

Edinburgh Research Explorer

A Formalization of SQL with Nulls

Citation for published version:
Ricciotti, W & Cheney, J 2022, 'A Formalization of SQL with Nulls', Journal of Automated Reasoning.
https://doi.org/10.1007/s10817-022-09632-4

Digital Object Identifier (DOI):
10.1007/s10817-022-09632-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Automated Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2022

https://doi.org/10.1007/s10817-022-09632-4
https://doi.org/10.1007/s10817-022-09632-4
https://www.research.ed.ac.uk/en/publications/1bc9ff13-1c3d-4959-b11d-1819f820f1f9

Journal of Automated Reasoning
https://doi.org/10.1007/s10817-022-09632-4

A Formalization of SQL with Nulls

Wilmer Ricciotti1 · James Cheney1

Received: 19 March 2020 / Accepted: 29 April 2022
© The Author(s) 2022

Abstract
SQL is the world’s most popular declarative language, forming the basis of the multi-billion-
dollar database industry. Although SQL has been standardized, the full standard is based
on ambiguous natural language rather than formal specification. Commercial SQL imple-
mentations interpret the standard in different ways, so that, given the same input data, the
same query can yield different results depending on the SQL system it is run on. Even for
a particular system, mechanically checked formalization of all widely-used features of SQL
remains an open problem. The lack of a well-understood formal semantics makes it very
difficult to validate the soundness of database implementations. Although formal semantics
for fragments of SQL were designed in the past, they usually did not support set and bag
operations, lateral joins, nested subqueries, and, crucially, null values. Null values complicate
SQL’s semantics in profound ways analogous to null pointers or side-effects in other pro-
gramming languages. Since certain SQL queries are equivalent in the absence of null values,
but produce different results when applied to tables containing incomplete data, semantics
which ignore null values are able to prove query equivalences that are unsound in realistic
databases. A formal semantics of SQL supporting all the aforementioned features was only
proposed recently. In this paper, we report about our mechanization of SQL semantics cov-
ering set/bag operations, lateral joins, nested subqueries, and nulls, written in the Coq proof
assistant, and describe the validation of key metatheoretic properties. Additionally, we are
able to use the same framework to formalize the semantics of a flat relational calculus (with
null values), and show a certified translation of its normal forms into SQL.

Keywords SQL · Nulls · Semantics · Formalization · Coq

This research has been supported by the National Cyber Security Centre (NCSC) project: Mechanising the
metatheory of SQL with nulls. This work was supported by ERC Consolidator Grant Skye (grant number
682315).

B Wilmer Ricciotti
research@wilmer-ricciotti.net

James Cheney
jcheney@inf.ed.ac.uk

1 Laboratory for Foundations of Computer Science, University of Edinburgh, 10 Crichton St, Edinburgh
EH8 9AB, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09632-4&domain=pdf
http://orcid.org/0000-0002-2361-8538
http://orcid.org/0000-0002-1307-9286

W. Ricciotti, J. Cheney

1 Introduction

SQL is the standard query language used by relational databases, which are the basis of a
multi-billion dollar industry. SQL’s semantics is notoriously subtle: the standard (ISO/IEC
9075:2016) uses natural language that implementations interpret in different ways.

Relational databases are theworld’smost successful example of declarative programming.
Commercial databases optimize queries by applying rewriting rules to convert a request into
an equivalent one that can be executed more efficiently, using the database’s knowledge of
data organization, statistics, and indexes. However, the lack of a well-understood formal
semantics for SQL makes it very difficult to validate the soundness of candidate rewriting
rules, and even widely used database systems have been known to return incorrect results
due to bugs in query transformations (such as the “COUNT bug”) [10, 14]. As a result, many
database systems conservatively use a limited set of very well-understood rewrite rules.

An accurate understanding of the semantics of SQL is also required to validate techniques
used to integrate SQL queries in a host programming language. One such technique, which
has been particularly influential in recent years, is language-integrated query: it is based on
a domain specific sublanguage of the host programming language, whose expressions can
be made to correspond, after some manipulation, to SQL queries. In order for the validity of
this correspondence to be verified, we need a formal semantics of SQL.

One of SQL’s key features is incomplete information, i.e. null values. Null values are
special tokens that indicate a “missing” or “unknown” value. Unlike the “none” values in
“option” or “maybe” types in functional languages such asML, Haskell, or Scala, null values
are permitted as values of any field by default unless explicitly ruled out as part of a table’s
schema (type declaration). Moreover, standard arithmetic and other primitive operations are
extended to support null values, and predicates are extended to three-valued interpretations,
to allow for the possibility that a relationship cannot be determined to be either true or false
due to null values. As a result, the impact of nulls on the semantics of SQL is similar to that
of effects such as null pointers, exceptions, or side-effecting references in other programming
languages: almost any query can have surprising behavior in the presence of nulls.

SQL’s idiosyncratic treatment of nulls is a common source of bugs in database applications
and query optimizers, especially in combination with SQL’smultiset (or bag) semantics. For
example, consider the following three queries:
�

SELECT ∗ FROM R WHERE 1 = 1
SELECT ∗ FROM R WHERE A = A
SELECT ∗ FROM R WHERE A = B OR A <> B

�

over a relation R with fields A, B. In conventional two-valued logic, all three queries are
equivalent because the WHERE-clauses are tautologies. However, in the presence of nulls, all
three queries have different behavior: the first simply returns R, while the second returns all
elements of R whose A-field is nonnull, and the third returns all elements of R such that both
A and B values are nonnull. In the second query, if a record’s A value is null, then the truth
value of A = A is maybe, and such records are not included in the resulting set. Likewise, if
one of A or B (or both!) is null, then A = B ∨ A �= B has truth value maybe.

This problem, unfortunately, pervades most SQL features, even ones that do not explicitly
refer to equality tests. For example, in the absence of null values, Guagliardo and Libkin
observe that all three of the following queries have equivalent behavior ([13]):
�

SELECT R.A FROM R WHERE R.A NOT IN (SELECT S.A FROM S)
SELECT R.A FROM R WHERE NOT EXISTS (SELECT ∗ FROM S WHERE S.A = R.A)
SELECT R.A FROM R EXCEPT SELECT S.A FROM S

�

123

A Formalization of SQL with Nulls

but all three have different behavior when presented with the input table R = {1, null} and
S = {null}. The first results in ∅, the second in {1, null}, and the third in {1}.

SQL’s rather counterintuitive semantics involving NULLs and three-valued logic leads
query optimizers to be conservative in order to avoid subtle bugs. Database implementations
tend to restrict attention to a small set of rules that have been both carefully proved correct
(on paper) and whose correctness has been validated over time. This means that to get the
best performance, a programmer often needs to know what kinds of optimizations the query
optimizer will perform and how to reformulate queries to ensure that helpful optimizations
take place. Of course, this merely passes the buck: now the programmer must reason about
the correctness or equivalence of the more-efficient query, and as we have seen this is easy to
get wrong in the presence of nulls. As a result, database applications are either less efficient
or less reliable than they should be.

Formal verification and certification of query transformations offers a potential solution to
this problem. We envision a (not too distant) future in which query optimizers are certified:
that is, in addition to mapping a given query to a hopefully more efficient one, the optimizer
provides a checkable proof that the two queries are equivalent. Note that (as with certifying
compilers [15]) this does not require proving the correctness or even termination of the
optimizer itself. Furthermore, we might consider several optimizers, each specializing in
different kinds of queries.

Before we get too excited about this vision, we should recognize that there aremany obsta-
cles to realizing it. For example, before we can talk about proving the correctness of query
transformations, let alone mechanically checked proofs, we need to have a suitable semantics
of queries. Formal semantics for SQL has been investigated intermittently, including mecha-
nized formalizations and proofs; however, most such efforts have focused on simplified core
languages with no support for nulls [3, 6, 18], meaning that they can and do prove equiva-
lences that are false in real databases, which invariably do support nulls (a recent exception
to this is SQLCoq [2], which we will discuss later). Part of the reason for neglecting nulls and
three-valued logic is that the theory of relational databases and queries has been developed
largely in terms of the relational algebra which does not support such concepts. Recent
work by Guagliardo and Libkin [13] provides the first (on-paper) formal semantics of SQL
with nulls (we will call this NullSQL). NullSQL is the first formal treatment of SQL’s nulls
and three-valued semantics, and it has been validated empirically using random testing to
compare with the behaviour of real database engines, but mechanized formalizations of the
semantics of SQL with nulls have only appeared recently.

Contributions

This paper is a report about our formalization of SQL with null values, three-valued logic,
and lateral joins: our development can be publicly accessed at its GitHub repository (https://
github.com/wricciot/nullSQL). The most complete formalization of SQL to date is SQLCoq
[2], which was developed concurrently with our work: it formalizes a variant of NullSQL
with grouping and aggregates and a corresponding bag-valued relational algebra, proving
the equivalence between the two. Our work does not deal with grouping and aggregation;
however, it does provide a more accurate formalization of well-formedness constraints for
SQL expressions. The well-formedness judgment defined in SQLCoq accepts queries using
free attribute names (not bound to an input table), which are rejected by concrete implemen-
tations; in the formalization, such queries are assigned a dummy semantics in the form of
default values.

123

https://github.com/wricciot/nullSQL
https://github.com/wricciot/nullSQL

W. Ricciotti, J. Cheney

Another relevant formalization is HoTTSQL by Chu et al. [6], which does not allow
incomplete information in tables; as it turns out, formalizing SQL with nulls requires us
to deal with issues that are not immediately evident in HoTTSQL, and thus provides us with
an opportunity to consider alternatives to some of their design choices.

We summarize here the key features of our formalization compared to the existing work.
Representation of tables. The HoTTSQL paper describes two concrete alternatives for the
representation of tables: the list model and the K -relation model [12]. They argue that lists
are difficult to reason on because of the requirement that they be equal up to permutation
of elements, and thatK -relations require the invariant of finite-supportedness to be wired
through each proof. They then go on to extend the K -relation model to K allowing infinite
cardinalities (through HoTT types) and claim this is a substantial improvement; they also use
univalent types 0 and 1 to represent truth values. However, they do not prove an adequacy
property relating this representation to a conventional one. Despite the ease of reasoning with
the HoTTSQL approach, it is unclear how to adapt it to three-valued logic.

As for SQLCoq, [2] does not discuss the representation of tables in great detail; however,
their formalization uses a bag datatype provided in a Coq library.

In this paper, we show instead that the difficulty of reasoning on lists up to permutations,
which partly motivated the recourse to HoTT, is a typical proof-engineering issue, stemming
from a lack of separation between the properties that the model is expected to satisfy, and its
implementation as data (which is typical of type theory). Our key contribution is, therefore,
the definition of K -relations as an abstract data type whose inhabitants can only be cre-
ated, examined, and composed by means of structure-preserving operations, and its concrete
implementation as normalized lists.
Reasoning on relations. This is a related point. Reasoning on an ADT cannot use the case
analysis and induction principles that are normally the bread and butter of Coq users; for this
reason, our ADT will expose some abstract well-behavedness properties that can be used
as an alternative to concrete reasoning. Additionally, we will assume heterogeneous (“John
Major”) equality to help with the use of dependent types, and functional extensionality
to reason up to rewriting under binders (such as the Σ operator of K -relations expressing
projections – and more complex maps in our formalization).
The formalized fragment of SQL. Aside from nulls, there are several differences between the
fragments of SQL used by the three formalizations. To list a few:

– HoTTSQL does not employ names at any level, therefore attributes must be referenced
in a de Bruijn-like style, by position in a tuple rather than by name; SQLCoq uses names
for attributes, but not for tables, and relies on the implicit assumption that attributes be
renamed so that no aliasing can happen in a cross product; in our formalization, names
are used to reference attributes, and de Bruijn indices to reference tables; our semantics
is nameless.

– Since HoTTSQL does not have names, it does not allow attributes to be projected just
by referencing them in a select clause (as we do), but it provides additional language
expressions to express projections as a (forgetful) reshuffling of an input sequence of
attributes.

– SQLCoq, on the other hand, by assuming that no attribute clash can occur, does not address
the attribute shadowing problem mentioned by [13].

– Both HoTTSQL and SQLCoq do consider grouping and aggregation features, which are
not covered by [13], nor by our formalization;

– Unlike both HoTTSQL and SQLCoq, we formalize SQL queries with LATERAL input,
introduced in the SQL:1999 standard and supported by recent versions of DBMSs such

123

A Formalization of SQL with Nulls

as Oracle, PostgreSQL, and MySQL. When a subquery appearing in the FROM clause is
preceded by LATERAL, that subquery is allowed to reference attributes introduced by the
preceding FROM items: this means that while normally the FROM items of a SELECT query
are evaluated independently, a LATERAL subquery needs to be evaluated once for every
tuple in the preceding FROM items, making its semantics substantially more complicated.

Boolean semantics vs. three-valued semantics. As we mentioned above, in HoTTSQL the
evaluation of the WHERE clauses of queries yields necessarily a Boolean value. However, in
standard SQL, conditional expressions can evaluate to an uncertain truth value, due to the
presence of incomplete information in the data base. The lack of an obvious denotation of
the uncertain truth value as a HoTT type makes it challenging to extend that work to nulls
even in principle. Our formalization, like Benzaken and Contejean’s, provides a semantics
for NullSQL based on three-valued logic; additionally, we provide a Boolean semantics as
well: we can thus formally derive Guagliardo and Libkin’s proof that, even in the presence
of nulls, three-valued logic does not increase the expressive power of SQL, and even extend
it to queries with LATERAL input. Whether such a property holds in the presence of grouping
and aggregation does not appear to have been investigated.
Relational calculus vs. SQL. The language-integrated query feature of programming lan-
guages such as Kleisli [26], Links [8], and Microsoft’s C# and F# allows a user to express
database queries in a typed domain-specific sublanguage which blends in nicely with the rest
of the program. Core calculi such as the nested relational calculus [5] (NRC) have been used
to provided a theoretical basis to study language-integrated query: in particular, Wong’s con-
servativity theorem ([25]) implies that everyNRC query mapping flat tables to flat tables can
be normalized to a flat relational calculus query, not using nested collections as intermediate
data. Such flat queries correspond closely to SQL queries, and it is straightforward to give an
algorithm to translate the former into the latter. Furthermore, in [20] and [22], we extended
NRC to allow queries mixing set and bag collections, and we noted that in this language,
under additional conditions, it is still possible to normalize flat queries to a form that directly
corresponds to SQL, as long as LATERAL inputs are allowed.

However, the correspondence established by theseworks is rather informal: the correctness
of translations from NRC to SQL has not been proved formally, at least to our knowledge.
In Sect. 8, we fill this gap in the literature: we formally define flat relational calculus normal
forms using sets and bags and their semantics, show a translation mapping them to SQL, and
prove that the translation preserves the semantics of the original query.

1.1 Structure of the Paper

We start in Sect. 3 by describing our formalization of the syntax of NullSQL, discussing our
implementation choices and differences with the official SQL syntax; Sect. 4 is devoted to our
semanticmodel of relations, particularly its implementation as an abstract data type; in Sect. 5,
we describe how SQL queries are evaluated to semantic relations, using both Boolean and
three-valued logic; Sect. 7 formalizes Guagliardo and Libkin’s proof that the two versions of
the semantics have the same expressive power; finally Sect. 8 gives a semantics of normalized
flat relational calculus terms and gives an algorithm to translate them to SQL queries, proving
its correctness.

123

W. Ricciotti, J. Cheney

2 Overview of the Formalization

The formalization we describe is partitioned in several modules and functors. In some cases,
these serve as littlemore than namespaces, or are usedmostly for the purpose of presentational
separation. For example, the various parts of this development are defined in terms of an
underlying collection of named tables, namely the data base D; rather than cluttering all the
definitions with references to D and its properties, we package their signature in a module
type DB and assume that a concrete implementation is given.

The syntax of NullSQL, including rules defining well-formedness of queries and other
expressions, is defined in a module of type SQL.

3 Syntax

We formalize a fragment of SQL consisting of select-from-where queries (including “select-
star”) with correlated subqueries connected with EXISTS and IN and operations of union,
intersection and difference. Both set and bag (i.e. multiset) semantics are supported, through
the use of the keywords DISTINCT and ALL. We assume a simple data model consisting
of constants k along with the unspecified NULL value. We make no assumption over the
semantics of constants, which may thus stand for numeric values, strings, or any other kind
of data; however, for the purpose of formalization it is useful to assume that the constants
be linearly ordered, for example by means of the lexicographic order on their binary repre-
sentation. Relations are bags of n-tuples of values, where n is the arity of the relation. Our
syntax is close to the standard syntax of SQL, but we make a few simplifying changes:

– The tables in the FROM clause of SELECT-FROM-WHERE queries are referenced by a 0-based
de Bruijn index rather than by name; however, attributes are still referenced by name.

– Attribute (re)naming using AS, both in SELECT and FROM, is mandatory.
– The WHERE clause is mandatory (WHERE TRUEmust be used when no condition is given).
– An explicit syntax (table x or query Q) is provided to differentiate between tables stored

by name in the database and tables resulting from a query.

Hence, if R is a relation with column names A, B, C , the SQL query SELECT R.A FROM R

must be expressed as SELECT 0.A AS A FROM table R AS (A,B,C) WHERE TRUE.
For compactness, we will write AS as a colon “:”. The full syntax follows:

x ∈ X α :: = n.x σ :: = −→x Γ :: = −→σ
t :: = α | k | NULL v :: = k | NULL
Q :: = SELECT [DISTINCT] −−→

t : x FROM G WHERE c
| SELECT [DISTINCT] ∗ FROM G WHERE c
| Q1 UNION [ALL] Q2 | Q1 INTERSECT [ALL] Q2 | Q1 EXCEPT [ALL] Q2

G :: = −−−→
T1 : σ1 LATERAL . . .LATERAL

−−−−→
Tn : σn

c :: = TRUE | FALSE | c IS TRUE | t IS [NOT] NULL | −→
t [NOT] IN Q | Pn(

−→
tn)

| EXISTS Q | c1 AND c2 | c1 OR c2 | NOT c
T :: = table x | query Q

The SELECT clause of a query takes a list of terms, which include null or constant values,
and references to attributes one of the tables in the form n.x , where n is the index referring
to an input relation in the FROM clause, and x is an attribute name. The input of the query is
expressed by the FROM clause, which references a generator G consisting of a sequence of

123

A Formalization of SQL with Nulls

frames separated by the LATERAL keyword; each frame is a sequence
−−−→
T : σ of input tables

paired with a schema (allowing attribute renaming); an input table can be defined using
variables introduced in a previous frame, but not in the same frame; concretely, in a query:
�

SELECT z.id
FROM T1 x,

(SELECT ∗ FROM T2 x’ WHERE x.name = x’.name) y,
LATERAL (SELECT ∗ FROM T3 x’ WHERE x.name = x’.name) z

�

the expression introducing the variable y is ill-formed, because it uses the variable x, which
is introduced in the same frame; however, the very similar expression associated to z is
well-formed, because it is part of a different frame introduced by LATERAL. In our Coq
formalization, we will model frames as lists, and sequences of frames as lists of lists.

Conditions for the WHERE clause of queries include Booleans andBoolean operators (TRUE,
FALSE, AND, OR, NOT), comparison of conditions with TRUE, comparison of terms with NULL,
membership tests for tuples (−→t [NOT] IN Q), non-emptiness of the result of subqueries
(EXISTS Q), and custom predicates Pn(

−→
tn) (where Pn is an n-ary Boolean predicate, and−→

tn an n-tuple of terms).
The abstract syntax we have presented in Sect. 3 is made concrete in Coq by means of

inductive types.
�

Inductive pretm : Type :=
| tmconst : BaseConst → pretm
| tmnull : pretm
| tmvar : FullVar → pretm

Inductive prequery : Type :=
| select : bool → list (pretm * Name) → list (list (pretb * Scm)) →

precond → prequery
| selstar : bool → list (list (pretb * Scm)) → precond → prequery
| qunion : bool → prequery → prequery → prequery
| qinters : bool → prequery → prequery → prequery
| qexcept : bool → prequery → prequery → prequery

with precond : Type :=
| cndtrue : precond
| cndfalse : precond
| cndnull : bool → pretm → precond
| cndistrue : precond → precond
| cndpred : forall n, (forall l : list BaseConst ,

length l = n → bool) →
list pretm → precond

| cndmemb : bool → list pretm → prequery → precond
| cndex : prequery → precond
| cndand : precond → precond → precond
| cndor : precond → precond → precond
| cndnot : precond → precond

with pretb: Type :=
| tbbase : Name → pretb
| tbquery : prequery → pretb.

�

Query constructors select and selstar take a Boolean argument which, when it is true,
plays the role of a DISTINCT selection query; similarly, the Boolean argument to constructors
qunion, qinters, and qexcept plays the role of the ALL modifier allowing for union,
intersection, and difference according to bag semantics. Conditions using base predicates
are expressed by the constructor cndpred: notice that we do not formally specify the
set of base predicates defined by SQL, but allow any n-ary function from constant values
(of type BaseConst) to Booleans expressible in Coq to be embedded in an SQL query:

123

W. Ricciotti, J. Cheney

such functions can easily represent SQL predicates including equality, inequality, numerical
“greater than” relations, LIKE on strings, and many more.

We use well-formedness judgments (Fig. 1) to filter out meaningless expressions, in par-
ticular those containing table references that cannot be resolved because they point to a table
that is not in the FROM clause, or because a certain attribute name is not in the table, or is
ambiguous (as it happens when a table has two columns with the same name). The formal-
ization of legal SQL expressions has mostly been disregarded in other work, either because
the formalized syntax was not sufficiently close to realistic SQL (HoTTSQL does not use
attribute or table names), or because it was decided to assign a dummy semantics to illegal
expressions (as in SQLCoq).

There are distinct judgments for the well-formedness of attribute names and terms, and
five distinct, mutually defined judgments for tables, frames, generators, conditions, queries
and existentially nested queries. Each judgmentmentions a contextΓ which assigns a schema
(list of attribute names) to each table declared in a FROM clause. A parameter D (data base)
provides a partial map from table names x to their (optional) schema D(x).

We review some of the well-formedness rules. The rules for terms state that constant
literals k and null values are well formed in all contexts. To check whether an attribute
reference n.x is well formed (where n is a de Bruijn index referring to a table and x an
attribute name), we first perform a lookup of the n-th schema in Γ : if this returns some
schema σ , and the attribute x is declared in σ (with no repetitions), then n.x is well formed.
The rules for conditions recursively check that nested subqueries be well-formed and that
base predicates Pn be applied to exactly n arguments.

The well-formedness judgments for queries and tables assign a schema to their main
argument. Similarly, well-formed frames of tables are assigned the corresponding sequence
of schemas, i.e. a context. Thewell-formedness judgment for generators uses, recursively, the
well-formedness of frames, where each frame added to the generator must be well-formed
in a suitably extended context (notice that the last frame is added to the left, contrary to SQL
syntax, but coherently with Coq’s notation for lists), and finally returns a context obtained
by concatenating all the contexts assigned to the individual well-formed frames.

The SQL standard allows well-formed queries to return tables whose schema contains
repeated attribute names (e.g. SELECT A, A, B FROM R), but requires attribute references
in terms to be unambiguous (so that, if the previous query appears as part of a larger one,
the attribute name B can be used, but A cannot). This behaviour is faithfully mimicked in our
well-formedness judgments: while well-formed terms are required to only use unambigu-
ous attribute references, the rules for queries do not check that the schema assignment be
unambiguous. Furthermore, in a SELECT ∗ query that is not contained in an EXISTS clause,
the star is essentially expanded to the attribute names of the input tables (so that, for exam-
ple, SELECT ∗ FROM (SELECT A, A FROM R) is rejected even though the inner query is
accepted, and the ambiguous attribute name A is not explicitly referenced).

As an exception, when a SELECT ∗ query appears inside an EXISTS clause (meaning it is
only run for the purpose of checking whether its output is empty or not), SQL considers it
well-formed even when the star stands for an ambiguous attribute list. Thus we model this
situation as a different well-formedness predicate, with a more relaxed rule for SELECT ∗;
furthermore, since the output of an existential subquery is thrown away after checking for
non-emptiness, this predicate does not return a schema.

In our formalization, we need to prove weakening only for the term judgment, but not for
queries, tables or conditions; weakening for terms is almost painless and only requires us to
define a lift function that increments table indices by a given k.

123

A Formalization of SQL with Nulls

Variables (j var)
x /∈ σ

x#σ x

x = y σ x

y#σ x

Terms (j tm, j tml)

Γ D k Γ D NULL

Γ (n) = some σ σ x

Γ D n.x

∀t ∈ − →
t : Γ D t

Γ D

− →
t

Queries (j query)

Γ D G ⇒ Γ

Γ , Γ D
− →
t

Γ , Γ D c

τ = − →x

Γ D
SELECT [DISTINCT]

−−→
t : x

FROM G WHERE c
⇒ τ

Γ D G ⇒ Γ

Γ , Γ D dom(Γ)

Γ , Γ D c

τ = flatten(Γ)

Γ D
SELECT [DISTINCT] ∗
FROM G WHERE c

⇒ τ

Γ D Q1 ⇒ σ Γ D Q2 ⇒ σ

Γ D Q1 {UNION | INTERSECT | EXCEPT} [ALL] Q2 ⇒ σ

Nested queries (j inquery)

Γ D G ⇒ Γ

Γ , Γ D
− →
t Γ , Γ D c

Γ D
SELECT [DISTINCT] −−→

t : x
FROM G WHERE c

Γ D G ⇒ Γ Γ , Γ D c

Γ D
SELECT [DISTINCT] ∗
FROM G WHERE c

Γ D Q1 ⇒ σ Γ D Q2 ⇒ σ

Γ D Q1 {UNION | INTERSECT | EXCEPT} [ALL] Q2

Tables (j tb)

D(x) = some σ

Γ D table x ⇒ σ

Γ D Q ⇒ σ

Γ D query Q ⇒ σ

Frames and generators (j btb, j btbl)

Γ D

|σ| = |σ |
Γ D T ⇒ σ

nodup σ

Γ D
−−−→
U : τ ⇒ Γ

Γ D T : σ ,
−−−→
U : τ ⇒ σ , Γ

Γ D [] ⇒ []
Γ D G ⇒ Γ1 Γ1, Γ D

−−−→
T : σ ⇒ Γ2

Γ D
−−−→
T : σ, LATERAL G ⇒ Γ2, Γ1

Conditions (j cond)

Γ D {TRUE|FALSE}
Γ D t

Γ D t IS [NOT] NULL
Γ D c

Γ D c IS TRUE

|− →
t | = n Γ D

− →
t

Γ D Pn(
− →
t)

Γ D
− →
t

|− →
t | = |σ|

Γ D Q ⇒ σ

Γ D
− →
t IN Q

Γ D Q

Γ D EXISTS Q

Γ D c1 Γ D c2

Γ D c1 {AND | OR} c2

Γ D c

Γ D NOT c

Fig. 1 Well-formed SQL syntax

123

W. Ricciotti, J. Cheney

Thus, if a term t is well-formed in a context Γ , then it is also well-formed in an extended
context Γ ′, Γ , provided that we lift it by an amount corresponding to the length of Γ ′.

Lemma 1 If Γ 	D t, then for all Γ ′ we have Γ ′, Γ 	D tm_lift t |Γ ′|.

4 K -Relations as an Abstract Data Type

We recall the notion of K -relation, introduced in [12] byGreen et al.: for a commutative semi-
ring (K ,+,×, 0, 1) (i.e. (K ,+, 0) and (K ,×, 1) are commutative monoids, × distributes
over +, and 0 annihilates ×), a K -relation is a finitely supported function R of type T → K ,
where by finitely supported we mean that R t �= 0 only for finitely many t : T . K -relations
constitute a natural model for databases: for example, if K = N, R t can be interpreted as the
multiplicity of a tuple t in R, and finite-supportedness corresponds to the finiteness of bags.
In Coq, we can represent K -relations as (computable) functions: however, each function
must be proved finitely supported separately, cluttering the formalization. To minimize the
complication, we model K -relations by means of an abstract data type (as opposed to the
concrete type of functions); this technique was previously used by one of the authors to
formalize binding structures [19].

Just as in the theory of programming languages, an abstract data type for K -relations does
not provide access to implementation details, but offers a selection of operations (union,
difference, cartesian product) that are known to preserve the structural properties of K -
relations, and in particular finite-supportedness. For the purpose of this work, the ADT
we describe is specialized to N-relations; we fully believe our technique can be adapted
to general commutative semi-rings (including the provenance semi-rings that provided the
original motivation for K -relations), with some adaptations due to the fact that our model
needs to support operations, like difference, that are not available in a semi-ring.

Our abstract type of relations is defined by means of the following signature:

�

Parameter R : nat → Type.
Parameter V : Type.
Definition T := Vector.t V.
Parameter memb : forall n, R n → T n → nat. (*#(r , t)*)
Parameter plus : forall n, R n → R n → R n. (*⊕*)
Parameter minus: forall n, R n → R n → R n. (**)
Parameter inter: forall n, R n → R n → R n. (*∩*)
Parameter times: forall m n, R m → R n → R (m + n). (*×*)
Parameter sum : forall m n, R m → (T m → T n) → R n. (*Σ*)
Parameter rsum : forall m n, R m → (T m → R n) → R n. (*

⊎
*)

Parameter sel : forall n, R n → (T n → bool) → R n. (*σ *)
Parameter flat : forall n, R n → R n. (*‖ · ‖*)
Parameter supp : forall n, R n → list (T n).
Parameter Rnil : forall n, R n.
Parameter Rone : R 0.
Parameter Rsingle : forall n, T n → R n.

�

This signature declares a type family R n of n-ary relations, and a type V of data values.
The type family T n of n-tuples is defined as a vector with base type V. The key difference
compared to the concrete approach is that, given a relation r and a tuple t , both with the
same arity, we obtain the multiplicity of t in r as #(r , t), where #(·, ·) is an abstract operator;
the concrete style r t is not allowed because the type of R is abstract, i.e. we do not know
whether it is implemented as a function or as something else.

123

A Formalization of SQL with Nulls

We also declare binary operators ⊕, \, and ∩ for the disjoint union, difference, and
intersection on n-ary bags. The cartesian product × takes two relations of possibly different
arity, say m and n, and returns a relation of arity m + n.

The operator sum r f, for which we use the notation
∑

r f (or, sometimes,
∑

x←r f x)
represents bag comprehension: it takes a relation r of aritym and a function f fromm-tuples
to n-tuples, and builds a new relation of arity n as a disjoint union of all the f x , where x
is a tuple in r , taken with its multiplicity; note that for such an operation to be well-defined,
we need r to be finitely supported. We also provide a more general form of comprehension
rsum r g, with the notation

⊎
r g (or, equivalently,

⊎
x←r g x), where the function g maps

m-tuples to n-relations: the output of this comprehension will be a new relation of arity n
built by taking the disjoint union of all the relations g x , where x is a tuple in r , taken with
its multiplicity. Again, this operation is well-defined only if r is finitely supported.

Filtering is provided by sel r p (notation: σp(r)), where p is a boolean predicate on
tuples: this will return a relation that contains all the tuples of r that satisfy p, but not the
other ones.

We also want to be able to convert a bag r to a set (i.e. 0/1-valued bag) ‖r‖ containing
exactly one copy of each tuple present in r (regardless of the original multiplicity). Finally,
there is an operator supp r returning a list of tuples representing the finite support of r .

Rnil n identifies the standard empty relation of arity n, and similarly Rone is the
standard 0-ary singleton containing exactly one copy of the empty tuple. We also provide
Rsingle n t, or the singleton relation containing the tuple t of arity n, although this can
easily be defined in terms of Rone and sum.

In our approach, all the operations on abstract relations mentioned so far are declared
but not concretely defined. When ADTs are used for programming, nothing more than the
signature of all operations is needed, and indeed this suffices in our case as well if all we
are interested in is defining the semantics of SQL in terms of abstract relations. However,
proving theorems about this semanticswould be impossible ifwe had no clue aboutwhat these
operations do: howdowe know that⊕ really performs amultiset union, and∩ an intersection?
To make reasoning on abstract relations possible without access to their implementation, we
will require that any implementation shall provide some correctness criteria, or proofs that
all operations behave as expected.

The full definition of the correctness criteria for abstract relations as we formalized them
in Coq is as follows:
�

Parameter p_ext :
forall n, forall r s : R n,
(forall t, memb r t = memb s t) → r = s.

Parameter p_fs :
forall n, forall r : R n, forall t,
memb r t > 0 → List.In t (supp r).

Parameter p_fs_r :
forall n, forall r : R n, forall t,
List.In t (supp r) → memb r t > 0.

Parameter p_nodup :
forall n, forall r : R n, NoDup (supp r).

Parameter p_plus :
forall n, forall r1 r2 : R n, forall t,
memb (plus r1 r2) t = memb r1 t + memb r2 t.

Parameter p_minus :
forall n, forall r1 r2 : R n, forall t,
memb (minus r1 r2) t = memb r1 t - memb r2 t.

Parameter p_inter :
forall n, forall r1 r2 : R n, forall t,
memb (inter r1 r2) t

123

W. Ricciotti, J. Cheney

= min (memb r1 t) (memb r2 t).
Parameter p_times :

forall m n, forall r1 : R m, forall r2 : R n,
forall t t1 t2, t = Vector.append t1 t2 →
memb (times r1 r2) t = memb r1 t1 * memb r2 t2.

Parameter p_sum :
forall m n, forall r : R m,
forall f : T m → T n, forall t,
memb (sum r f) t = list_sum (List.map (memb r)

(filter (fun x ⇒ T_eqb (f x) t) (supp r))).
Parameter p_rsum :

forall m n, forall r : R m,
forall f : T m → R n, forall t,
memb (rsum r f) t = list_sum (List.map

(fun t0 ⇒ memb r t0 * memb (f t0) t)
(supp r)).

Parameter p_self :
forall n, forall r : R n, forall p t,
p t = false → memb (sel r p) t = 0.

Parameter p_selt :
forall n, forall r : R n, forall p t,
p t = true → memb (sel r p) t = memb r t.

Definition flatnat := fun n ⇒
match n with 0 ⇒ 0 | _ ⇒ 1 end.

Parameter p_flat :
forall n, forall r : R n, forall t,
memb (flat r) t = flatnat (memb r t).

Parameter p_nil : forall n (t : T n), memb Rnil t = 0.
Parameter p_one : forall t, memb Rone t = 1.
Parameter p_single :

forall n (t : T n), memb (Rsingle t) t = 1.
Parameter p_single_neq :

forall n (t1 t2 : T n), t1 <> t2 → memb (Rsingle t1) t2 = 0.
�

A first, important property is that relations must be extensional: in other words, any two
relations containing the same tuples with the same multiplicities, are equal; this is not true
of lists, because two lists containing the same elements in a different order are not equal.
Relations should also be finitely supported, and we expect the support not to contain dupli-
cates. The properties for the standard 0-ary relations Rnil and Rone describe the standard
0-ary relations, which implicitly employs the fact that the only 0-tuple is the empty tuple. The
properties for plus, minus, inter express the behaviour of disjoint union, difference,
and intersection: for instance, a tuple #(r ⊕ s, t) is equal to #(r , t) + #(s, t). The behaviour
of cartesian products is described as follows: if r1 and r2 are, respectively, an m-ary and an
n-ary relation, and t is an (m + n)-tuple, we can split t into an m-tuple t1 and an n-tuple
t2, and #(r1 × r2, t) = #(r1, t1) ∗ #(r2, t2). The behaviour of filtering (p_self, p_selt)
depends on whether the filter predicate p is satisfied or not: #(σp(r), t) is equal to #(r , t) if
p t = true, but it is zero otherwise.

The value of #(‖r‖, t) is one if #(r , t) is greater than zero, or zero otherwise. Finally,
p_sum and p_rsum describe the behaviour of bag comprehensions by relating it to the
support of the base relation: #(

∑
r f , t) is equal to the sum ofmultiplicities of those elements

x of r such that t = f x ; this value can be obtained by applying standard list functions to
supp r ; #(

⊎
r g, t) is equal to the sum of multiplicities of the elements x of r multiplied by

the multiplicities of t in g x .

123

A Formalization of SQL with Nulls

4.1 AModel of K-Relations

The properties of R that we have assumed describe a “naïve” presentation of K -relations:
they really are nothing more than a list of desiderata, providing no argument (other than
common sense) to support their own satisfiability. However, we show that an implementation
of R (that is, in logical terms, a model of its axioms) can be given within the logic of Coq.

Crucially, our implementation relies on the assumption that the type V of values be totally
ordered under a relation ≤V; consequently, tuples of type T n are also totally ordered under
the corresponding lexicographic order ≤T n. We then provide an implementation of R n by
means of a refinement type:
�

Definition R := fun n ⇒ { l : list (T n) & is_sorted l = true }.
Definition memb {n} : T n → R n → nat

:= fun A x ⇒ List.count_occ (projT1 A) x.
�

where is_sorted l is a computable predicate returning true if and only if l is sorted
according to the order ≤T n. The inhabitants of R n are dependent pairs 〈l, H〉, such that
l : T n and H : is_sorted l = true. The multiplicity function for relations memb is
implemented by counting the number of occurrences of a tuple in the sorted list (count_occ
is a Coq standard library function on lists).

The most important property that this definition must satisfy is extensionality. For any
two sorted lists l1, l2 of the same type, we can indeed prove that whenever they contain
the same number of occurrences of all elements, they must be equal: however, to show that
〈l1, H1〉 = 〈l2, H2〉 (where Hi : is_sorted li = true) we also need to know that the two
proofs H1 and H2 are equal. Knowing that l1 = l2, this is a consequence of uniqueness of
identity proofs (UIP) on bool, which is provable in Coq (unlike generalized UIP).

Operations on relations can often be implemented using the following scheme:�

Definition op {n} : R n → R n → ... → R n := fun A B ... ⇒
existT _ (sort (f (projT1 A) (projT1 B) ...)) (sort_is_sorted _).

�

wheref is some functionof typelist (T n)→list (T n)→ . . . →list (T n).
Given relationsA,B ... we applyf to the underlying listsprojT1 A,projT1 B,...; then,we
sort the result and we lift it to a relation by means of the dependent pair constructor existT.
The theorem sort_is_sorted states that is_sorted (sort l) = true for all
lists l. The scheme is used to define disjoint union, difference and intersection:�

Definition plus {n} : R n → R n → R n
:= fun A B ⇒ existT _
(sort (projT1 A++ projT1 B)) (sort_is_sorted _).

Definition minus {n} : R n → R n → R n
:= fun A B ⇒ existT _

(sort (list_minus (projT1 A) (projT1 B)))
(sort_is_sorted _).

Definition inter {n} : R n → R n → R n
:= fun A B ⇒ existT _

(sort (list_inter (projT1 A) (projT1 B)))
(sort_is_sorted _).

�

For disjoint union, f is just list concatenation. For difference, we have to provide a function
list_minus, which could be defined directly by recursion in the obvious way; instead,
we decided to use the following definition:�

Definition list_minus {n} : list (T n) → list (T n) → list (T n)
:= fun l1 l2 ⇒ let l := nodup _ (l1 ++ l2) in
List.fold_left (fun acc x ⇒
acc ++ repeat x (count_occ _ l1 x - count_occ _ l2 x)) l List.nil.

�

123

W. Ricciotti, J. Cheney

Fig. 2 Three-valued logic truth
tables

∧ F U T
F F F F
U F U U
T F U T

∨ F U T
F F U T
U U U T
T T T T

A ¬A
F T
U U
T F

This definition first builds a duplicate-free list l containing all tuples that may be required
to appear in the output. Then, for each tuple x in l, we add to the output as many copies
of x as required (this is the difference between the number of occurrences of x in l1 and
l2). The advantage of this definition is that it is explicitly based on the correctness property
of relational difference: thus, the proof of correctness is somewhat more direct. The same
approach can be used for intersection and, with adaptations, for cartesian product.

Finally, sum, rsum, sel, and flat reflect, respectively, list map, concat-map, filter, and
duplicate elimination.

We do not provide an operation to test for the emptiness of a relation, or to compute the
number of tuples in a relation; however, this may be readily expressed by means of sum: all
we need to do is map all tuples to the same distinguished tuple. The simplest option is to use
the empty tuple 〈〉 and check for membership:

card S := #(
∑

S

(λx .〈〉), 〈〉)

The correctness criterion for card, stating that the cardinality of a relation is equal to the
sum of the number of occurrences of all tuples in its support, is an immediate consequence
of its definition and of the property p_sum:

Lemma 2 card S = list_sum [#(S, x)|x ← supp S]

5 Formalized Semantics

The formal semantics of SQL can be given as a recursively defined function or as an inductive
judgment. Although in our development we considered both options and performed some
of the proofs in both styles, we will here only discuss the latter, which has proven consider-
ably easier to reason on. As we intend to prove that three-valued logic (3VL) does not add
expressive power to SQL compared to Boolean (two-valued) logic (2VL), we actually need
two different definitions: a semantic evaluation based on 3VL (corresponding to the SQL
standard), and a similar evaluation based on Boolean logic.We factorized the two definitions,
which can be obtained by instantiating a Coq functor to the chosen notion of truth value.

5.1 Truth Values

For the semantics of SQL conditions, we use an abstract type B of truth values: this can be
instantiated to Boolean values (bool) or to 3VL values (tribool, with values ttrue or
T, tfalse or F, and unknown or U): in the latter case, we obtain the usual three-valued
logic of SQL. Technically, 3VL refers either to Kleene’s “strong logic of indeterminacy”,
or to Łukasiewicz’s L3 logic, which share the same values and truth tables for conjunction,
disjunction, and negation (Figure 2); both logics also define an implication connective, with
different truth tables: since implication plays no role in the semantics of SQL, it is omitted
in our formalization.

123

A Formalization of SQL with Nulls

For convenience, bool and tribool will be packaged in modules Sem2 and Sem3 of
type SEM together with some of their properties.
�

Module Type SEM (Db : DB).
Import Db.
Parameter B : Type.
Parameter btrue : B.
Parameter bfalse : B.
Parameter bmaybe : B.
Parameter band : B → B → B.
Parameter bor : B → B → B.
Parameter bneg : B → B.
Parameter is_btrue : B → bool.
Parameter is_bfalse : B → bool.
Parameter of_bool : bool → B.
Parameter veq : Value → Value → B.

Hypothesis sem_bpred : forall n,
(forall l : list BaseConst , length l = n → bool)
→ forall l : list Value , length l = n → B.

End SEM.
�

SEM declares the abstract truth values btrue, bfalse, bmaybe (in Sem3, bmaybe is
mapped to the uncertain value unknown; in Sem2, both bmaybe and bfalse are mapped
to false). SEM also declares abstract operations (band, bor, bneg), operations relat-
ing abstract truth values and Booleans (is_btrue, is_bfalse, of_bool), a B-valued
equality predicate for SQL values (including NULLs), and an operation sem_bpred which
lifts n-ary Boolean-valued predicates on constants to B-valued predicates on SQL values
(including NULLs): this is used to define the semantics of SQL conditions using base pred-
icates. A theorem sem_bpred_elim describes the behaviour of sem_bpred: if the list
of values l provided as input does not contain NULLs, it is converted to a list of constants
cl, then the base predicate p is applied to cl; this yields a Boolean value that is converted
to B by means of of_bool. If l contains one or more NULLs, sem_bpred will return
bmaybe.

5.2 A Functor of SQL Semantics

In Coq, when defining a collection of partial maps for expressions subject to well-formedness
conditions, we can use an “algorithmic approach” based on dependently typed functions, or
a “declarative approach” based on inductively defined judgments. The two alternatives come
both with benefits and drawbacks; for the purposes of this formalization, consisting of dozens
of cases with non-trivial definitions, we judged the declarative approach as more suitable,
as it helps decouple proof obligations from definitions. Our inductive judgments implement
SQL semantics according to the following style. When a certain expression (query, table or
condition) is well-formed for a context Γ , we expect its semantics to depend on the value
assignments for the variables declared in Γ : we call such an assignment an environment for
Γ (which has type env Γ in our formalization); thus, we define a semantics that assigns to
each well-formed expression an evaluation, i.e. a function taking as input an environment,
and returning as output a value, tuple, relation, or truth value. Subsequent proofs do not rely
on the concrete structure of environments, but internally they are represented as lists of lists
of values, which have to match the structure of Γ :
�

Definition preenv := list (list Value).
Definition env := fun g ⇒ { h : preenv &
List.map (@List.length Name) g = List.map (@List.length Value) h }.

�

123

W. Ricciotti, J. Cheney

Fig. 3 Formal semantics of SQL (types)

Similarly to well-formedness judgments, we have judgments for the semantics of attribute
names and terms, and five mutually defined judgments for the various expression types of
SQL. Figure 3 summarizes the judgments, highlighting the type of the evaluation they return.
In our notation, we use judgments �J�B with a superscript B denoting their definition can be
instantiated to different notions of truth value, in particular, bool and tribool; we will
use the notation �J�2VL and �J�3VL for the two instances. The semantics of attributes and terms
does not depend on the notion of truth value, thus the corresponding judgments do not have
a superscript. Concretely, our Coq formalization provides a module Evl for the judgments
that do not depend on B, and a functor SQLSemantics for the other judgments, which we
instantiate with the Sem2 and Sem3 we described in the previous section.

We can prove that our semantics assigns only one evaluation to each SQL expression.

Lemma 3 For all judgments J, if �J�B ⇓ S and �J�B ⇓ S′, then S = S′.
Thanks to the previous result, whenever �J� ⇓ S, we are allowed to use the notation �J�

for the semantic evaluation S, with no ambiguity.
Simple attributes are defined in a schema rather than a context: their semantics �τ 	 x�

maps an environment for the singleton context [τ] to a value. Similarly, the semantics of
fully qualified attributes �Γ 	 n.x� maps an environment for Γ to a value. In both cases, the
output value is obtained by lookup into the environment.

The evaluation of terms �Γ 	D t� returns a value for t given a certain environment γ for
Γ . In our definition, terms can be either full attributes n.x , constants k, or NULL. We have
just explained the semantics of full attributes; on the other hand, constants and NULLs are

already values and can thus be returned as such. The evaluation of term sequences
�
Γ 	 −→

t
�
,

given an environment, returns the tuple of values corresponding to each of the terms and is
implemented in the obvious way.

Queries and tables (�Γ 	D Q ⇒ τ �B, �Γ 	D T ⇒ τ �B) evaluate to relations whose arity
corresponds to the length of their schema τ (written |τ |). Existential subqueries evaluate to
a non-emptiness test: their evaluation returns a Boolean which is true if, and only if, the

query returns a non-empty relation.The evaluation of frames
�
Γ 	D

−−−−→
(T : τ) ⇒ Γ ′�B

returns
again a relation, whose arity corresponds to the arity of their cross join: this is obtained by
flattening Γ ′ and counting its elements; the judgment for generators operates in a similar
way. Conditions evaluate to truth values in B: in particular, the evaluation of logical values
and connectives TRUE, FALSE, AND, OR and NOT exploits the operations btrue, bfalse,
band, bor, and bneg provided to the functor by the input module SEM; similarly, atomic
predicates are evaluated using the operation sem_bpred, while to evaluate c IS TRUE, we
first evaluate the condition c recursively, obtaining a truth value in B, then we pass this value

123

A Formalization of SQL with Nulls

to is_btrue, which returns a bool (even when we are using 3VL), and finally coerce
it back to B using the operation of_bool (this construction ensures that IS TRUE always
evaluates to either btrue or bfalse).

As for well-formedness judgments, we prove a weakening lemma:

Lemma 4 If �Γ 	D t�B ⇓ S then, for all Γ ′, we have
�
Γ ′, Γ 	D tm_lift t |Γ ′|�B ⇓ λη.subenv2 η

, where subenv2 : env (Γ ′, Γ) → env Γ takes an environment for a context obtained by
concatenation and returns its right projection.

5.3 Discussion

To explain the semantics of queries, let us consider the informal definition [13]:�
SELECT

−−→
t : x

FROM
−−−→
T : σ WHERE c

�
η =

{
k · �t� η′∣∣∣#

(�−−−→
T : σ

�
η,

−→
V

)
= k, �c� η′ = tt

}

where η′ is defined as the extension of evaluation η assigning values
−→
V to fully qualified

attributes from
−−−→
T : σ (in the notation used by [13], η′ := η

−→
V⊕
(

−−−→
T : σ)). This definition

operates by taking the semantics of the tables in the FROM clause (their cartesian product).

For each tuple
−→
V contained k times in this multiset, we extend the environment η with

−→
V ,

obtaining η′. If c evaluates to tt in the extended environment, we yield k copies of �t� η′ in
the result.

The definition abovemakes implicit assumptions (particularly, the fact that η and η′ should
be good environments for the expressions whose semantics is evaluated), and at the same

time introduces a certain redundancy by computing the number k of occurrences of
−→
V in the

input tables, and using it to yield the same number of copies of output tuples.
In our formalization, the semantics above is implemented using abstract relations rather

than multisets. While in the paper definition the environment η′ is obtained by shadowing
names already defined in η, we can dispense with that since we rule out name clashes
syntactically, thanks to the use of deBruijn indices. The implementation uses dependent types
and some of the rules use equality proofs to allow premises and conclusions to typecheck:
we will not describe these technical details here, and refer the interested reader to the Coq
scripts.

�
Γ 	D G ⇒ Γ ′	 ⇓ SG

�
Γ ′, Γ 	D c

	 ⇓ Sc
�
Γ ′, Γ 	D

−→
t

�
⇓ S−→

t

Γ 	D

SELECT
−−→
t : x

FROM G WHERE c
⇒ σ ′

�
⇓ λη.

let p := λ−→v .is_btrue (Sc ([Γ ′ �→ −→v] ++ η)) in
let R := σp(SG) η) in

let f := λ−→v .S−→
t ([Γ ′ �→ −→v] ++ η) in

∑

R

f

In this mechanized version, the input to the SELECT is generalized to one that may include

lateral joins, usingG = −−−→
T1 : σ1 LATERAL . . . LATERAL

−−−−→
Tn : σn (we get the original version

for n = 1); the relation R := σp(SG η) replaces the predicate in the multiset comprehension,

whereas f assumes the role of the output expression. Whenever a certain tuple
−→
V appears k

123

W. Ricciotti, J. Cheney

times in R, the relational comprehension operator adds f V to the output the same number
of times, so it is unnecessary to make k explicit in the definition. The operation [Γ ′ �→ −→v]
creates an environment for Γ ′ by providing a tuple −→v of correct length: this constitutes
a proof obligation that can be fulfilled by noticing that each −→v ultimately comes from
�Γ 	D G ⇒ Γ ′�, whose type is env Γ → R |concat Γ ′|. Since G represents a telescope
of lateral joins, its semantics deserves some attention. The interesting case is the following:�

Γ 	D
−−−→
T : σ ⇒ Γ ′� ⇓ S−→

T

�
Γ ′, Γ 	D G ⇒ Γ ′′	⇓ SG�

Γ 	D
−−−→
T : σ LATERAL G ⇒ Γ ′′, Γ ′�⇓ λη.

let R := (S−→
T

η) in

let f := λ−→v .(SG ([Γ ′ �→ −→v] ++ η)) × (R_single −→v) in
⊎

R

f

To evaluate a generator
−−−→
T : σ LATERAL G given an environment η, we first evaluate

−−−→
T : σ

in η, obtaining a relation R; then, for each tuple −→v in R, we extend η with that particular
value of −→v and evaluate G recursively in it; we take the product of the resulting relation
with the singleton containing the tuple −→v ; finally, we perform a disjoint union for all the −→v .
Notice that in the absence of LATERAL it would have sufficed to perform a product between

the semantics of
−−−→
T : σ and that of G; that is not possible here, because we need to consider

a different semantics of G for each element of the semantics of
−−−→
T : σ .

Perhaps a more intuitive way of implementing this semantics would have been a judgment
in the form �Γ 	D Q ⇒ τ � η ⇓ R, where η is an environment for Γ and R is the relation
resulting from the evaluation of Q in that specific environment; however, in the example
above, we can see that, in order to compute the relation resulting from the evaluation of the
query, the predicate p is used to evaluate the condition c in various different environments:
this forces us to evaluate conditions to functions taking as input an environment, and due
to the mutual definition of conditions and queries, the evaluation of queries must result in a
function as well.

The appendix contains the full definition of the semanticswe formalized.We only consider
here the judgment used to evaluate IN conditions, as it deserves a brief explanation:

The membership condition must bridge the gap between the three-valued logic of SQL and
the Boolean logic used by abstract relations: in particular, to checkwhether a tuple−→

t appears

in the result of a query Q, we cannot simply evaluate −→
t to

−→
V and Q to S and check whether

#(S,
−→
V) is greater than zero, because in three-valued logicNULL is not equal to itself. Instead,

given the semantics of Q, we compute the number ntt of tuples that are equal to
−→
V and the

number nuu of the tuples of S that are not different from
−→
V (i.e. the matching is up to the

presence of some NULLs). If ntt is greater than zero, then the condition evaluates to btrue;
if ntt = 0 but nuu > 0, the condition evaluates to bmaybe; if both values are zero, then the
tuple is certainly not in the result of Q and the condition evaluates to bfalse.

The predicates ptt and puu used in the definition are defined as follows:

ptt := λ
−→
V .fold_right2 (λv,w,acc.acc ∧ is_btrue (veq v w)) true

−→
V (SQ η)

puu := λ
−→
V .fold_right2 (λv,w,acc.acc ∧ ¬is_bfalse (veq v w)) true

−→
V (SQ η)

Value equality veq : V -> V -> B returns bmaybe when either of the two arguments
is NULL, otherwise corresponds to syntactic equality: fold_right2 iterates veq on pairs

123

A Formalization of SQL with Nulls

of values from the two tuples
−→
V and SQ η. Although in Boolean logic a predicate is true

precisely when it is not false, in tribool the ptt and puu may assume different values.

6 Validation of Rewrite Rules

Now that we have a formalized semantics of NullSQL, it is a good time to show that it can
be used to verify the soundness of some rewrite rules. The two rules we consider allow
tables in the FROM clause of a query to be shuffled, and nested queries to be unnested. In the
following statements, given an index n and schema σ = x1, . . . , xk , we will write n.σ as a
shorthand for the term sequence n.x1, . . . , n.xk ; if

−→u = u1, . . . , uk , we will write
{−→u /

n.σ
}

for the simultaneous substitution of ui for xi , where i = 1, . . . , k. The symbol � represents
heterogeneous equality.

Theorem 1 Let |τ ′| = |σ1| + |σ2|, and S, S′ evaluations such that
�Γ 	 SELECT ∗ FROM T1 : σ1, T2 : σ2 ⇒ τ� ⇓ S�
Γ 	 SELECT (1.σ1, 0.σ2) : τ ′ FROM T2 : σ2, T1 : σ1 ⇒ τ ′	⇓ S′

Then for all η : env Γ , we have S η � S′ η.

Proof The proof proceeds by inversion on the derivation of the two semantic judgments; the
hypothesis on the length of τ ′ is required for the select clause of the second query to be
adequate. The goal simplifies to:

#

⎛

⎝
∑

−→v ←SFROM η

−→v , r1

⎞

⎠ � #

⎛

⎝
∑

−→v ←S′
FROM η

(S′
SELECT ([Γ ′′ �→ −→v]++ η)), r2

⎞

⎠

under the hypotheses r1 � r2, �Γ 	D T1 : σ1, T2 : σ2 ⇒ Γ ′� ⇓ SFROM,
�Γ 	D T2 : σ2, T1 : σ1 ⇒ Γ ′′� ⇓ S′

FROM, �Γ ′′, Γ 	D 1.σ1, 0.σ2� ⇓ S′
SELECT. We prove by

functional extensionality that the rhs is equal to #(
∑−→v ←S′

FROM η(flip
−→v , r2), where flip is

the function that takes a vector of length |σ2|+ |σ1| and swaps the first |σ2| elements with the
last |σ1|. Then the goal becomes #(SFROM, r1) = #(S′

FROM, flip r2), which is easily obtained
by inversion on SFROM and S′

FROM. ��
Theorem 2 Let S, S′ be evaluations such that�

Γ 	 SELECT
−−→
t : x FROM query (SELECT −−→u : y FROM T : σ2 WHERE c) : σ1 ⇒ τ

�
⇓ S�

Γ 	 SELECT (
−−→
t : x) {−→u /

0.σ1
}
FROM T : σ2 WHERE c ⇒ τ ′�⇓ S′

Then for all η : env Γ , we have S η � S′ η.

Proof By inversion on the derivation of the two evaluations (and also using Lemma 3),

we know that �Γ 	D T ⇒ σ2� ⇓ SFROM,
�
σ1, Γ 	D

−→
t

�
⇓ SSELECT,

�
σ2, Γ 	D

−→u � ⇓
S′
SELECT, �σ2, Γ 	D c� ⇓ Sc,

�
σ2, Γ 	D (

−−→
t : x) {−→u /

0.σ1
}� ⇓ S′′

SELECT.

The lhs of the thesis computes to an abstract expression containing two nested
∑

opera-
tions; we prove the general result that

∑
∑

r f g = ∑
r (g ◦ f) and obtain the new lhs:

∑

−→w ←σpc (SFROM η)

(SSELECT([σ1 �→ (S′
SELECT([σ2 �→ −→w]++ η))]++ η))

123

W. Ricciotti, J. Cheney

Fig. 4 Translation from 3VL-SQL to 2VL-SQL

where pc(
−→w)) := Sc ([σ2 �→ −→w]++ η). The rhs of the goal computes to:

∑

−→w ←σpc (SFROM η)

(S′′
SELECT ([σ2 �→ −→w]++ η))

Then, for the lhs and rhs to be equal, we only need to prove the following:

(SSELECT([σ1 �→ (S′
SELECT([σ2 �→ −→w]++ η))]++ η)) � (S′′

SELECT ([σ2 �→ −→w]++ η))

This is a property of substitution that we prove by induction on the sequence of terms−→
t . ��

7 Elimination of Three-Valued Logic

Wenowmove to formalizingGuagliardo andLibkin’s proof that SQLhas the same expressive
power under Boolean and three-valued logic, in the sense that for every query evaluated under
3VL, there exists another querywith the same semantics inBoolean logic, and vice-versa. The
proof is constructive: we exhibit an (algorithmic) transformation (·)tt which turns a query for
3VL-SQL into Boolean-SQL (a much simpler transformation (·)∗ operates in the opposite
direction). The transformation (·)tt is defined by mutual recursion on queries, tables, and
conditions; more precisely, (·)tt is mutually defined with an auxiliary transformation (·)ff ,
operating on conditions only: the rationale is that while ctt is true in Boolean logic when
c is ttrue in 3VL, cff is true in Boolean logic when c is tfalse in 3VL; as a corollary,
when c evaluates to 3VL unknown, both ctt and cff are Boolean false.

Figure 4 shows the definition of these transformations: these extend Guagliardo and
Libkin’s version by adding cases for LATERAL query inputs and for the IS TRUE test. Most of

123

A Formalization of SQL with Nulls

the interesting things happen within conditions: while the definition of (−→t IN Q)tt simply
propagates the transformation to the nested query, the definition of (−→t NOT IN Q)tt is more
involved: it requires us to evaluate Qtt as a nested query and then keep those tuples that are
equal to −→

t up to the presence of NULLs (either in −→
t or in Q); if the resulting relation is not

empty, the condition evaluates to true; in the formalization a fold_right operation is used
to generate all the conditions on the elements of−→t and of the tuples from Q. The definition of
this case is further complicated by the fact that the schema of Q may not be well-formed, so
we need to replace it with a new schema made of pairwise distinct names (generated on the
fly by the ϕ operation); furthermore, since in the translated query we use −→

t inside a nested
SELECT ∗ query (thus, in an extended context), we use the tm_lift operation to increment
the de Bruijn indices it may contain (in the figure, we use the notation t+i for this operation).
Negations are translated as (NOT c)tt = cff ; the transformation commutes in the other cases.

As for the negative translation (·)ff , it proceeds by propagating the negation to the leaves
of the conditional expression (using de Morgan’s laws for ANDs and ORs). The membership
tests (−→t IN Q)ff and (−→t NOT IN Q)ff are defined as in the positive translation, but with
their roles swapped. In the interesting case, we translate Pn(

−→
t)ff by checking that Pn(

−→
t)

is not true and that all elements of −→
t are not null (here as well, the condition is computed

by means of a fold_right on the elements of −→
t). The two translations are described by

the following Coq code.
�

Fixpoint ttcond (d: Db.D) (c : precond) : precond :=
match c with
| cndmemb true tl Q ⇒ cndmemb true tl (ttquery d Q)
| cndmemb false tl Q ⇒

let al := freshlist (length tl) in
cndnot (cndex (selstar false

[(tbquery (ttquery d Q), al)]
(List.fold_right (fun (ta : pretm * Name) acc ⇒

let (t,a) := ta in
cndand (cndor (cndnull true (tmvar (0,a)))

(cndor (cndnull true (tm_lift t 1))
(cndeq (tm_lift t 1) (tmvar (0,a))))) acc)

cndtrue (List.combine tl al))))
| cndex Q ⇒ cndex (ttquery d Q)
| cndnot c1 ⇒ ffcond d c1
(* ... *)
end

with ffcond (d: Db.D) (c : precond) : precond :=
match c with
| cndtrue ⇒ cndfalse
| cndfalse ⇒ cndtrue
| cndnull b t ⇒ cndnull (negb b) t
| cndpred n p tml ⇒

cndand (cndnot c)
(List.fold_right (fun t acc ⇒

cndand (cndnull false t) acc) cndtrue tml)
| cndmemb true tl Q ⇒

let al := freshlist (length tl) in
cndnot (cndex (selstar false

[(tbquery (ttquery d Q), al)]
(List.fold_right (fun (ta : pretm * Name) acc ⇒

let (t,a) := ta in
cndand (cndor (cndnull true (tmvar (0,a)))

(cndor (cndnull true (tm_lift t 1))
(cndeq (tm_lift t 1) (tmvar (0,a))))) acc)

cndtrue (List.combine tl al))))
| cndmemb false tl Q ⇒ cndmemb true tl (ttquery d Q)
| cndex Q ⇒ cndnot (cndex (ttquery d Q))
| cndand c1 c2 ⇒ cndor (ffcond d c1) (ffcond d c2)

123

W. Ricciotti, J. Cheney

| cndor c1 c2 ⇒ cndand (ffcond d c1) (ffcond d c2)
| cndnot c1 ⇒ ttcond d c1
end

with ttquery (d: Db.D) (Q : prequery) : prequery :=
match Q with
| select b btm btb c ⇒

select b btm (List.map (fun bt ⇒
(tttable d (fst bt), snd bt)) btb) (ttcond d c)

(* ... *)
end

with tttable (d: Db.D) (T : pretb) : pretb :=
match T with
| tbquery Q ⇒ tbquery (ttquery d Q)
| _ ⇒ T
end

.
�

We prove that the translation preserves the semantics of queries in the following theorem.

Theorem 3 For all queries Q, if �Γ 	D Q ⇒ τ �3VL ⇓ S, there exists S′ such that
�
Γ 	D Qtt ⇒ τ

�2VL ⇓ S′ and for all η : env Γ , S η = S′ η.

The proof of the theorem is by induction on the semantic judgments yielding S: this is
actually a mutual induction on the five mutually defined evaluations. For the part of the proof
that deals with conditions, we need to prove a stronger statement that essentially says that ctt

evaluates to true only if c evaluates to ttrue, and cff evaluates to true only if c evaluates
to tfalse: in other words, ctt asserts the truth of c, while cff asserts its falsehood.

An immediate question raised by this result asks whether a realistic semantics forNullSQL
can be derived from a semantics that does not have a special treatment of null values, just
by translating input queries under the the (·)tt transformation. The answer is affirmative in
principle: however, to prove the validity of rewrite rules under that semantics, one would
then need to reason not on the original query Q, but on its translated version Qtt. This would
greatly complicate the proof since, recursively, one would need to reason on conditions using
two different induction hypotheses for their positive and negative translation.

8 Embedding the Relational Calculus

We now formalize a relational calculus to show that its normal forms can be translated to
SQL in a semantically preserving way. The calculus we describe is a variant of the heteroge-
neous nested relational calculus (NRCλ(Set,Bag) [20, 21]), which provides both set and bag
semantics, enriched with a constant NULL to account for indeterminate values. All variants
of NRC allow terms of nested collection type, which cannot be expressed in SQL directly;
however, we will show that normal forms whose type is a flat relation can be translated to
SQL.

The terms of NRCλ(Set,Bag) are defined by the following grammar:

M :: = n | k | NULL | Pn(
−→
Mn) | emptyb(M)

| TRUE | FALSE | isnull(M) | istrue(M) | M1 ∧ M2 | M1 ∨ M2 | ¬M

| 〈−−−−→
x = M〉 | M .x | table x

| ∅b,σ | {M}b | δM | ιM
| M1 ∪ M2 | M1 − M2 | ⋃{M1 | M2} | M1 WHERE M2

Variables are represented as deBruijn indices n. The grammar provides empty collections and
singletons, along with the standard operations of union, intersection, and difference; empty

123

A Formalization of SQL with Nulls

collections ∅ and singletons {M} are annotated with a subscript b representing their kind,
which can be set or bag; empty collections are additionally annotated with their schema σ ;
the other collection operations do not require annotations. There are also operations δ and ι,
which, respectively, convert a bag into a set by duplicate elimination, and promote a set to a
bag in which each element has multiplicity equal to 1. A comprehension

⋃{M1 | M2} binds
a variable in M1: semantically, this corresponds to the union of the M1[V /0] for all values V
in the collection M2 (this is a set or bag union depending on whether M1 and M2 are sets or
bags);M1 andM2 are called the head and the generator of a comprehension, respectively. The
one-armed conditional M1 WHERE M2 is equivalent to M1 when M2 is true, and to an empty
collection otherwise. The emptiness test emptyb(M) is annotated with a Boolean depending
on whether its argument is a set or a bag.

Tuples with named fields 〈−−−−→
x = M〉, and tuple projections M .x are standard; null values

NULL, constantsk, standardBoolean operations and constants, the test for nullness isnull(M),

the test for truth istrue(M), custompredicates Pn(
−→
Mn), and table references table x are similar

to the corresponding SQL concepts of Sect. 3.
The abstract syntax above corresponds to the following Coq implementation.

�

Inductive tm :=
| cst : BaseConst → tm
| null : tm
| pred : forall n, (forall l : list BaseConst , length l = n → bool)

→ list tm → tm
| rctrue : tm
| rcfalse : tm
| isnull : tm → tm (* isnull(M) *)
| istrue : tm → tm (* istrue(M) *)
| rcand : tm → tm → tm (* M ∧ N *)
| rcor : tm → tm → tm (* M ∨ N *)
| rcnot : tm → tm (* ¬M *)
| var : nat → tm
| mktup : list (Name * tm) → tm
| proj : tm → Name → tm
| tab : Name → tm
| nil : bool → Scm → tm (* ∅b,σ *)
| single : bool → tm → tm (* {M}b *)
| union : tm → tm → tm (* M ∪ N *)
| diff : tm → tm → tm (* M − N *)
| comprn : tm → tm → tm (*

⋃{M | N } *)
| cwhere : tm → tm → tm (* M WHERE N *)
| dist : tm → tm (* δM *)
| prom : tm → tm (* ιM *)
| empty : bool → tm → tm (* emptyb(M) *)

�

Themost important difference between this concrete syntax and the abstract one is that where
the latter uses subscripts bag, set, the former employs a Boolean which is true for sets, and
false for bags.
In this formalization, we are only interested in assigning meaning to RC normal forms,
corresponding to the terms in this grammar:

123

W. Ricciotti, J. Cheney

M :: = ∅bag,σ | ⋃ −→
D bag collections

D :: = ⋃{{V } WHERE B | −→
G } bag comprehensions

G :: = table t | ιL | M − M ′ bag comprehension generators

L :: = ∅set,σ | ⋃−→
D set collections

C :: = ⋃{{V } WHERE B | −→
F } set comprehensions

F :: = δ(table t) | δ(M − M)′ set comprehension generators

V :: = n | 〈−−−→
x = X〉 tuples

B :: = TRUE | FALSE | isnull X | istrue B conditions

| pn(
−→
X) | emptybag(M) | emptyset(L)

| B ∧ B ′ | B ∨ B ′ | ¬B
X :: = k | NULL | n.x base expressions

In Coq, we define normal forms by means of an inductive judgment described in Fig. 5.
Similarly to the grammar, the judgment partitions normal forms in various categories depend-
ing on their type: base expressions, tuples with a certain schema σ (tuple σ), conditional tests
(cond), and collections of tuples (coll b, σ), where b can be bag or set. Collections in normal
form are defined as unions of nested comprehensions, thanks to auxiliary categories disj b, σ
and gen b, σ representing, respectively, comprehensions and comprehension generators.

8.1 Semantics

We provide semantic evaluation judgments for RC terms using the same approach we pre-
sented in Sect. 5 for SQL queries: as shown in Figure 6, there is a separate judgment for
each of the syntactic categories of terms in normal form. All terms are interpreted using 3VL
rather than Boolean logic.

The evaluation of a base expression maps an environment to a value; valuations of
sequences of base expressions return tuples of values, with arity corresponding to the length
of the sequence; similarly, the evaluation of an RC tuple returns a tuple of values, with arity
corresponding to the length of the tuple schema. Collections (and the auxiliary categories of
disjuncts and generators) are mapped to evaluations returning relations, whose arity matches
the schema of the input expression. Finally, the evaluation of conditions returns a truth value
from tribool.

Simple attributes are defined in a schema rather than a context: their semantics �τ 	 x�

maps an environment for the singleton context [τ] to a value. Similarly, the semantics of
fully qualified attributes �Γ 	 n.x� maps an environment for Γ to a value. In both cases, the
output value is obtained by lookup into the environment.

The evaluation of terms �Γ 	D t� returns a value for t given a certain environment γ for
Γ . In our definition, terms can be either full attributes n.x , constants k, or NULL. We have
just explained the semantics of full attributes; on the other hand, constants and NULLs are

already values and can thus be returned as such. The evaluation of term sequences
�
Γ 	 −→

t
�
,

given an environment, returns the tuple of values corresponding to each of the terms and is
implemented in the obvious way.

8.2 Conversion to SQL

Finally, in Figure 7 and 8, we formalize type and definition of the translation of normal form
RC terms to SQL expressions: just like the RC semantics, this definition comprises several

123

A Formalization of SQL with Nulls

Fig. 5 Relational Calculus normal forms

Fig. 6 Formal semantics of the Relational Calculus (types)

mutually inductive judgments, following the structure of normal forms rather than that of
general RC expressions: this allows us to translate base expressions to SQL terms, tuples
to sequences of SQL terms, conditions to SQL conditions, and collections to SQL queries.
Comprehension generators are translated to SQL tables (which can be database tables or inner
queries to be used in the FROM clause of an external query). Finally, disjuncts must return
the three clauses of a SELECT − FROM − WHERE statement: these are returned separately
as a triple (for technical reasons related to the fact that recursion is needed to collect all

123

W. Ricciotti, J. Cheney

Fig. 7 Relational Calculus translation to SQL (types)

these items in the case of nested comprehensions), and it is up to the collection translation
judgment to compose them into a single SQL statement.

The translation rules use some additional definitions as useful shorthands: sql_nil
returns an SQL query returning an empty relation of a certain schema; sql_select com-
poses its input into a SELECT−FROM−WHERE statement: an important point to note is that
all the inputs to this query are declared as LATERAL due to the fact that the in the relational
calculus, in a nested comprehension of the form

⋃{⋃{L | M} | N },M is allowed to reference
the tuples in N : therefore, similar dependencies must be allowed in the output of the transla-
tion as well. Another auxiliary definition sql_distinct uses SELECT DISTINCT ∗ to
deduplicate an input table with a given schema; sql_empty constructs an SQL condition
which is true whenever a certain query evaluates to an empty relation.

We are able to prove that the translation above is correct, by showing that the semantics
of an RC collection expression is equal to that of the corresponding SQL query:

Theorem 4 Suppose �Γ 	D M ⇒ coll b, σ � ⇓ SM; then, for all M ′ such that
‖Γ 	D M ⇒ coll b, σ‖ = M ′, there exists SM ′ such that �Γ 	D M ′ ⇒ σ �3VL ⇓ SM ′ and
for all η : env Γ , we have SM η = SM ′ η.

The proof of the theorem is by induction on the semantic judgment yielding SM , followed by
inversion on the translation of M to M ′. More precisely, the proof uses mutual induction on
the four mutually defined judgments for the semantics of collections, disjuncts, generators,
and conditions.

9 RelatedWork

Semantics of Query Languages with Incomplete Information and Nulls

Nulls arise from the need for incomplete information in databases, which was appreciated
from an early stage. Codd [7] made one of the first proposals based on null values and three-
valued logic, though it was criticized early on due to semantic irregularities and remains a
controversial feature [11, 23]. A great deal of subsequent research has gone into proposing
semantically satisfying approaches to incomplete information, in which a database with null
values (or other additional constructs) is viewed as representing a set of possible worlds,
and we wish to find certain query answers that are true in all possible worlds. Many of
these techniques are surveyed by van der Meyden [24], but most such techniques either
make query answering intractable (e.g. coNP-hard), have semantic problems of their own,
or both. However, SQL’s standard behaviour remains largely as proposed by Codd, leading
database researchers such as Libkin [16] to propose revisiting the topic with an eye towards
identifying principled approaches to incomplete information that are realistic relative to
the standard capabilities of relational databases. For example, Libkin [17] compares certain

123

A Formalization of SQL with Nulls

Fig. 8 Relational Calculus translation to SQL

123

W. Ricciotti, J. Cheney

answer semantics with SQL’s actual semantics, shows that SQL’s treatment of nulls is neither
sound nor complete with respect to certain answers, and proposes modifications to SQL’s
semantics that restore soundness or completenesswhile remaining (like plain SQL) efficiently
implementable.

Some work has explored the semantics and logical properties of nulls in set-valued rela-
tional queries, but did not grapple with SQL’s idiosyncrasies or multiset semantics [9].
Guagliardo and Libkin [13] were the first to define a semantics that is a realistic model
of SQL’s actual behaviour involving both multisets and nulls. They empirically validated a
(Python) implementation of the semantics against the behaviour of real database systems such
as PostgreSQL and MySQL, and confirmed some minor but nontrivial known discrepancies
between them in the process. In addition they gave (paper) proofs of the main results relat-
ing the SQL semantics, three-valued and two-valued semantics. Our work complements and
deepens this work by making all notions of their semantics precise and formal, and formally
proving their main result relating the three-valued and two-valued semantics.

Because our formalization followsGuagliardo and Libkin’s on-paper presentation closely,
it benefits indirectly from their extensive experimental validation.Nevertheless, there remains
a small “formalization gap” between our work and theirs in the sense that our (formally vali-
dated) Coq definitionsmight differ from their (empirically validated) Python implementation.
So, in addition to extending the coverage of SQL features as discussed below, it could be
worthwhile to derive an executable semantics from our definitions and empirically validate
it against the same examples they used.

Formalizations of Query Languages

Malecha et al. [18] formalized components of a relational database engine (including a front-
end providing a SQL-like relational core, optimization laws including side-conditions, and an
implementation of B+-trees) in Coq using the YNot framework. Their work (like most prior
formalizations) employs set semantics; while the datamodel allows for fields to have optional
types, the behaviour of missing values in primitive operations is not discussed, and their
semantics is the standard two-valued, set-theoretic interpretation of relational algebra. The
main technical challenge in this work was verifying the correctness of imperative algorithms
and pointer-based data structures used in efficient database implementations. Benzaken et
al. [3] formalized the relational data model, going beyond the core relational operations
in Malecha et al.’s formalization to include integrity constraints (functional dependencies).
They formalize a number of algorithms from database theory whose standard presentations
are imprecise, and showed that careful attention to variable binding and freshness issues is
necessary to verify them. Their formalization included proofs of correctness of relational
rewrite rules (with respect to the set-theoretic semantics) but did not directly consider SQL
queries, multiset semantics, or features such as nulls.

Chu et al. [6] presented a new approach to formalizing and reasoning about SQL, called
HoTTSQL. HoTTSQL uses homotopy type theory to formalize SQL with multiset semantics,
correlated subqueries, and aggregation in Coq. HoTTSQL is based on the intriguing insight
(inspired by work on semiring-valued database query semantics [12]) that we can define
multisets as functions mapping tuples to cardinalities. They propose representing cardinali-
ties using certain (finite) types thanks to the univalence axiom; this means that Coq’s strong
support for reasoning about types can be brought to bear, dramatically simplifying many
proofs of query equivalences. However, since HoTTSQL does not consider nulls or three-
valued logic, it validates query equivalences that become unsound in the presence of nulls.

123

A Formalization of SQL with Nulls

Unfortunately, it does not appear straightforward to extend the HoTTSQL approach of con-
flating types with semiring annotations to handle SQL-style three-valued logic correctly. In
addition, the adequacy of HoTTSQL’s approach requires proof. It should also be noted that
the univalence axiom used by homotopy type theory and Streicher’s K axiom required to
work with John Major equality, which we used in our formalization, are incompatible: this
would make it challenging to merge the two efforts.

Most recently, Benzaken and Contejean [2] proposed a formal semantics for a subset
of SQL (SQLCoq) including all of the above-mentioned features: multiset semantics, nulls,
grouping and aggregation. SQL has well-known idiosyncrasies arising from interactions
among these features: for example, the two queries

�

SELECT COUNT(field) FROM T
SELECT COUNT(∗) FROM T

�

are not equivalent. The first one counts the number of non-null field values in T , while the
second counts the number of rows, ignoring their (possibly null) values. These two queries
are provably equivalent in the HoTTSQL semantics, but are correctly handled by SQLCoq.

Moreover, Benzaken andContejean highlight the complexity of SQL’s treatment of group-
ing and aggregation for nested subqueries, propose a semantics for such queries, and prove
correctness of translations from SQLCoq to a multiset-valued relational algebra SQLAlg. Their
work focuses on bag semantics and uses a Coq library for finite bags, and treats duplicate
elimination as a special case of grouping. While grouping can be expressed, in principle,
by desugaring to correlated subqueries (an approach proposed by Buneman et al. [4] and
adopted by HoTTSQL, which we could also adapt to our setting) these features of SQLCoq
highlight many intricacies of the semantics of grouping that make it difficult to get such a
desugaring right.

We can highlight several aspects where our work complements SQLCoq: (1) superficially,
their approach does not deal with named aliases for table records, requiring additional renam-
ing; (2) their novel semantics is tested on example queries but not evaluated as thoroughly
as Guagliardo and Libkin’s; (3) we present well-formedness criteria for NullSQL, which are
more accurate than those considered for SQLCoq, ensuring that queries with unbound table
references should not be accepted; (4) their work does not consider formal results such as the
equivalence of 2-valued and 3-valued semantics, which to the best of our knowledge has not
been investigated in the presence of grouping and aggregation; (5) the fragment of SQL for-
malized in our work allows lateral joins, an SQL:1999 feature that is becoming increasingly
popular thanks to the support by recent versions of major DBMSs; (6) building on the sup-
port for lateral joins, we are able to formalize a verified translation from the nested relational
calculus to SQL, which is of interest for the theory of programming languages supporting
language-integrated query. Finally, because of the complexity of their semantics (required to
handle SQL’s idiosyncratic treatment of grouping and aggregation), our formalizationmay be
preferable for proving properties of queries that lack these features; it would be enlightening
to formally relate our formalization with theirs, and establish whether equivalences proved
in NullSQL are still valid in SQLCoq.

Formalization has also been demonstrated to be useful for designing and implementing
new query languages and verified transformations, for example in the QCert system [1]. This
work considers a nested version of relational calculus, and supports a subset of SQL as a
source language, but does not appear to implement Guagliardo and Libkin’s semantics for
SQL nulls. It could be interesting to incorporate support for SQL-style nulls into such a
verified query compiler.

123

W. Ricciotti, J. Cheney

10 Conclusion

We have mechanically checked the recently proposed semantics of NullSQL [13] and proved
the main results about its metatheory. Our work should be compared to two recent formaliza-
tions, HoTTSQL [6], and SQLCoq [2]. Compared to HoTTSQL, our representation of multisets
is elementary and it does not appear straightforward to adjustHoTTSQL to handle null values,
since its treatment of predicates using homotopy type theory assumes standard two-valued
logic. Compared to SQLCoq, our semantics is simpler and closely modeled on the on-paper
semantics of [13], which was thoroughly tested against real database implementations. Our
work is also the first formalization of SQL to consider queries with lateral inputs. On the
negative side, compared to both HoTTSQL and SQLCoq, our formalization does not attempt
to handle grouping and aggregation, but as a result it may be simpler and easier to use, when
these features are not needed.

In this paper we also presented the first ever mechanized proofs of the expressive equiv-
alence of two-valued and three-valued SQL queries, the first ever verified translation of
relational calculus queries to SQL queries, and the correctness of rewrite rules that are valid
for SQL’s real semantics (including multisets and nulls). The diversity of recent approaches
to formalizing SQL also suggests that consolidation and cross-fertilization of ideas among
approaches may reap rewards, to provide a strong foundation for exploring verification of
other key components of database systems.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Commented Semantics of NullSQL

We give here a commented version of the formalized semantics ofNullSQL beyond what was
possible to report on in the paper. The semantics consists of four inductive judgments for
simple attributes, full attributes, terms and terms sequences (j_var_sem, j_fvar_sem,
j_tm_sem, j_tml_sem), and five mutually defined judgment for the main SQL expres-
sions, namely queries (j_q_sem), tables (j_tb_sem), conditions (j_cond_sem), table
bindings (j_btb_sem), and existentially nested queries (j_in_q_sem).

A.1 Semantics of Attributes

An attribute is evaluated in a singleton context [s] under an environment for that context.

�s 	 a� ⇓ Sa Sa : env [s] → Value

�

Inductive j_var_sem :
forall s, Name → (env (s::List.nil) → Value)

→ Prop :=

123

http://creativecommons.org/licenses/by/4.0/

A Formalization of SQL with Nulls

| jvs_hd : forall a s, ~ List.In a s →
j_var_sem (a::s) a (fun h ⇒ env_hd h)

| jvs_tl : forall a s b,
forall Sb, a <> b → j_var_sem s b Sb →
j_var_sem (a::s) b (fun h ⇒ Sb (env_tl h)).

�

Under a context a::s, the semantics of a is the head value in the environment; we also check
that a should not be in the remainder of the context for well-formedness. Under a context
a::s where a �= b, we first evaluate b under the remainder context s and lift the resulting
evaluation from context s to context a::s.

The judgment for full variables (in the form n.a, where n is a de Bruijn index) lifts the
semantics of simple variables to contexts composed of multiple schemas.

�Γ 	 n.a� ⇓ Sn.a Sn.a : env Γ → Value

�

Inductive j_fvar_sem :
forall G, nat → Name → (env G → Value)

→ Prop :=
| jfs_hd : forall s G a,

forall Sa, j_var_sem s a Sa →
j_fvar_sem (s::G) O a

(fun h ⇒ Sa (@subenv1 (s::List.nil) G h))
| jfs_tl : forall s G i a,

forall Sia , j_fvar_sem G i a Sia →
j_fvar_sem (s::G) (S i) a

(fun h ⇒ Sia (@subenv2 (s::List.nil) G h)).
�

To evaluate attributes in the form 0.a in a context s::G, we first evaluate the simple attribute
a in s and then lift the resulting evaluation from [s] to s::G. The evaluation of (i + 1).a is
obtained recursively by evaluating i .a in G and lifting the valuation to s::G.

A.2 Semantics of Terms

A term t is evaluated in a context Γ to a function from a suitable environment to values.

�Γ 	 t� ⇓ St St : env Γ → Value

�

Inductive j_tm_sem0 (G:Ctx) :
pretm → (env G → Value)

→ Prop :=
| jts_const : forall c,

j_tm_sem0 G (tmconst c) (fun _ ⇒ Db.c_sem c)
| jts_null :

j_tm_sem0 G tmnull (fun _ ⇒ None)
| jts_var : forall i a,

forall Sia , j_fvar_sem G i a Sia →
j_tm_sem0 G (tmvar (i,a)) Sia.

�

While the semantics of constants and nulls is trivial, full variables are evaluated in the
judgment for full variables.

The evaluation of sequences of terms is similar, but it returns a tuple of values of corre-
sponding size.

�
Γ 	 −→

t
�

⇓ S−→
t S−→

t : env Γ → T |−→t |

123

W. Ricciotti, J. Cheney

�

Inductive j_tml_sem0 (G:Ctx) :
forall (tml : list pretm),
(env G → Rel.T (List.length tml))

→ Prop :=
| jtmls_nil : j_tml_sem0 G List.nil (fun _ ⇒ Vector.nil _)
| jtmls_cons : forall t tml ,

forall St Stml ,
j_tm_sem0 G t St → j_tml_sem0 G tml Stml →
j_tml_sem0 G (t::tml) (fun h ⇒

Vector.cons _ (St h) _ (Stml h)).
�

This judgment is implemented in the obvious way, by mapping empty sequences of terms to
an evaluation returning the empty tuple, and by recursion when the input list of terms is not
empty.

A.3 Semantics of Queries

If a query Q with schema σ is evaluated in a context Γ , we obtain a function returning a
relation with arity corresponding to σ .

�Γ 	D Q ⇒ σ �B ⇓ Sq Sq : env Γ → R |σ |
�

Inductive j_q_sem (d : Db.D) :
forall G (s : Scm), prequery →
(env G → Rel.R (List.length s))

→ Prop :=
| jqs_sel : forall G b tml btbl c,

forall G0 Sbtbl Sc Stml s e,
j_btbl_sem d G G0 btbl Sbtbl →
j_cond_sem d (G0++G) c Sc →
j_tml_sem (G0++G) (List.map fst tml) Stml →
s = List.map snd tml →
j_q_sem d G s

(select b tml btbl c)
(fun h ⇒

let S1 := Sbtbl h in
let p := fun Vl ⇒ Sem.is_btrue

(Sc (Evl.env_app _ _ (Evl.env_of_tuple G0 Vl) h))
in
let S2 := Rel.sel S1 p in
let f := fun Vl ⇒ Stml

(Evl.env_app _ _ (Evl.env_of_tuple G0 Vl) h) in
let S := cast _ _ e (Rel.sum S2 f)
in if b then Rel.flat S else S)

�

The evaluation of select queries was described in detail in the paper. Here, we just notice
that the list tml contains pairs of terms and attribute names, where attribute names are used
to produce the output schema. Since the Coq typechecker cannot automatically infer that
the arity of the semantics for the list of terms List.map fst tml matches the arity of
the schema List.map snd tml, the rule takes evidence of this fact in the form of an
equation e. The output relation is flattened to a set relation if the DISTINCT clause (signaled
by the boolean b) was used.
�

| jqs_selstar : forall G b btb c,
forall G0 Sbtb Sc Stml e,
j_btbl_sem d G G0 btb Sbtbl →
j_cond_sem d (G0++G) c Sc →

123

A Formalization of SQL with Nulls

j_tml_sem (G0++G) (tmlist_of_ctx G0) Stml →
j_q_sem d G (List.concat G0) (selstar b btb c)

(fun h ⇒ let S1 := Sbtbl h in
let p := fun Vl ⇒ Sem.is_btrue
(Sc (Ev.env_app _ _ (Ev.env_of_tuple G0 Vl) h))

in
let S2 := Rel.sel S1 p in
let f := fun Vl ⇒ Stml
(Ev.env_app _ _ (Ev.env_of_tuple G0 Vl) h) in

let S := cast _ _ e (Rel.sum S2 f)
in if b then Rel.flat S else S)

�

The evaluation of select star queries proceeds similarly, by desugaring the star to a list of
terms (tmlist_of_ctx G0).
�

| jqs_union : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_q_sem d G s (qunion b q1 q2)

(fun Vl ⇒ let S := Rel.plus (S1 Vl) (S2 Vl)
in if b then S else Rel.flat S)

| jqs_inters : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_q_sem d G s (qinters b q1 q2)

(fun Vl ⇒ let S := Rel.inter (S1 Vl) (S2 Vl)
in if b then S else Rel.flat S)

| jqs_except : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_q_sem d G s (qexcept b q1 q2)

(fun Vl ⇒ if b then Rel.minus (S1 Vl) (S2 Vl)
else Rel.minus (Rel.flat (S1 Vl)) (S2 Vl))

�

UNION, INTERSECT and EXCEPT queries are implemented all in the same fashion, by evaluating
their subqueries recursively and combining them with the relational operators ⊕, ∩ and \
from the ADT.

When a query Q is evaluated in a context Γ as an existentially nested query, we obtain a
function returning a Boolean denoting whether the resulting relation is non-empty.

�Γ 	D Q�B ⇓ SQ SQ : env Γ → bool

�

with j_in_q_sem (d : Db.D) :
forall G, prequery → (env G → bool)

→ Prop :=
| jiqs_sel : forall G b tml btb c,

forall G0 Sbtb Sc Stml ,
j_btb_sem d G G0 btb Sbtb →
j_cond_sem d (G0++G) c Sc →
j_tml_sem (G0++G) (List.map fst tml) Stml →
j_in_q_sem d G (select b tml btb c)

(fun h ⇒ let S1 := Sbtb h in
let p := fun Vl ⇒ Sem.is_btrue

(Sc (Ev.env_app _ _
(Ev.env_of_tuple G0 Vl) h)) in

let S2 := Rel.sel S1 p in
let f := fun Vl ⇒ Stml (Ev.env_app _ _

(Ev.env_of_tuple G0 Vl) h) in
let S := Rel.sum S2 f
in 0 <? Rel.card
(if b then Rel.flat S else S))

| jiqs_selstar : forall G b btb c,

123

W. Ricciotti, J. Cheney

forall G0 Sbtb Sc ,
j_btb_sem d G G0 btb Sbtb →
j_cond_sem d (G0++G) c Sc →
j_in_q_sem d G (selstar b btb c)

(fun h ⇒ let S1 := Sbtb h in
let p := fun Vl ⇒ Sem.is_btrue

(Sc (Ev.env_app _ _
(Ev.env_of_tuple G0 Vl) h)) in

let S2 := Rel.sel S1 p in
0 <? Rel.card
(if b then Rel.flat S2 else S2))

| jiqs_union : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_in_q_sem d G (qunion b q1 q2)
(fun Vl ⇒ let S := Rel.plus (S1 Vl) (S2 Vl)
in 0 <? Rel.card (if b then S else Rel.flat S))

| jiqs_inters : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_in_q_sem d G (qinters b q1 q2)
(fun Vl ⇒ let S := Rel.inter (S1 Vl) (S2 Vl)
in 0 <? Rel.card (if b then S else Rel.flat S))

| jiqs_except : forall G b q1 q2,
forall s S1 S2,
j_q_sem d G s q1 S1 → j_q_sem d G s q2 S2 →
j_in_q_sem d G (qexcept b q1 q2)
(fun Vl ⇒ 0 <? Rel.card
(if b then Rel.minus (S1 Vl) (S2 Vl)
else Rel.minus (Rel.flat (S1 Vl)) (S2 Vl)))

�

The implementation of the semantics of existentially nested queries mostly reflects, in a
simplified way, the corresponding rules for general queries. At the end, the resulting relation
is tested for non-emptiness by checking whether its cardinality is greater than zero or not.

A.4 Semantics of Tables

The type of the semantics of tables is similar to that of the semantics of queries.

�Γ 	D T ⇒ σ �B ⇓ ST ST : env Γ → R |σ |

�

with j_tb_sem (d : Db.D) :
forall G (s : Scm), pretb →
(env G → Rel.R (List.length s))

→ Prop :=
| jtbs_base : forall G x,

forall s (e : Db.db_schema d x = Some s),
j_tb_sem d G s (tbbase x) (fun _ ⇒ Db.db_rel e)

| jtbs_query : forall G q,
forall s h,
j_q_sem d G s q h →
j_tb_sem d G s (tbquery q) h

�

The definition is trivial: the data base provides semantics for stored named tables, whereas
tables resulting from queries are evaluated by means of their judgment.

The type of the semantics of frames (sequences of tables) is as follows:
�
Γ 	D

−−−→
T : σ ⇒ Γ ′�B ⇓ S−→

T
S−→
T

: env Γ → R |concat Γ ′|

123

A Formalization of SQL with Nulls

�

with j_btb_sem (d : Db.D) :
forall G G’, list (pretb * Scm) →
(env G → Rel.R (list_sum

(List.map (length (A:=Name)) G’)))
→ Prop :=

| jbtbs_nil : forall G,
j_btb_sem d G List.nil List.nil (fun _ ⇒ Rel.Rone)

| jbtbs_cons : forall G T s’ btb ,
forall s G0 ST Sbtb e,
j_tb_sem d G s T ST →
j_btb_sem d G G0 btb Sbtb →
length s = length s’ →
j_btb_sem d G (s’::G0) ((T,s’):: btb) (fun Vl ⇒

cast _ _ e (Rel.times (ST Vl) (Sbtb Vl)))
�

The sequence of tables is unfolded as in the case of terms. The base case for empty sequences
returns the 0-ary relation Rone, which is the neutral element for the cartesian product of rela-
tions; non null sequences are evaluated recursively, and the resulting semantics are combined
by means of the relational operator ×. A cast is used to make the definition typecheck.

The type of the semantics of generators (lateral joins of frames) is as follows:
�
Γ 	D G ⇒ Γ ′�B ⇓ S−→

T
S−→
T

: env Γ → R |concat Γ ′|
�

with j_btbl_sem (d : Db.D) :
forall G G’, list (list (pretb * Scm)) →
(env G → Rel.R (list_sum

(List.map (length (A:=Name)) G’)))
→ Prop :=

| jbtbls_nil : forall G,
j_btbl_sem d G List.nil List.nil (fun _ ⇒ Rel.Rone)

| jbtbls_cons : forall G btb btbl ,
forall G0 G1 Sbtb Sbtbl e,
j_btb_sem d G G0 btb Sbtb →
j_btbl_sem d (G0 ++ G) G1 btbl Sbtbl →
j_btbl_sem d G (G1 ++ G0) (btb::btbl)

(fun h ⇒
let Rbtb := Sbtb h in
Rel.rsum Rbtb (fun Vl ⇒

cast _ _ e (Rel.times
(Sbtbl (Evl.env_app _ _ (Evl.env_of_tuple _ Vl) h))
(Rel.Rsingle Vl))))

�

The generator too is evaluated one frame at a time, ending with the 0-ary relation Rone in the
case of the empty sequence of frames: however, unlike the evaluation of simple frames, in a
generator we do not perform a simple cartesian product of the semantics of the components,
because a certain framemay depend on the ones declared to its left. More details are provided
in the paper.

A.5 Semantics of Conditions

The evaluation of conditions returns a truth value in the abstract type B.

�Γ 	D c�B ⇓ Sc Sc : env Γ → B

�

with j_cond_sem (d : Db.D) :
forall G, precond → (env G → B)

123

W. Ricciotti, J. Cheney

→ Prop :=
| jcs_true : forall G,

j_cond_sem d G cndtrue (fun _ ⇒ btrue)
| jcs_false : forall G,

j_cond_sem d G cndfalse (fun _ ⇒ bfalse)
| jcs_null : forall G b t,

forall St,
j_tm_sem G t St →
j_cond_sem d G (cndnull b t) (fun Vl ⇒

of_bool (match St Vl with
None ⇒ b | _ ⇒ negb b end))

| jcs_istrue : forall G c,
forall Sc,
j_cond_sem d G c Sc →
j_cond_sem d G (cndistrue c) (fun Vl ⇒

of_bool (Sem.is_btrue (Sc Vl)))
�

The evaluation of TRUE and FALSE is trivial, returning the corresponding elements of type B.
To evaluate t IS [NOT] NULL, we first evaluate t and then check whether the evaluation
returns null or not. Similarly, to evaluate c IS TRUE, we first evaluate c and then check
whether the evaluation yields btrue or not.
�

| jcs_pred : forall G n p tml ,
forall Stml e,
j_tml_sem G tml Stml →
j_cond_sem d G (cndpred n p tml) (fun Vl ⇒

Sem.sem_bpred _ p (to_list (Stml Vl))
(eq_trans (length_to_list _ _ _) e))

�

This is the evaluation of an n-ary basic predicate p applied to a list of terms tml. We first
obtain Stml as the evaluation function for tml, then the evaluation for the basic predicate
is a function that takes an environment Vl as input and returns the result of p applied to
(Stml Vl). However, p expects to receive list of constants, while (Stml Vl) is a tuple
that may contain nulls: so, we first convert the tuple to a list, and then we use the operation
sem_bpred from the ADT for B to lift a predicate of type list BaseConst -> bool
to one of type list Value -> B.
�

| jcs_memb : forall G b tml q,
forall s Stml Sq (e : length tml = length s),
j_tml_sem G tml Stml →
j_q_sem d G s q Sq →
let e’ := f_equal Rel.T e in
j_cond_sem d G (cndmemb b tml q) (fun Vl ⇒

let Stt := Rel.sel (Sq Vl) (fun rl ⇒
Vector.fold_right2 (fun r0 V0 acc ⇒

acc && is_btrue (veq r0 V0))
true _ rl (cast _ _ e’ (Stml Vl))) in

let Suu := Rel.sel (Sq Vl) (fun rl ⇒
Vector.fold_right2 (fun r0 V0 acc ⇒

acc && negb (is_bfalse (veq r0 V0)))
true _ rl (cast _ _ e’ (Stml Vl))) in

let ntt := Rel.card Stt in
let nuu := Rel.card Suu in
if (0 <? ntt) then of_bool b
else if (0 <? nuu) then bmaybe
else of_bool (negb b))

�

The evaluation of membership of a tuple within a nested query was discussed in the paper;
in the concrete definition, the boolean b is used to differentiate between IS IN Q and IS
NOT IN Q. Casts are also added to make the definitions typecheck.
�

123

A Formalization of SQL with Nulls

| jcs_ex : forall G q,
forall Sq,
j_in_q_sem d G q Sq →
j_cond_sem d G (cndex q) (fun Vl ⇒ of_bool (Sq Vl))

| jcs_and : forall G c1 c2,
forall Sc1 Sc2 ,
j_cond_sem d G c1 Sc1 → j_cond_sem d G c2 Sc2 →
j_cond_sem d G (cndand c1 c2)

(fun Vl ⇒ band (Sc1 Vl) (Sc2 Vl))
| jcs_or : forall G c1 c2,

forall Sc1 Sc2 ,
j_cond_sem d G c1 Sc1 → j_cond_sem d G c2 Sc2 →
j_cond_sem d G (cndor c1 c2)

(fun Vl ⇒ bor (Sc1 Vl) (Sc2 Vl))
| jcs_not : forall G c0,

forall Sc0 ,
j_cond_sem d G c0 Sc0 →
j_cond_sem d G (cndnot c0) (fun Vl ⇒ bneg (Sc0 Vl))

�

EXISTS Q conditions are implemented by the existentially nested query judgment
j_in_q_sem. The remaining conditions implement logical connectives by means of the
corresponding operations on the ADT of truth values.

B Commented Semantics of the Flat Relational Calculus

B.1 Semantics of Base Expressions

The semantics of base expressions of flat relational terms in normal form has the following
type:

�Γ 	 E� ⇓ SE SE : env Γ → V

Sequences of base terms are also given a semantic evaluation judgment for convenience:
�
Γ 	 −→

E
�

⇓ S−→
E

S−→
E

: env Γ → T |−→E |

�

Inductive j_base_sem (d : Db.D) :
forall G (t : tm), (env G → Value) → Prop :=

| jbs_cst : forall G c,
j_base_sem d G (cst c) (fun _ ⇒ Db.c_sem c)

| jbs_null : forall G, j_base_sem d G null (fun _ ⇒ None)
| jbs_proj : forall G i a,

forall Sia ,
j_fvar_sem G i a Sia → j_base_sem d G (proj (var i) a) Sia.

Inductive j_basel_sem (d : Db.D) :
forall G (tml : list tm),
(env G → Rel.T (List.length tml)) → Prop :=

| jbls_nil : forall G, j_basel_sem d G List.nil (fun _ ⇒
Vector.nil _)

| jbls_cons : forall G t tml ,
forall St Stml ,
j_base_sem d G t St → j_basel_sem d G tml Stml →
j_basel_sem d G (t::tml) (fun h ⇒ Vector.cons _ (St h)

_ (Stml h)).
�

In the relational calculus, base expressions serve the same purpose as SQL terms, and their
semantics are analogous.

123

W. Ricciotti, J. Cheney

B.2 Semantics of Tuples

The semantics of flat relational calculus tuples in normal form has the following type:

�Γ 	D L ⇒ tuple σ � ⇓ SL SL : env Γ → T |σ |

�

Inductive j_tuple_sem (d : Db.D) :
forall G (t:tm) (s:Scm),
(env G → Rel.T (List.length s)) → Prop :=

| jts_mktup : forall G al bl,
forall e Sbl , List.NoDup al →
List.length al = List.length bl → j_basel_sem d G bl Sbl →
j_tuple_sem d G (mktup (List.combine al bl)) al (cast _ _ e Sbl).

�

Normal forms of tuples are sequences of pairs attribute name-base expression
(List.combine al bl): their semantics is obtained by evaluating the sequence of base
expressions (bl), with a cast to make the judgment typecheck.

B.3 Semantics of Conditions

The type of the semantics of conditions is as follows:

�Γ 	D c ⇒ cond� ⇓ Sc Sc : env Γ → tribool

�

Inductive j_cond_sem (d : Db.D) : forall G (t:tm), (env G → B) →
Prop :=

| jws_empty : forall G q b n,
forall Sq, j_coll_sem d G q b n Sq →
j_cond_sem d G (empty b q) (fun h ⇒ sem_empty _ (Sq h))

�

The semantics of the emptiness test on a collectionqfirst evaluatesq recursively, and thenuses
an auxiliary definition sem_empty that checks whether the resulting relation has cardinality
equal to zero.
�

| jws_pred : forall G n p tml ,
forall Stml e,
j_basel_sem d G tml Stml →
j_cond_sem d G (pred n p tml) (fun Vl ⇒

Sem.sem_bpred _ p (to_list (Stml Vl))
(eq_trans (length_to_list _ _ _) e))

| jws_true : forall G, j_cond_sem d G rctrue (fun _ ⇒ Sem.btrue)
| jws_false : forall G, j_cond_sem d G rcfalse (fun _ ⇒ Sem.bfalse)
| jws_isnull : forall G t,

forall St, j_base_sem d G t St →
j_cond_sem d G (isnull t) (fun Vl ⇒ Sem.of_bool

(match St Vl with None ⇒ true | _ ⇒ false end))
| jws_istrue : forall G c,

forall Sc, j_cond_sem d G c Sc →
j_cond_sem d G (istrue c) (fun Vl ⇒ Sem.of_bool
(Sem.is_btrue (Sc Vl)))

| jws_and : forall G c1 c2,
forall Sc1 Sc2 , j_cond_sem d G c1 Sc1 → j_cond_sem d G c2 Sc2 →
j_cond_sem d G (rcand c1 c2) (fun Vl ⇒ Sem.band (Sc1 Vl) (Sc2 Vl))

| jws_or : forall G c1 c2,
forall Sc1 Sc2 , j_cond_sem d G c1 Sc1 → j_cond_sem d G c2 Sc2 →
j_cond_sem d G (rcor c1 c2) (fun Vl ⇒ Sem.bor (Sc1 Vl) (Sc2 Vl))

| jws_not : forall G c,
forall Sc, j_cond_sem d G c Sc →

123

A Formalization of SQL with Nulls

j_cond_sem d G (rcnot c) (fun Vl ⇒ Sem.bneg (Sc Vl))
�

The remaining cases of the semantics of relational calculus conditions closely correspond to
NullSQL conditions, and their semantics is similar.

B.4 Semantics of Collections

The type of the semantics of collections is as follows:

�Γ 	D M ⇒ coll b, σ � ⇓ SM SM : env Γ → R |σ |

�

with j_coll_sem (d : Db.D) :
forall G (t : tm) (b:bool) (s:Scm),
(env G → Rel.R (List.length s)) → Prop :=

| jcs_nnil : forall G b s,
List.NoDup s → j_coll_sem d G (nil b s) b s (fun h ⇒ sem_nil _)

| jcs_ndisj : forall G t b s,
forall St,
j_disjunct_sem d G t b s St →
j_coll_sem d G t b s St

| jcs_nunion : forall G t1 t2 b s,
forall St1 St2 ,
j_disjunct_sem d G t1 b s St1 →
j_coll_sem d G t2 b s St2 →
let S := fun h ⇒

if b then Rel.flat (Rel.plus (St1 h) (St2 h))
else Rel.plus (St1 h) (St2 h) in

j_coll_sem d G (union t1 t2) b s S
�

To evaluate nil b s (that is, an empty collection with schema s, where the Boolean b
specifies whether the collection is a set or a bag), we need to provide an empty relation with
arity equal to the length of s: this is returned by the function sem_nil, which first builds
a singleton containing a tuple of nulls of suitable length, and then filters it using the trivially
false predicate. If the collection is a disjunct, it is evaluated by a separate judgment; if it
is a union union t1 t2 (where t1 is a disjunct and t2 a collection), the two subterms
are evaluated recursively and then their semantics are combined using Rel.plus (this is
followedby a call toRel.flat to performdeduplication if b is true, signalling the collection
is a set).

B.5 Semantics of Disjuncts

The type of the semantics of disjuncts is the following:

�Γ 	D C ⇒ disj b, σ � ⇓ SC SC : env Γ → R |σ |
�

with j_disjunct_sem (d : Db.D) :
forall G (t : tm) (b : bool) (s:Scm),
(env G → Rel.R (List.length s)) → Prop :=

| jds_single : forall G b tup c,
forall stup Stup Sc,
j_tuple_sem d G tup stup Stup →
j_cond_sem d G c Sc →
j_disjunct_sem d G (cwhere (single b tup) c) b stup

(fun h ⇒
if Sem.is_btrue (Sc h) then Rel.Rsingle (Stup h)

123

W. Ricciotti, J. Cheney

else sem_nil _)
| jds_comprn : forall G q1 q2,

forall b sq2 Sq2 sq1 Sq1 e,
j_gen_sem d G q2 b sq2 Sq2 →
j_disjunct_sem d (sq2::G) q1 b sq1 Sq1 →
j_disjunct_sem d G (comprn q1 q2) b sq1 (fun h ⇒

let f := fun (Vl : Rel.T (length sq2)) ⇒
Sq1 (env_app _ _ (Evl.env_of_tuple (sq2::List.nil)

(cast _ _ e Vl)) h) in
let S := Rel.rsum (Sq2 h) f in
if b then Rel.flat S else S)

�

A disjunct is either {M}b WHERE N , where M is a tuple and N is a condition, or a compre-
hension whose head is a disjunct. In the first case, we evaluate M and N using the respective
judgments: if N evaluates to true, we use Rel.Rsingle to return a singleton relation con-
taining a tuple corresponding to the semantics of M ; otherwise we return an empty relation
of appropriate arity using sem_nil.

In the case of a comprehension
⋃{M | N }, we first evaluate the generator N , then for

each element −→v of the resulting relation we evaluate the semantics of M in an environment
extended with −→v ; finally, we take the take the disjoint union of all the resulting relations
using Rel.rsum (this is followed by a deduplication step if we are evaluating a set rather
than a bag.

B.6 Semantics of Generators

The type of the semantics of generators is the following:

�Γ 	D G ⇒ gen b, σ � ⇓ SG SG : env Γ → R |σ |

�

with j_gen_sem (d : Db.D) :
forall G (t : tm) (b : bool) (s : Scm),
(env G → Rel.R (List.length s)) → Prop :=

| jgs_tab : forall G x,
forall s (e : Db.db_schema d x = Some s),
j_gen_sem d G (tab x) false _ (fun _ ⇒ Db.db_rel e)

�

The evaluation of named tables is provided by the database through Db.db_rel.
�

| jgs_prom : forall G q,
forall s Sq,
j_coll_sem d G q true s Sq →
j_gen_sem d G (prom q) false s Sq

�

A bag generator can be a set collection q promoted to a bag. Its semantics is trivial, resorting
to a recursive evaluation of q as a set collection.
�

| jgs_bagdiff : forall G q1 q2,
forall s Sq1 Sq2 ,
j_coll_sem d G q1 false s Sq1 → j_coll_sem d G q2 false s Sq2 →
j_gen_sem d G (diff q1 q2) false s (fun h ⇒ Rel.minus
(Sq1 h) (Sq2 h))

�

A generator consisting of the bag difference between two collections q1 and q2 is evaluated
by taking the semantics of q1 and q2 as collections, and using Rel.minus to obtain the
relation corresponding to their difference.

123

A Formalization of SQL with Nulls

�

| jgs_dtab : forall G x,
forall s (e : Db.db_schema d x = Some s),
j_gen_sem d G (dist (tab x)) true s (fun _ ⇒ Rel.flat (Db.db_rel e))

| jgs_ddiff : forall G q1 q2,
forall s Sq1 Sq2 ,
j_coll_sem d G q1 false s Sq1 → j_coll_sem d G q2 false s Sq2 →
j_gen_sem d G (dist (diff q1 q2)) true s

(fun h ⇒ Rel.flat (Rel.minus (Sq1 h) (Sq2 h))).
�

The semantics of deduplicated tables and bag differences is similar to the non-deduplicated
case, but uses Rel.flat to deduplicate the result.

References

1. Auerbach, J.S., Hirzel, M., Mandel, L., Shinnar, A., Siméon, J.: Prototyping a query compiler using
Coq (experience report). Proc. ACM Program. Lang. 1(ICFP), 9:1–9:15 (2017). https://doi.org/10.1145/
3110253

2. Benzaken, V., Contejean, E.: A Coq mechanised formal semantics for realistic SQL queries: formally
reconciling SQL and bag relational algebra. In: A. Mahboubi, M.O. Myreen (eds.) Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais,
Portugal, January 14–15, 2019, pp. 249–261. ACM (2019). https://doi.org/10.1145/3293880.3294107

3. Benzaken, V., Contejean, E., Dumbrava, S.: A Coq formalization of the relational data model. In: Pro-
gramming Languages and Systems—23rd European Symposium on Programming, ESOP 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5–13, 2014, Proceedings, pp. 189–208 (2014). https://doi.org/10.1007/978-3-642-54833-
8_11

4. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax. SIGMOD Rec. 23(1),
87–96 (1994). https://doi.org/10.1145/181550.181564

5. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex objects and
collection types. Theor. Comput. Sci. 149(1) (1995). https://doi.org/10.1016/0304-3975(95)00024-Q

6. Chu, S., Weitz, K., Cheung, A., Suciu, D.: HoTTSQL: Proving query rewrites with univalent SQL seman-
tics. In: PLDI, pp. 510–524. ACM (2017). https://doi.org/10.1145/3062341.3062348

7. Codd, E.F.: Extending the database relational model to capture more meaning. ACM Trans. Database
Syst. 4(4), 397–434 (1979). https://doi.org/10.1145/320107.320109

8. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without tiers. In: FMCO (2007).
https://doi.org/10.1007/978-3-540-74792-5_12

9. Franconi, E., Tessaris, S.: On the logic of SQL nulls. In: Proceedings of the 6th Alberto Mendelzon
International Workshop on Foundations of Data Management, Ouro Preto, Brazil, June 27–30, 2012, pp.
114–128 (2012). http://ceur-ws.org/Vol-866/paper8.pdf

10. Ganski, R.A., Wong, H.K.T.: Optimization of nested SQL queries revisited. In: SIGMOD, pp. 23–33.
ACM, New York, NY, USA (1987). https://doi.org/10.1145/38713.38723

11. Grant, J.: Null values in SQL. SIGMOD Rec. 37(3), 23–25 (2008). https://doi.org/10.1145/1462571.
1462575

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40. ACM (2007).
https://doi.org/10.1145/1265530.1265535

13. Guagliardo, Paolo, Libkin, Leonid: A formal semantics of SQL queries, its validation, and applications.
Proc. VLDB Endow. 11(1), 27–39 (2017). https://doi.org/10.14778/3151113.3151116

14. Kim, W.: On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7(3), 443–469 (1982).
https://doi.org/10.1145/319732.319745

15. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant.
In: 33rdACMsymposiumonPrinciples of ProgrammingLanguages, pp. 42–54.ACMPress (2006). http://
xavierleroy.org/publi/compiler-certif.pdf

16. Libkin, L.: Incomplete data: what went wrong, and how to fix it. In: Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT,
USA, June 22–27, 2014, pp. 1–13 (2014). https://doi.org/10.1145/2594538.2594561. http://doi.acm.org/
10.1145/2594538.2594561

17. Libkin, L.: SQL’s three-valued logic and certain answers. ACM Trans. Database Syst. 41(1), 1:1–1:28
(2016). https://doi.org/10.1145/2877206

123

https://doi.org/10.1145/3110253
https://doi.org/10.1145/3110253
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1007/978-3-642-54833-8_11
https://doi.org/10.1007/978-3-642-54833-8_11
https://doi.org/10.1145/181550.181564
https://doi.org/10.1016/0304-3975(95)00024-Q
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/320107.320109
https://doi.org/10.1007/978-3-540-74792-5_12
http://ceur-ws.org/Vol-866/paper8.pdf
https://doi.org/10.1145/38713.38723
https://doi.org/10.1145/1462571.1462575
https://doi.org/10.1145/1462571.1462575
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/319732.319745
http://xavierleroy.org/publi/compiler-certif.pdf
http://xavierleroy.org/publi/compiler-certif.pdf
https://doi.org/10.1145/2594538.2594561
http://doi.acm.org/10.1145/2594538.2594561
http://doi.acm.org/10.1145/2594538.2594561
https://doi.org/10.1145/2877206

W. Ricciotti, J. Cheney

18. Malecha, J.G.,Morrisett, G., Shinnar, A.,Wisnesky, R.: Toward a verified relational databasemanagement
system. In: POPL, pp. 237–248 (2010)

19. Ricciotti,W.: Binding structures as an abstract data type. In: Programming Languages and Systems—24th
European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11–18, 2015. Proceedings, pp.
762–786 (2015). https://doi.org/10.1007/978-3-662-46669-8_31

20. Ricciotti, W., Cheney, J.: Mixing set and bag semantics. In: DBPL, pp. 70–73 (2019). https://doi.org/10.
1145/3315507.3330202

21. Ricciotti, W., Cheney, J.: Strongly Normalizing Higher-Order Relational Queries. In: Z.M. Ariola (ed.)
5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 167, pp. 28:1–28:22. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.
28. https://drops.dagstuhl.de/opus/volltexte/2020/12350

22. Ricciotti, W., Cheney, J.: Query lifting: Language-integrated query for heterogeneous nested collections.
In: Programming Languages and Systems (ESOP 2021). Lecture Notes in Computer Science, pp. 579–
606. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-72019-3_21

23. Rubinson, C.: Nulls, three-valued logic, and ambiguity in SQL: critiquing Date’s critique. SIGMODRec.
36(4), 13–17 (2007). https://doi.org/10.1145/1361348.1361350

24. van der Meyden, R.: Logical approaches to incomplete information: a survey. In: J. Chomicki, G. Saake
(eds.) Logics for Databases and Information Systems, pp. 307–356. Kluwer (1998)

25. Wong, L.: Normal forms and conservative extension properties for query languages over collection types.
J. Comput. Syst. Sci. 52(3) (1996). https://doi.org/10.1006/jcss.1996.0037

26. Wong, L.: Kleisli, a functional query system. J. Funct. Program. 10(1) (2000). https://doi.org/10.1017/
S0956796899003585

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-662-46669-8_31
https://doi.org/10.1145/3315507.3330202
https://doi.org/10.1145/3315507.3330202
https://doi.org/10.4230/LIPIcs.FSCD.2020.28
https://doi.org/10.4230/LIPIcs.FSCD.2020.28
https://drops.dagstuhl.de/opus/volltexte/2020/12350
https://doi.org/10.1007/978-3-030-72019-3_21
https://doi.org/10.1145/1361348.1361350
https://doi.org/10.1006/jcss.1996.0037
https://doi.org/10.1017/S0956796899003585
https://doi.org/10.1017/S0956796899003585

	A Formalization of SQL with Nulls
	Abstract
	1 Introduction
	Contributions
	1.1 Structure of the Paper
	2 Overview of the Formalization
	3 Syntax
	4 K-Relations as an Abstract Data Type
	4.1 A Model of K-Relations

	5 Formalized Semantics
	5.1 Truth Values
	5.2 A Functor of SQL Semantics
	5.3 Discussion

	6 Validation of Rewrite Rules
	7 Elimination of Three-Valued Logic
	8 Embedding the Relational Calculus
	8.1 Semantics
	8.2 Conversion to SQL

	9 Related Work
	Semantics of Query Languages with Incomplete Information and Nulls
	Formalizations of Query Languages

	10 Conclusion
	A Commented Semantics of NullSQL
	A.1 Semantics of Attributes
	A.2 Semantics of Terms
	A.3 Semantics of Queries
	A.4 Semantics of Tables
	A.5 Semantics of Conditions
	B Commented Semantics of the Flat Relational Calculus
	B.1 Semantics of Base Expressions
	B.2 Semantics of Tuples
	B.3 Semantics of Conditions
	B.4 Semantics of Collections
	B.5 Semantics of Disjuncts
	B.6 Semantics of Generators

	References

