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Abstract

Recombination can occur either as a result of crossover or gene conversion events. Population genetic methods for inferring the rate of re-
combination from patterns of linkage disequilibrium generally assume a simple model of recombination that only involves crossover events
and ignore gene conversion. However, distinguishing the 2 processes is not only necessary for a complete description of recombination,
but also essential for understanding the evolutionary consequences of inversions and other genomic partitions in which crossover (but not
gene conversion) is reduced. We present heRho, a simple composite likelihood scheme for coestimating the rate of crossover and gene
conversion from individual diploid genomes. The method is based on analytic results for the distance-dependent probability of heterozy-
gous and homozygous states at 2 loci. We apply heRho to simulations and data from the house mouse Mus musculus castaneus, a
well-studied model. Our analyses show (1) that the rates of crossover and gene conversion can be accurately coestimated at the level of
individual chromosomes and (2) that previous estimates of the population scaled rate of recombination q ¼ 4Ner under a pure crossover
model are likely biased.

Keywords: gene conversion; crossover; recombination

Introduction
Genetic recombination, the exchange of genetic material between

homologous chromosomes during meiosis, is one of the fundamen-
tal evolutionary processes. By creating novel combinations of

alleles, recombination increases the efficacy of positive selection
(Hill and Robertson 1966) and reduces the fitness burden of deleteri-

ous variants (Charlesworth and Charlesworth 1997). Recombination

breaks down linkage disequilibrium (LD) in the genome and so
determines the physical scale over which selective events interfere

which each other and affect linked neutral sites (Charlesworth et al.
1993; Simonsen and Churchill 1997). Since recombination modu-

lates virtually all evolutionary processes, understanding how and
why it varies between organisms and between different regions of

the genome remains a topic of intense research (see Stapley et al.

2017; Pe~nalba and Wolf 2020, for recent reviews). Beyond interest in
recombination rate variation per se, estimates of recombination are

also relevant for other inferences from genomic data. In particular,
the power of quantitative or population genetic analyses depends

crucially on recombination. Thus, while association studies or infer-
ence about past selection (e.g. DeGiorgio et al. 2016, 2014; Campos

and Charlesworth 2019; Setter et al. 2020) and demography
(Gutenkunst et al. 2009) often treat single nucleotide polymor-

phisms (SNPs) as independent for the purpose of obtaining point

estimates, they rely on parametric bootstrapping or resampling pro-
cedures that are conditioned on a model of recombination to quan-

tify uncertainty.

Recombination occurs via double-strand breaks which are ei-
ther Holliday-junction mediated, resulting in crossovers (CO) and
CO gene conversion (GC) events, or synthesis-dependent strand-
annealing mediated, resulting in non-CO GC events (Resnick
1976; Szostak et al. 1983; Nassif et al. 1994). In a CO event, 2 non-
sister chromatids break during pairing and reciprocally exchange
sequence regions on either side of the break point (Griffiths et al.
2002). In contrast, GC, which typically occurs due to mismatch
errors during replication (Carpenter 1982), involves the nonreci-
procal copying of a short stretch of sequence, the GC tract (typi-
cally tens to hundreds of bases), from one nonsister chromatid to
the other (Szostak et al. 1983; McMahill et al. 2007). The ratio of GC
to CO rates varies widely across the tree of life: estimates range
from 4 to 15� in humans (Jeffreys and May 2004) and mice (Li
et al. 2019) to 1/2–1/10� in yeast, algae, and plants (Liu et al. 2018).
Similarly, estimates of GC tract lengths range from 10 to several
thousand base pairs between taxa (Casola et al. 2010; Mansai et al.
2011). Furthermore, the ratio of CO and GC may also vary drasti-
cally along the genome. In particular, CO may be severely re-
duced in centromeric and telomeric regions and within
chromosomal inversions, while rates of GC may be unchanged
(Talbert and Henikoff 2010; Korunes and Noor 2017) or even in-
creased (Crown et al. 2018). Not only have early investigations
into patterns of LD in humans highlighted that models of recom-
bination without GC are insufficient at explaining fine-scale pat-
terns of genetic variation (Przeworski and Wall 2001; Ptak et al.
2004), and there is reason to expect that GC may be the dominant
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force in deconstructing LD at an intragenic level (Andolfatto
and Nordborg 1998). However, given that joint estimates for
the rates of GC and CO within genomes and across taxa are
sparse, the evolutionary causes and consequences of variation
in these 2 components of recombination remain poorly under-
stood.

Much effort has been devoted to estimating CO and GC di-
rectly from lab crosses (Hilliker et al. 1994), pedigrees (Kong et al.
2002; Johnston et al. 2016), or sperm-typing (Jeffreys and May
2004) data. However, such direct estimates are time consuming
and expensive given that data from many meiotic events are re-
quired. While some pedigree-based (Smeds et al. 2016) and
sperm-typing methods distinguish CO and GC events, most direct
estimates of recombination are necessarily limited to CO events
(Kong et al. 2002, 2014; Ma et al. 2015; Johnston et al. 2016). Since
individual GC tracts are undetectable unless they span variants,
the resolution to detect GC events is inherently limited by the
scale of SNP variation.

Given the limitations of direct approaches for estimating re-
combination, methods that infer recombination indirectly
from patterns of LD in whole-genome resequence data from
natural populations are attractive. LD-based estimators of re-
combination implemented in popular tools such as LDhat
(McVean et al. 2002; Auton and McVean 2007) and LDhelmet
(Chan et al. 2012) are based on analytic expectations for pairs of
loci which, given a large number of pairwise observations, can
be used to compute the composite likelihood (CL) of the popu-
lation-scaled rate of recombination q ¼ 4Nec. However, current
LD-based approaches for inferring recombination are limited in
at least 2 ways.

First, both LDhat (McVean et al. 2002; Auton and McVean 2007)
and LDhelmet (Chan et al. 2012) assume a simple model of recom-
bination that only considers CO and ignores GC. Notable excep-
tions include the work of Gay et al. (2007) who extend the copying
model of Li and Stephens (2003) to coestimate CO and GC rates,
and Yin et al. (2009) who coestimate GC rates and tract lengths
using hidden Markov models on SNP data. Second, since 2-locus
approaches are generally conditioned on variant sites, they re-
quire phased data from many samples. Such data are still only
available for a small minority of taxa. A recent exception pyrho is
a phase-independent 2-locus method, however, to date this ap-
proach does not model GC (Spence and Song 2019). Additionally,
there are several phase-independent methods alternative to the
2-locus approach for estimating recombination rates, such as us-
ing deep learning (Adrion et al. 2020) or the sequentially
Markovian coalescent model to infer recombination maps
(Barroso et al. 2019).

Here, we address both these limitations by developing a sim-
ple CL method that allows coestimation of CO and GC rates from
individual diploid genomes. The calculation is based on analytic
expectations for observing heterozygosity at 2 loci under the sim-
plest model of recombination (CO only) and genetic drift
(Strobeck and Morgan 1978; Lohse et al. 2011) and has previously
been implemented by Haubold et al. (2010). We first use coales-
cent simulations to demonstrate that GC biases estimates of the
CO rate and show that this bias depends on the physical distance
between loci. By exploiting this nonlinear dependence of q on dis-
tance, we incorporate GC into the 2-locus expectations and build
a framework for coestimating the rates of CO and GC. We apply
our method to genome-wide data from wild-caught individuals of
the house mouse Mus musculus castanaeus, compare our estimates
to previous estimates of recombination based on a CO only model
(Booker et al. 2017), and investigate the extent to which the rates

of CO and GC are correlated with each other and with chromo-

some length.
We quantify the precision and accuracy of our estimates for

M. m. castaneus using 100 parametric bootstrap simulations in

msprime 1.0 (Baumdicker et al. 2022), and we use further simula-

tions to test for robustness to violations of the underlying model.

First, we investigate the ability of heRho to obtain an average esti-

mate when there is underlying fine-scale recombination rate var-

iation, as complex recombination landscapes have been

demonstrated to reduce the reliability of LD-based inference

methods (Raynaud et al. 2022). Second, we test for robustness to

nonequilibrium population dynamics which are known to be

problematic for methods that estimate recombination rates

(Johnston and Cutler 2012; Kamm et al. 2016; Dapper and Payseur

2018). We consider 4 demographic models: (1) population size

bottlenecks, (2) exponential growth, (3) historical admixture

events, and (4) population substructure.

Materials and methods
Analytic expectation of 2-locus heterozygosity
We extended the models of Strobeck and Morgan (1978) and

Haubold et al. (2010) to account for GC and use a CL approach to

coestimate the rates of CO and GC and the mean GC tract length

from individual genomes. We consider a neutral Wright–Fisher

model for the evolution of 2 linked loci separated by d nucleotides

in a population of N diploid individuals. Mutations occur at per-

base rate l. CO occurs at per-base rate c and results in an ex-

change of genetic material between sister chromatids. GC ini-

tiates at per-base rate g and GC tracts are replaced by the

sequence from the sister chromatid. For the analysis, we rescale

time by 1=2N generations and use the population-scaled parame-

ters h ¼ 4Nl; j ¼ 4Nc, and c ¼ 4Ng for mutation, CO, and GC

rates, respectively. We follow Wiuf (2000) in assuming that the

GC tract length is an exponentially distributed random variable

with mean L base pairs (Hilliker et al. 1994; Wiuf and Hein 2000).
The heterozygosity at a single site H with E½H� ¼ h

1þh � h is in-

formative only about the depth of a local genealogy: a site is

more likely to be heterozygous when the time to the most recent

common ancestor, Tmrca, is large and homozygous (i.e. identical

in state) when Tmrca is small. Consider a second site at a fixed dis-

tance d and define H0, H1, and H2 as the proportion of all such

pairs where neither site, one site, or both sites are heterozygous

(respectively). These 2-locus measures of heterozygosity are in-

formative about the joint distribution of the 2 underlying geneal-

ogies and allow estimation of the rate of recombination (Haubold

et al. 2010; Lohse et al. 2011).
Using Eq. 4 of Strobeck and Morgan (1978), Haubold et al.

(2010) derive analytic expressions for the expected frequency

of H0, H1, and H2 as a function of q, the total rate of events

which lead to recombination between 2 sites separated by d

base pairs, agnostic to the underlying contributions of CO and

GC:

Eh;q½H0� ¼
1

ð1þ hÞ2
þ D

h

ð1þ hÞ2
; (1)

Eh;q½H2� ¼
h2

ð1þ hÞ2
þ D

h

ð1þ hÞ2
(2)

Eh;q½H1� ¼ 1� Eh;q½H0� � Eh;q½H2�; (3)

where
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D ¼ hð18þ qþ 18hþ qhþ 4h2Þ
18þ 13qþ q2 þ 54hþ 40h2 þ 8h3 þ qðqhþ 19hþ 6h2Þ

represents the zygosity correlation (Lynch 2008) or the deviation

from independence due to linkage. For large d, the genealogies at

the 2 sites become independent, so Eh;q½H0� ¼ E½H�2 and Eh;q½H2� ¼
ð1� E½H�Þ2, the first term in Equations (1) and (2). In contrast, if

the second site is tightly linked, the 2 sites likely share the same

genealogy and we expect to see an excess in H0 and H2. As d

increases, so too does the probability that recombination occurs

between the sites, resulting in differing genealogies and an in-

crease in H1.

Coestimating crossover and gene conversion
rates
The above expectations for H0, H1, and H2 make no assumption

about the nature of recombination between pairs of sites, and

q represents the rate at which the alleles transfers to different ge-

netic backgrounds. For sites separated by a given distance d, we

can obtain a maximum likelihood estimate for the total rate of

recombination observed over these distances. Let nd;0; nd;1, and

nd;2 be the counts of pairs in the genome corresponding to H0, H1,

and H2 for a given distance d. The log-likelihood is then

ln Ldðq; dÞ ¼ nd;0lnðEd½H0�Þ þ nd;1lnðEd½H1�Þ þ nd;2lnðEd½H2�Þ: (4)

If we assume that recombination between the 2 loci occurs

only through CO, recombination always transfers alleles onto dif-

ferent genetic backgrounds, and the per-base recombination rate

q=bp is constant. This is not true for GC, because the 2 sites will

still share a genealogy if the GC tract both initiates and termi-

nates between them. In other words, recombination through GC

occurs only if the GC tract spans only one of the 2 focal sites, in

which case GC has the same effect as a CO event. Accounting for

the probability of recombination during GC (Wiuf 2000; Wiuf and

Hein 2000), we can rewrite the total rate of recombination q as a

function of distinct rates of CO (j) and GC (c) and the expected

GC tract length L(Langley et al. 2000; Frisse et al. 2001).

q ¼ jdþ 2cL 1� e�
d
L

� �
: (5)

Given the dependence on distance d, observations nd;0; nd;1,

and nd;2 for a single d are insufficient to estimate a 3-parameter

model of recombination. However, by compositing the likelihood

over many distances and substituting Equation (5) into Equations

(1)–(3), we can coestimate the rate of CO j, the rate of GC c, and

the mean tract length L.
The CL is thus given by

ln CLðj; c; LÞ ¼
Xdmax

dmin

lnCLdðj; c; LÞ (6)

We have implemented the CL estimation described above in

python as a simple open source tool, heRho which is available at

https://github.com/samebdon/heRho. It is possible to estimate j,

c, and L for 1 chromosome in approximately 10 s (with the esti-

mation itself taking �0.2 s). The time to run the estimation step

increases rapidly with the number of chromosomes up to approx-

imately 10 min for 5 chromosomes or 1 day for the full analysis

described below.

Estimating recombination rates in the eastern
house mouse
As a proof of principle, we tested our CL estimation of recombina-
tion on whole-genome data from a well-studied model species,
the eastern house mouse M. m. castaneus. Both direct and indirect
estimates for the total rate of recombination exist for this species
(Booker et al. 2017) and several studies provide estimates for GC
tract lengths (Paigen et al. 2008; Mansai et al. 2011; Cole et al. 2014;
Li et al. 2019).

The data—originally described in Halligan et al. (2010) (ENA ac-
cession number PRJEB2176)—consists of Illumina (PE) resequence
data for 10 individuals sampled from a wild M. m. castaneus popu-
lation in India. Variant calling is described in Booker et al. (2021).

To minimize potential biases arising from background selec-
tion and the effect of selection on nearby linked sites, all analyses
were restricted to intronic regions, which are putatively neutral.
Specifically, we considered all introns >1 kb.

The final dataset included a total of 123,488 introns on auto-
somes 1–19, spanning a total of 9� 108 bases. For each intron,
the positions of heterozygous sites in each individual were con-
verted into 2-locus counts nd;0; nd;1, and nd;2 for each distance d
included as part of heRho (https://github.com/samebdon/heRho).
heRho obtains maximum composite likelihood (MCL) estimates
for q were obtained using the Python library NLopt. In addition to
heRho (https://github.com/samebdon/heRho), we estimated the
weighted mean of q across autosomes using the LDhelmet esti-
mates of Booker et al. (2017) and Booker et al. (2021).

Power analysis
To quantify how accurately CO and GC rates can be estimated,
we performed a power analyses and parametric bootstrap on
data simulated under the full model in msprime 1.0 (Baumdicker
et al. 2022): we simulated 100 replicates for each chromosome un-
der the MCL estimates obtained from the house mouse data (see
Results). Each replicate consisted of 10 diploid samples assuming
h ¼ 0:071 (the observed heterozygosity), l ¼ 5:410�9 (Uchimura
et al. 2015), L¼ 108.4 for all chromosomes. The rates of CO and GC
were set to those inferred for each M. m. castaneus chromosome
and the length of simulated sequence corresponded to the total
length of intronic sequence analyzed for each chromosome (sim-
ulation code is available in the github repository).

We further use simulations to investigate the robustness to re-
combination rate variation and underlying demography. To as-
sess the effect of recombination rate variation, we perform a
simple comparison of 2 data sets: a control data set that com-
bines 2 replicates with the same recombination rate and a test
data set that combines 2 replicates with different rates, the aver-
age of which matches the control. For robustness to nonequili-
brium population dynamics, we obtain estimates for a single long
chromosome simulated under each scenario and evaluate
heRho’s ability to estimate the underlying rates of recombination
relative to mutation. See Supplementary Material 2 Demography
for a full description of the models and a detailed analysis.

Results
Gene conversion explains the nonlinear
relationship between estimates of q and physical
distance
As a first step, we used Equations (1)–(4) to investigate how the
per-base rate of recombination between pairs of sites depends on
the distance between them (Fig. 1).We produce results for all
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chromosomes in the next section. Here, we provide a detailed
and illustrative analysis of chromosome 19. Given a model that
only includes CO events (red, dashed), we expect estimates of
q=bp to be constant with respect to the distance between sites
(red, dashed). However, when GC is included, nearby sites experi-
ence a higher per-base rate of recombination than pairs that are
distant or unlinked (blue, dashed).

We find that estimates of q=bp based on a single replicate sim-
ulation either under a model with GC (solid blue) or without (solid
red) follow the expected relationship with the distance between
sites d. When inferring q=bp between pairs of loci at different dis-
tances d in the mouse data (Fig. 1, black line), the relationship be-
tween q=bp and d is similar to that seen for data simulated under
a model of recombination that includes both CO and GC. We note
that the pattern of distance-dependent q=bp is not exclusive to
M. m. castanaeus but has been inferred previously for the ascidian
Cionia intestinalis by Haubold et al. (2010) who suggest that GC
may play a key role in shaping this signal.

Comparing the distance profiles of q=bp estimates between
simulated and real data to each other and to analytic expecta-
tions (Fig. 1), we find 2 striking patterns:

First, in the real data, estimates of q=bp are close to zero for
nearby pairs of sites and increase sharply over the first �50
bases. In contrast, while the accuracy and precision of q=bp esti-
mates in simulated data is strongly dependent on d (i.e. there is
high variability for estimates over short distances d< 50), we find
no similar monotonic increase in q=bp estimates over the first
�50 bases. This discrepancy in estimates of q=bp in real versus
simulated data suggests that over short distances q=bp estimates
in the real data are biased downwards due to data quality/filter-
ing effects: tightly linked polymorphisms are difficult to distin-
guish from complex mutations (e.g. indels) and/or are removed
by so-called “best practices” variant calling/filtering approaches,
skewing the observed values of H0, H1, and H2. This is compatible
with the findings of Haubold et al. (2010) who have layered a se-
quencing error profile on coalescent simulations with CO only
and shown that the noise generated by low-coverage data leads
to a downward bias in estimates of q=bp over short distances.

Second, we find that estimates of q=bp are generally upwardly
biased compared to expectations (compare solid and dashed lines
in Fig. 1) due to simplifying assumptions about the mutational
process: unlike real genomes which consist of a discrete number

of bases, Equations (1)–(3) assume a continuous genome that

evolves under the infinite sites mutation model. In that case, the

occurrence of 2 mutations at a pair of sites always results in an

H2 state. In contrast, under a finite-sites mutation model (which

msprime assumes by default) a back mutation could generate an

H0 state. Indeed, the resulting upward bias is observed only in

simulations that assume finite sites (see Supplementary Fig. 1.1).

The bias is strongest at short distances, where recombination is

rare and the expected values of the Hi are primarily governed by

the mutational process. However, at greater distances, recombi-

nation primarily drives Hi counts and estimates converge to the

model predictions.

Coestimating crossover and gene conversion
rates
By decomposing recombination to distinguish CO and the

distance-dependent effects of GC (Equation 5) and compositing

the likelihood over the single-distance counts of Hi (Equation 6),

we may coestimate both the rates of CO (j) and GC (c) and the

mean tract length L. However, there are 2 challenges in imple-

menting this inference: (1) the noisiness of the data and the inac-

curacy of the analytic results at short distances and (2) the

inherent difficulty of coestimating strongly correlated parame-

ters.
Given the biases over short distance in the real data, an obvi-

ous strategy is to introduce a minimum distance dmin in the CL

(Equation 6). However, since most of the information to coesti-

mate the rate of GC and the mean GC tract length is contained in

short distances, there is a trade-off between minimizing bias and

retaining information. Our exploration of this trade-off both in

real and simulated data shows that parameter estimates are sta-

ble across a broad range of dmin values (Supplementary Fig. 1.2).

To minimize the loss of information, we chose dmin ¼ 100 bp for

all further analyses. Since genomes are finite and analysis is of-

ten restricted to a particular genomic partition, an upper distance

threshold dmax is also unavoidable. To avoid biasing inference to-

ward very long introns (which are selectively constrained), we

limited the analysis to the first dmax ¼ 1000 bp of each intron.
For the next step in our preliminary analysis, we asked

whether sufficient information is retained to confidently coesti-

mate the 3 recombination parameters. To do this, we focused on

M. m. castaneus chromosome 19 using the distance thresholds

ðdmin; dmaxÞ ¼ ð100; 1000Þ. On this chromosome, heRho gives the

following MCL estimates: j ¼ 0:00267; c ¼ 0:0044, and L¼ 113.24.

Examining the support, as measured by the logarithm of the

composite likelihood (ln CL), surface around this maximum illus-

trates the challenge of coestimating L and j. Although estimates

are negatively correlated (Fig. 2b), we were positively surprised

that it is not only possible to coestimate both parameters (the ln

CL surface is smooth and contains a distinguishable optimum,

Fig. 2), but that the estimates are indeed plausible, i.e. are com-

patible with direct, experimental estimates.
Less surprisingly, we observe that estimates for the GC rate c

and the mean tract length L are negatively correlated both with

each other (Fig. 2a) and with estimates of the CO rate j (Fig. 2, b

and c). Given the degree to which parameter estimates are con-

founded and the fact that we have no biological reason to expect

the length of GC tracts to vary between chromosomes, we chose

to coestimate a global L and chromosome-specific GC and CO

parameters in the subsequent analysis of the mouse data de-

scribed below.

Fig. 1. MCL estimates of q=bp at fixed distances d between pairs of sites;
simulations with CO only (red), simulations with CO and GC (blue), and
empirical data for M. m. castanaeus chromosome 19 (black). In each case,
data was combined across a sample of 10 individuals. For simulations,
h ¼ 0:0071; j ¼ 0:0014; c ¼ 0:0036, and L¼ 200. The dashed lines show
the expectation under the corresponding model (Equations 1–4).
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Δ LnL = 5e4 Δ LnL = 2e3

Δ LnL = 1e5 Δ LnL = 1e2

Δ LnL = 1e5 Δ LnL = 5e3

(a)

(b)

(c)

Fig. 2. The CL surface for the rates of CO, GC, and the mean length of GC tracts for intronic data from M. m. castaneus chromosome 19. Each panel shows
the 2-dimensional projection of the CL surface (ln CL increases from blue to yellow) under the global MCL estimates of parameters: j ¼ 0:00267 (a),
c ¼ 0:0044 (b), and L¼ 113.24 (c). For each panel, a broad parameter region is shown in the left plot, while the right plot focuses on the region near the
optimum indicated by the dashed square. In all plots, the distance between contours is indicated at the top and the cross denotes the MCL estimate.
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The recombination profile of M. m. castanaeus
So far, we have obtained estimates separately for each chromo-
some. With only 3 parameters, optimization is very fast, and we
use this to our advantage to identify an appropriate choice of dmin

¼ 100 (Supplementary Fig. 1.2). Given this minimum distance, we
estimate mean tract lengths between 100 and 200 bp. However,
there is no biological reason to expect L to vary among chromo-
somes, and the strong correlation between L and c may lead to bi-
ased results (Supplementary Fig. 1.5). To maximize the amount
of data informing the choice of a genome-wide L and to obtain ac-
curate estimates of chromosome-specific c and j, we coestimate
all 19*2þ 1 parameters for the autosomes. We exclude the X
chromosome from this global estimation because it experiences
a different population history than the autosomes, and as a sec-
ond step, we condition on the global estimate of L to obtain sepa-
rate estimates of c and j for the X-chromosome.

Our per autosome coestimates of the rates of CO (j) and GC (c)
in M. m. castaneus (based on data from all 10 individuals, Fig. 3)
range from 0.00145 to 0.00269 and 0.00211 to 0.00461, respec-
tively. Assuming that the mean GC tract length is the same for all
autosomes, our global MCL estimate for this parameter is 108
bases, which is within the range of previous direct estimates
(�10–300 for NCO and 200–1200 for CO GC tracts; Paigen et al.
2008; Mansai et al. 2011; Li et al. 2019; Cole et al. 2014). When
restricting our analysis to a single individual, we obtain broadly
concordant estimates of the CO rate and mean tract length, but
with less data available, the GC rate estimates vary much more
across chromosomes (Supplementary Fig. 1.3). Indeed, for simu-
lations, increasing the sample size from one (Supplementary
Fig. 1.4) to 10 individuals (Fig. 3) reduces the variance but not the
bias of the results.

Our per autosome estimates recover several well-known,
broad-scale patterns: First, as some GC events occur during CO,
we expect the rates of CO and GC to be mechanistically and
positively correlated, and this is indeed the case (Supplementary
Fig. 1.5). Note that this signal contrasts with the negative correla-
tion in the estimation error of both parameters (Fig. 2c) and
therefore must reflect the underlying dynamics of meiotic recom-
bination rather than any statistical artefact.

Second, as chromosomes have a minimum bound of map
length at 50 cM due to obligate CO, we expect the CO rate per
base to be negatively correlated with chromosome length. We re-
cover this pattern (Supplementary Fig. 1.5) that is widely

documented not only in mammals (Johnston et al. 2017), includ-
ing humans (The International Genome Sequencing Consortium
2001), but also in flycatchers (Kawakami et al. 2014), yeast
(Kaback et al. 1999), and butterflies (Martin et al. 2016). In con-
trast, we find that per chromosome estimates of the rate of GC
are not significantly correlated with chromosome length
(P ¼ 0.148) (Supplementary Fig. 1.5c). Since a high proportion of
GC products are the result of non-CO recombination events, we
do not expect GC rates to correlate significantly with patterns of
chiasma formation.

As expected, the X chromosome carries less genetic variation
than the autosomes (0.0038 vs 0.0071) and has a lower effective
recombination rate: given the global estimate of the mean tract
length L¼ 108 bp, we estimate the X-chromosome CO rate and GC
rate to be j ¼ 0:0012 and c ¼ 0:0006. Intriguingly, while the
estimate of j is generally concordant with that of the autosomes,
we find that GC occurs at a rate 4–8 times lower on the X chromo-
some.

Recombination rate variation
For many organisms, M. musuculus included (Booker et al. 2017),
recombination rates even within a single chromosome can vary
on a finer scale. How does this variation affect heRho’s estimates
of recombination for aggregated data? Both for the CO-only and
GC models, the estimated average j is biased slightly downward
for the mixed data set (Supplementary Fig. 1.6). For the GC model,
the average estimates of both c and L for the mixed data set
match those of the control. Together, this suggests that we obtain
a relatively accurate estimate of the average rate even though
fine-scale variation is ignored.

The effect of demography
Most population genetic methods for estimating recombination
rates assume a simple panmictic population [with the exception
of pyrho (Spence and Song 2019) which allows for step-wise
changes in population size]. However, when naive to underlying
demography, recombination rate estimates can be severely bi-
ased by nonequilibrium dynamics (Johnston and Cutler 2012;
Kamm et al. 2016; Dapper and Payseur 2018; Samuk and Noor
2021). Because heRho estimates an effective rate of recombina-
tion q relative to diversity h (j=h ¼ k=l and c=h ¼ g=l are con-
stant), it may be robust to historic changes in population size. It
is less clear, however, how robust the method is to more extreme
population dynamics and population substructure. To address

Fig. 3. Recombination parameters coestimated for the 19 autosomes of M. m. castanaeus using data pooled across 10 individuals (black dots) and
corresponding parametric bootstrap results from 100 replicate simulations. The per chromosome estimates of the GC rate (c) and mean tract length are
shown in yellow, estimates for the rate of CO (j) in blue.
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this, we perform simulations under 4 different demographic sce-
narios and compare the accuracy of recombination rate esti-
mates (relative to the observed genetic diversity) to that under
panmixia. We consider models for (1) a population bottleneck, (2)
exponential growth, (3) admixture, and (4) 2-deme substructure,
highlighting the main results here and providing a detailed analy-
sis in the supporting information (Supplementary Demography).

As expected, heRho is relatively robust to the historic changes
in population size under the bottleneck model. For a severe but
brief bottleneck however, per-base recombination rate estimates
q may be biased downward, particularly for site pairs with a
small distance d between them, and under the GC model, c is
underestimated and L overestimated. In contrast to this, recent
population growth under the exponential model leads to a sub-
stantial overestimate of the recombination rate. This bias dimin-
ishes as the within-pair distance between sites d increases, a
pattern which may be mistaken for the effect of GC under a CO-
only recombination model. Indeed, under the GC model, the
method attributes this perceived excess of recombination to very
high rates of GC events c with very short tract lengths L.

The effects of population structure are more complicated.
Admixture has very different effects on the estimates depending
on the age of the admixture event. For both recombination mod-
els, older admixture events significantly bias q estimates down-
ward, particularly at short distances d. In contrast, more recent
admixture events lead to a significant overestimate of q for small
values of d but a slight underestimate of q at greater distances.
For the GC model, heRho obtains a consistent downward bias in
CO rate j across a range of admixture times but cannot reliably
infer the GC rate c or tract length L.

Similar to admixture, long-term population substructure pre-
vents our method from obtaining estimates of the recombination
rate. We consider a 2-deme model with equal population sizes of
Ne and symmetric migration at rate M. We find that heRho per-
forms well when migration rates are either very high (M �� 1) or
very low (M �� 1e� 4). If migration is rare, the ancestry of the
sample reflects a single panmictic population with size Ne. In
contrast, with high migration rates, coalescence is equally likely
to occur in either deme, and the ancestry resembles that of a
panmictic population with size 2Ne. However, between these 2
limits, the method generally fails to detect any recombination.
To understand this, we used the framework of Lohse et al. (2011,
2016) to derive analytic expressions for the probability of the 2-lo-
cus heterozygosity states H0, H1, and H2 given two demes with
symmetric migration (implemented in Mathematica Wolfram
Research 2018, see Supplementary Notebook). As the migration
rate increases from low values, there is a monotone transition in
H0 and H1 from their respective probability in the 1Ne limit to
that in the 2Ne limit. In contrast, as M increases from the 1Ne

limit, H2 initially increases, surpassing that expected under pan-
mixia, then decreases again to the 2Ne limit. As an excess of H2

relative to the observed genetic diversity is the informative signal
of tight linkage under panmixia, the method infers that little to
no recombination occurs.

Discussion
A significant challenge in population genetics is to develop infer-
ence methods that are both efficient in extracting signals about
population processes from sequence variation and simple, i.e.
rely on a minimum number of assumptions. Given that high-
coverage whole-genome data have become the norm, we now
have the ability to study the fundamental forces of evolution,

such as recombination, both at fine genomic scales and across a
broad taxonomic range. We have developed a method for quanti-
fying CO and GC from the distribution of heterozygous sites in
small samples—even from individual diploid genomes.

heRho’s strengths and weaknesses
As an extension of mlRho, our framework allows for more com-
plete/realistic estimates of recombination from unphased data
(Haubold et al. 2010). In general, one could argue that methods
that do not rely on phased information (e.g. pyrho; Spence and
Song 2019) are simpler and less error prone than those that do.
For example, Booker et al. (2017) find that in the presence of
switch errors, LDhelmet consistently overestimates the CO rate.
Furthermore, by including homozygous states in the analysis, we
garner sufficient information to coestimate CO and GC when
data are restricted to short distances. As such, heRho can poten-
tially generate a whole-genome annotation-specific recombina-
tion profile, even for small genomic partitions (e.g. first introns).

However, as demonstrated, our method heRho relies on large
amounts of sequence data and is fundamentally limited by the
frequency of the rarest 2-locus observation H2, which for any dis-
tance d, is of order H2. We therefore expect that it will not be pos-
sible to obtain estimates of GC and CO at finer genomic scales
(say, in windows of 100 kb). While pooling observations across
individuals increases the number of Hi observations and reduces
variance in the estimates, we expect many heterozygous sites to
be shared among individuals, and thus the returns diminish
quickly with sample size.

Although we find that that heRho is quite robust to heteroge-
neity when estimating an average recombination rate, our
method does suffer from many of the same potential biases as
other population genetic estimators of recombination. Given that
we are assuming a neutrally evolving Wright–Fisher population
of constant size, any demographic that affect LD will bias esti-
mates of recombination obtained with heRho. Perhaps the most
important question is whether there are processes that create
false positive or false negative signals for the action of GC. We
find that recent exponential growth and recent admixture both
generate a false signature of GC in models with CO-only recombi-
nation, while in contrast, archaic admixture can obfuscate the
true signals of GC and force heRho to falsely ascribe the effect of
recombination primarily to CO. In the most extreme case, we
found that both CO and GC are undetectable in the presence of
strong population structure. As a result, great care is needed
when interpreting estimates obtained from heRho, especially
when the potentially confounding demographic histories are un-
known. However, we also demonstrate that the method has the
potential to overcome these limitations by extending the model
to include demographic effects.

Reconciling heRho’s recombination estimates
for M. m. castaneus with LDHelmet
How do our estimates in M. m. castaneus compare to those
obtained using LDHelmet and a CO-only recombination model?
Coestimated under a model of GC, our genome-wide average of
the CO rate per-base (0.00186) is approximately 5 times lower
than the q estimates obtained by Booker et al. (2017, 2021) using
LDhelmet (0.00924 and 0.0100, respectively, averaged across
autosomes). If we instead compare the total recombination rate
between any 2 adjacent bases, which corresponds to the upper
bound of the recombination rate in our model (for d¼ 1 eq. 5
reduces to q ¼ jþ 2c), our estimate (0.00841) is much closer to
that of the previous studies.
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While this suggests that GC may contribute substantially to

the q as estimated by Booker et al. (2017), this is unrealistic.

LDHelmet uses longer-range SNP-only data, making it attune to

the broader signal of CO and less sensitive to the very short-

range effects of GC. Rather, the difference between the estimates

likely reflects biology. Booker et al. (2017) estimates are obtained

using data from large contiguous windows of the genome aggre-

gated over all sites and genomic partitions which vary in propor-

tion along the genome but will be dominated by intergenic

sequence. Our estimates instead reflect the (per-chromosome)

recombination profile specifically for the beginning of introns.

Direct recombination estimates in humans suggest that the re-

combination rate in introns is lower than the genome-wide aver-

age (Myers et al. 2005). Furthermore, intron length is negatively

correlated with recombination rates in some taxa (Comeron and

Kreitman 2000), and our filtering strategy enriched for long

introns. Note, however, that we cannot exclude the possibility

that underlying demography has biased the results of one or both

of these methods.

Further applications and outlook
There are several potential avenues for further work, both empir-

ically and analytically. In our anlaysis of M. m. castaneus, we infer

a slightly lower CO rate on the X compared to autosomes as is

expected for a hemizygous sex chromosome, however, the rate of

GC we estimate is 4- to 8-times smaller than that of the auto-

somes. This may reflect a mechanistic difference in GC rates on

the X, but it would be interesting to simulate recombination with

both CO and GC on a sex-linked chromosome to see how this

influences effective GC rate estimates. Furthermore, we have lim-

ited our analyses to long introns, but any genomic data partition

for which pairwise heterozygosity can be accurately measured

over a sufficient range of physical distances is suitable. It remains

to be seen whether our method is informative about smaller ge-

nomic partitions such as centromeres and chromosomal inver-

sions which differ from the genome-wide rates of recombination

in systematic ways and where GC may occur but CO is restricted

(Korunes and Noor 2017).
For further analytic work, first, it should be possible to relax

the assumption of an infinite sites mutation model. While our

analysis of the M. m. castaneus data reveals very small/tolerable

biases (Fig. 3), basing estimates of GC and CO on more realistic

mutation models might be important when analyzing more het-

erozygous genomes. Second, as a natural choice, we have as-

sumed that loci are individual nucleotides. One could in

principle extend the 2-locus inference to longer blocks of se-

quence and use the framework developed by Lohse et al. (2011)

to base inference on the joint distribution of pairwise differen-

ces. However, this comes at the cost of introducing additional

assumptions and biases. Third, it would be interesting to explore

whether the machinery could be extended to 3 loci. If analogous

analytic results for 3 loci are tractable, this would allow extract-

ing substantially more signal and better estimate the rate and

tract length of GC events from genomic data. Finally, we showed

that the coalescent model and analytic expressions underlying

heRho can be extended to include demography, and thus offers

the potential, e.g. to coinfer migration rates in a structured pop-

ulation or to inform the method of a previously inferred demo-

graphic history.

Data availability
The supporting information and the data, software code, scripts,
and notebooks used to generate these results are available at
https://github.com/samebdon/heRho.

Supplemental material is available at GENETICS online.
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