and BALf analysis following LPS-induced lung inflammation. 10 µg LPS 

was administered alongside 1, 10 or 30 µg GB0139 i.t. and tissue retrieved 24 h later. Cytokine 

levels were normalised against total BALf protein. (A–D) Histology inflammation score and 

representative images of H and E stained lung tissue sections. Arrows indicate areas of 

pulmonary inflammation (alveolar membrane thickening, capillary congestion and alveolar 

neutrophil infiltration). Inflammation score was based on  the presence of alveolar membrane 

thickening, capillary congestion, intra-alveolar haemorrhage, interstitial neutrophil infiltration 

and alveolar neutrophil infiltration. (E) BALf total protein. (F) BALf neutrophil numbers. (G–

J) BALf pro-inflammatory cytokine profiles. (K–L) BALf pro-fibrotic cytokine profiles. Data 

represented as mean ± SEM. Analysed via 1-way ANOVA (n = 6, *P < .05, **P < .01, ***P < 

.001). Images taken at x 200 magnification. ANOVA = analysis of variance; BALf = broncho-

alveolar lavage fluid; CCL = C-C motif chemokine ligand; E = eosin; G-CSF = granulocyte-

colony stimulating factor; H = hematoxylin; h = hours; IL = interleukin; i.t. = intra-tracheal; 

LPS = lipopolysaccharide; MIP-1a = macrophage inflammatory protein-1-alpha; MMP = 

matrix metallopeptidase; PBS = phosphate bufferd saline; SEM = standard error of the mean; 

TNF = tumor necrosis factor.  
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Fig. 3. Flow cytometric analysis of whole lung digests following LPS-induced lung 

inflammation. 10 µg LPS was administered alongside 1, 10 or 30 µg GB0139 i.t. and tissue 

retrieved 24 h later. (A–C) Interstitial neutrophil numbers and activation parameters (CD62L 

and CD11b). (D) Interstitial CD8+ cytotoxic T-cell accumulation. (E–F) Alveolar and 

interstitial macrophage accumulation, and (G) CD80 expression. Data represented as mean ± 

SEM. Analysed via 1-way ANOVA (n = 6, *P < .05, **P < .01, ***P < .001). ANOVA = 

analysis of variance; h = hours; i.t. = intra-tracheal; LPS = lipopolysaccharide; RFU = relative 

fluorescence units; SEM = standard error of the mean. 

 

Fig. 4. Flow cytometric analysis of BALf following LPS-induced lung inflammation. 10 µg 

LPS was administered alongside 30 µg GB0139 i.t. and tissue retrieved 24 h later. (A–B) Gating 

strategy to identify CD45+ cells (left panel) and LY-6G+ neutrophils (right panel) in BALf. (C) 

BALf neutrophil numbers, (D) Gal-3 expression and (E–F) activation parameters (CD62L and 

CD11b). (G–H) BALf monocytes and Gal-3 expression. Data represented as mean ± SEM. 

Analysed via 1-way ANOVA (n = 6, *P < .05, **P < .01, ***P < .001). ANOVA = analysis of 

variance; BALf = broncho-alveolar lavage fluid; Gal-3 = galectin-3; h = hours; i.t. = intra-

tracheal; LPS = lipopolysaccharide; SEM = standard error of the mean. 

 

Fig. 5. Effect of GB0139 on bleomycin-induced lung inflammation. 33 μg bleomycin was 

administered i.t. with further administration of 30 μg GB0139 every 24 h and lung tissue 

retrieved at day 3. (A–C) Histology inflammation score and representative H and E sections 

following administration of bleomycin with/without GB0139. Arrows indicate areas of 

pulmonary inflammation (alveolar membrane thickening, capillary congestion and alveolar 

neutrophil infiltration). (D) Gal-3 expression on interstitial neutrophils. (E) Gal-3 expression 

on macrophages. (F) Interstitial neutrophil accumulation. (G) Expression of CD62L on 
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neutrophils. (H) Expression of the M1 marker, CD80 on macrophages. Data represented as 

mean ± SEM. Analysed via Student’s t-test (n = 5, *P < 0.05, **P < 0.01, ***P < 0.001). Images 

taken at x 200 magnification. E = eosin; H = haematoxylin; h = hours; RFU = relative 

fluorescence units; SEM = standard error of the mean. 

 

Fig. 6. Effects of GB0139 in vitro. (A) THP-1 monocyte IL-8 secretion. THP-1 cells were 

differentiated with 100 nM PMA and treated with human recombinant Gal-3 ± 10 𝜇M GB0139 

for 24 h. (B) Human monocyte-derived macrophages were cultured in the presence of GM-CSF 

(M1) or M-CSF (M2) for 6 days and then further activated with IFN-𝛾/LPS (M1) or IL-4 (M2) 

± 10 µM GB0139 for 48 h. (C) Neutrophil ROS production. Neutrophils were primed with 

TNFa (10 ng/mL), prior to stimulation with 30 µg/mL Gal-3. (D) GB0139 inhibition of Gal-3-

induced neutrophil activation. (E) Neutrophil apoptosis. Neutrophils were cultured for 20 h in 

the presence of 10 µg/mL Gal-3 ± GB0139. (F) Jurkat cell apoptosis. Jurkat cells were cultured 

for 20 h in the presence of 20 µg/mL Gal-3 ± GB0139. Data represented as mean ± SEM. 

Analyzed via 2-way ANOVA (Figure 6A), 1-way ANOVA (Fig. 6B and 6E), students t-test 

(Fig. 6C) (n = 4-9, *P < .05, **P < .01, ***P < .001). The effects of stretch-induced gene 

expression in human lung epithelial cells following GB0139 treatment are shown in Fig. 6G−I. 

Human epithelial A549 cells underwent a period of cyclic mechanical stretch ± 10 µg/mL Gal-

3 and/or 10 µM GB0139 prior to gene analysis. (G) Gene expression in human lung epithelial 

cells following mechanical stretch. (H) Effect of Gal-3 on stretch-induced changes in gene 

expression. (I) Effect of GB0139 on Gal-3-induced gene expression following stretch. Data 

(gene expression fold-change associated P value) represented as a dot plot. ANOVA = analysis 

of variance; Gal-3 = galectin-3; GM-CSF = granulocyte macrophage colony stimulating factor; 

h = hours; IFN-𝛾 = interferon gamma; IL = interleukin; LPS = lipopolysaccharide; PMA = 

phorbol 12-myristate 13-acetate; ROS = reactive oxygen species; SEM = standard error of the 
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mean; TNFa = tumor necrosis factor alpha.  
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