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It is well-known that the Poiseuille mass flow rate along microchannels shows a stationary9
point as the fluid density decreases, referred to as the Knudsen minimum. Surprisingly, if10
the flow characteristic length is comparable to the molecular size, the Knudsen minimum11
disappears, as reported for the first time by Wu et al. (J. Fluid Mech., vol. 794, 2016, pp.12
252-266). However, there is still no fundamental understanding why the mass flow rate13
monotonically increases throughout the entire range of flow regimes. Although diffusion is14
believed to dominate the fluid transport at the nanoscale, here we show that the Fick’s first15
law fails in capturing this behaviour, and so diffusion alone is insufficient to explain this16
confined flow phenomenon. Rather, we show that the Knudsen minimum disappears in tight17
confinements because the decay of the mass flow rate due to the decreasing density effects is18
overcome by the enhancing contribution to the flow provided by the fluid velocity slip at the19
wall.20

Key words: To be added during the online submission process (see Keyword PDF).21

1. Introduction22

Fluids confined within geometries of molecular dimensions are commonly encountered in23
geological and biological systems (Bocquet &Charlaix 2010), as well as in many engineering24
applications, e.g., membrane science (Mistry et al. 2021), that have been constantly growing25
in recent years — fostered by the technological progress in the fabrication of nanofluidic26
devices (Kavokine et al. 2021). In these flows, three significant length scales can be identified:27
the diameter of fluid constituent particles σ, the flow characteristic length d, which is28
related to the channel size, and the molecular mean free path (MFP) λ, which represents the29
average distance travelled by particles between two consecutive collisions. The interplay of30
phenomena occurring at these scales leads to complex fluid behaviour. Indeed, the continuum31
approach based on the Navier-Stokes equations breaks down with increasing rarefaction32
(λ ∼ d), since the local thermodynamic equilibrium condition is not fulfilled. Likewise,33
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the standard kinetic theory description is no longer accurate at the nanoscale where dense34
(λ ∼ σ) and confinement (d ∼ σ) effects come into play, implying that the Boltzmann35
equation must be replaced by more complicated kinetic models, such as the Enskog equation36
(Kremer 2010).37
Despite the availability of computational procedures to describe the flow of confined fluids,38

the fundamental understanding of many phenomena occurring under tight confinement is39
still lacking. A notable example is that, for simple fluids, the Poiseuille mass flow rate (MFR)40
is found to monotonically increase in channels of molecular dimensions when the fluid41
density decreases, by using numerical solutions of the Enskog equation (Wu et al. 2016)42
and event-driven molecular dynamics simulations (Sheng et al. 2020). This behaviour is in43
sharp contrast with the long-standing recognition of flowmechanics in microchannels, which44
instead exhibits a non-monotonic variation of the MFR and the formation of a stationary45
point referred to as the “Knudsen minimum” (Cercignani & Sernagiotto 1966), as long as46
the channel is sufficiently long and does not contain any bends (Ho et al. 2020).47
A possible explanation of the Knudsen minimum disapperance is that the transport in48

dense fluids changes from convection to molecular diffusion under tight confinements.49
Here, molecular diffusion is referred to as the diffusive mechanism which is driven by the50
interactions between fluid particles in the continuum limit (λ � d), and it is distinguished51
from the Knudsen diffusion that takes place in the free molecular limit (λ � d), where52
particles only collide ballistically with the wall (Xiao & Wei 1992). The dominance of53
diffusive transport at the nanoscale is known to take place for long alkanes in porous media,54
where the hydrodynamic description breaks down, although doubt remains for single-site gas55
molecules (Falk et al. 2015). Despite there is no unequivocal evidence that this behaviour also56
occurs for non-tortuous channels, some hints supporting the diffusive nature of Poiseuille57
flow transport in tight geometries are provided by the analysis of velocity profiles. These58
are no longer parabolic as expected for force/pressure-driven flows, but show a plug-like59
behaviour instead, suggesting the predominance of diffusive mechanisms (Firouzi & Wilcox60
2013). However, a conclusive proof regarding a crossover from convection to molecular61
diffusion in these systems, that is triggered by the fluid confinement, has still not been given.62
The aim of this work is to perform a detailed investigation of the Knudsen minimum63

disappearance in straight nanochannels, and elucidate the underpinning physical reasons.64
There are two main findings. First, despite the molecular-like confinements, we show that65
diffusion does not dominate transport, and so the convective flow contribution cannot be66
neglected outside the free molecular regime. Second, we show that the monotonic increase67
of MFR can be attributed to the larger relative importance of the velocity slip at the wall,68
compared to the other physical mechanisms that are normal contenders at the microscale. The69
rest of the paper is organised as follows. In section 2 we outline the simulation approach used70
to numerically study the transport process. In section 3.1 we show that the Knudsenminimum71
vanishing in straight nanochannels cannot be attributed to diffusive processes, whereas in72
section 3.2 we prove that the contribution of the fluid slippage at the confining solid surface73
provides a satisfactory explanation of this recently discovered feature. A summary of the74
main results and conclusions follow in section 4.75

2. Methodology76

We consider force-driven Poiseuille flows inside a long tubular geometry with diameter d,77
where the fluid is modelled using a system composed of hard-sphere particles with molecular78
diameter σ. The wall is assumed to be a structureless cylindrical surface and the fluid-wall79
interactions are described by the Maxwell scattering kernel with full tangential momentum80
accommodation coefficient, where impinging particles are diffusely reflected after being81
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thermalised with the wall. The exact time evolution of the monatomic hard-sphere system is82
simulated using event-driven molecular dynamics (EDMD). In these simulations, the state of83
the system jumps from one time to another corresponding to the upcoming collision through84
three basic steps: (a) evaluating the time of the earliest collision event, (b) moving ballistically85
all particles for that time interval, and (c) updating the velocity of the particles that have86
collided with another particle or the wall, according to elastic hard-sphere dynamics or the87
Maxwell scattering kernel, respectively. Note that the time step is not constant throughout88
the simulation run, like in regular MD simulations, as it depends on the spatial coordinates89
and velocities of all molecules in the system. More information on the simulation setup can90
be found in Corral-Casas et al. (2021).91
Three dimensionless groups can be identified to systematically describe the different92

transport processes that may take place in this system, namely the reduced density, the93
confinement ratio, and the Knudsen number. The reduced density η = nπσ3/6, where n is the94
number density, represents the number of fluid particles in the theoretical volume occupied by95
one hard-sphere. This first dimensionless group allows to differentiate between dense (large96
η values) and rarefied (low η values) gas flows. The confinement ratio R = d/σ provides97
information about the degree of fluid inhomogeneity that arises because of the presence98
of walls, where tight confinements (low R values) are associated with a more prominent99
molecular layering next to the confining surface and, therefore, with an increase of the100
collision frequency of fluid particles with the wall. Finally, the Knudsen number Kn = λ/d101
quantifies the departure of the fluid from its local quasi-equilibrium case. The continuum102
approach can be used for Kn . 0.01, while non-equilibrium effects come progressively into103
play in the following three regimes: slip (0.01 < Kn . 0.1, where the continuum model still104
holds but different boundary conditions are needed to capture the “slippage” of fluid particles105
at the solid surface), transition (0.1 < Kn . 10, where the continuum description breaks106
down and kinetic equations must be used instead), and free molecular (Kn > 10, where107
molecules move ballistically between collisions with the confining wall). The expression of108
the MFP, derived from kinetic theory, is given by (Kremer 2010)109

λ =
16
5π

µ

P

√
πkT
2m

, (2.1)110

wherem is themolecularmass and P is the pressure, related to the density through P = nkT Z ,111
in which k is the Boltzmann constant, T the temperature of the system, and Z is the fluid112
compressiblity factor that can be accurately approximated by the equation of state for the113
hard-sphere fluid proposed in Carnahan & Starling (1969)114

Z =
P

nkT
=

1 + η + η2 − η3

(1 − η)3
. (2.2)115

According to the Enskog theory, the shear viscosity µ of a hard-sphere fluid is given by116

µ =
5

16σ2

√
mkT
π

µ f =
5

16σ2

√
mkT
π

1
χ

[
1 +

16
5
ηχ +

64
25

(
1 +

12
π

)
η2 χ2

]
, (2.3)117

where µ f is the dense gas correction for the viscosity of a rarefied gas, and χ represents the118
contact value of the pair correlation function in a hard-sphere fluid in uniform equilibrium,119
which from the aforementioned equation of state reads120

χ =
1

nb

(
P

nkT
− 1

)
=

1
2

2 − η
(1 − η)3

, (2.4)121

where b = 2πσ3/3 is the second virial coefficient (Kremer 2010).122
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Figure 1: (a) Comparison between the dimensionless MFR provided by non-equilibrium simulations
(symbols) and the theoretical predictions assuming Fickian diffusion, as given by Eq. (3.1) (lines). There
is good agreement in the free molecular regime (Kn > 10), whilst Fick’s law underestimates MFR
elsewhere, which imply that convective transport transport terms cannot be neglected at any confinement.
(b) Dependence of the self-diffusivity D on the Knudsen number Kn and the confinement ratio R. Dashed
horizontal lines represent the theoretical value of the Knudsen self-diffusivity from Eq. (3.2) for each
confinement ratio.

3. Results and discussion123

3.1. Knudsen minimum disappearance: analysis based on diffusion124

The Knudsen minimum disappearance, which was initially presented for the slit geometry125
in Wu et al. (2016), is demonstrated for a cylindrical pipe in this work, where it is seen126
to occur between R = 20 and R = 8 in figure 1(a). Here, we show transport results127
from non-equilibrium EDMD simulations that are performed in the presence of an external128
unidirectional force F along the axis of the channel, whose value is assumed to be sufficiently129
low so that the flow remains in the linear response regime — the artificial addition of heat130
is adequately dissipated by the wall. The numerical evaluation of the MFR for each case,131
depending on η and R, is obtained from a spatial integration of local densities and velocities.132
As mentioned in section 1, the Knudsen minimum vanishing might be explained by133

supposing that, under molecular confinements, a crossover from convective to diffusive134
transport takes place up to the late transition regime (Kn . 10). This hypothesis is tested135
by comparing the actual MFR with the analytical estimate assuming that the transport is136
solely driven by diffusion, which is based on the Fick’s first law where the MFR of diffusing137
particles Ûmd follows a linear response with the density gradient along the axial z−direction138
dn/dz139

Ûmd = −
πd2

4
mD

dn
dz
= −

Dπd2m

4kT
(
Z + η dZ

dη

) dP
dz
, (3.1)140

in which D is the self-diffusion coefficient. Note that the number density n and pressure P141
are interconnected using Eq. (2.2), with the pressure gradient being identified with the force142
F through the fundamental relation given by −dP/dz = nF.143
However, before comparing the MFR simulation results with the predictions given by144

Eq. (3.1), self-diffusion results D are needed as this information is unavailable in the literature145
for the cylindrical geometry. Therefore, a set of equilibriumEDMD simulations is carried out,146
see details in Corral-Casas et al. (2021), where the self-diffusion coefficients are determined147
bymeans of the Einstein relation in the entire range of flow regimes, for different confinement148
ratios of interest. These simulation results are shown in figure 1(b), where it can be seen that,149
from a qualitative standpoint, self-diffusivities increase with Knudsen number because the150

Focus on Fluids articles must not exceed this page length
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MFP becomes larger and therefore particles have more mobility before colliding with another151
entity in the system. At the same time, self-diffusivities increase with the flow characteristic152
length for a given Kn, as large R values imply less collisions with the diffuse wall model that153
hinder themolecular displacement in the streamwise direction. Note that in the freemolecular154
limit, where there are just diffuse collisions with the wall, numerical results perfectly agree155
with the analytical Knudsen self-diffusivity prediction from kinetic theory (Xiao & Wei156
1992)157

Dk =
2d
3

√
2kT
πm

. (3.2)158

As presented in figure 1(a), it is found that the Fick’s first law unsurprisingly reproduces159
the MFR simulation results very well in the free molecular regime. The slight disagreement160
in the tightest of confinements (for R = 3) can be attributed to the transition from Fickian161
to anomalous diffusion (e.g., of single-file type) as particles cannot overtake each other162
when moving along the channel. However, it is evident that Eq. (3.1) underestimates the163
mass transport along the remaining flow regimes (Kn . 10), and therefore the governing164
mechanism in this range ofKn is no longer purely diffusive. This clearly proves that, in straight165
channels, the supposed crossover from convection to diffusion does not occur even under166
tight confinements and, consequently, cannot explain the Knudsen minimum disappearance.167
Note that these results do not imply that diffusion is not the governing transport mechanism168
within more complex geometries, such as in microporous media, which will need to be169
addressed separately.170

3.2. Knudsen minimum disappearance: analysis based on slip171

As discussed so far, there are a number of mechanisms that influence the MFR through a172
channel, and so the best explanation for describing the features of the MFR dynamics can173
be inferred in the limits of the continuum (Kn ≈ 0) and free molecular (Kn ∼ ∞) regimes,174
as we illustrate in figure 2. As suggested by the analysis from section 3.1, the fluid flow is175
convective in nature in the continuum regime, regardless of R. When moving towards the176
free molecular regime (i.e., decreasing density values), the MFR initially increases as the177
viscosity decreases, implying that the fluid velocity arising as a response to a given external178
driving force will be larger. By contrast, the fluid flow is driven by Knudsen diffusion in the179
free molecular regime. This means that, when moving back towards the continuum regime180
(i.e., increasing density values), theMFR decreases as the molecularMFP shortens, implying181
lower self-diffusivities as observed in figure 1(b).182
Under a sufficiently loose confinement (R & 60 as shown in Appendix A), the Knudsen183

minimum existence follows from these two limiting behaviours. The MFR in the continuum184
regime is always larger than that in the free molecular regime and, therefore, the MFR curve185
must show two stationary points as depicted by the orange curve in figure 2, namely the186
Knudsen maximum and the Knudsen minimum. If the confinement is tighter, the continuum187
MFR is lower than the free molecular one. Accordingly, the flow transport curve may either188
form two stationary points, given by the blue dotted line, or else could show a monotonic189
increase throughout the entire range of Knudsen numbers, as represented by the blue solid190
line. It is then clear that, for the confined case, a necessary and sufficient condition for the191
Knudsen minimum to appear is that the Knudsen maximum shows up as well. Therefore,192
proving the disappearance of the Knudsen minimum is equivalent to demonstrating the193
Knudsen maximum vanishing. The latter question is easier to address as this local maximum194
falls in the continuum/slip regime (Kn . 0.1), where it can be tackled analytically using the195
Navier-Stokes equations with the first-order velocity slip boundary condition, which in its196
dimensionless form (a step-by-step derivation of this mathematical expression is presented197
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Figure 2: Qualitative analysis of the dimensionless MFR curves against the Knudsen number. Due to the
governing transport mechanisms in the limiting flow regimes, the MFR will always increase/decrease when
decreasing/increasing density in the continuum/free molecular regime. In sufficiently large channels (orange
colour), where the continuum transport is larger than the free molecular one, the MFR curve must develop
two stationary points as a response. On the other hand, for tighter confinements (blue colour) where the free
molecular flow is larger than the continuum one, the MFR curve could either show the two stationary points
or follow a monotonic increase instead, where the Knudsen minimum disappears.

in Appendix A) reads198

Ûm =
Ûmh

Ûmn
=

3Rη
5
√
πµ f

(1 + 8αKn) . (3.3)199

Note that two symplifying assumptions have been implicitlymade. First, the slip coefficient200
α is assumed to be constant and equal to that of a rarefied gas, albeit slip phenomena are201
known to be more complicated when dealing with liquid-like densities (Martini et al. 2008;202
Hadjiconstantinou 2021). The validity of this assumption will be discussed later. Second, the203
velocity slip boundary condition at the wall is based on the strain rate and not on the stress204
tensor, leading to less accurate results if the wall is not at rest (Lockerby et al. 2004).205
Eq. (3.3) clearly shows that there are three physical terms contributing to the MFR, namely206

the viscosity (i.e., via µ f ), the density (i.e., via η), and the slip (i.e., via 1 + 8αKn). These207
terms vary with the reduced density but, for the following analysis, we find it more convenient208
to study the MFR with respect to the reduced specific volume ν = 1/η, as in this way there is209
a one-to-one direct correspondence between ν and Kn. It should be stressed that this choice210
does not limit the generality of the conclusions. The relative importance of these terms can211
be singled out by evaluating their corresponding partial rates of change212

d Ûm
dν
=

dη
dν

(
∂ Ûm
∂µ f

dµ f

dη
+
∂ Ûm
∂η
+

∂ Ûm
∂Kn

dKn
dη

)
=

1
ν2

(
Qµ +Qη +Qα

)
, (3.4)213

where214

Qµ =
3Rη (1 + 8αKn)

5
√
πµ2

f

dµ f

dη
, (3.5)215

Qη = −
3R (1 + 8αKn)

5
√
πµ f

, (3.6)216

Qα =
24Rηα
5
√
πµ f

dKn
dη

. (3.7)217
218
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Figure 3: (a) Partial rates of change against the reduced specific volume, for R = 20, under the continuum
framework of fluid modelling, which capture how flow transport is affected by a change of each of
the underlying contributions. (b) Interplay between the continuum (dash-dotted) and the slip (dotted)
contributions for different R. For sufficiently large R values, the continuum contribution dominates and
the sum of all rates of change (solid) cross the x−axis, i.e., the Knudsen maximum appears. However,
for tight channels, the continuum contribution is less relevant whereas slip remains the same, driving the
overall rate of change to be positive throughout the entire range of ν values, with the Knudsen maximum
disappearing as a consequence.

These individual contributions are presented in figure 3(a) for R = 20, in a range of ν219
values corresponding to Kn . 0.1, namely the slip regime. Here, the plot of Eq. (3.5) shows220
that the partial derivative of theMFRwith respect to the viscosity,Qµ, is always positive with221
increasing reduced specific volume. In particular, the rate of change is higher for low ν values,222
whereas its value decreases for large reduced specific volumes. Eq. (3.6) shows that the MFR223
partial derivative with respect to the density, Qη , is always negative with increasing reduced224
specific volume. If the slip contribution is temporarily disregarded, the density is seen to225
become relevant over the viscosity at ν ≈ 6, and drives the MFR to decrease monotonically226
with further increase in the reduced specific volume. Eq. (3.7) shows that the MFR partial227
derivative with respect to the slip, Qα, is always positive with increasing specific volume. In228
particular, the rate of change is almost negliglible in the continuum regime while it becomes229
larger in the slip regime (ν & 3.33), where rarefaction effects become more prominent and230
the fluid slippage at the wall increasingly contributes to the overall MFR.231
Three important observations are in order and presented in figure 3(b), that helped us to232

understand why the Knudsen minimum disappears only when confinements are tight. The233
first remark is that the viscosity and density contributions exactly counterbalance at the same234
ν regardless of R. This can be easily proved using Eqs. (3.5) and (3.6), and it is clearly shown235
by dashed lines, representing the sum of viscosity and density rates of change (dubbed the236
continuum contribution from here onwards), which always crosses the x−axis at ν = 5.711.237
A second remark is that the magnitude of the rate of change of the continuum contribution238
reduces with tighter channels and so its absolute value decreases with lower R for a given ν239
value, as could also be deduced from Eqs. (3.5) and (3.6). The third remark is that the slip240
contribution (dotted line) is independent of R, as it is seen in Eq. (3.7), and so its relative241
importance grows when the confinement ratio reduces.242
The interplay between the three aforementioned contributions (denoted by solid lines in243

figure 3(b), representing the sum of continuum and slip terms) significantly depends on the244
size of the channel, and we can mainly distinguish between two types of flow behaviours. For245
large channel sizes and starting from the continuum regime (low ν), the viscosity contribution246
initially dominates and leads the MFR to increase with ν. The region corresponding to low ν247
values can then be referred to as viscosity dominated since this contribution overcomes that248
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of density, and here the slip term is negligible. Unlike the viscosity term that gets weaker as249
the fluid rarefaction increases, the density term becomes progressively more important and250
causes the Knudsen maximum to form by eventually driving the MFR to decrease.251
For tight confinements, viscosity is initially dominant and drives the MFR increase as252

in the previous case. However, now there is an interplay between density and slip in the253
region where the transport was previously density dominated, as the relative contribution254
of slip becomes more and more important for decreasing R. Indeed, as emphasised by the255
magnitude of the continuum and slip contributions in figure 3(b), there might be a threshold256
confinement ratio R at which the latter overcomes the former, preventing the formation of257
the expected Knudsen maximum. Therefore, the velocity slip at the boundary impels the258
MFR curve to monotonically increase throughout the entire range of flow regimes, with the259
Knudsen maximum (and so, the Knudsen minimum) disappearing as a consequence.260
It is worth noticing that, within the simplified solution represented by Eq. (3.4), the261

Knudsen minimum disappearance can be determined by a simple argument. As the rate of262
change of the MFR is a continuous function that takes positive values in the continuum263
limit, a sufficient condition for the MFR to cross the x−axis could be defined by the Bolzano264
theorem265

lim
ν→∞

(
Qµ +Qη +Qα

)
=

8
√

2α − 3R
5
√
π

6 0. (3.8)266

Numerical evidence shows that this condition is not only sufficient but also necessary, and267
hence one may conclude that the threshold confinement ratio Rt for the Knudsen minimum268

disappearance is Rt < 8
√

2α/3.269
The analysis carried out in this section is based on two main simplifying considerations.270

The first assumption consists on using nominal values for density and viscosity in the Navier-271
Stokes equations, despite it is well-known that, under tight confinement, density is non-272
uniform across the channel and viscosity is no longer a local property of the position along273
the channel (Travis et al. 1997). However, there is a large body of evidence demonstrating that274
the hydrodynamic framework is valid down to nanoscale confinements (Bocquet & Charlaix275
2010), and our numerical simulations also showed an agreement (within 4.5% for Kn . 0.01)276
with the non-slip Hagen-Poiseuille solution, using nominal values of the fluid properties.277
The second assumption involves the use of a constant slip coefficient although, unlike the278
rarefied case, numerical evidence shows that it depends on the channel size, e.g., larger α279
with decreasing R values. However, the validity of the presented analysis is not undermined280
as the slip enhancement at lower R just results in the Knudsen minimum disappearance at a281
larger Rt , and therefore the results in figure 3(b) correspond to the worst case scenario.282

4. Conclusions283

We have studied the Knudsen minimum disappearance that occurs for Poiseuille flows in284
tight cylindrical geometries. High-fidelity EDMD simulations have been carried out in a wide285
range of reduced fluid densities η and channel confinement ratios R, in both equilibrium (to286
obtain the self-diffusivities needed in the Fickian framework) and non-equilibrium (directly287
evaluating the mass flow rate) setups. Although diffusion is supposed to be the main transport288
mechanism at the nanoscale, we found that the convective contribution to the mass flow rate289
cannot be disregarded—even under confinements ofmolecular dimensions. This convection-290
dominated transport, which is analytically studied using the Hagen-Poiseuille solution with291
first-order slip, is decoupled into its three fundamental contributions, namely viscosity,292
density, and slip. The individual influence of each of themon transport is assessed for different293
fluid rarefaction states and confinement ratios, which revealed that the disappearance of the294
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Knudsen minimum is a consequence of the interplay between these contributions. More295
specifically, the combined contribution of viscosity and density weakens in tight geometries,296
whereas the slip term remains the same when R decreases, and so its relative importance297
increases in this context. Therefore, theKnudsenminimumvanishing under tight confinement298
can be explained by the more accentuated importance of the fluid slippage at the wall. The299
relevance of this work underpins in its qualitative explanation of dense flow mechanisms300
at the molecular scale, which may help to better understand how slip, from a fundamental301
standpoint, affects the flow of dense gases/liquids confined within tight geometries, such as302
high-pressure methane transport in unconventional shale rocks or water transport in nano-303
structured filtration membranes.304
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Appendix A.313

The Navier-Stokes equations for the incompressible flow of a Newtonian fluid through an314
infinite cylindrical channel simplify to315

1
r

d
dr

(
r

duz
dr

)
=

1
µ

dP
dz
, (A 1)316

where uz is the fluid macroscopic velocity in the streamwise direction, and r is the radial317
direction. The first-order slip at the wall, r = d/2, can be written as318

us = −αλ
duz
dr

����
r=d/2

, (A 2)319

where us is the slip velocity, and α = 2/
√
π is the velocity slip coefficient (Gibelli 2012).320

The straightforward solution of the boundary value problem from Eqs. (A 1), (A 2) reads321

uz(r) =
1

4µ
dP
dz

(
r2 − dαλ −

d2

4

)
. (A 3)322

The spatial integration of the velocity field over the cross section yields the Hagen-Poiseuille323
solution for the MFR324

Ûmh = mn
∫ d/2

0
uz(r)2πrdr = −

mnπd4

128µ
dP
dz
(1 + 8αKn) . (A 4)325

Independently on the confinement ratio R, the MFR increases/decreases with the increas-326
ing/decreasing of the Knudsen number in the continuum/free molecular regimes (see327
discussion in the beginning of section 3.2). A sufficient condition for the Knudsen minimum328
to appear can be thus easily determined by imposing the MFR in the continuum regime to329
be larger than that in the free molecular regime. The dimensionless MFR in the continuum330
limit (Kn ≈ 0) is given by Eq. (A 4) with α = 0, i.e., the non-slip solution331

Ûmh

Ûmn
=

3Rη0

5
√
π fµ

, (A 5)332
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where it is assumed that the fluid is at its freezing point, corresponding to η0 = 0.494333
for a fluid of hard-spheres (Sigurgeirsson & Heyes 2003). The normalising MFR here and334
elsewhere in the text, for instance explicitly in figures 1(a), 2, and Eq. (3.3), is335

Ûmn = −mn0
πd2

4
1
m

1
n0

dP
dz

d√
kT/m

= −
πd3

4
√

kT/m

dP
dz
, (A 6)336

From the dimensionless MFR in the free molecular limit (Kn ∼ ∞), provided by Eq. (3.1)337
with the Knudsen self-diffusivity from Eq. (3.2) as the proportionality factor and Z = 1 from338
Eq. (2.2)339

Ûmd

Ûmn
=

Dk

d

√
m
kT
=

2
3

√
2
π
, (A 7)340

it is easily derived that the aforementioned (A 5) > (A 7) condition is always satisfied for341
R & 60, represented by the orange curve in figure 2 depicting the behaviour in large channels.342
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