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Abstract 
Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli 
in order to ensure precise context dependent responses. This requires dynamic 
cellular signalling events that ensure homeostasis and plasticity when needed. A less 
well understood process is cellular response to elevated interstitial fluid pressure, 
where the cell senses and responds to changes in extracellular hydrostatic pressure. 
Here using quantitative label-free digital holographic imaging, combined with genome 
editing, biochemistry and confocal imaging, we analyse the temporal cellular 
response to cyclic hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, 
the cell responds by rapid, dramatic and reversible changes in cellular volume. We 
show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling 
pathway, control cell volume and that cells without YAP and TAZ have lower plasma 
membrane tension.  We present direct evidence that YAP/TAZ drive the cellular 
response to hydrostatic pressure, a process that is at least partly mediated via 
clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic 
pressure, YAP and TAZ are activated and induce TEAD mediated transcription and 
expression of cellular components involved in dynamic regulation of cell volume and 
extracellular matrix. This cellular response confers a feedback loop that allows the 
cell to robustly respond to changes in interstitial fluid pressure.  
 
Keywords:  
YAP/TAZ, endocytosis, membrane tension, cell volume, holographic imaging   
 
Introduction: 
Cells constantly need to sense and dynamically integrate multiple chemical and 
mechanical stimuli within the cellular microenvironment (Cadart, 2019b; Collinet, 
2021; Hansen et al, 2015a; Vining & Mooney, 2017). Physical cues in the cellular 
niche are critical mediators of context dependent cellular regulation and responses 
(Cadart, 2019b; Collinet, 2021; Hansen et al., 2015a; Vining & Mooney, 2017). 
Consequently, in-depth understanding of how cells respond to these distinct forces 
are of major interest. These fundamental responses modulate central cellular 
processes, such as metabolic adaptation, differentiation, proliferation, cellular 
migration and cell size, and thereby ultimately define cell identity (Cadart, 2019b; 
Collinet, 2021; Hansen et al., 2015a; Vining & Mooney, 2017). A less well understood 
cellular process is the ability to precisely and dynamically respond to changes in 
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interstitial fluid pressure (IFP). This pressure is distinct from other types of cellular 
mechanical stimuli, as IFP is isotropic and affects the thermodynamics of the cellular 
environment without applying a vector force (Heldin et al, 2004; Myers et al, 2007). 
Consequently, fluid pressure is fundamentally different to other mechanical stresses. 
IFP oscillates almost in phase with arterial pressure (Myers et al., 2007). IFP is of 
particular importance during development (Chan & Hiiragi, 2020; Mirra et al, 2019; 
Stewart et al, 2011; Teng & Engler, 2019), but also during pathophysiological 
processes, such as inflammation, oedema and in solid tumours (Heldin et al., 2004; 
Stewart et al., 2011; Teng & Engler, 2019; Wiig & Swartz, 2012). Tumours with 
elevated IFP facilitate the migration of cancer cells from the tumour into the tissue 
and correlate with poor prognosis (Heldin et al., 2004; Northcott et al, 2018). Various 
factors may contribute to elevated IFP in solid tumours, including blood-vessel 
leakiness, contraction mediated by stromal fibroblasts and overall changes to the 
interstitial matrix composition, as well as from lymph vessel abnormalities (Heldin et 
al., 2004; Myers et al., 2007; Swartz & Lund, 2012; Wiig & Swartz, 2012).  
 
The Hippo pathway, through regulating its transcriptional co-activators YAP and TAZ, 
controls development and facilitates regenerative processes, and if the pathway is 
not tightly regulated causes cancer (Davis & Tapon, 2019; Fulford et al, 2018; 
Moroishi et al, 2015a; Rognoni & Walko, 2019; Salem & Hansen, 2019; Thompson, 
2020; Zanconato et al, 2019). The Hippo pathway contains an upstream 
serine/threonine kinase module and a downstream transcriptional effector module, 
consisting of YAP and TAZ (encoded respectively by YAP1 and WWTR1) and their 
cognate transcription factors (Fulford et al., 2018; Hansen et al., 2015a). YAP/TAZ 
are regulated by LATS1/2 mediated inhibitory phosphorylation on five (YAP) or four 
(TAZ) serine residues (Huang et al, 2005; Liu et al, 2010; Zhao et al, 2007). Upon 
relief from this inhibitory phosphorylation, YAP and TAZ localise to the nucleus to 
exert their co-transcriptional activity (Huang et al., 2005; Liu et al., 2010; Zhao et al., 
2007). In solid tumours, high YAP/TAZ activity in general increase the risk of 
metastasis (Lamar et al, 2012; Steinhardt et al, 2008), impede cancer treatment and 
confer poor prognosis (Moroishi et al., 2015a; Rognoni & Walko, 2019; Salem & 
Hansen, 2019; Thompson, 2020; Zanconato et al., 2019). However, distinct core 
Hippo pathway components are mutated only in a subset of cancers, and the 
underlying reasons as to why YAP/TAZ are predominantly nuclear in solid tumours 
are not fully understood (Fulford et al., 2018; Moroishi et al., 2015a; Rognoni & 
Walko, 2019; Salem & Hansen, 2019; Thompson, 2020; Zanconato et al., 2019). The 
Hippo pathway is a transducer of physical stimuli in the microenvironment and a 
nexus for cellular signalling (Hansen et al., 2015a; Rausch & Hansen, 2020). The 
Hippo pathway is linked to cellular responses to extracellular matrix (ECM) stiffness 
(Bertero et al, 2016; Dupont et al, 2011; Liu et al, 2015; Meng et al, 2018),  shear 
stress (Lee et al, 2017; Nakajima et al, 2017; Rausch et al, 2019; Wang et al, 2016) 
and osmotic pressure (Hong et al, 2017; Meng et al., 2018). Importantly, the 
pathway’s role in cellular response to elevated hydrostatic pressure has so far been 
unexplored. As the Hippo pathway is a mechanotransductive pathway, we sought to 
establish if the Hippo pathway is a mediator of the cellular response to interstitial fluid 
pressure. We took advantage of a panel of isogenic genome-edited cells (Hansen et 
al, 2015b; Lin et al, 2017; Meng et al, 2015; Rausch et al., 2019) where core 
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components of the pathway have been deleted. This isogenic platform allows us to 
directly evaluate the impact components within the Hippo pathway has on 
fundamental cellular functions. We here provide evidence that changes in hydrostatic 
pressure is sensed at the plasma membrane via regulation of clathrin-mediated 
endocytosis, which is transduced to the core Hippo pathway kinase module and 
initiates downstream YAP/TAZ-TEAD dependent cellular effects. This highlights how 
hydrostatic forces, plasma membrane tension and dynamics, stimulate intracellular 
signals and regulate cell functions. 
 
 
 
Results: 
 
Oscillating hydrostatic pressure activates YAP/TAZ 
Initially we examined if the Hippo pathway is responsive to hydrostatic pressure and 
examined 200 mbar, readily within the pathophysiological range of cellular interstitial 
fluid pressures (DuFort, 2016; Heldin et al., 2004). HEK293A cells were cultured with 
or without cyclic hydrostatic pressure for two hours, whereafter lysates were 
prepared and analysed by PhosTag gels (Fig 1A and 1B). YAP and YAZ are inhibited 
by LATS1/2-mediated phosphorylation on multiple sites (Meng et al., 2015; Mo et al, 
2012; Moroishi et al, 2015b; Park et al, 2015; Yu et al, 2012; Zhao et al., 2007). 
Consequently, the PhosTag technique allows for determination of YAP and TAZ 
phosphorylation levels, and thereby activation status (Meng et al., 2015; Mo et al., 
2012; Moroishi et al., 2015b; Park et al., 2015; Yu et al., 2012; Zhao et al., 2007). A 
clear down shift (dephosphorylation), and therefore activation of YAP (Fig 1A) and 
TAZ (Fig 1B) are observed in cells experiencing cyclic hydrostatic pressure. To 
further confirm that the observed changes in dephosphorylation levels cause an 
increase in YAP/TAZ activity levels, we analysed the same lysates by conventional 
Western blots (Fig 1C). Increased levels of YAP and TAZ were evident in these 
experiments consistent with elevated YAP and TAZ activity. Using phospho-specific 
YAP antibodies raised against S127, a major LATS site (Zhao et al., 2007), as well 
as using antibodies that exclusively recognises S127 when YAP is not 
phosphorylated on this site (Si et al, 2017) (Fig 1C), confirmed results obtained by 
PhosTag gels. Protein levels of two well established YAP/TAZ targets, CTGF (CCN2) 
and CYR61 (CCN1), are likewise increased upon cyclic hydrostatic pressure (Fig 
1C). These data show that YAP/TAZ are dephosphorylated on inhibitory 
phosphorylation sites upon increased cyclic pressure, and that protein levels of well-
established YAP/TAZ encoded target genes are increased upon oscillating 
hydrostatic pressure (Fig 1C). We next examined if this cellular response is 
conserved in additional cell types. As elevated IFP is well established in primary 
bone cancer (Ariffin et al, 2014; Matsubara et al, 2013; Nathan et al, 2005; Nathan et 
al, 2008), we examined the osteosarcoma derived cell line 143B. Indeed in 143B 
cells, as in HEK293A cells, YAP becomes dephosphorylated upon oscillating 
hydrostatic pressure (Fig 1D, E). Furthermore, total 143B cellular levels of YAP and 
TAZ, likely due to increased stability of unphosphorylated protein (Zhao et al, 2010), 
as well as CTGF and CYR61 are elevated upon cyclic hydrostatic pressure (Fig 1E) 
mirroring the effect observed in HEK293A cells. We next examined cells 
experiencing comparable levels of static hydrostatic pressure and observed no YAP 
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activation (EV 1A), which highlights that cells sense and respond to dynamic 
changes.  A major point of YAP/TAZ regulation is via nuclear/cytoplasmic shuttling, 
as increased LATS1/2 phosphorylation renders YAP and TAZ cytoplasmic (Meng et 
al., 2015; Mo et al., 2012; Moroishi et al., 2015b; Park et al., 2015; Yu et al., 2012; 
Zhao et al., 2010; Zhao et al, 2012). Therefore, we next examined the subcellular 
localisation of YAP in HEK293A cells experiencing cyclic hydrostatic pressure. As 
predicted from our immunoblots (Fig 1A-C), YAP translocate to the nucleus upon 
oscillating hydrostatic pressure (Fig 1F). In parallel experiments, we analysed YAP 
localisation in 143B cells. As in HEK293A cells, YAP translocate to the nucleus upon 
elevated hydrostatic pressure (Fig 1G). We next took advantage of genome-edited 
YAP/TAZ deficient cells (Hansen et al., 2015b) (Fig 1H) to establish if YAP/TAZ drive 
the transcriptional regulation of the cellular response to hydrostatic pressure. We 
analysed the levels of the well-established YAP/TAZ target genes CYR61 and CTGF 
in cells challenged with cyclic hydrostatic pressure and compared those to cells at 
steady state. A clear induction of CYR61 and CTGF encoding extracellular matrix 
proteins is evident in cells experiencing oscillating fluid pressure (Fig 1I). Comparing 
this effect to the cellular response in YAP/TAZ knockouts (Fig 1H) allowed us to 
establish that this cellular response to hydrostatic pressure is dependent on 
YAP/TAZ (Fig 1I, J). These data combined confirms that YAP/TAZ are activated 
upon oscillating hydrostatic pressure.  
 
YAP/TAZ regulate cell volume  
To establish the macroscopic cellular response to hydrostatic pressure, we took 
advantage of live cell digital holographic imaging (DHM), a technique that allows for 
quantitative label free cellular imaging with single cell resolution (Marquet P, 2005). 
Initially, we examined the cellular volume across genotypes (Fig 2A-D) derived from 
the optical volume under the assumptions described in the methods. The average 
cellular volume of two independent YAP/TAZ knock out clones (Hansen et al., 
2015b) are 1,154 ±348μm3 (mean ±SD) (Y/T DKO#1) and 1,273 ± 352μm3 (mean ±SD) (Y/T DKO#2) whereas the average cell volume of wild type cells are 1,532 ±434μm3 (mean ±SD). Y/T DKO cells are therefore ~16-25% smaller than wild type 
cells (Fig 2A). These data confirm recent reports highlighting that YAP/TAZ regulate 
cell size via signalling to mTORC1, and through other less defined mechanisms 
(Hansen et al., 2015b; Mugahid et al, 2020; Perez-Gonzalez et al, 2019; Plouffe et al, 
2018). LATS1/2 directly phosphorylate and thereby inhibit YAP/TAZ and are the 
major cellular regulators of YAP/TAZ (Meng et al., 2015; Mo et al., 2012; Moroishi et 
al., 2015b; Park et al., 2015; Yu et al., 2012; Zhao et al., 2010; Zhao et al., 2012). 
YAP/TAZ are consequently nuclear and constitutively activated in LATS1/2 DKO 
cells (Meng et al., 2015; Park et al., 2015). Consistent with YAP/TAZ DKO cells 
being smaller, the average cell volume of LATS1/2 DKO with hyperactive YAP/TAZ 
are 1,603 ±  473μm3 (mean ± SD) (LATS1/2 DKO#1) and 1,731 ±  526μm3 (mean ±SD) (LATS1/2 DKO#2). The larger cell volume of LATS1/2 DKO cells compared to 
WT (Fig 2B, EV 1B) confirms previous observations (Hansen et al., 2015b).  
These data firmly establish our ability to precisely measure the cellular volume 
change associated with modification of the Hippo pathway. Using this approach, 
together with the isogenic Hippo pathway component knockout models (Hansen et 
al., 2015b; Lin et al., 2017; Meng et al., 2015; Park et al., 2015), allow us to delineate 
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the potential role of discrete Hippo pathway components on cell volume. 
MST1/2 phosphorylate and activate LATS1/2 (Hansen et al., 2015a; Moroishi et al., 
2015a). To gain mechanistic insights into cellular volume regulation, we went on to 
determine the cell volume of cells without the Hippo kinases (MST1/2) (Huang et al., 
2005; Meng et al., 2015). MST1/2 DKO cells are of similar size as WT cells (Fig 2C). 
MST1/2 DKO cells therefore do not phenocopy LATS1/2 DKO cells in respect to 
cellular volume. This is likely due to further regulation of LATS1/2 by MST1/2 
compensating LATS1/2 activating kinases (Li et al, 2014b; Li et al, 2018; Meng et al., 
2015; Rausch & Hansen, 2020). We also examined the cellular volume of cells 
devoid of NF2. NF2, also known as MERLIN, is a tumour suppressor and functions 
as an upstream positive regulator of the Hippo pathway kinases (Meng et al., 2015; 
Zhang et al, 2010). NF2 is the most commonly mutated Hippo pathway component in 
cancers, and NF2 loss of function mutations are especially prevalent in pleural 
mesothelioma (Moroishi et al., 2015a; Petrilli & Fernandez-Valle, 2016). YAP/TAZ 
are hyperactive in cells without NF2 (Moroishi et al., 2015a; Petrilli & Fernandez-
Valle, 2016). NF2 KO cells are 25.8% larger than WT cells (1728± 439μm3 (mean ±SD)) (Fig 2D, EV 1C) and therefore phenocopy LATS1/2 DKO cells. As the co-
transcriptional activators YAP/TAZ frequently regulate gene expression via binding to 
the TEAD transcription factors (Hansen et al., 2015b; Lamar et al., 2012; Li et al, 
2010; Park et al., 2015; Rausch et al., 2019; Vassilev et al, 2001; Zhang et al, 2009; 
Zhao et al, 2008), we examined the cellular volume in cells without TEADs (these 
cells express low levels of TEAD3 (Lin et al., 2017)). Analysing two independent 
TEAD KO clones revealed that TEADs do not dictate the steady state cellular volume 
(Fig 2E, EV 1D), and consequently, the role of YAP/TAZ in regulating the cellular 
volume at steady state takes at least partly place via additional transcription factors 
(Hansen et al., 2015a). 
 
Cells respond to oscillating hydrostatic pressure by YAP/TAZ-TEAD dependent rapid 
volume changes  
As the cellular consequences of increased interstitial fluid pressure are not well 
established (Heldin et al., 2004; Li et al, 2020; Myers et al., 2007), we sought to 
determine if the force exerted by hydrostatic pressure regulates cell size. To this end, 
we established a workflow that allows us to analyse the dynamic cellular response to 
elevated hydrostatic pressure in real time with a temporal resolution of seconds. In 
our system, the hydrostatic pressure is controlled by a microfluidic pump coupled to 
closed cell culture chambers, where cells are imaged using digital holographic 
microscopy (Marquet P, 2005). We are consequently able to dictate the precise and 
temporal hydrostatic pressure experienced by cells, driven by the extra- and 
intracellular pressure differences, in a physiologically relevant manner while imaging 
the cells without labelling and at single cell resolution.  
When the fluid pressure is modulated with a peak-to-peak pressure of 100 mbar and 
a 10 second cycle, a clear corresponding cyclic change in volume for the WT cells 
(6.79 ± 2.89% (mean ±SD) (Fig 2F-H) is observed. In contrast YAP/TAZ DKO cells 
exhibited a substantially smaller periodic volume change (Y/T DKO#1 5.03 ± 1.88% 
(mean ±SD), Y/T DKO#2 4.42 ± 2.02% (mean ± SD)) (Fig 2G, H). This YAP and 
TAZ dependence on the cellular response to hydrostatic pressure is conserved in 
143B cells (EV 1E, F). In order to further characterize how cells depleted of YAP/TAZ 
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differ to WT cells, we took advantage of the membrane tension probe “Flipper-TR” 
(Colom et al, 2018; Riggi et al, 2018). The Flipper probe inserts into the lipid bilayer 
and its mechanophore composition is altered depending on the organization of lipid 
bilayers. The conformational changes of the probe induced by membrane tension 
alter the excitation maxima and fluorescence lifetime, which can be quantified using 
fluorescence lifetime imaging microscopy (FLIM) (Colom et al., 2018; Riggi et al., 
2018). Using this probe and comparing WT to Y/T DKO HEK293A cells a substantial 
decrease in membrane tension is observed upon deletion of YAP/TAZ (Fig 1I, J). 
This highlights a distinct, so far unrecognised, YAP/TAZ dependent difference on the 
physical properties of the plasma membrane. 
To further investigate that the effect observed upon hydrostatic pressure in the knock 
out clones is due to lack of YAP/TAZ, we reintroduced YAP into YAP/TAZ DKO 
HEK293A cells (Fig 2K, L). YAP/TAZ do not bind DNA directly but function as 
transcriptional co-activators through diverse sets of transcription factors (Hansen et 
al., 2015a), the TEAD family being the most prominent mediator of YAP/TAZ activity 
(Hansen et al., 2015b; Huh et al, 2019; Lamar et al., 2012; Li et al., 2010; Ota & 
Sasaki, 2008; Rausch et al., 2019; Vassilev et al., 2001; Zhao et al., 2008). We 
sought to establish if the observed YAP/TAZ contingent cellular response also 
depend on TEADs and generated separate stable cell lines of MYC-tagged WT YAP 
and of a TEAD binding deficient YAP (S94A) (Li et al., 2010; Zhao et al., 2008). Cell 
populations were >95% positive for YAP (Fig 2K), and cells re-expressing WT YAP, 
but not S94A YAP rescue CYR61 expression functionally validating these cell lines 
(Fig 2L). Introduction of exogenous wild type YAP into YAP/TAZ knock out cells, but 
not S94A YAP rescue the cellular response to cyclic fluid pressure (Fig 2M). 
Introduction of exogenous TAZ into YAP/TAZ knock out cells likewise rescued the 
cellular response to cyclic fluid pressure (EV 1H-J), highlighting that YAP or TAZ 
driven TEAD activation is sufficient to drive the cellular response to hydrostatic 
pressure.   
We in a complimentary approach took advantage of TEAD knockout HEK293A cells 
(EV 1D) (Lin et al., 2017). We hypothesised that if YAP/TAZ works via TEADs to 
dictate cellular volume via hydrostatic pressure, TEAD deficient cells would 
phenocopy YAP/TAZ knock out cells. Consistent with this, TEAD deficient cells 
closely mirror YAP/TAZ knock out cells regarding their cellular response to cyclic 
fluid pressure (Fig 2N). Consequently, we conclude that the cellular response to 
hydrostatic pressure is dependent on YAP/TAZ-TEAD activity. Using our robust cell 
volume change assay as read out for cellular response to fluid pressure, we next 
analysed LATS1/2 DKO, MST1/2 DKO and NF2 KO cells. Cells with these genotypes 
have varying degrees of hyperactive YAP/TAZ (Hansen et al., 2015b; Meng et al., 
2015; Meng et al., 2018), but have similar response to hydrostatic pressure (EV 2A-
C) highlighting that increased YAP/TAZ levels above WT levels do not change the 
cell volume response to fluid pressure.  We next sought to establish the longer-term 
impact on cells upon changes in hydrostatic pressure. We initially measured by DHM 
the steady state cell volume and compared this to the steady state volume of cells 
that had undergone two hours of oscillating 100 mbar hydrostatic pressure (with pre-
conditioning). Both WT and YAP/TAZ do not change their cellular volume after 
hydrostatic pressure, regardless of prior exposure to hydrostatic pressure (Fig 2O). 
To obtain insights into if cells adapt their dynamic cell volume response to oscillating 
hydrostatic pressure, we in similar experiments as above compared the average 
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change in cell volume between cells without any previous exposure to hydrostatic 
pressure to cells with prior exposure to oscillating hydrostatic pressure (Fig 2P). Cells 
with prior exposure to oscillating hydrostatic pressure adapt to this by lowering their 
volume changes, but interestingly this mechanical memory is lost in Y/T KO cells (Fig 
2P). In order to establish transcriptional regulation of surface molecules for potential 
long-term adaption of the cellular response to hydrostatic pressure, we undertook a 
candidate approach of genes previously shown to be involved in cell volume 
regulation. We analysed WT cells after 4 hours of oscillating hydrostatic pressure 
stimulation and analysed gene expression and identified a range of specific genes 
involved in dynamic cell volume regulation that is robustly induced, including 
LRRC8A,B,C and E (Kefauver et al, 2018; Qiu et al, 2014; Voss et al, 2014)  
encoding components of the heteromeric Volume Regulated Anion Channel (VRAC), 
as well as genes encoding homotetrameric aquaporins (AQP6 and 11) (Yasui et al, 
1999), the nonselective cation channel transient receptor potential vanilloid 1 
(TRPV1) (Liao et al, 2013) and the swelling-activated TRPM7 cation channels 
(Numata et al, 2021; Schmitz et al, 2003), but not other mechanotransductive active 
plasma membrane components, such as the mechanosensitive ion channel PIEZO1 
(Coste et al, 2010; Li et al, 2014a) and the essential caveolae gene CAV1 (Hansen & 
Nichols, 2010; Rausch et al., 2019; Rausch & Hansen, 2020) (EV 1K). In order to 
examine the role of YAP/TAZ in this transcriptional regulation, we analysed the 
induction of these specific gene-sets in each of the two Y/T DKO clones, and 
compared this to that of WT cells (EV 1L, M). There is a marked decrease in the 
induction of the fold induction of these genes in Y/T DKO cells (EV 1L, M). This 
suggests that the hydrostatic pressure mediated transcriptional induction of specific 
gene-sets is YAP/TAZ dependent, and highlights that YAP/TAZ likely also regulate 
long-term cellular adaption to hydrostatic pressure. 
 
 
Actin cytoskeletal regulation of the cellular volume 
The actin cytoskeleton and cortex are regulators and mediators of cellular 
deformations (Chugh et al, 2017; Stewart et al., 2011; van Helvert et al, 2018). The 
Hippo pathway is a transducer of mechanical cues and is regulated via actin 
cytoskeletal changes (Dupont et al., 2011; Li et al., 2018; Meng et al., 2018; 
Sansores-Garcia et al, 2011; Yu et al., 2012; Zhao et al., 2012), including via 
transcriptional regulation of cytoskeletal components and modifiers and thereby 
controling the dynamics of the actomyosin network (Kim et al, 2017; Lucas et al, 
2013; Mason et al, 2019; Nardone et al, 2017; Porazinski et al, 2015; Qiao et al, 
2017; Zhao et al., 2008).  
To gain further mechanistic insights into the cellular response to hydrostatic 
pressure, we set out to analyse the impact of disrupting the cytoskeleton using 
Cytochalasin D (CytD) and sought to establish if the cellular volume changes upon 
actin disruption. CytD lowered the overall cell volume across genotypes (Fig 3A and 
B). This prompted us to examine if actin disruption changes the cellular response to 
cyclic fluid pressure. Initially, we examined by immunofluorescence that the 
established actin disruptors Latrunculin B (LatB) and CytD work across the 
genotypes in a similar manner (Fig 3C). This was indeed the case, as the 
organization of phalloidin labelled actin filaments is severely disrupted in WT, Y/T 
DKO and LATS1/2 DKO cells (Fig 3C). We next confirmed that these chemicals 
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inhibit YAP by treating cells with either LatB or CytD and examining the cell lysates 
on PhosTag gels followed by immunoblots. As expected (Yu et al., 2012; Zhao et al., 
2012), we noticed an upshift of YAP upon LatB and CytD treatment (EV 2D). To 
establish if the difference in cell volume, we observed across genotypes (EV 2D-F) is 
conserved upon actin disruption, we compared the observed change in cellular 
volume to the overall effect CytD have on WT cells (Fig 3A and B). We find that the 
divergent cellular volume across genotypes is not dependent on a functional actin 
cytoskeleton (Fig 3A-C). Consequently, additional factors such as differentially 
expressed cytoskeletal factors, changes within the plasma membrane or cellular 
volume sensing (EV 1L,M) operating independently of the actin cytoskeleton are 
likely factors dictating this difference.  
 
Actin cytoskeletal dependence on the cellular response to oscillating fluid pressure 
We next set out to establish if the actin cytoskeleton mediates the cellular response 
to fluid pressure via the Hippo pathway. First, we analysed WT cells treated with 
CytD or LatB under cyclic fluid pressure, which revealed that the cellular response to 
hydrostatic pressure in WT cells is strongly dependent on the actin cytoskeleton (Fig 
3D, F). This actin dependence is conserved in Y/T DKO cells in contrast to LATS1/2 
DKO cells. Cell volume response to hydrostatic pressure in LATS1/2 DKO cells are 
insensitive to LatB and CytD. This highlights that LATS1/2 deficient cells have 
additional mechanisms to ensure cellular response to hydrostatic pressure (Fig 3D-
G). Taken together, our data reveal that differences in cellular volume upon 
alterations in fluid pressure across genotypes are not solely due to genotype specific 
alterations causing modifications to the actin cytoskeleton. Consequently, additional 
factors operating independently of the actin cytoskeleton dictates this difference. 
 
Microtubule regulation of the cellular volume and response to oscillating fluid 
pressure 
Microtubules in some instances, like actin, function as mechanotransducers (Rafiq et 
al, 2019; Salmon, 1975). We therefore sought to establish the role of microtubules in 
the cellular response to cyclic hydrostatic pressure by treating cells with the 
microtubule depolymerisation drug nocodazole (NCD). Initially, we established by 
immunofluorescence that the cellular microtubules are severely disrupted upon short-
term (10 min) NCD treatment across the genotypes (Fig 4A) and confirmed that the 
actin cytoskeleton is comparable across genotypes upon short-term microtubule 
depolymerisation (Fig 4B). When comparing the cellular effect upon microtubule 
depolymerisation, the steady state cell volume across genotypes is conserved (Fig 
4C), as well as a preserved cellular response towards hydrostatic pressure in Y/T 
DKO cells but not in LATS1/2 DKO cells. LATS1/2 DKO cells with disrupted 
microtubules (Fig 4A) respond to cyclic fluid pressure by an increased cellular 
volume change (Fig 4D). This prompted us to analyse the cellular response to 
hydrostatic pressure of combined actin cytoskeleton and microtubules disruption in 
WT and LATS1/2 DKO cells (Fig 4E). Combined NCD and CytD treated WT cells 
experiencing cyclic fluid pressure phenocopied CytD treated WT cells (Fig 3D, 4E). 
NCD and CytD treatment of LATS1/2 DKO cells abolished the increased volume 
change observed in microtubule disrupted LATS1/2 DKO cells (Fig 4D, E), which 
highlights that this aspect is actin dependent. As mTORC1 is a major regulator of cell 
size (Liu & Sabatini, 2020), we asked if mTORC1 inhibition had consequences on 
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cellular response to cyclic hydrostatic pressure. Medium-term (40 minutes) mTORC1 
inhibition using two distinct and widely used mTORC1 inhibitors, namely the ATP-
competitive inhibitor Torin and the macrolide Rapamycin (Liu & Sabatini, 2020), do 
not change the cellular volume or cellular response to hydrostatic pressure (EV 3A-
C). Overall, we conclude that the actin cytoskeleton mediates the cellular response to 
hydrostatic pressure.  
 
Clathrin dependent endocytosis mediate the cellular response to hydrostatic 
pressure  
As the cellular volume change is reversible and fast (within seconds) (Fig 2G) the 
surface area of the plasma membrane needs to dynamically and rapidly change. 
Taken a simplified view that the plasma membrane does not change area directly by 
stretching and that the cell is spherical, this 6.7% increase (Fig 2 A-F) in cellular 
volume ((V1-Vo)/Vo) would equate to a change of plasma surface of 4.42% (S1-
So)/So=((V1

2/3-Vo
2/3)/Vo

2/3)). We and others recently discovered that caveolae, 60-
100nm invaginations of the plasma membrane composed of the structural caveolae 
proteins CAVEOLINs and CAVINs (Hansen & Nichols, 2010) mediate cellular 
YAP/TAZ shear stress (Rausch et al., 2019) and substrate stiffness (Moreno-Vicente 
et al, 2019) responses (Rausch & Hansen, 2020). We therefore examined if the 
cellular response to hydrostatic pressure is mediated via caveolae. However, cells 
devoid of the essential caveolar protein, CAVEOLIN1 are comparable to WT cells in 
their response to fluid pressure (EV 3D-H). An alternative way for the cell surface to 
undergo reversible change is through altering the rates of endocytosis (Kaksonen & 
Roux, 2018). Several types of endocytosis exist including macropinocytosis, 
caveolae mediated endocytosis, clathrin dependent endocytosis (CDE) and 
additional less well defined clathrin independent internalization processes (Hansen & 
Nichols, 2009; Kaksonen & Roux, 2018). Of these, CDE is the best characterised. In 
CDE, a range of adaptor proteins, including AP2, actin filaments and the ANTH 
domain containing protein AP180 are recruited to the plasma membrane and cause 
formation of clathrin coats (Pearse, 1976) in a precise and temporal manner 
(Akamatsu et al, 2020; Ford et al, 2001; Taylor et al, 2011; Yoshida et al, 2018), 
where after the coated vesicles with internalized cargo are pinched off by the 
recruitment of the large GTPase Dynamin (Akamatsu et al., 2020; Ford et al., 2001; 
Taylor et al., 2011; Yoshida et al., 2018). Importantly, CDE is mechanosensitive 
(Akamatsu et al., 2020; Baschieri et al, 2020; Boulant et al, 2011; Ferguson et al, 
2017; Malinverno et al, 2017; Saleem et al, 2015) and in non-specialized cells 
account for upwards of 95% internalisation of the plasma membrane (Bitsikas et al, 
2014). CDE therefore represents the major route for internalization of the plasma 
membrane and the process is an attractive pathway that could confer the change of 
cell surface plasma membrane necessary for changing the cellular volume. To test 
this hypothesis, we used fluorescently labelled transferrin (Trf) that binds to the 
transferrin receptor and is internalised exclusively via clathrin-mediated endocytosis 
(Bitsikas et al., 2014; Ford et al., 2001; Taylor et al., 2011; Yoshida et al., 2018). 
Using an established internalisation assay, where surface bound Trf is stripped off 
the plasma membrane, we compared the internalisation of Trf across WT, Y/T DKO, 
and LATS1/2 DKO cells at steady state (Fig 5A and B). The internalisation rate of Trf 
and thereby CDE at steady state in Y/T DKO is comparable to WT cells, whereas 
LATS1/2 DKO cells internalize Trf faster (Fig 5A and B). We next examined if 
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hydrostatic pressure influences CDE under the same assay conditions used 
previously. We noticed a robust upregulation of Trf uptake upon cyclic hydrostatic 
pressure in both HEK293A and 143B cells (Fig 5A, B and EV 4A, B). This effect is 
conserved in LATS1/2 DKO cells, but not in cells without YAP/TAZ (Fig 5A, B). 
Oscillating hydrostatic pressure therefore increases the rate of CDE in a YAP/TAZ 
dependent manner. The increased hydrostatic pressure mediated internalisation rate 
is specific to CDE, as rates of fluid phase internalisation as measured by uptake of 
fluorescently labelled dextran does not increase (EV 4C-H). To firmly establish the 
role of CDE in this process, we took advantage of a dominant negative CDE 
construct. This construct encodes the C terminus of the adaptor protein 180 
(AP180C), and blocks clathrin-mediated endocytosis (Ford et al., 2001). We 
initially expressed AP180C in WT and Y/T DKO cells to establish that AP180C 
function is YAP/TAZ independent. A robust decrease in Trf uptake in all AP180C 
expressing cells is, as expected, evident (Fig 5C and D). We next sought to analyse 
the effect of AP180C expression on YAP. We co-labelled WT or LATS1/2 DKO cells 
expressing either vector or AP180C and analysed these by confocal microscopy. 
YAP localised predominantly in the cytoplasm in WT AP180C expressing cells, an 
effect not observed in LATS1/2 DKO cells (Fig 5E and F). YAP therefore gets 
inactivated upon CDE inhibition in a LATS1/2 dependent manner. Our 
immunofluorescence-based assay also allowed us to establish that our 
transfection efficiency is >80%, which prompted us to analyse pools of cells 
expressing AP180C using DHM at the single cell level. In WT cells expressing 
AP180C, the cellular volume change upon cyclic fluid pressure is diminished to 
levels comparable to Y/T DKO cells (Fig 5G, EV 2I), whereas AP180C had no 
effect on the cellular response to hydrostatic pressure in LATS1/2 DKO and 
Y/T DKO cells (Fig 5G, EV 2I). LATS1/2 are activated by either MST1/2 (the 
hpo kinases), or by the MAP4K family members as alternative direct LATS1/2 
activating kinases (Li et al., 2014b; Meng et al., 2015; Zheng et al, 2015). In order to 
define which parts of the upstream kinase module are critical for sensing and 
integrating the clathrin-dependent endocytic cellular response to hydrostatic 
pressure to the Hippo pathway, we transfected vector control or AP180C into 
an expanded range of isogenic cell lines (Hansen et al., 2015b; Meng et al., 
2015) including WT, LATS1/2 DKO, MST1/2 DKO, MAP4K4/6/7 KO, MST1/2-
MAP4K4/6/7 KO, and MST1/2-MAP4K1/2/3/4/6/7 KO cells. These transfected 
cells were stimulated with oscillating hydrostatic pressure and changes in YAP 
phosphorylation levels were analysed by PhosTag. A clear upshift (increased 
YAP phosphorylation) is observed in WT and MAP4K4/6/7 KO cells, but not in 
LATS1/2 DKO, MST1/2 DKO, MST1/2-MAP4K4/6/7 KO or MST1/2-
MAP4K1/2/3/4/6/7 KO cells (EV 5A-F). These findings suggests that YAP is 
inhibited and cytosolic in AP180C MAP4K4/6/7 KO, but not in MST DKO cells 
stimulated with oscillating hydrostatic pressure. In order to confirm this, in 
complimentary experiments, we compared changes in the nuclear localisation 
of YAP between AP180C transfection positive and transfection negative cells 
within the same field of view upon stimulation with cyclic hydrostatic pressure. 
A marked decrease in YAP nuclear localisation was observed in MAP4K4/6/7 
KO cells, but not in MST1/2 KO cells (EV 5G,H), which highlights the role of 
MST1/2 in the integration of CDE with downstream cellular effects induced by 
hydrostatic pressure. We conclude that CDE is regulated by hydrostatic 
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pressure in a YAP/TAZ dependent manner and function as a mediator of the 
cellular response to hydrostatic pressure.  
Cell volume regulation at steady state and upon hydrostatic pressure differ in some 
aspects, but both regulations centres on the Hippo pathway transcriptional mediators 
YAP/TAZ. We here establish that YAP and TAZ regulate plasma membrane tension, 
and that YAP/TAZ are critical regulators of cell volume, and that hydrostatic pressure 
and CDE are additional factors that dynamically dictates this fundamental cell volume 
regulatory process. This intricate feedback underlies the cellular response to 
hydrostatic pressure.  
 
 
Discussion 
Our studies reveal through quantitative single cell measurements that oscillating fluid 
pressure induces fast cell-size fluctuations dependent on YAP/TAZ. Cells devoid of 
YAP/TAZ are smaller and have a lower membrane tension and are therefore less 
adaptable to rapid cell shape changes. We show that this dynamic cellular response 
is contingent on both the cytoskeleton and clathrin dependent endocytosis. YAP/TAZ 
are dephosphorylated and consequently activated upon elevated cyclic fluid 
pressure. This activation drives a transcriptional response, including of the 
matricellular proteins CYR61 and CTGF. CYR61 and CTGF have established roles in 
development, as well as in pro-tumorigenic and regenerative properties within the 
microenvironment (Mo et al, 2002; Mokalled et al, 2016; Park et al, 2019; Pepe-
Mooney et al, 2019; Zhao et al., 2008). Such coupling as described here between the 
Hippo pathway, internalization of receptors, nutrients (including iron) and dynamic 
forces within the cellular microenvironment likely ensure cell-size distribution 
homeostasis in a population by modulating growth rates and the duration of cell-
division cycles (Cadart, 2019a; Cadart & Heald, 2019; Stewart et al., 2011). This 
feedback process involves dramatic and rapid changes of the cellular volume and 
consequently includes changes in intracellular concentrations of solutes and 
organelles, hence influence directly the rates of chemical reactions occurring in the 
cell (Cai et al, 2010; Delarue et al, 2018; Ginzberg et al, 2018; Hansen et al., 2015b; 
Lu et al, 2020; Miermont et al, 2013; Neurohr et al, 2019). Similarly, mechanisms 
ensure surface-tension homeostasis (Collinet, 2021; Lecuit & Lenne, 2007) couple 
volume and surface area (Fischer-Friedrich et al, 2014; Guo et al, 2017). Our data 
highlight that rapid volume modulation depends on YAP/TAZ and the actin cortex, 
and suggest that clathrin-dependent endocytosis provides a membrane reservoir, 
which is coupled to membrane tension. This implies that repeated cycles of rapid 
internalization, endocytic recycling and exocytosis takes place in order to replenish 
the plasma membrane. Long-term hydrostatic pressure adaptations are likely caused 
by YAP/TAZ-mediated transcription of regulators of ion and water fluxes (Fig 2P and 
EV1 K-M). These examples hint at how dynamic size homeostasis are 
consequences of intrinsic and extrinsic parameters that drive global growth, and that 
this needs to be precisely coupled by both biological and physical effects in a healthy 
individual (Cadart, 2019a, b; Cadart & Heald, 2019). Specialised cell types differ 
greatly in size, however the size of specific cell types within a given tissue are 
strikingly similar (Cadart, 2019b; Ginzberg, 2015). Uniformity of the size of particular 
cell types is a consistent feature of healthy tissues. Consequently, loss of cell size 
uniformity is a frequent diagnostic marker of malignancy (Dagogo-Jack & Shaw, 
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2018; Gast et al, 2018; Greenough, 1925; Nguyen et al, 2016). Cell volume is a 
fundamental aspect in biology and integrates both the physics and the physiology, 
including the metabolic state of the cell. Given that YAP/TAZ activation regulate cell 
growth and proliferation, we speculate that dysregulation of oscillating fluid pressure, 
likely coupled to the viscoelasticity of the ECM (Chaudhuri et al, 2020; Vining & 
Mooney, 2017; Zanconato et al., 2019), may therefore play a major role in a variety 
of conditions. For instance, the interplay between YAP/TAZ, oscillating fluid pressure 
and resistance to cancer treatments could be a confounding factor in solid tumours 
characterised by an elevated interstitial fluid pressure (Heldin et al., 2004; Moroishi et 
al., 2015a; Northcott et al., 2018; Stylianopoulos et al, 2018); and together with 
additional factors in the microenvironment drive cancer development and metastasis 
(Chaudhuri et al., 2020; Fulford et al., 2018; Heldin et al., 2004; Moroishi et al., 
2015a; Northcott et al., 2018; Rognoni & Walko, 2019; Salem & Hansen, 2019; 
Thompson, 2020; Zanconato et al., 2019). The interstitial fluid pressure within the 
tumour microenvironment drastically increases as a consequence of tumour growth, 
increased vascular permeability and impaired lymphatic drainage (Northcott et al., 
2018). Elevated pressure in solid tumours caused by increased IFP is one of the 
culprits that impede effective cancer treatment, as it drives cancer proliferation and 
metastasis, as well as make it challenging to deliver therapeutics to their targets 
(Ariffin et al., 2014; Heldin et al., 2004; Holle, 2016; Jain et al, 2014; Matsubara et al., 
2013; Nathan et al., 2005; Nathan et al., 2008). Our findings highlight that the cellular 
response to fluid pressure via the Hippo pathway is distinct to shear stress, as it is 
sensed and mediated differently at the plasma membrane. How short-timescale size 
fluctuations connect to longer term growth and differentiation processes in vivo are 
still outstanding questions. We hypothesise that such couplings might provide robust 
feedback loops (Park & Hansen, 2021) into providing steady state cell size control 
important for organ homeostasis, which are likely important cellular regulators during 
development (Chan et al, 2019), in inflammatory and regenerative processes (Chan 
& Hiiragi, 2020), and that this dynamic regulation might be chronically altered in 
tumours (Heldin et al., 2004; Northcott et al., 2018; Wiig & Swartz, 2012). Our work 
highlights a highly dynamic cellular homeostasis module that is constantly at work in 
cells. We expect these dynamics are integrated into organ-wide multilevel regulation 
with potential consequences on physiology and disease. How these dynamics are 
integrated, between changes in hydrostatic pressure, CDE and the Hippo pathway 
are not yet fully understood. We speculate cellular sensing of membrane tension and 
overall cellular volume changes may alter protein condensate levels, and overall 
spatiotemporal localisation of protein complexes, which together might play 
coordinating roles in this regulation. It is possible that both subcellular components, 
integral parts of the plasma membrane, cell-cell and cell-matrix interactions might 
serve as integrators of this cellular process (Rausch & Hansen, 2020). Our findings 
offer therapeutically targetable insights into fundamental cellular processes and 
highlight the intricate dynamics necessary for adaptive cell size regulation within the 
microenvironment. 
 
Materials and methods 
 
Cell culture 
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Cell lines were cultured in a humidified incubator at 37°C with 5% CO2 HEK293A and 
143B cells were cultured in DMEM (Gibco) supplemented with 10% heat inactivated 
FBS (Gibco), 1% (v/v) penicillin-streptomycin (Gibco) and 2mM L-Glutamine (Gibco) 
unless indicated otherwise. Cells were passaged before cells reached 70-80% 
confluence using 0.05% Trypsin-EDTA (0.05%) (Gibco). HEK293A wildtype, 
YAP/TAZ double knockout cells, LATS1/2 double knockout cells, NF2 knockout cells, 
TEAD1/2/4 triple knockout cells and MST1/2 double knockout cells were obtained 
from Professor Kun-Liang Guan’s lab at the University of California San Diego 
(UCSD) (Hansen et al., 2015b; Lin et al., 2017; Meng et al., 2015). 143B, 
osteosarcoma derived cells were obtained from Professor Donald Salter, University 
of Edinburgh (UoE).  
 
Generation of knockout (KO) cell lines 
Guide sequences for YAP1 and WWTR1 (encoding TAZ) were annealed to 
pSpCas9(BB)-2A-Puro (PX459 V2.0; Addgene plasmid #48139) and plasmids were 
generated using heat-shocked DH5α competent E. coli as previously described 
(Hansen et al., 2015b; Rausch et al., 2019). 
 
Genome edited 143B cells were generated in this study. 143B cells were transfected 
with plasmids using GenJet in vitro transfection reagent (SignaGen Laboratories) and 
cells were selected with puromycin (Alfa Aesar) 24 hours post transfection for 2-3 
days. Puromycin-resistant cells were single-cell sorted into 96-well plates containing 
growth medium supplemented with 20% total serum concentration at the QMRI Flow 
Cytometry and Cell Sorting Facility (UoE). Replica plates were generated to allow for 
screening of KO clones by Western blotting. Confirmed knockout clones were 
expanded, analysed and frozen down. 
 
Generation of YAP or TAZ re-expression cell lines 
Wildtype YAP and S94A mutant YAP stable expression was achieved in HEK293A 
YAP/TAZ double knockout cells using retroviral transduction. Virus expressing 
pQCXIH-Myc-YAP or pQCXIH-Myc-YAP S94A plasmids were added to polybrene-
treated cells and selected using Hygromycin B (SLS) for YAP re-expressing cell 
lines. Virus expressing a TAZ WT construct (Rausch et al., 2019; Zhang et al., 2009) 
were added to polybrene-treated Y/T DKO cells, cells were selected using puromycin 
to obtain stable cell populations expressing TAZ variants.  
 
Transient transfection of dominant negative AP180 (AP180c) 
AP180C is a MYC-tagged carboxy terminal domain of AP180 and acts as a dominant 
negative mutant of AP180, which inhibits clathrin-dependent endocytosis (Ford et al., 
2001). HEK293A cells were seeded at 60-70% confluence in 6-well plates and were 
transiently transfected with 1 μg  of AP180C plasmid using GenJet in vitro DNA 
transfection reagent (SignaGen Laboratories) following the manufacturer’s protocol. 
Experiments investigating the role of clathrin-mediated endocytosis were carried out 
between 36-40 hours post transfection.   
 
Western blotting 
Cells were harvested, and lysates prepared with lysis buffer consisting of pH 6.8 
50mM Tris buffer, 2% (w/v) sodium dodecyl sulfate 0.025% (w/v) bromophenol blue, 
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40% (v/v) glycerol and 5% (v/v) β-mercaptoethanol. Samples were run on SDS-page 
gels via electrophoresis between 70-110V. PhosTag western blotting, which 
segregates proteins depending on the degree of phosphorylation, was carried out by 
supplementing standard 7.5% SDS-PAGE gels with 5mM PhosTag reagent (Wako 
Chemicals) and 50M MnCl2. Segregated protein mixtures were then transferred to 
a PVDF. Enhanced chemiluminescence (Millipore) was used for immunodetection 
and signal was developed onto X-ray films. Western blots shown are representative 
of 2-4 biological replicates. 
 
Primary antibodies used to detect proteins of interest were as the following: anti-
YAP1 (ab52771) from abcam; anti-YAP1 63.7 (sc101199) this antibody also detects 
TAZ (Hansen et al., 2015b), anti-CTGF (sc14939), anti-CYR61 (sc13100) and anti-
GAPDH sc47724) from Santa Cruz biotechnology, anti-TAZ V387 (4883), anti-pan 
TEAD (13295S) and anti-pYAP S127 (4911) from Cell Signalling Technology; anti-
HSP90 (BD610418) from BD Bioscience. Antibodies were diluted in TBST with 5% 
BSA at 1:1,000 except anti-GAPDH (1:4,000) and anti-HSP90 (1:10,000).  
 
Secondary antibodies anti-mouse IgG/HRP (P044701), anti-rabbit IgG/HRP 
(P044801) and anti-goat IgG/HRP (P044901) from Dako were diluted 1:10,000 in 5% 
milk in TBST.  
 
Quantitative reverse transcription 
RNA was extracted from mammalian cells using RNeasy micro kit (Qiagen) following 
manufacturer’s instructions. cDNA synthesis was carried out using High capacity 
cDNA reverse transcriptase kit (Applied Biosystems). Real-time PCR using 1ng of 
cDNA/ sample using brilliant III Ultra-Fast SYBR Green qPCR master mix (Agilent 
technologies) was used to detect relative gene expression levels.  
 
Primer sequences (5’ to 3’) are as the following:  
HPRT1 (fwd AGAATGTCTTGATTGTGGAAGA; rev ACCTTGACCATCTTTGGATTA) 
YAP1 (fwd CCAAGGCTTGACCCTCGTTTTG; rev TCGCATCTGTTGCTGCTGGTTG) 
WWTR1 (TAZ) (fwd AATGGAGGGCCATATCATTCGAG; rev 
GTCCTGCGTTTTCTCCTGTATC) 
CYR61 (fwd AGCCTCGCATCCTATACAACC; rev TTCTTTCACAAGGCGGCACTC) 
CTGF (fwd CCAATGACAACGCCTCCTG; rev TGGTGCAGCCAGAAAGCTC) 
CAV1 (fwd GCGACCCTAAACACCTCAAC; rev ATGCCGTCAAAACTGTGTGTC) 
LRRC8A (fwd CCTGCCTTGTAAGTGGGTCAC ; rev CACAGCGTCCACGTAGTTGTA) 
LRRC8B (fwd CAGCAACTTTTGGCTTCACTAC; rev TGTTTGCCGGAATCTATGTCAG) 
LRRC8C (fwd GGGATGTGTTTACCGATTACCTC; rev CTGCACTCTTTTCGGAAGGC) 
LRRC8E (fwd CAAGCAGTTCACGGAACAGC; rev GGGCCTCTGATAAGTTCTCCTG) 
AQP6 (fwd GTCTTCGCTTCCACCGACAG; rev GCGGGCTGGATTCATGGAG) 
AQP11 (fwd GCTCAAAGCGGTCATCACAGA; rev GCCAGCAGGTGGATACGAAG) 
TRPV1 (fwd CAGGCTCTATGATCGCAGGAG ; rev TTTGAACTCGTTGTCTGTGAGG) 
TRPM7 (fwd ACTGGAGGAGTAAACACAGGT; rev TGGAGCTATTCCGATAGTGCAA) 
PIEZO1 (fwd CCGCTCGTTTCCGAGTCAC; rev TGGTAGCAGTAGAGGCAGATG) 
 
Microfluidic setup to alter cellular hydrostatic pressure 
A bespoke setup was established consisting of 5% CO2/air supplied from a gas 
cylinder (BOC) to OB1 Microfluidic flow controller (Elveflow) to control the air 
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pressure applied to the input of a µ-Slide I luer 0.4 or µ-Slide VI 0.4 channels (ibidi) 
containing cells and media, while the output is closed with a stopper. Particular 
attention was paid to leave no airspace between the stopper and the media. Cells 
were seeded at 22,000 cells per channel and maintained in 1% FBS complete 
DMEM throughout the duration of the experiments. Cyclic hydrostatic pressure at 
0.1Hz between the range of 100 mbar to 200 mbar was applied to cells.  
 
Transferrin uptake assay 
Cells were seeded as described for hydrostatic pump experiments in µ-Slide VI 0.4 
channels (ibidi) and maintained at 37°C, 5% CO2, overnight. Cells were serum-
starved for one hour then incubated on ice for 10 minutes in pre-cooled 50 µg/mL 
transferrin-Alexa 594 (Life technologies). Transferrin uptake was stimulated by 
incubating cells at steady-state with pre-warmed 50 µg/mL transferrin-Alexa 594 at 
37°C or in conjunction with hydrostatic pressure. Surface labelling of transferrin was 
removed by washing cells with ice-cold stripping buffer (29.2g/L NaCl, 0.5% (v/v) 
acetic acid in distilled H2O) twice for 30-40 seconds.    
 
Dextran uptake assay 
Cells were seeded as described for hydrostatic pump experiments in µ-Slide VI 0.4 
channels (ibidi) and maintained at 37°C, 5% CO2. overnight. Cells were serum-
starved for one hour then incubated on ice with pre-cooled 100 µg/mL dextran 
Oregon green 488 (Life technologies). Dextran uptake was stimulated using pre-
warmed dextran Oregon green 488 and 100ng/mL human recombinant EGF (Gibco) 
in serum-free DMEM for 10 or 30 minutes at 37°C in conjunction with hydrostatic 
pressure or at cells at steady-state. 
 
Digital Holographic Microscopy (DHM) 
Aforementioned microfluidic set up was coupled to a Digital Holographic Microscope 
(Phi Lab, Holomonitor M4) to investigate the effect of hydrostatic pressure on cell 
response in real-time. Time-lapse imaging was acquired for 60s at a rate of 1Hz. 
Then cells were segmented with the Hstudio Tracking software (Otsu’s thresholding) 
to extract for each cell in the field of view and for each time point quantitative cellular 
parameters. In particular cell area and mean optical thickness were used to calculate 
the cellular volume considering a mean cellular index of 1.38 and a mean media 
refractive index of 1.34. A Matlab script was written to automate calculation of 
average cell volume at steady state and percentage average change in cell volume 
in response to hydrostatic pressure. 
 
Flipper-TR and FLIM imaging 
Flipper-TR probe was diluted to 2μM in serum-free DMEM and applied to cells 15 
minutes prior to imaging.  Fluorescent lifetime imaging microscope (FLIM) was used 
to excite cells at 485 nm and photons were collected through a 600/50 nm bandpass 
filter. Average fluorescent lifetime measurements were obtained by fitting photon 
histograms with a double-exponential using the SymPhoTime software, which 
ensured that chi-squared value was close to 1. The fluorescent lifetime 
measurements were used as a readout for membrane tension, where lifetime values 
range between 2.8 – 7.0 ns (Colom et al., 2018). FLIM imaging was conducted at the 
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Edinburgh Super-Resolution Imaging Consortium (ESRIC) facility branch at Herriot-
Watt University. 
 
Drug treatments 
Cells were treated with DMSO control or drugs diluted in DMSO at the following 
concentrations: cells were treated with Latrunculin B (0.5 μM, 2 μM) or Cytochalasin 
D (0.5 μM, 2 μM; Sigma) for 40 minutes prior to hydrostatic pressure experiments. 
Nocodazole (3 μ M; abcam) treatment was carried out for 10 minutes. For 
Cytochalasin D and Nocodazole combination treatment, cells were treated with 
Cytochalasin D for total length of 40 minutes while Nocodazole for total length of 10 
minutes at the aforementioned concentrations. For Torin and Rapamycin treatments, 
cells were treated at 1 μM and 0.5 μM respectively for total of 40 minutes.  
 
Immunofluorescence imaging (IF) 
Cells plated on μ-Slide VI 0.4 channels (ibidi) were in general fixed with prewarmed 
37°C 4% paraformaldehyde (PFA) (Thermo Fisher Scientific) in PBS+/+ for 20 
minutes. For visualisation of tubulin cells were fixed with ice-cold MeOH, as this 
better preserves the microtule network. PFA (or MeOH) was removed and carefully 
rinsed with PBS+/+.  IF blocking buffer (2.5% (v/v) FBS (Life Technologies), 0.3% (v/v) 
Triton-X-100 in PBS+/+) was applied, followed by primary antibody incubation at room 
temperature (anti-YAP1 (ab52771; abcam; 1:400), Alexa Fluor 488 phalloidin 
(A12379; Thermo Fisher Scientific; 1:1,000)) for three hours. Cells were incubated 
with secondary anti-rabbit Immunoglobulin Alexa Fluor 594 (A11037, Thermo Fisher 
Scientific, 1:400)) for one hour and nuclei was labelled with Hoechst (H3570; Thermo 
Fisher Scientific, 1:2,000). Labelled cells were imaged using a 63x oil objective on a 
Leica TCS SP8 MP confocal microscope.  
 
Nuclear-to-cytoplasmic ratio of fluorescence intensity of immunofluorescence images 
were quantified in Fiji/ImageJ. The nucleus was visualised in the Hoechst channel, 
and a region of interest (ROI) was determined and used to measure fluorescence 
intensity in the channel of interest. The same method was carried out to calculate 
fluorescence intensity in the cytoplasm. For transferrin and dextran measurements, 
ROI in the cytoplasm was determined by referring to the Hoechst channel and 
channel of interest. Three ROIs were measured per cell. For all measurements and 
analysis, cells with multiple nuclei, apoptotic or undergoing mitosis were excluded. 
 
Statistical analysis 
Unless otherwise stated, three independent experiments were carried out for each 
experiment. For statistical tests, Mann-Whitney U test or Kruskal-Wallis test with 
Dunn’s post hoc was conducted. p=0.05 was determined as the level of significance 
for statistical tests. 
 
Data Availability 
According to EMBO guidelines, no data that requires deposition in a public database 
has been generated as part of this study 
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Figure Legends 
 
Figure 1. Hydrostatic pressure activates YAP/TAZ. 
A PhosTag-based Western blot probed for YAP reveals increased levels of 
unphosphorylated (downshift) YAP in HEK293A cells in response to cyclic 0.1Hz 
200mbar hydrostatic pressure (+) compared to control (-). 
B PhosTag-based Western blot probed for TAZ reveals increased levels of 
unphosphorylated (downshift) TAZ in HEK293A cells in response to cyclic 0.1Hz 
200mbar hydrostatic pressure (+) compared to control (-). 
C Western blots from cell lysates as in (A) and (B) show total protein levels in control 
(-) and in cell lysates obtained from cells exposed to hydrostatic pressure (+) 
stimulation in HEK293A cells. Note the decrease in the inhibitory p127 YAP signal as 
well as increase of YAP/TAZ targets CTGF and CYR61 levels upon hydrostatic 
pressure. 
D PhosTag-based Western blot probed for YAP reveals increased levels of 
unphosphorylated (downshift) YAP in 143B cells in response to hydrostatic pressure 
(+) compared to control (-). 
E Western blot shows total protein levels in control (-) and with hydrostatic pressure 
(+) stimulation in 143B cells from cell lysates as in D.  
F HEK293A cells at steady state (upper) or upon cyclic 0.1Hz 200mbar hydrostatic 
pressure (lower) were analysed by immunofluorescence. Cells are labelled for 
Hoechst (blue) and YAP (green). Scale bar = 20µm. Graph on the right depict 
quantification of nuclear-to-cytoplasmic (Nucl/Cyt) ratio of YAP in cells as shown on 
the left. Each dot represents a single cell and data are pooled from three 
independent experiments. Error bars represent mean ± 95% CI. Mann-Whitney U 
test. ***p < 0.001. 
G 143B cells at steady state (upper) or upon cyclic 0.1Hz 200mbar hydrostatic 
pressure (lower). Graph on the right show quantification of nuclear-to-cytoplasmic 
(Nucl/Cyt) ratio of YAP in 143B from images as those shown on the left. Each dot 
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represents a single cell and data are pooled from three independent experiments. 
Error bars represent mean ± 95% CI. Mann-Whitney U test. ***p < 0.001.  
H Western blot confirming no YAP and TAZ expression in two independent (#1 and 
#2) YAP/TAZ double knockout (Y/T DKO) clones. 
I Relative expression levels of YAP/TAZ target genes CYR61 and CTGF in HEK293A 
WT and Y/T DKO clones in response to cyclic 0.1Hz 200mbar hydrostatic pressure. 
Data from six independent experiments Error bars represent mean ± SD. Kruskal-
Wallis test with Dunn’s post hoc. **p=0.0661 (WT CYR61), ***p= 0.0001 (WT CTGF), 
p=0.3924 (Y/T DKO#1 CYR61), p=0.4616 (Y/T DKO#1 CTGF), p>0.999 (Y/T DKO#2 
CYR61), p=0.0782 (Y/T DKO#2 CTGF).   
J CYR61 and CTGF gene expression levels induced by hydrostatic pressure in (I) of 
Y/T DKO #1 and #2 normalised to WT. Kruskal-Wallis test with Dunn’s post hoc. 
*p=0.0259 (Y/T DKO#1 CYR61), **p=0.0007 (Y/T DKO#1 CTGF), *p=0.0155 (Y/T 
DKO#2 CYR61), ***p<0.001 (Y/T DKO#2 CTGF). 
 
Figure 2. YAP/TAZ determine cell size and mediate cellular response to 
hydrostatic pressure. 
A Cell volume of WT and Y/T DKO clones at steady state measured using DHM. 
Each dot represents a single cell. Error bars represent mean ± 95% CI. Kruskal-
Wallis test with Dunn’s post-hoc. Data from three independent experiments. 
***p<0.001, p=0.0917 (Y/T DKO #1 vs #2).  
B Comparison of cell volume of WT and LATS1/2 DKO clones at steady state 
obtained using DHM. Each dot represents a single cell. Data from three independent 
experiments. Error bars represent mean ± 95% CI. Kruskal-Wallis test with Dunn’s 
post-hoc. **p=0.0018 (WT vs LATS1/2 DKO #1), ***p<0.001 (WT vs LATS1/2 DKO 
#2), p=0.0557 (LATS1/2 DKO #1 vs #2). 
C Comparison of cell volume of WT and MST1/2 DKO at steady state obtained using 
DHM. Each dot represents a single cell. Data from three independent experiments. 
Error bars represent mean ± 95% CI. Mann-Whitney U test. p=0.2731.   
D HEK293A NF2 KO cells response to 100mbar cyclic hydrostatic pressure. Each 
dot represents a single cell and Error bars represent mean ± 95% CI. Data pooled 
from three independent experiments. Mann-Whitney U test. p=0.4072.  
E Comparison of cell volume of WT and TEAD KO clones at steady state obtained 
using DHM. Each dot represents a single cell. Data from three independent 
experiments. Error bars represent mean ± 95% CI. Kruskal-Wallis test with Dunn’s 
post-hoc. p>0.9999 for all comparisons. 
F Maxima and minima are identified to calculate average percentage change in cell 
volume in response to hydrostatic pressure using measurements obtained by DHM. 
G Representative WT and Y/T DKO single cell volume change in response to 
hydrostatic pressure recorded by DHM. 
H Average change in cell volume in response to hydrostatic pressure in WT and Y/T 
DKO clones. Each dot represents a single cell. Images and data were acquired at the 
onset of oscillating pressure. Data from three independent experiments. Error bars 
represent mean ± 95% CI. Kruskal-Wallis test with Dunn’s post hoc. ***p < 0.001 (for 
both comparisons), p=0.1450 (Y/T DKO #1 vs #2). 
I Representative images of Flipper-TR labelled HEK293A WT (top), Y/T DKO #1 
(middle) and Y/T DKO #2 (bottom) are shown obtained using fluorescence lifetime 
imaging microscopy (FLIM) (ex. 485, em. 600) 
J Average fluorescence lifetime of Flipper-TR probe quantified using fluorescence 
lifetime imaging microscope (FLIM) (ex. 485, em. 600). HEK293A wildtype and Y/T 
DKO clones #1 and #2 were labelled with 2μM Flipper-TR for 15 minutes prior to 
imaging. The average lifetime measurements were obtained by fitting the photon 
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histogram with a double exponential and the longest lifetime was extracted to report 
plasma membrane tension, as previously described (Colom et al., 2018). Each dot 
represents fluorescence lifetime of a single cell and data shown is pooled from three 
independent experiments (mean±95% CI). Kruskal-Wallis test with Dunn’s post hoc. 
**p=0.0027 (WT vs Y/T DKO#1), *p=0.0136 (WT vs Y/T DKO #2), p>0.9999 (Y/T 
DKO#1 vs #2). 
K Representative immunofluorescence images showing MYC-tagged YAP 
expression in WT YAP re-expressing cells and S94A mutant YAP re-expressing cells 
compared to Y/T DKO vector control. 95% were positive for expression of YAP or 
YAP mutant. Scale bar = 20µm. 
L Western blot showing total YAP, TAZ and CYR61 levels in WT YAP and S94A 
mutant YAP re-expressing cells compared to WT and Y/T DKO vector control. 
M Average change in cell volume in response to hydrostatic pressure in WT YAP and 
S94A mutant YAP re-expressing cells relative to Y/T DKO. Each dot represents a 
single cell. Error bars represent mean ±  95% CI. Data pooled from three 
independent experiments. Kruskal-Wallis test with Dunn’s post hoc. p<0.001 (vector 
vs. WT YAP), p=0.4912 (vector vs. S94A YAP), p=0.0327 
N Average change in cell volume in response to 100mbar cyclic hydrostatic pressure 
in WT and TEAD KO clones. Each dot represents a single cell. Data pooled from 
three independent experiments. Error bars represent mean ± 95% CI. Kruskal-Wallis 
test with Dunn’s post hoc. ***p < 0.001 (for both comparisons), p>0.9999 (TEAD KO 
#1 vs #2). 
O WT and Y/T DKO cell volume were measured at steady-state and the average 
change in cell volume was quantified using the DHM as in previous experiments, 
these are labelled (-). Cells were then subjected to cyclic hydrostatic pressure for 2 
hours and their cell volume was quantified to determine whether prior exposure to 
hydrostatic pressure (‘pre-conditioning’) would change their cell volume response, 
these are labelled (+). Each dot represents a single cell and error bars represent 
95% CI. Graphs include data obtained from four independent experiments. Kruskal-
Wallis with Dunn’s post hoc. ns= p>0.9999. 
P The average percentage change in cell volume was quantified under the same 
experimental conditions as in “O”. The average change in cell volume in response to 
cyclic hydrostatic pressure of cells with no previous exposure to hydrostatic pressure 
(labelled as (-)) was quantified using DHM and compared to those with prior 
exposure to hydrostatic pressure (labelled (+)). Each dot represents a single cell and 
error bars represent 95% CI. Graphs include data obtained from four independent 
experiments. Kruskal-Wallis with Dunn’s post hoc. **p=0.006 (WT), p=0.4173 (Y/T 
DKO), ns= p>0.9999. 
 
Figure 3. Cellular response to hydrostatic pressure is regulated by the actin 
cytoskeleton. 
A Cell volume measured by DHM of HEK293A cells treated with 0.5µM (left) and 
2 µ M (right) Cytochalasin D. Each dot represents a single cell and error bars 
represent mean ± 95% CI. Data pooled from four independent experiments. Mann-
Whitney U test. **p=0.0033 (WT 0.5 µ M), ***p<0.001 (Y/T DKO 0.5 µ M), 
***p=0.004(LATS1/2 DKO 0.5 µM), ***p<0.001 (WT 2µM), **p=0.0022 (Y/T DKO 
2µM), *p=0.0145 (LATS1/2 DKO 2µM). 
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B Fold change in cell volume upon treatment with 0.5µM (left) and 2µM (right) 
Cytochalasin D relative to untreated control. Each dot represents a single cell and 
error bars represent mean ±  95% CI.  Data pooled from four independent 
experiments. Mann-Whitney U test. p=0.1197 (WT vs Y/T DKO), p>0.9999 (all other 
comparisons).  
C Representative immunofluorescence images showing Phalloidin-labelled actin 
(red) and Hoechst (blue) in Latrunculin B (LatB) (0.5µM) or Cytochalasin D (CytD) 
(2µM)-treated HEK293A cells compared to control across Hippo pathway genome-
edited cells as shown. Scale bar = 20μm.  
D Average change in cell volume obtained by DHM in response to hydrostatic 
pressure with 2µM Cytochalasin D (CytD) treatment in WT, Y/T DKO and LATS1/2 
DKO cells. Each dot represents a single cell and error bars represent mean ± 95% 
CI. Data pooled from four independent experiments. Kruskal-Wallis test with Dunn’s 
post hoc. **p=0.0044 (WT con vs CytD), p*=0.0409 (Y/T DKO con vs CytD), 
p>0.9999 (LATS1/2 DKO con vs CytD), ***p=0.0003 (WT con vs Y/T DKO con), 
***p<0.001 (WT con vs Y/T DKO CytD), ***p<0.001 (Y/T DKO CytD vs LATS1/2 DKO 
CytD). 
E Fold difference in average change in cell volume in response to dynamic 
hydrostatic pressure from (H) normalised against untreated cells. Each dot 
represents a single cell and error bars are 95% CI. Mann-Whitney U test. **p=0.0069 
(WT vs. Y/T DKO), **p=0.0031 (WT vs LATS1/2 DKO). 
F Average change in cell volume in response to hydrostatic pressure with 0.5µM 
Latrunculin B (Lat B) treatment in WT, Y/T DKO and LATS1/2 DKO cells. Each dot 
represents a single cell and error bars represent mean ± 95% CI. Data pooled from 
four independent experiments. Kruskal-Wallis test with Dunn’s post hoc. ***p<0.001 
(all comparisons), p=0.0972 (LATS/12 DKO con vs LatB), *p=0.0216 (Y/T DKO LatB 
vs LATS1/2 DKO LatB).  
G Fold difference in average change in cell volume in response to cyclic 0.1Hz 
100mbar hydrostatic pressure from (F) normalised against control. Each dot 
represents a single cell and error bars represent mean ± 95% CI. Mann-Whitney U 
test. p=0.1472 (WT vs. Y/T DKO), **p=0.0015 (WT vs LATS1/2 DKO). 
 
Figure 4. Disruption of microtubules has no effect on cellular response to 
hydrostatic pressure in WT and Y/T DKO cells.  
A Confocal IF images labelled with Hoechst (Blue) and Alpha-tubulin (green) 
showing loss of microtubule structures in response to 10 min nocodazole (NCD) 
treatment in WT, Y/T DKO and LATS1/2 DKO cells. Scale bar = 20µm.  
B Confocal IF images labelled with Hoechst (blue) and phalloidin (red) visualising the 
actin cytoskeleton organisation in response to NCD treatment. Scale bar = 10µm.  
C Steady-state cell volume of Nocodazole-treated cells compared to control. Each 
dot represents a single cell and data pooled from five independent experiments. 
Error bars represent mean ±  95% CI. Mann-Whitney U test. p=0.1925 (WT), 
p=0.9008 (Y/T DKO), p=0.1375 (LATS1/2 DKO). 
D Cell response to hydrostatic pressure after 10 min NCD treatment compared to 
control. Each dot represents a single cell and data pooled from five independent 
experiments. Error bars represent mean ± 95% CI. Mann-Whitney U test. p=0.4240 
(WT), p=0.7567 (Y/T DKO), ***p<0.001 (LATS1/2 DKO). 
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E Cell response to hydrostatic pressure after CytD (40 min) and NCD (10 min) 
treatment compared to control. Each dot represents a single cell and data pooled 
from four independent experiments. Error bars represent mean ± 95% CI. Mann-
Whitney U test. ***p<0.001 (WT), p>0.9999 (LATS1/2 DKO). 
 
Figure 5. Hydrostatic pressure promotes clathrin-dependent internalisation.  
A Confocal IF images labelled with Hoechst (Blue) and internalised Transferrin (Trf). 
Cells were allowed to internalize for ten minutes, fixed and acid stripped to remove 
surface bound Trf. Hydrostatic pressure (H.P.) promotes transferrin uptake in WT 
and LATS1/2 DKO cells. Scale bar = 20µm. 
B Quantification of transferrin uptake in WT, Y/T DKO and LATS1/2 DKO cells 
treated with hydrostatic pressure compared to steady state. Each dot represents a 
single cell and error bars represent mean ± 95% CI. Data from four independent 
experiments. Kruskal-Wallis test with Dunn’s post hoc. Steady-state statistical 
analysis is shown in blue, transferrin uptake induced by pressure is shown in black. 
***p<0.001 (WT con vs +H.P.), p=0.2375 (Y/T DKO con vs +H.P.), ***p<0.001 
(LATS1/2 DKO con vs +H.P.), p=0.2764 (WT con vs Y/T DKO con), p=0.0808 (WT 
con vs LATS1/2 DKO con), ***p=0.0004 (Y/T DKO con vs LATS1/2 DKO con).  
C Confocal IF images myc tagged AP180C (green) cells showing internalised Trf 
(red) and stained with Hoechst (blue). AP180C inhibits transferrin uptake in WT and 
Y/T DKO cells. Scale bar = 20µm. 
D Quantification of transferrin uptake in AP180C positive cells compared to vector 
control from images as in C. Each dot represents a single cell from four independent 
experiments and error bars represent mean ± 95% CI. Mann-Whitney U test. ***p < 
0.001 (for both comparisons). 
E Confocal IF images of HEK293A WT cells showing subcellular localisation of YAP 
(red) in AP180C (green) negative and positive WT and LATS1/2 DKO cells. Cells 
also stained with Hoechst (blue). 
F Quantification of cytoplasmic-to-nuclear ratio of YAP in AP180C positive WT and 
LATS1/2 DKO cells compared to vector control from images as in E. Each dot 
represents a single cell pooled from four independent experiments. Error bars 
represent mean ±  95% CI. Mann-Whitney U test. ***p=0.0008 (WT), p=0.9318 
(LATS1/2 DKO).  
G Cell response to hydrostatic pressure with AP180C-mediated inhibition of clathrin-
dependent endocytosis. Each dot represents a single cell pooled from four 
independent experiments. Error bars represent mean ± 95% CI. Data pooled from 
four independent experiments. Kruskal-Wallis test with Dunn’s post hoc. ***p=0.0005 
(WT), p=0.3930 (Y/T DKO), p=0.2929 (LATS1/2 DKO).  
 
Figure 6. Summary of cellular response to hydrostatic pressure. 
 
 
Expanded View (EV) Figure legends  
 
Figure EV1.  
A PhosTag-based Western blot probed for YAP reveals no changes in YAP 
phosphorylation levels in HEK293A and 143B cells in response to static 500mbar 
hydrostatic pressure (+) compared to control (-). 
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B Western blot showing LATS1 and LATS2 levels in WT and LATS1/2 DKO cells. 
C Western blot showing NF2 expression level in WT and NF2 KO cells.  
D Western blot showing TEAD expression level in WT and TEAD KO cells.  
E Western blot showing YAP, TAZ and CYR61 levels in 143B YAP KO and TAZ KO 
cells relative to WT. 
F 143B WT, YAP KO and TAZ KO response to 100mbar cyclic hydrostatic pressure 
as measured by DHM. Each dot represents a single cell from three independent 
experiments and error bars represent mean ±  95% CI. Mann-Whitney U test. 
***p<0.001 (WT vs YAP KO), ***p=0.006 (WT vs TAZ KO).  
G Steady state volume of Y/T DKO relative to WT YAP and S94A mutant YAP re-
expressing Y/T DKO cells as measured by DHM. Each dot represents a single cell 
from three independent experiments and error bars represent 95% CI. Kruskal-Wallis 
test with Dunn’s post hoc. p>0.999 (vector vs WT YAP), p=0.2173 (vector vs S94A 
YAP), p=0.9837 (WT YAP vs S94A YAP). 
H Western blot showing total YAP, TAZ and CYR61 levels in WT TAZ re-expressing 
cells compared to WT and Y/T DKO vector control.  
I Steady-state cell volume WT TAZ re-expressing cells relative to Y/T DKO as 
imaged and analysed by DHM. Each dot represents a single cell from three 
independent experiments. Error bars represent mean ± 95% CI. Mann-Whitney U 
test.  ***p < 0.001. 
J Average change in cell volume in response to hydrostatic pressure in WT TAZ re-
expressing cells relative to Y/T DKO as imaged and analysed by DHM. Each dot 
represents a single cell from three independent experiments. Error bars represent 
mean ± 95% CI. Mann-Whitney U test. ***p < 0.001. 
K Candidate genes conferring YAP/TAZ-mediated cellular response to hydrostatic 
pressure. Gene expression levels of HEK293A WT cells in response to 0.1Hz, 
200mbar cyclic hydrostatic pressure (4 hours) compared with steady-state levels 
within each genotype and analysed by RT-qPCR. Graphs show data obtained from 
four independent experiments. Error bars represent mean ± SD. Kruskal-Wallis test 
with Dunn’s post hoc.  
L Gene expression level induced by hydrostatic pressure in Y/T DKO#1 cells 
normalised to WT levels.  Graphs show data obtained from four independent 
experiments. Error bars represent mean ± SD. Kruskal-Wallis test with Dunn’s post 
hoc.  
M Gene expression level induced by hydrostatic pressure in Y/T DKO#2 cells 
normalised to WT levels. Graphs show data obtained from four independent 
experiments. Error bars represent mean ± SD. Kruskal-Wallis test with Dunn’s post 
hoc. 
 
 
Figure EV2.  
A Average change in cell volume in response to 100mbar cyclic hydrostatic pressure 
in WT and LATS1/2 DKO clones. Each dot represents a single cell. Data pooled from 
three independent experiments. Error bars represent mean ± 95% CI. Kruskal-Wallis 
test with Dunn’s post hoc. p>0.9999 (for all comparisons).  
B Average change in cell volume in response to 100mbar cyclic hydrostatic pressure 
in WT and MST1/2 DKO. Each dot represents a single cell. Data pooled from three 
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independent experiments Error bars represent mean ± 95% CI. Mann-Whitney U 
test. p=0.0781. 
C HEK293A NF2 KO steady-state volume compared to WT cells. Each dot 
represents a single cell and Error bars represent mean ± 95% CI. Data pooled from 
three independent experiments. Mann-Whitney U test. ***p < 0.001.  
D PhosTag based western blot probing for YAP reveals dephosphorylation of YAP in 
response to 0.5µM Latrunculin B (LB) and 2µM Cytochalasin D (CD) treatment in WT 
cells. 
E Comparison of average change in cell volume measured by DHM in response to 
100mbar cyclic hydrostatic pressure with 2µM Latrunculin B treatment in WT, Y/T 
DKO and LATS1/2 DKO cells. Each cell represents a single cell and error bars 
represent mean ± 95% CI. Data pooled from four independent experiments. Mann-
Whitney U test. ***p<0.001 (WT), ***p<0.001 (Y/T DKO), *p=0.0331 (LATS1/2 DKO). 
F Comparison of average change in cell volume in response to 100mbar cyclic 
hydrostatic pressure with 0.5µM Cytochalasin D treatment in WT, Y/T DKO and 
LATS1/2 DKO cells. Each cell represents a single cell and error bars represent mean ± 95% CI. Data pooled from four independent experiments. Mann-Whitney U test. 
p=0.2021 (WT), **p=0.0035 (Y/T DKO), p=0.9148 (LATS1/2 DKO). 
G Fold difference in average change in cell volume in response to hydrostatic 
pressure from B normalised against cells not treated with 2µM Latrunculin B. Each 
dot represents a single cell and error bars are 95% CI. Mann-Whitney U test. 
p>0.9999 (WT vs Y/T DKO), p=0.0723 (WT vs LATS1/2 DKO). 
H Fold difference in average change in cell volume in response to hydrostatic 
pressure from C normalised against cells not treated with 0.5µM Cytochalasin D. 
Each dot represents a single cell and error bars represent mean ± 95% CI. Mann-
Whitney U test. p=0.4619 (WT vs Y/T DKO), p=0.7087 (WT vs LATS1/2 DKO). 
I HEK293A YAP/TAZ DKO and LATS1/2 DKO clone #2’s responses to cyclic 0.1Hz 
200mbar dynamic hydrostatic pressure with AP180C-mediated inhibition of clathrin-
dependent endocytosis. Each dot represents a single cell and error bars represent 
mean ± 95% CI. Data pooled from four independent experiments. Kruskal-Wallis test 
with Dunn’s post hoc. ***p < 0.001 (WT), p=0.2522 (Y/T DKO), p=0.0612 (LATS1/2 
DKO). 
 
Figure EV3. 
A Lysates from cells treated for 40 minutes with Torin (1µM) or Rapamycin (0.5µM) 
compared to control cells were analysed by immunoblots for the levels of the 
mTORC1 substrate S6K, pS6K and GAPDH (loading control). Note the levels of 
pS6K is drastically decreased in Torin and Rapamycin treated HEK293A cells, 
highlighting that these drugs effectively inhibits S6K phosphorylation.  
B Cells treated with Torin (1µM) and Rapamycin (0.5µM) as in A) and analysed by 
DHM to obtain their optical cellular volume. Each dot represents a single cell from 
three independent experiments. 40 minutes Torin or Rapamycin treatment does not 
affect steady-state cell volume.  Error bars represent mean ± 95% CI. Kruskal-Wallis 
test with Dunn’s post-hoc. p=0.5709 (con vs Torin), p>0.9999 (con vs Rapamycin), 
p>0.9999 (Torin vs Rapamycin). 
C WT cells treated with Torin (1µM) and Rapamycin (0.5µM) as in A) and imaged 
using DHM while being subjected to cyclic 0.1Hz 100mbar fluid pressure. 40 minutes 
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Torin (1µM) and Rapamycin (0.5µM) treatment has no effect on cell volume changes 
in response to hydrostatic pressure. Each dot represents a single cell from three 
independent experiments. Error bars represent mean ± 95% CI. Kruskal-Wallis test 
with Dunn’s post-hoc. p=0.5321 (con vs Torin), p>0.9999 (con vs Rapamycin), 
p=0.4860 (Torin vs Rapamycin). 
D Western blot confirming no CAV1 protein expression in CAV1 KO HEK293A cells.  
E CAV1 KO cellular response to cyclic 0.1Hz 200mbar hydrostatic pressure 
compared to WT. Each dot represents a single cell from three independent 
experiments and error bars represent mean ±  95% CI. Mann-Whitney U test. 
p=0.4904. 
F Relative CAV1 expression levels of CAV1 knockdown clone #1 and #2 from four 
independent experiments. Mann-Whitney U test. Error bars represent mean ± SD. 
**p=0.0079. 
G Western blot confirming reduction of total CAV1 protein levels in shCAV1 clones 
#1 and #2. 
H shRNA CAV1 knockdown cell response to cyclic 0.1Hz 100mbar hydrostatic 
pressure compared to WT. Each dot represents a single cell and error bars represent 
mean ± 95% CI. Data pooled from four independent experiments. Kruskal-Wallis test 
with Dunn’s post hoc. p>0.9999 (vector vs shCAV#1), p=0.1892 (vector shCAV#2), 
p=0.0812 (shCAV#1 vs shCAV#2). 
 
Figure EV4.  
A Confocal image of fluorescently labelled transferrin (red) uptake by 143B cells 
under steady-state conditions and in response to cyclic 0.1Hz 200mbar hydrostatic 
pressure. Cells labelled for Hoechst (blue). Scale bar = 20µm.  
B Quantification of transferrin uptake in 143B cells treated with hydrostatic pressure 
compared to steady state from images as in A. Each dot represents a single cell and 
error bars represent mean ±  95% CI. Data from four independent experiments. 
Mann-Whitney U test. *** p< 0.001.  
C Confocal IF images of HEK293A cells. Cells are labelled with Dextran (green) and 
Hoechst (blue). HEK293A WT dextran uptake in response to 10 min (left) and 30 min 
(right) cyclic hydrostatic pressure compared to steady state (Con). Scale bar = 20µm. 
D Confocal images of Y/T DKO HEK293A cells. Cells are labelled with Dextran 
(green) and Hoechst (blue). Y/T DKO HEK293A dextran uptake in response to 10 
min (left) and 30 min (right) cyclic hydrostatic pressure compared to steady state 
(Con). Scale bar = 20µm. 
E Confocal images of LATS1/2 DKO HEK293A cells. Cells are labelled with Dextran 
(green) and Hoechst (blue). LATS1/2 DKO HEK293A dextran uptake in response to 
10 min (left) and 30 min (right) cyclic hydrostatic pressure compared to steady state 
(Con). Scale bar = 20µm. 
F Changes in Dextran signal (30 min uptake) in response to cyclic hydrostatic 
pressure compared to control in WT, Y/T DKO and LATS1/2 DKO. Data obtained 
from images as in A-C. Each dot represents a single cell from three independent 
experiments. Error bars represent mean ±  95% CI. Data points obtained from 
images as in A-C. Kruskal-Wallis test with Dunn’s post hoc. p=0.1406 (WT), 
p=0.6850 (Y/T DKO), p>0.9999 (LATS1/2 DKO). 
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G Dextran uptake (30 min) at steady-state in Y/T DKO and LATS1/2 DKO cells 
relative to WT steady-state. Each dot represents a single cell from three independent 
experiments. Data points obtained from images as in A-C. Error bars represent mean ± 95% CI. Mann-Whitney U test. p>0.9999.  
H Dextran uptake (30 min) in response to hydrostatic pressure relative to steady 
state. Each dot represents a single cell from three independent experiments. Error 
bars represent mean ± 95% CI. Kruskal-Wallis test with Dunn’s post hoc. p=0.0542 
(WT vs Y/T DKO), p=0.8633 (WT vs LATS1/2 DKO), p=0.5795 (Y/T DKO vs 
LATS1/2 DKO).  
 
Figure EV5. 
A-F PhosTag probing from HA-tagged YAP levels in AP180C transfection positive 
cells. Vector or AP180C plasmid was co-transfected with HA-YAP and YAP 
activation status in response to hydrostatic pressure is shown (PhosTag gel). Anti-
HA tag antibody was used to probe for HA-tagged YAP. YAP phosphorylation levels 
in HEK293A A WT, B LATS1/2 DKO, C MST1/2 DKO, D M4K4/6/7 KO (M4K KO), E 
MST1/2-M4K4/6/7 KO (5KO) and F MST1/2-M4K1/2/3/4/6/7 KO (8KO) cells are 
shown. 
G Immunofluorescence images show AP180C positive cells in green and YAP in red. 
Hoechst highlights the nucleus (shown in blue). AP180C promotes nuclear exclusion 
of YAP in M4K KO but not MST1/2 DKO cells. Cells were transfected with Myc-
tagged AP180C and the subcellular localisation of YAP was examined in response to 
hydrostatic pressure. Scale bar = 20µm. 
H Quantification of nuclear to cytoplasmic ratio (Nucl/Cyt) of YAP in AP180C 
transfection positive cells compared to control using images as shown in G. Each dot 
represents a single cell and error bars are mean ±95% CI. Graph shows data 
obtained from three independent experiments. Mann-Whitney U test. p=0.3516 
(MST1/2 DKO), p=0.0001 (M4K KO).  
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Figure 4 

C Cellular response to H.P.
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Figure 5

G Inhibition of CDE on cellular 
response to H.P.
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