
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Shapley Value in Machine Learning
Citation for published version:
Rozemberczki, B, Watson, L, Bayer, P, Yang, H-T, Kiss, O, Nilsson, S & Sarkar, R 2022, The Shapley
Value in Machine Learning. in L De Raedt (ed.), Proceedings of the 31st International Joint Conference on
Artifical Intelligence, IJCAI-ECAI 2022. International Joint Conferences on Artificial Intelligence
Organization, pp. 5572-5579, The 31st International Joint Conference on Artificial Intelligence and the 25th
European Conference on Artificial Intelligence, Vienna, Austria, 23/07/22.
https://doi.org/10.24963/ijcai.2022/778

Digital Object Identifier (DOI):
10.24963/ijcai.2022/778

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 31st International Joint Conference on Artifical Intelligence, IJCAI-ECAI 2022

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.24963/ijcai.2022/778
https://doi.org/10.24963/ijcai.2022/778
https://www.research.ed.ac.uk/en/publications/c86b81c9-231b-4414-be4b-3df12fe2f0b7


The Shapley Value in Machine Learning
Benedek Rozemberczki1 , Lauren Watson2 , Péter Bayer3 , Hao-Tsung Yang2 ,
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Abstract
Over the last few years, the Shapley value, a solution
concept from cooperative game theory, has found nu-
merous applications in machine learning. In this paper,
we first discuss fundamental concepts of cooperative
game theory and axiomatic properties of the Shapley
value. Then we give an overview of the most important
applications of the Shapley value in machine learning:
feature selection, explainability, multi-agent reinforce-
ment learning, ensemble pruning, and data valuation.
We examine the most crucial limitations of the Shapley
value and point out directions for future research.1

1 Introduction
Measuring importance and the attribution of various gains is a
central problem in many practical aspects of machine learning
such as explainability [Lundberg et al., 2017], feature selection
[Cohen et al., 2007], data valuation [Ghorbani et al., 2019],
ensemble pruning [Rozemberczki et al., 2021] and federated
learning [Wang et al., 2020; Fan et al., 2021]. For example,
one might ask: What is the importance of a certain feature in
the decisions of a machine learning model? How much is an
individual data point worth? Which models are the most valuable
in an ensemble? These questions have been addressed in different
domains using specific approaches. Interestingly, there is also a
general and unified approach to these questions as a solution to
a transferable utility (TU) cooperative game. In contrast with
other approaches, solution concepts of TU games are theoretically
motivated with axiomatic properties. The best known solution of
this type is the Shapley value [Shapley, 1953] characterized by
several desiderata that include fairness, symmetry, and efficiency
[Chalkiadakis et al., 2011].

In the TU setting, a cooperative game consists of: a player set
and a scalar-valued characteristic function that defines the value of
coalitions (subsets of players). In such a game, the Shapley value
offers a rigorous and intuitive way to distribute the collective value
(e.g. the revenue, profit, or cost) of the team across individuals.
To apply this idea to machine learning, we need to define two
components: the player set and the characteristic function. In a
machine learning setting players may be represented by a set of

1The survey is supported by a collection of related work under
https://github.com/AstraZeneca/awesome-shapley-value.

input features, reinforcement learning agents, data points, models
in an ensemble, or data silos. The characteristic function can then
describe the goodness of fit for a model, reward in reinforcement
learning, financial gain on instance level predictions, or out-of-
sample model performance. We provide an example about model
valuation in an ensemble [Rozemberczki et al., 2021] in Figure 1.

Figure 1: The Shapley value can be used to solve cooperative games.
An ensemble game is a machine learning application for it – models in
an ensemble are players (red, blue, and green robots) and the financial
gain of the predictions is the payoff (coins) for each possible coalition
(rectangles). The Shapley value can distribute the gain of the grand
coalition (right bottom corner) among models.

Present work. We introduce basic definitions of cooperative
games and present the Shapley value, a solution concept that can
allocate gains in these games to individual players. We discuss its
properties and emphasize why these are important in machine
learning. We overview applications of the Shapley value in
machine learning: feature selection, data valuation, explainability,
reinforcement learning, and model valuation. Finally, we discuss
the limitations of the Shapley value and point out future directions.

2 Background
This section introduces cooperative games and the Shapley value
followed by its properties. We also provide an illustrative running
example for our definitions.

2.1 Cooperative games and the Shapley value
Definition 1. Player set and coalitions. Let N = {1, . . . , n}
be the finite set of players. We call each non-empty subset S ⊆ N
a coalition and N itself the grand coalition.
Definition 2. Cooperative game. A TU game is defined by
the pair (N , v) where v : 2N → R is a mapping called the
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characteristic function or the coalition function of the game
assigning a real number to each coalition and satisfying v(∅) = 0.

Example 1. Let us consider a 3-player cooperative game where
N = {1, 2, 3}. The characteristic function defines the payoff for
each coalition. Let these payoffs be given as:

v(∅) = 0; v({1}) = 7; v({2}) = 11; v({3}) = 14;

v({1, 2}) = 18; v({1, 3}) = 21; v({2, 3}) = 23; v({1, 2, 3}) = 25.

Definition 3. Set of feasible payoff vectors. Let us define
Z(N , v) = {z ∈ RN |

∑
i∈N zi ≤ v(N )} the set of fea-

sible payoff vectors for the cooperative game (N , v).
Definition 4. Solution concept and solution vector. Solution
conceptΦ is a mapping associating a subsetΦ(N , v) ⊆ Z(N , v)
to every TU game (N , v). A solution vector φ(N , v) ∈ RN

to the cooperative game (N , v) satisfies solution concept Φ if
φ(N , v) ∈ Φ(N , v). Solution concept Φ is single-valued if for
every (N , v) the set Φ(N , v) is a singleton.

A solution concept defines an allocation principle through
which rewards can be given to the individual players. The sum
of these rewards cannot exceed the value of the grand coalition
v(N ). Solution vectors are specific allocations satisfying the
principles of the solution concept.

Definition 5. Permutations of the player set. Let Π(N ) be
the set of all permutations defined onN , a specific permutation is
written as π ∈ Π(N ) and π(i) is the position of player i ∈ N
in permutation π.

Definition 6. Predecessor set. Let the set of predecessors of
player i ∈ N in permutation π be the coalition:

Pπi = {j ∈ N | π(j) < π(i)} .

Let us imagine that the permutation of the players in our
illustrative game is π = (3, 2, 1). Under this permutation the
predecessor set of the 1st player is Pπ1 = {3, 2}, that of the 2nd
player is Pπ2 = {3} and Pπ3 = ∅.
Definition 7. Shapley value. The Shapley value [Shapley, 1953]
is a single-valued solution concept for cooperative games. The
ith component of the single solution vector satisfying this solution
concept for any cooperative game (N , v) is given by Equation 1.

φShi =
1

|Π(N )|
∑

π∈Π(N )

[v(Pπi ∪ {i})− v(Pπi )]︸ ︷︷ ︸
Player i’s marginal contribution

in permutation π

(1)

The Shapley value of a player is the average marginal con-
tribution of the player to the value of the predecessor set over
every possible permutation of the player set. Table 1 contains
manual calculations of the players’ marginal contributions to each
permutation and their Shapley values in Example 1.

2.2 Properties of the Shapley value
We define the solution concept properties that characterize the
Shapley value and emphasize their relevance and meaning in a
feature selection game. In this game input features are players,
coalitions are subsets of features and the payoff is a scalar valued
goodness of fit for a machine learning model using these input
features.

Table 1: The permutations of the player set, marginal contributions of the
players in each permutation and the Shapley values.

Marginal Contribution
Permutation Player 1 Player 2 Player 3

(1, 2, 3) 7 11 7
(1, 3, 2) 7 4 14
(2, 1, 3) 7 11 7
(2, 3, 1) 2 11 12
(3, 1, 2) 7 4 14
(3, 2, 1) 2 9 14

Shapley value 32/6 50/6 68/6

Definition 8. Null player. Player i is called a null player if
v(S ∪ {i}) = v(S) ∀S ⊆ N \ {i}. A solution concept Φ
satisfies the null player property if for every game (N , v), ev-
ery φ(N , v) ∈ Φ(N , v), and every null player i it holds that
φ(N , v)i = 0.

In the feature selection game a solution concept with the null
player property assigns zero value to those features that never
increase the goodness of fit when added to the feature set.
Definition 9. Efficiency. A solution concept Φ is efficient or
Pareto optimal if for every game (N , v) and every solution vector
φ(N , v) ∈ Φ(N , v) it holds that

∑
i∈N

φ(N , v)i = v(N ).

Consider the goodness of fit of the model trained by using the
whole set of input features. The importance measures assigned to
individual features by an efficient solution concept sum to this
goodness of fit. This allows for quantifying the contribution of
individual features to the whole performance of the trained model.

Definition 10. Symmetry. Two players i and j are symmetric if
v(S ∪{i}) = v(S ∪{j}) ∀S ⊆ N \{i, j}. A solution concept
Φ satisfies symmetry if for all (N , v) for all φ(N , v) ∈ Φ(N , v)
and all symmetric players i, j ∈ N it holds that φ(N , v)i =
φ(N , v)j .

The symmetry property implies that if two features have the
same marginal contribution to the goodness of fit when added to
any possible coalition then the importance of the two features
is the same. This property is essentially a fair treatment of the
input features and results in identical features receiving the same
importance score.
Definition 11. Linearity. A single-valued solution concept Φ
satisfies linearity if for any two games (N , v) and (N , w), and
for the solution vector of the TU game given by (N , v + w) it
holds that

φ(N , v + w)i = φ(N , v)i + φ(N , w)i, ∀i ∈ N .
Let us imagine a binary classifier and two sets of data points –

on both of these datasets, we can define feature selection games
with binary cross entropy-based payoffs. The Shapley values of
input features in the feature selection game calculated on the
pooled dataset would be the same as adding together the Shapley
values calculated from the two datasets separately.

These four properties together characterize the Shapley value.
Theorem 1 (Shapley, 1953). A single-valued solution concept
satisfies the null player, efficiency, symmetry, and linearity proper-
ties if and only if it is the Shapley value.



3 Approximations of the Shapley Value
Shapley value computation requires an exponential number of
characteristic function evaluations, resulting in exponential time
complexity. This is prohibitive in a machine learning context
when each evaluation can correspond to training a machine
learning model. For this reason, machine learning applications
use a variety of Shapley value approximation methods we discuss
in this section. In the following discussion φ̂Shi denotes an
approximated Shapley value for player i ∈ N .

3.1 Monte Carlo Permutation Sampling
Monte Carlo permutation sampling for the general class of
cooperative games was first proposed by Castro et al. [2009] to
approximate the Shapley value in linear time.

Data: (N , v) - Cooperative TU game.
k - Number of sampled permutations.

Result: φ̂Shi - Approximated Shapley value ∀i ∈ N .
1 φ̂Shi ← 0, ∀i ∈ N
2 for (1, . . . , k) do
3 π ← Uniform Sample(Π(N ))
4 for i ∈ N do
5 Pπi ← {j ∈ N | π(j) < π(i)}
6 φ̂Shi ← φ̂Shi +

v(Pπi ∪{i})−v(P
π
i )

k

7 end
8 end
Algorithm 1: Monte Carlo permutation sampling approx-
imation of the Shapley value.

As shown in Algorithm 1, the method performs a sampling-
based approximation. At each iteration, a random element from the
permutations of the player set is drawn. The marginal contributions
of the players in the sampled permutation are scaled down by the
number of samples (which is equivalent to taking an average) and
added to the approximated Shapley values from the previous
iteration. Castro et al. [2009] provide asymptotic error bounds for
this approximation algorithm via the central limit theorem when
the variance of the marginal contributions is known. Maleki et
al. [2013] extended the analysis of this sampling approach by
providing error bounds when either the variance or the range
of the marginal contributions is known via Chebyshev’s and
Hoeffding’s inequalities. Their bounds hold for a finite number of
samples in contrast to the previous asymptotic bounds.

Stratified Sampling for Variance Reduction
In addition to extending the analysis of Monte Carlo estimation,
Maleki et al. [2013] demonstrate how to improve the Shapley
Value approximation when sampling can be stratified by di-
viding the permutations of the player set into homogeneous,
non-overlapping sub-populations. In particular, they show that if
the set of permutations can be grouped into strata with similar
marginal gains for players, then the approximation will be more
precise. Following this, Castro et al. [2017] explored stratified
sampling approaches using strata defined by the set of all marginal
contributions when the player is in a specific position within
the coalition. Burgess et al. [2021] propose stratified sampling
approaches designed to minimize the uncertainty of the estimate
via a stratified empirical Bernstein bound.

Other Variance Reduction Techniques
Following the stratified approaches of Maleki et al.; Castro
et al.; Burgess et al. [2013; 2017; 2021], Illés et al. [2019]
propose an alternative variance reduction technique for the sample
mean. Instead of generating a random sequence of samples,
they instead generate a sequence of ergodic but not independent
samples, taking advantage of negative correlation to reduce
the sample variance. Mitchell et al. [2021] show that other
Monte Carlo variance reduction techniques can also be applied to
this problem, such as antithetic sampling [Lomeli et al., 2019;
Rubinstein et al., 2016]. A simple form of antithetic sampling
uses both a randomly sampled permutation and its reverse. Finally,
Touati et al. [2021] introduce a Bayesian Monte Carlo approach to
Shapley value calculation, showing that Shapley value estimation
can be improved by using Bayesian methods to approximate the
Shapley value.

3.2 Multilinear Extension
By inducing a probability distribution over the subsets S where Ei
is a random subset that does not include player i and each player is
included in a subset with probability q, Owen [1972] demonstrated
that the sum over subsets in Definition 7 can also be represented
as an integral

∫ 1

0
ei(q)dq where ei(q) = E[v(Ei ∪ i)− v(Ei)].

Sampling over q therefore provides an approximation method –
the multilinear extension. For example, Mitchell et al. [2021] uses
the trapezoid rule to sample q at fixed intervals while Okhrati
et al. [2021] proposes incorporating antithetic sampling as a
variance reduction technique.

3.3 Linear Regression Approximation
In their seminal work Lundberg et al. [2017] apply Shapley
values to feature importance and explainability (SHAP values),
demonstrating that Shapley values for TU games can be ap-
proximated by solving a weighted least squares optimization
problem. Their main insight is the computation of Shapley values
by approximately solving the following optimization problem:

wS =
|N | − 1(|N|

|S|

)
|S|(|N | − |S|)

(2)

min
φ̂Sh0 ,...,φ̂Shn

∑
S⊆N

wS

(
φ̂Sh0 +

∑
i∈S

φ̂Shi − v(S)

)
(3)

s.t. φ̂Sh0 =v(∅), φ̂Sh0 +
∑
i∈N

φ̂Shi = v(N ). (4)

The definition of weights in Equation (2) and the objective
function in Equation (3) implies the evaluation of v(·) for 2n
coalitions. To address this Lundberg et al. [2017] propose approx-
imating this problem subsampling the coalitions. Note that wS is
higher when coalitions are large or small. Covert et al. [2021]
extend the study of this method, finding that while SHAP is a
consistent estimator, it is not an unbiased estimator. By proposing
and analyzing a variation of this method that is unbiased, they
conclude that while there is a small bias incurred by SHAP it has
a significantly lower variance than the corresponding unbiased
estimator. Covert et al. [2021] then propose a variance reduction
method for SHAP, improving convergence speed by a magnitude
through sampling coalitions in pairs with each selected alongside
its complement.



4 Machine Learning and the Shapley Value
Our discussion about applications of the Shapley value in the
machine learning domain focuses on the formulation of the
cooperative games, definition of the player set and payoffs, Shapley
value approximation technique used, and the time complexity of
the approximation. We summarized the most important application
areas with this information in Table 2 and grouped the relevant
works by the problem solved.

4.1 Feature Selection
The feature selection game treats input features of a machine
learning model as players and model performance as the payoff
[Guyon et al., 2003; Fryer et al., 2021]. The Shapley values of
features quantify how much individual features contribute to the
model’s performance on a set of data points.
Definition 12. Feature selection game. Let the player set be
N = {1, . . . , n}, for S ⊆ N the train and test feature vector
sets are X Train

S =
{

xTrain
i |i ∈ S

}
and X Test

S =
{

xTest
i |i ∈ S

}
.

Let fS(·) be a machine learning model trained using X Train
S

as input, then the payoff is v(S) = g(y, ŷS) where g(·) is a
goodness of fit function, y and ŷS = fS(X Test

S ) are the ground
truth and predicted targets.

Shapley values, and close relatives such as the Banzhaf index
[Banzhaf III, 1964], have been studied as a measure of feature
importance in various contexts [Cohen et al., 2007; Sun et al.,
2012; Williamson et al., 2020; Tripathi et al., 2020]. Using
these importance estimates, features can be ranked and selected
or removed accordingly. This approach has been applied to
various tasks such as vocabulary selection in natural language
processing [Patel et al., 2021] and feature selection in human
action recognition [Guha et al., 2021].

4.2 Data valuation
In the data valuation game training set data points are players and
the payoff is defined by the goodness of fit achieved by a model
on the test data. Computing the Shapley value of players in a data
valuation game measures how much data points contribute to the
performance of the model.
Definition 13. Data valuation game. Let the player set be
N = {(xi, yi) | 1 ≤ i ≤ n} where xi is the input feature vector
and yi is the target. Given the coalition S ⊆ N let fS(·) be
a machine learning model trained on S . Let us denote the test
set feature vectors and targets as X and Y , given fS(·) the set
of predicted labels is defined as Ŷ = {fS(x)|x ∈ X}. Then
the payoff of a model trained on the data points S ⊆ N is
v(S) = g(Y, Ŷ) where g(·) is a goodness of fit metric.

The Shapley value is not the only method for data valua-
tion – earlier works used function utilization [Koh et al., 2017;
Sharchilev et al., 2018], leave-one-out testing [Cook, 1977]
and core sets [Dasgupta et al., 2009]. However, these methods
fall short when there are fairness requirements from the data
valuation technique [Jia et al., 2019; Ghorbani et al., 2019;
Kwon et al., 2021b]. Ghorbani proposed a framework of utilizing
Shapley value in a data-sharing system [Ghorbani et al., 2019];
Jia et al. [2019] advanced this work with more efficient algo-
rithms to approximate the Shapley value for data valuation. The
distributional Shapley value has been discussed by Ghorbani

et al. [2020a] who argued that keeping privacy is hard during
Shapley value computation. Their method calculates the Shapley
value over a distribution which solves problems such as lack of
privacy. The computation time of this can be reduced as Kwon et
al. [2021a] point out with approximation methods optimized for
specific machine learning models.

4.3 Federated learning
A federated learning scenario can be seen as a cooperative game
by modeling the data owners as players who cooperate to train a
high-quality machine learning model [Liu et al., 2021].

Definition 14. Federated learning game. In this game players
are a set of labeled dataset owners N = {(Xi,Yi)|1 ≤ i ≤ n}
where Xi and Yi are the feature and label sets owned by the
ith silo. Let (X ,Y) be a labeled test set, S ⊆ N a coalition of
data silos, fS(·) a machine learning model trained on S , and
ŶS the labels predicted by fS(·) on X . The payoff of S ⊆ N is
v(S) = g(Y, ŶS) where g(·) is a goodness of fit metric.

The system described by Liu et al. [2021] uses Monte Carlo
sampling to approximate the Shapley value of data coming from
the data silos in linear time. Given the potentially overlapping
nature of the datasets, the use of configuration games could be an
interesting future direction [Albizuri et al., 2006].

4.4 Explainable machine learning
In explainable machine learning the Shapley value is used to
measure the contributions of input features to the output of a
machine learning model at the instance level. Given a specific
data point, the goal is to decompose the model prediction and
assign Shapley values to individual features of the instance. There
are universal solutions to this challenge that are model agnostic
and designs customized for deep learning [Chen et al., 2018;
Ancona et al., 2019], classification trees [Lundberg et al., 2017],
and graphical models [Liu et al., 2020; Singal et al., 2021].

Universal explainability
A cooperative game for universal explainability is completely
model agnostic; the only requirement is that a scalar-valued
output can be generated by the model such as the probability of a
class label being assigned to an instance.

Definition 15. Universal explainability game. Let us denote
the machine learning model of interest with f(·) and let the
player set be the feature values of a single data instance: N =
{xi|1 ≤ i ≤ n}. The payoff of a coalition S ⊆ N in this game
is the scalar valued prediction v(S) = ŷS = f(S) calculated
from the subset of feature values.

Calculating the Shapley value in a game like this offers
a complete decomposition of the prediction because the effi-
ciency axiom holds. The Shapley values of feature values are
explanatory attributions to the input features and missing input
feature values are imputed with a reference value such as the
mean computed from multiple instances [Lundberg et al., 2017;
Covert et al., 2021]. The pioneering Shapley value-based uni-
versal explanation method SHAP [Lundberg et al., 2017] pro-
poses a linear time approximation of the Shapley values which
we discussed in Section 3. This approximation has shortcom-
ings and implicit assumptions about the features which are



Table 2: An application area, payoff definition, Shapley value approximation technique, and computation time (the player set is noted byN ) based
comparison of research works. Specific applications of the Shapley value are grouped together and ordered chronologically.

Application Reference Payoff Approximation Time

Feature Selection

[Cohen et al., 2007] Validation loss Exact O(|N |!)
[Sun et al., 2012] Mutual information Exact O(|N |!)

[Williamson et al., 2020] Validation loss Monte Carlo sampling O(|N |)
[Tripathi et al., 2020] Training loss Monte Carlo sampling O(|N |)

[Patel et al., 2021] Validation loss Monte Carlo sampling O(|N |)
[Guha et al., 2021] Validation loss Exact O(|N |!)

Data Valuation

[Jia et al., 2019] Validation loss Restricted Monte Carlo sampling O(
√

|N | log |N |2)
[Ghorbani et al., 2019] Validation loss Monte Carlo sampling O(|N |)

[Shim et al., 2021] Validation loss Exact O(|N | log |N |)
[Deutch et al., 2021] Validation loss Restricted Monte Carlo sampling O(|N |)
[Kwon et al., 2021a] Validation loss Monte Carlo sampling O(|N |)
[Kwon et al., 2021b] Validation loss Monte Carlo sampling O(|N |)

Federated Learning [Liu et al., 2021] Validation loss Monte Carlo sampling O(|N |)

Universal Explainability

[Lundberg et al., 2017] Attribution Linear regression O(|N |)
[Sundararajan et al., 2020a] Interaction attribution Integrated gradients O(|N |2)
[Sundararajan et al., 2020b] Interaction attribution Integrated gradients O(|N |2)

[Frye et al., 2020a] Attribution Linear regression O(|N |)
[Frye et al., 2020b] Attribution Linear regression O(|N |)
[Yuan et al., 2021] Attribution Monte Carlo sampling O(|N |)

[Covert et al., 2021] Attribution Linear regression O(|N |)

Explainability of Deep Learning

[Chen et al., 2018] Attribution Restricted Monte Carlo sampling O(2|N|) or O(|N |)
[Ancona et al., 2019] Neuron attribution Voting game O(|N |2)

[Ghorbani et al., 2020b] Neuron attribution Monte Carlo sampling O(|N |)
[Zhang et al., 2021] Interaction Attribution Linear regression O(|N |)

Explainability of Graphical Models

[Liu et al., 2020] Attribution Exact O(|N |!)
[Heskes et al., 2020] Causal Attribution Linear regression O(|N |)
[Wang et al., 2021b] Causal Attribution Linear regression O(|N |)
[Singal et al., 2021] Causal Attribution Linear regression O(|N |)

Explainability in Graph Machine Learning
[Yuan et al., 2021] Edge level attribution Monte Carlo sampling O(|N |)
[Duval et al., 2021] Edge level attribution Linear regression O(|N |)

Multi-agent Reinforcement Learning
[Wang et al., 2021a] Global reward Monte Carlo sampling O(|N |)

[Li et al., 2021] Global reward Monte Carlo sampling O(|N |)
Model Valuation in Ensembles [Rozemberczki et al., 2021] Predictive performance Voting game O(|N |2)

addressed by newer Shapley value-based explanation tech-
niques. For example, in [Frye et al., 2020a] the input features
are not necessarily independent, [Frye et al., 2020b] restricts
the permutations based on known causal relationships, and in
[Covert et al., 2021] the proposed technique improves the con-
vergence guarantees of the approximation. Several methods
generalize SHAP beyond feature values to give attributions
to first-order feature interactions [Sundararajan et al., 2020b;
Sundararajan et al., 2020a]. However, this requires that the player
set is redefined to include feature interaction values.

Deep learning
In neuron explainability games neurons are players and attribu-
tions to the neurons are payoffs. The primary goal of Shapley
value-based explanations in deep learning is to solve these games
and compute attributions to individual neurons and filters [Ghor-
bani et al., 2020b; Ancona et al., 2019].
Definition 16. Neuron explainability game. Let us consider
fIN(·) the encoder layer of a neural network and x the input
feature vector to the encoder. In the neuron explainability game
the player set is N = fIN(x) = {h1, . . . , hn} - each player
corresponds to the output of a neuron in the final layer of the
encoder. The payoff of coalition S ⊆ N is defined as the predicted
output v(S) = ŷS = fOUT(S) where fOUT(·) is the head layer
of the neural network.

In practical terms, the payoffs are the output of the neural
network obtained by masking out certain neurons. Using the
Shapley values obtained in these games the value of individual
neurons can be quantified. At the same time, some deep learning

specific Shapley value-based explanation techniques have designs
and goals that are aligned with the games described in universal
explainability. These methods exploit the structure of the input
data [Chen et al., 2018] or the nature of feature interactions [Zhang
et al., 2021] to provide efficient computations of attributions.

Graphical models
Compared to universal explanations the graphical model-specific
techniques restrict the admissible set of player set permutations
considered in the attribution process. These restrictions are
defined based on known causal relations and permutations are
generated by various search strategies on the graph describing
the probabilistic model [Heskes et al., 2020; Liu et al., 2020;
Singal et al., 2021]. Methods are differentiated from each other by
how restrictions are defined and how permutations are restricted.

Relational machine learning
In the relational machine learning domain the Shapley value
is used to create edge importance attributions of instance-level
explanations [Duval et al., 2021; Yuan et al., 2021]. Essentially
the Shapley value in these games measures the average marginal
change in the outcome variable as one adds a specific edge to
the edge set in all of the possible edges set permutations. It is
worth noting that the edge explanation and attribution techniques
proposed could be generalized to provide node attributions.

Definition 17. Relational explainability game. Let us define
a graph G = (V,N ) where V and N are the vertex and edge
sets. Given the relational machine learning model f(·), node
feature matrix X, node u ∈ V , the payoff of coalition S ⊆ V in



the graph machine learning explanation game is defined as the
node level prediction v(S) = ŷS,u = f(X,V,S, u).

4.5 Multi-agent reinforcement learning
Global reward multi-agent reinforcement learning problems can
be modeled as TU games [Wang et al., 2021a; Li et al., 2021]
by defining the player set as the set of agents and the payoff
of coalitions as a global reward. The Shapley value allows an
axiomatic decomposition of the global reward achieved by the
agents in these games and the fair attribution of credit assignments
to each of the participating agents.

4.6 Model valuation in ensembles
The Shapley value can be used to assess the contributions of
machine learning models to a composite model in ensemble
games. In these games, players are models in an ensemble and
payoffs are decided by whether prediction mad by the model are
correct.
Definition 18. Ensemble game. Let us consider a single target
- feature instance denoted by (y, x). The player set in ensemble
games is defined by a set of machine learning models N =
{fi(·)|1 ≤ i ≤ n} that operate on the feature set. The predicted
target output by the ensemble S ⊆ N is defined as ŷS = f̃(S, x)
where f̃(·) is a prediction aggregation function. The payoff of S
is v(S) = g(y, ŷS) where g(·) is a goodness of fit metric.

The ensemble games described by [Rozemberczki et al., 2021]
are formulated as a special subclass of voting games. This allows
the use of precise game-specific approximation [Fatima et al.,
2008] techniques and because of this the Shapley value estimates
are obtained in quadratic time and have a tight approximation
error. The games themselves are model agnostic concerning the
player set – ensembles can be formed by heterogeneous types of
machine learning models that operate on the same inputs.

5 Discussion
The Shapley value has a wide-reaching impact in machine learning,
but it has limitations and certain extensions of the Shapley value
could have important applications in machine learning.

5.1 Limitations
Computation time
Computing the Shapley value for each player naively in a TU
game takes factorial time. In some machine learning application
areas such as multi-agent reinforcement learning and federated
learning where the number of players is small, this is not an
issue. However, in large scale data valuation [Kwon et al., 2021a;
Kwon et al., 2021b], explainability [Lundberg et al., 2017], and
feature selection [Patel et al., 2021] settings the exact calculation
of the Shapley value is not tractable. In Sections 3 and 4 we
discussed approximation techniques proposed to make Shapley
value computation possible. In some cases, asymptotic properties
of these Shapley value approximation techniques are not well
understood – see for example [Chen et al., 2018].

Interpretability
By definition, the Shapley values are the average marginal contri-
butions of players to the payoff of the grand coalition computed
from all permutations [Shapley, 1953]. Theoretical interpretations

like this one are not intuitive and not useful for non-game theory
experts. This means that translating the meaning of Shapley values
obtained in many application areas to actions is troublesome
[Kumar et al., 2020]. For example in a data valuation scenario:
is a data point with a twice as large Shapley value as another
one twice as valuable? Answering a question like this requires a
definition of the cooperative game that is interpretable.

Axioms do not hold under approximations
As we discussed most applications of the Shapley value in
machine learning use approximations. The fact that under these
approximations the desired axiomatic properties of the Shapley
value do not hold is often overlooked [Sundararajan et al., 2020b].
This is problematic because most works argue for the use of
Shapley value based on these axioms. In our view, this is the
greatest unresolved issue in the applications of the Shapley value.

5.2 Future Research Directions
Hierarchy of the coalition structure
The Shapley value has a constrained version called Owen value
[Owen, 1977] in which only permutations satisfying conditions
defined by a coalition structure - a partition of the player set -
are considered. The calculation of the Owen value is identical
to that of the Shapley value, with the exception that only those
permutations are taken into account where the players in any
of the subsets of the coalition structure follow each other. In
several real-world data and feature valuation scenarios even more
complex hierarchies of the coalition, the structure could be useful.
Having a nested hierarchy imposes restrictions on the admissible
permutations of the players and changes player valuation. Games
with such nested hierarchies are called level structure games in
game theory. [Winter, 1989] presents the Winter value a solution
concept to level structure games - such games are yet to receive
attention in the machine learning literature.

Overlapping coalition structure
Traditionally, it is assumed that players in a coalition structure are
allocated in disjoint partitions of the grand coalition. Allowing
players to belong to overlapping coalitions in configuration games
[Albizuri et al., 2006] could have several applications in machine
learning. For example in a data-sharing - feature selection scenario
multiple data owners might have access to the same features - a
feature can belong to overlapping coalitions.

Solution concepts beyond the Shapley value
The Shapley value is a specific solution concept of cooperative
game theory with intuitive axiomatic properties (Section 2). At
the same time it has limitations with respect to computation
constraints and interpretability (Sections 3 and 5). Cooperative
game theory offers other solution concepts such as the core,
nucleolus, stable set, and kernel with their own axiomatizations.
For example, the core has been used for model explainability and
feature selection [Yan et al., 2021]. Research into the potential
applications of these solution concepts is lacking.

6 Conclusion
In this survey we discussed the Shapley value, examined its
axiomatic characterizations and the most frequently used Shapley
value approximation approaches. We defined and reviewed its



uses in machine learning, highlighted issues with the Shapley
value and potential new application and research areas in machine
learning.
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