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Planning level sizing of heat pumps and 
hot water tanks incorporating model 

predictive control and future electricity 
tariffs 

Abstract 
Heat pumps and hot water tanks in local energy systems require sizing to increase on-site renewables 

self-consumption; decrease costs through variable electricity pricing; and utilise low-cost wind power. 

While detailed tools can capture these mechanisms, planning-level tools lack functionality and miss 

these benefits. In this paper an open-source planning-level modelling tool, PyLESA, is presented and 

applied to a sizing study to demonstrate the capturing of these benefits at the planning-level. Specific 

aims of the study were to investigate: (i) model predictive control vs. fixed order control, (ii) existing 

and future wind-influenced electricity tariffs, and (iii) optimal cost size combinations of heat pump 

and hot water tank. The lowest levelized cost of heat for the existing tariffs was for a time-of-use tariff, 

750kW heat pump and 500m3 hot water tank combination. For the future wind-influenced tariff a 

1000kW heat pump and 2000m3 hot water tank was cost optimal and showed model predictive control 

benefits over fixed order control with levelized heat costs reducing 41%, and heat demand met by 

renewables increasing 18%. These results demonstrate PyLESA as capable of capturing flexibility 

benefits at the planning stage of design and quantify the advantage of combining flexible tariffs with 

model predictive control. 

Keywords 
Heat pump; thermal storage; model predictive control (MPC); local energy systems; energy system 

modelling; load shifting 

1. Introduction 
Heat pumps and thermal storage together with smart controls [1] to harmonise with local and global 

renewable generation in new electricity markets [2] with flexibility tariffs has been proposed as a 

potentially promising solution [3]. A number of load shifting mechanisms are possible via such systems 

and are explored in this paper such as: increasing on-site PV self-consumption; decreasing costs 

through variable electricity tariffs; and utilising low cost wind power. 

Heat pumps are a decentralised technology which can combine the electrical and thermal sectors. 

They can efficiently use electricity and low-grade heat sources to provide useful heat, most commonly 

for small-scale households purposes but increasingly for district heating and industrial applications 

[4]. Previous studies have identified large-scale heat pumps for district heating as providing 25-30% of 

heat in future roadmaps for Europe [5], and conclude the technology is mature [6]. Flexible heat 

pumps offer the possibility to shift the electrical consumption of the heat pump to match with 

intermittent renewable generation, such as to increase on-site PV self-consumption [7]. 

Thermal storage provides flexibility to a heat pump-based system by decoupling heat demand from 

electrical consumption. Applications include hot water tanks in domestic buildings with smart control 



[8], phase change materials (PCM) [9], inherent thermal storage in buildings [10], etc. Hot water tanks 

are important in 4th generation district heating systems [11]. The low incremental costs and reduced 

losses give economic advantages for larger scale storage systems, such as in district heating, to provide 

the flexibility required to gain benefits from embedded renewable generation and emerging electricity 

market arrangements such as time-of-use tariffs, power purchase agreements, and balancing service 

payments [12]. 

Electricity markets are changing to reflect the transition from dispatchable power generation to 

stochastic, renewable power generation. Traditional tariffs such as flat rate or day/night periods are 

being challenged by emerging half hourly time-of-use tariffs which are issued a day ahead. They 

incentivise users with reduced prices during periods of surplus zero marginal cost renewable 

generation, and correspondingly dis-incentivise with increased prices during periods of peak demand 

and low renewable generation. This reflects pricing already being seen in wholesale markets with 

negative pricing in high wind and low demand periods [13].  

Future commercial arrangements through aggregators and others will potentially further reward 

flexibility from heat pumps that can contribute to local network and wider grid electricity services  [14] 

such as local power purchase agreements avoiding curtailment, frequency response and other longer-

term balancing requirements [15], engagement in these services will also require communication and 

control solutions [16]. Secure communications, monitoring and control software and hardware 

platforms are being standardised, developed, and deployed (e.g.  USEF [17], VHPready [18]) at 

commercial  and also community cooperative scales (e.g. REScoop [19], FLEXcoop [20], WiseGRID [21], 

OpenEnergyMonitor [22]). 

These platforms allow controls to be developed that optimise the operation of the system to meet the 

customer needs while maximising financial parameters or meeting other objectives such as 

maximising of local or global renewable consumption. The control strategies referred to here are the 

supervisory controls for the flexible system, each sub-component will have its own lower level controls 

e.g. PID or PLC etc. [23,24].  

Hard and Soft classifications of supervisory control were identified in literature [25]. Soft controls 

include neural networks, fuzzy logic, and reinforcement learning based controls. These have been 

applied to various renewables, heat pump and storage problems [26,27]. Reinforcement learning has 

been applied to demand response aggregation of electrical water heaters using a 40-45 day learning 

period [28]. Hard controls use physical models to determine control signals which optimise a system 

performance parameter. Adaptive control is a hard approach which accounts for changing dynamics 

of a system and requires less detail in the physical system model, it has been applied to micro-grid 

operation to evaluate flexibility benefits [29]. Model predictive control (MPC) captures the dynamics 

of an energy systems in a model which can be based on combination of physical models with statistical 

and machine learning techniques.  MPC and a range of non-predictive controls have been studied 

extensively for thermal storage [25,30], and a comparison of rule based control and MPC suggested 

MPC has significant advantages [31]. 

A key challenge is how to capture these controls together with appropriate system characteristics at 

the early planning stage of modelling to appropriately inform design. It is clear renewables, heat 

pumps, thermal storage, time-of-use tariffs, electricity services markets and optimal control strategies 

can play an important role in aiding the transition to a low-carbon energy system. However, it is 

important that these systems are modelled sufficiently such that the associated benefits from 

enabling various load shifting mechanisms can be quantified at the planning level of design, so systems 

are correctly specified. 



Numerous software tools with capability for modelling such local energy systems exist [32] and have 

previously been reviewed [33–35]. A tool selection process [36] was proposed and used to identify 

COMPOSE [37], DER-CAM [38], EnergyPLAN [39], EnergyPRO [40], and MARKAL/TIMES [41] tools as 

passing 'essential capability' criteria for modelling systems with heat pumps, thermal storage, wind 

turbines, PV, and a grid-connection. However, limitations were also identified in modelling of controls, 

thermal characteristics, and electricity network interactions which could potentially result in designs 

that do not fully consider the potential benefits of 'smart' controls and systems without sufficient 

flexibility for participation in future electricity markets. 

A range of detailed simulation tools have been used for detailed design studies such as TRNSYS [42] 

to model hybrid PV-thermal system [43] and a dual source heat pump for a residential building [44]; 

Energy+ [45] to model heat pumps with variable performance [46]; IDA-ICE [47] to compare 

energy/exergy analysis of fossil fuel, ground and air source heat pumps for a building [48]; ESP-r [49] 

for analysis of the performance of retrofitted air source heat pumps [50]; and Modelica libraries to 

support research in building energy and control [51]. However, the use of these tools for planning-

level design is problematic due to multiple factors associated with level of expertise, complexity, 

detailed input data requirements and availability at early design stage, model calibration 

requirements, etc. While some of these tools allow open-source adaptation and development there 

is a high knowledge barrier associated with these very detailed and multi-functional tools. Potential 

benefits of flexibility in future electricity markets may be missed if not captured in the planning stage. 

While detailed tools are available, they are generally applied at later stages when it can be too late to 

capture the capital and space requirements of such flexible systems. 

 

Table 1: Comparison of similar planning level energy system tools 

Tool 
Heat pump 
model 

Thermal 
storage 
model 

Control Tariff generator 

Calliope 
Fixed COP; 
User input 

Energy Optimisation User input 

COMPOSE Fixed COP Energy Optimisation Optimisation 

DER-CAM Fixed COP Energy Optimisation Optimisation 

EnergyPLAN Fixed COP Energy Fixed Order User input 

EnergyPRO 
Lorentz 
model; 
User input 

Energy Optimisation; Analytical User input 

HOMER No No 
Optimisation;  
Fixed Order 

User input;  
Library of standard tariffs 

iHOGA No No Fixed Order User input 

MARKAL/ 
TIMES 

Fixed COP Energy Optimisation Optimisation 

PyLESA 

Multiple 
variable 
linear 
regression; 
User input 

Multi-node 
stratification 
with 
temperature 
tracking 

Model Predictive 
Control;  
Fixed Order 

User input; 
Library of standard 
tariffs; 
Wind-based tariff 

 



The aims of this paper are to present the open-source planning-level modelling tool, PyLESA [52], and 

describe its application to a sizing study for district heating network. Presenting and applying PyLESA 

forms a novel contribution because existing planning-level tools do not capture hot water tanks, heat 

pumps, MPC, and future electricity tariffs in the level of detail which can be modelled using PyLESA. 

PyLESA allows the role of control strategies, and existing and future electricity tariffs to be captured 

at the planning stage and supports sizing of components within local energy systems so potential 

benefits of flexibility can be realised. In this paper an overview of PyLESA’s functionality is provided, 

and then the control strategy and electricity tariff functionality are described in detail. More details 

on the other functionality of PyLESA can be found in [53]. 

The aim of the sizing study was to design and size a low-cost and highly renewable local energy system 

for the case study. The proposed design which was modelled consists of an air-source heat pump and 

hot water tank (plus back-up electric heat) heating system with a connection to on-site PV generation, 

participation in variable electricity tariffs, and operation by a model predictive control strategy.  

The heat pump and hot water tank components of the proposed design require sizing to enable the 

following load shifting mechanisms: increase on-site PV self-consumption; take advantage of varying 

electricity costs under existing electricity tariffs; and utilise low-cost wind power under a future wind-

based electricity tariff. 

A set of specific aims were developed to investigate the various load shifting mechanisms and aid 

design and sizing decisions for the heat pump and hot water tank components of the proposed design. 

The following aims use KPIs to allow comparisons between control strategies and electricity tariffs, 

and sizing decisions to be made. 

• Investigate the performance of the control strategies, fixed order control and model 

predictive control, with respect to their ability to enable the various load shifting mechanisms. 

• Investigate the use of existing electricity tariffs (flat rate, day and night, and time-of-use), 

particularly in relation to the proposed systems ability to take advantage of variable electricity 

import costs.  

• Explore the ability of the proposed system to utilise low-cost wind power with the use of a 

future wind-based electricity tariff. 

• Identify an optimal Levelized Cost of Heat (LCOH) heat pump and hot water tank size 

combination for the different control strategies with both the existing tariffs and the future 

wind-based tariff. 

The control strategies are described in Section 4.2. Three existing (flat rates, day and night, and time-

of-use) electricity tariffs, and a future wind-based electricity tariff are described in Section 4.3. 

2. Sizing Methodology and Key Performance Indicators (KPIs) 
The methodology of the sizing study is framed to ensure that the specific aims are achieved. This 

methodology reflects the structure of the rest of this paper and consists of the following steps: 

1) Outline the proposed design of the local energy system. 

2) Description of PyLESA the modelling tool for planning-level design of local energy systems 

applied in this sizing study. 



3) Set out the input requirements for modelling the proposed design using PyLESA by (i) 

presenting the input data, and (ii) outlining the parametric ranges for multiple runs for 

different size combinations of heat pump and hot water tank, and reruns for all combinations 

of control strategy and electricity tariffs. 

4) Carry out a qualitative inspection of the operational results to verify modelling and control 

strategies, and to compare and explore the control strategies and electricity tariffs. 

5) Explore the sizing results by (i) tabulating the KPIs of the optimal heat pump and hot water 

tank sizing results for each control strategy and electricity tariff combination, and (ii) 

evaluation of the output 3D plots of the KPIs for the time-of-use and wind tariffs with model 

predictive control. 

A set of KPIs (Table 2) are used in this sizing study to quantify the ability of the proposed design to 

enable load shifting mechanisms and allow for comparisons of the technical and economic 

performance under the different control strategies and electricity tariffs. The KPIs were chosen from 

those output by PyLESA and the renewable-related KPIs were adapted to suit this sizing study and 

provide clarity on the specific Renewable Energy Source (RES). 

The LCOH was used as the KPI for choosing the optimal heat pump and hot water tank size 

combination. LCOH acts as a cost metric and as a proxy for quantifying the ability of the proposed 

design to enable the various load shifting mechanisms. Technical renewable-related KPIs were also 

used to further explore the performance of the proposed design with the different control strategies 

and electricity tariffs. These KPIs were chosen to illustrate the framework application and PyLESA tool 

capabilities, other choices could be made in applications that best suit the situation. 

Table 2: Set of KPIs for sizing study 

KPI Comment Equation 

Levelized cost of 
heat 

(LCOH) 

Economic metric to 
size the heat pump 
and hot water tank 

components 

𝐶𝐴𝑃𝐸𝑋 + 20 ∗ 𝐻𝐸𝐴𝑇𝑂𝑃𝐸𝑋

(𝐻𝐸𝐴𝑇 𝐷𝐸𝑀) ∗ 20
 

On-site RES used 
(ORESpv) 

RES is the on-site 
PV generation 

1 −
𝑆𝑈𝑀 𝐸𝑋𝑃𝑂𝑅𝑇

𝑆𝑈𝑀 𝑃𝑉 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐼𝑂𝑁
 

Heat met from RES 
(HRESpv) 

Used for the 
existing electricity 
tariffs where on-

site PV is only 
source of RES 

𝑆𝑈𝑀 𝐻𝐸𝐴𝑇 𝐹𝑅𝑂𝑀 𝑃𝑉

𝑆𝑈𝑀 𝐻𝑃 + 𝑆𝑈𝑀 𝐴𝑈𝑋
 

 

Heat met from RES 
(HRESpv+windtariff) 

Used for the wind 
electricity tariff 

where both on-site 
PV and electrical 

imports during high 
wind periods are 

classed as RES 

𝑆𝑈𝑀 𝐻𝐸𝐴𝑇 𝐹𝑅𝑂𝑀 𝑊𝐼𝑁𝐷 + 𝑆𝑈𝑀 𝐻𝐸𝐴𝑇 𝐹𝑅𝑂𝑀 𝑃𝑉

𝑆𝑈𝑀 𝐻𝑃 + 𝑆𝑈𝑀 𝐴𝑈𝑋
 

 

 



3. Proposed Design of Local Energy System 
The sizing study is applied to a residential district heating scheme operated by West Whitlawburn 

Housing Co-operative (WWHC) [54]. The scheme connects to 544 flats and is supplied by a biomass 

boiler and backup gas boilers. WWHC are interested in investigating the potential of transforming 

their existing assets into a low-cost and highly renewable local energy system. As an alternative to the 

current design at WWHC it is proposed that a centralised air-source heat pump and hot water tank 

system, plus back-up electric heat, with a connection to on-site PV generation, participation in a time-

of-use electricity tariff, and operation by a model predictive control strategy, can offer a solution for 

low-carbon and low-cost provision of heat. The model of this system assumes the end-user heat 

demand is not influenced by the proposed design. 

Figure 1 illustrates the proposed setup, combining all the components discussed above. The relative 

position of the temperature sensors on the thermal store are illustrated by T1, T2, T3, T4, and T5. Note 

that the design study carried out here does not size the buffer section of the hot water tank which is 

required for safe operation of the heat source but instead focuses solely on sizing the thermal store 

section which enables load shifting. On the diagram, red lines indicate communication between 

component and controller, and not shown is the grid connection which allows import and export 

priced by the electricity tariffs. 

4. PyLESA Description 
PyLESA is described here generally in terms of its modelling capabilities, details on the underlying 

models can be found in [52,55]. Details are provided here on the pertinent capabilities for the sizing 

study performed in this paper – the control strategies (fixed order control and model predictive 

control), and synthesis of existing and future electricity tariffs. 

Figure 1: Schematic of proposed design of new low-carbon and low-cost energy system 



4.1. Introducing PyLESA 
PyLESA is an open-source tool capable of modelling local energy systems containing both electrical 

and thermal sector technologies modelled in hourly timesteps. While the tool is configured for hourly 

timesteps, consistent with data commonly available at the planning stage of design, the open-source 

code is available to be adapted by others to shorter timesteps if desired, shorter timesteps may of 

course require mitigations to manage increased computational loads. The tool is flexible in accepting 

exogenous demand and RES generation inputs. The capabilities of PyLESA are tabulated: Table 2 shows 

the high-level capabilities and Table 4 shows the modelling and assessment capabilities under the 

categorisation developed in [36]. Figure 2 displays the models and energy flows of PyLESA. 

 

Table 3: High-level capabilities of PyLESA 

High-level capability Comment 

Scale Developed specifically for local energy systems 

Detail of design Developed specifically for planning-level design 

Low and/or zero carbon 

technologies 
Wind turbine, PV, heat pump 

Storage/Demand Side 

Management (DSM) 

technologies 

Storage: Electrical storage, hot water tank 

DSM: Fixed order control, MPC 

Timestep 
Hourly timestep chosen for easier data collection and lower 

computational run time 

Electrical technologies 
Electrical demand, electrical RES production, electrical storage, 

and grid 

Thermal technologies Heat demand, heat pumps, auxiliary heat, and hot water tanks 

 

  



Table 4: Categorisation of PyLESA tool capabilities 

Input data requirements and input support 

Demand profile generator Yes 

Resource assessor Yes 

Supply profile generator Models supply technologies explicitly 

Electrical and thermal supply technology modelling capabilities 

Electrical supply Grid, PV, Wind turbine 

Thermal supply Auxiliary electric heat, Fuel boiler, Heat pump 

District heating Yes 

Design optimisation and output capabilities 

Design optimisation Parametric analysis 

Outputs EMI, EP, FA, FC, M, RP, SA  

Controls/DSM controls FO, MPC 

Storage modelling capabilities and underlying models 

Electrical storage Simple storage model 

Thermal storage Multi-node model 

Fuel synthesis No 

Fuel storage No 

Practical considerations 

Cost Free (open source) 

Access Download (open source) 

Support Author and ESRU 

Academic/commercial Academic 

User friendly Medium. Chosen because while Python is very popular, and 
the code is commented and structured in an object-
orientated way, many existing tools do not require any 
programming proficiency 

Key – Outputs: Energy market interaction (EMI); Energy production (EP); Financial analysis (FA); Fuel consumption (FC); 
Demands/supply match (M); Renewable penetration (RP); System analysis (SA)  

Controls/DSM Controls: Fixed order (FO); Model predictive control (MPC) 

 

 

 

 

 

 

 

 

 

 



 

Figure 2: Models and energy flows of PyLESA 

4.2. Control Strategies 

4.2.1. Fixed Order Control 
The fixed order control implementation in PyLESA uses a pre-defined set of rules to order the dispatch 

of supply and determine the usage of storage. The user can rearrange the set of rules at the start of 

the simulation but cannot change the order according to dynamic system variables during the 

simulation period. This functionality is intended as a representation of a commonly employed control 

when introducing load shifting mechanisms. It will be compared to more advanced model predictive 

control which is described in the next section. 

This control is used to represent a classical controller which uses fixed setpoints for components (e.g., 

thermal storage temperature setpoint) to provide on/off and PID output responses. Table 4 illustrates 

how two separate rules can be defined to be applied depending on if the electricity import tariff price 

at the modelled timestep is above or below a user-defined “electricity import price setpoint". This 

allows for a different set of rules according to electricity tariff, e.g., for a day/night tariff to load shift 

from higher prices during the day to lower prices during the night. 



 
The processes are run sequentially with the output from each process producing a set of results and 
checks. Figure 3 shows the flow of results and checks when running the fixed order controller in 
PyLESA. The validation of this controller will be explored in Section 6 where the operational results 
are described, it is easier to analyse the operational decisions made using a well-defined example. 
 

  

1 RES to demand

2 ES to demand

3 Import to demand

4 HP RES to demand

5 E-AUX RES to demand

6 TS to demand

7 ES to HP to demand

8 HP import to demand

9 AUX to demand

10 HP RES to TS

11 E-AUX RES to TS

12 RES to ES

13 RES to export

Export

Heat demand

Electricity demand

Above import setpoint

Electricity storage

Thermal storage

1 RES to demand

2 Import to demand

3 ES to demand

4 HP RES to demand

5 E-AUX RES to demand

6 HP import to demand

7 TS to demand

8 ES to HP to demand

9 AUX to demand

10 HP RES to TS

11 E-AUX RES to TS

12 HP import to TS

13 RES to ES

14 Import to ES

15 RES to export

Electricity storage

Export

Heat demand

Below import setpoint

Electricity demand

Thermal storage

Table 5: Rules for fixed order control strategy, split into condition based on an electricity import price setpoint (ES – 
Electrical storage, HP – Heat pump, E-AUX – Electrical auxiliary, TS – Thermal storage, AUX – Auxiliary) 



   

Figure 3: Flow diagram showing process i as a chunk of the flow of results and checks when running the fixed order 
controller 



4.2.2. Model Predictive Control 
Model Predictive Control (MPC) captures the dynamic influences of energy systems and optimises the 

performance of the components as a supervisory control strategy. MPC can be based upon models 

from building and system simulation models or artificial intelligent techniques. 

An MPC controller consists of several key components:  

• Objective function which an optimiser minimises/maximises. 

• Prediction horizon which is the period over which the optimisation is performed. 

• Decision timestep which is the interval between solving optimisation problem. 

• Manipulated variables can be varied by the controller. 

• Optimisation solver which is chosen based upon optimisation type and required speed. 

• Feedback signal which provides updated system variables for next optimisation step. 

PyLESA uses Economic Model Predictive Control (EMPC) which aims to maximise the economic 

performance of a system by varying control variables to minimise costs over a receding prediction 

horizon. It is useful for complex local energy systems which consist of multiple supply options, 

stochastic renewable power generation, storage, and fluctuating electricity prices. Traditional 

controllers are not suited to optimise the operation of these types of systems. PyLESA allows the range 

of optimisation algorithms available in Python to be accessed. 

State equations are used to predict changes in state variables and are shown here for the heat balance 

(1), thermal storage state of charge (2), heat pump thermal output (3), electric auxiliary thermal 

output (4), and storage charging (5), use of surplus on-site renewable generation (6). 

 
𝐻𝐷 = 𝐻𝑃𝑡𝑟𝑑 + 𝐻𝑃𝑡𝑖𝑑 + 𝐴𝑈𝑋𝑑 + 𝐴𝑈𝑋𝑟𝑑 + 𝑇𝑆𝑑                                            (1) 

𝑑 SOC

𝑑𝑡
= 𝑇𝑆𝑐 − 𝑇𝑆𝑑 − 𝑙𝑜𝑠𝑠𝑒𝑠                                                           (2) 

𝐻𝑃𝑜𝑛/𝑜𝑓𝑓. 𝐻𝑃𝑡_𝑣𝑎𝑟 = 𝐻𝑃𝑡𝑟𝑠 + 𝐻𝑃𝑡𝑟𝑑 + 𝐻𝑃𝑡𝑖𝑑 + 𝐻𝑃𝑡𝑖𝑠                                        (3) 

𝐴𝑈𝑋 = 𝐴𝑈𝑋𝑑 + 𝐴𝑈𝑋𝑠 + 𝐴𝑈𝑋𝑟𝑑 + 𝐴𝑈𝑋𝑟𝑠                                                (4) 

𝑇𝑆𝑐 = 𝐻𝑃𝑡𝑟𝑠 + 𝐻𝑃𝑡𝑖𝑠 + 𝐴𝑈𝑋𝑟𝑠 + 𝐴𝑈𝑋𝑠                                                   (5) 

𝑅𝐸𝑆𝑠urplus = (𝐻𝑃𝑡𝑟𝑠 + 𝐻𝑃𝑡𝑟𝑑)/𝐶𝑂𝑃 + 𝐴𝑈𝑋𝑟𝑑 + 𝐴𝑈𝑋𝑟𝑠 + 𝑒𝑥𝑝𝑜𝑟𝑡                           (6) 

where HD is the heat demand, HPtrd is the heat pump thermal output from renewables to demand, 

HPtid is the heat pump thermal output from imports to demand, AUXd is the auxiliary thermal output 

to demand, AUXrd is the auxiliary thermal output from renewables to demand, TSd is the thermal 

storage discharging, SOC is the state of charge of the thermal storage, TSc is the thermal storage 

charging, losses is the losses from the thermal storage, HPon/off is the binary on/off state of the heat 

pump, HPt_var is the total thermal output of the heat pump, HPtrs is the heat pump thermal output from 

renewables to storage, HPtis is the heat pump thermal output from imports to storage, AUX is the total 

auxiliary thermal output, AUXs is the auxiliary thermal output from imports to storage, AUXrs is the 

auxiliary thermal output from renewables to storage, RESsurplus is the surplus electricity after electrical 

demand has been met, COP is the coefficient of performance of the heat pump in that timestep, and 

export is the surplus electricity exported from the local energy system. 

A mixed integer linear programming problem can then be formulated which minimises electricity costs 

by controlling the heat pump and thermal storage. The formulation contains: the objective function 



(7), state equations (1-6) lumped into a generic state equation (8), inequality constraints (9-13), and 

allowed values for the heat pump status where integer on/off operation is allowed (14). 

𝑚𝑖𝑛
𝑥,𝑢

  𝜙 = ∑ [Ic,k(HPI,k + EDI,k) + Ac,kAUXI,k  − Ec,kEXe,kk∈ℳ ]                                  (7) 

s.t. 

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 + 𝐸𝑑𝑑𝑘                                                             (8) 

𝐻𝑃𝑑𝑢𝑡𝑦,𝑘 ≥ 𝐻𝑃t var,k ≥ 𝐻𝑃𝑚𝑖𝑛,𝑘                                                          (9) 

𝑆𝑂𝐶𝑘 ≤ 𝑇𝑆𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                                                 (10) 

𝑇𝑆𝑐,𝑘 ≤ 𝑇𝑆max 𝑐ℎ𝑎𝑟𝑔𝑒                                                               (11) 

𝑇𝑆𝑑,𝑘 ≤ 𝑆𝑂𝐶𝑘                                                                     (12) 

𝐴𝑈𝑋𝑘 ≤ 𝐴𝑈𝑋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                                             (13) 

𝐻𝑃𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {0, 1}                                                                  (14) 

ℳ ∈ {0, 1, …, N} and N is the prediction horizon and a sampling time of 1 hour is used. In the lumped 

generic state equation (8) x represents the state variables which are the temperatures of the node of 

the thermal storage, and u represents the control variables which are the responses of the heat pump, 

thermal storage, and auxiliary boiler. The forecast variables, d, are the electricity tariff prices, the 

weather forecast parameters, the user dependent demands, and the renewable generation outputs. 

Several of the state variables are functions of these forecast variables. These are factored by the 

variables A, B, and E which are the matrix forms of the state equations described earlier.  

The forecast variables (e.g., representing weather forecast over a 24- or 48-hour future time horizon) 

are refreshed with new values read into the control dataset at each new calculation timestep. At each 

timestep the optimisation problem is solved, and a set of control variables is obtained. The first control 

variable is implemented, and new state variables generated. Forecast variables are updated in the 

next iteration of the optimisation problem, and this is repeated for the entire simulation period. 

The binary ON/OFF status of the heat pump is required due the minimum thermal output of the heat 

pump. This requires the problem to be solved using a mixed integer linear programming (MILP) 

approach. Within PyLESA the minimum thermal output of the heat pump can be set to zero and a liner 

programming (LP) approach can be used which decreases computational time. 

It is assumed here that forecast variables are known with perfect foresight. However, an MPC running 

in real-time is dependent on the accuracy of the predictions of the forecast variables. Therefore, the 

perfect foresight MPC approach results in an idealised operational schedule; the benefits from MPC 

will potentially be overestimated. Using realistic future time horizons over which predictions of 

forecast variables with relatively low uncertainty helps reduce this overestimation. In practical 

systems the error in forecasts is mitigated with measures including hourly re-optimisations and 'safety 

margins' applied to forecasts. Stochastic MPC approaches have been developed which incorporate the 

uncertainty in forecast variables [56]. Alternative approaches for incorporating uncertainty of 

prediction variables have used the future value of the reference signal [57], and historical value of the 

control signal [58]. PyLESA provides a platform for incorporating such methods in future. 

The presented MILP is solved using GEKKO, a Python package for machine learning and optimisation 

[59]. It uses large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming and in 



the MPC developed for PyLESA the APOPT solver is used [60]. GEKKO has previously been used in 

energy system analysis to optimise the performance of thermal storage to minimise cost operation of 

a district energy system in a time-of-use electricity market [61] and optimization of a hybrid solar 

thermal and fossil fuel system [62].  

The developed MPC strategy uses a simplified energetic model for the thermal storage in the 

optimisation problem. This may lead to overestimation of the ability of the thermal store to meet 

demand in a later period, and an increase in the electrical import costs due to sub-optimal deployment 

of the heat sources. Currently the developed MPC can incorporate all the developed models except 

the electrical storage model, and inclusion of this can be easily done as future tool development.  

4.3. Electricity tariffs 
Existing and future tariffs can be generated and modelled in PyLESA, including a future wind-based 

electricity tariff generator in PyLESA. This allows PyLESA to perform analysis of future energy system 

scenarios which may include electricity pricing structures which are highly differential and based on 

renewable power generation. This differs to existing tariffs which are priced according to demand and 

inflexible baseload generation, amongst other complex factors. 

4.3.1. Existing 
Traditionally, domestic electricity tariffs available from energy suppliers in the UK have been flat rate 

tariffs where a price is agreed which is static regardless of when electricity is used or variable periods 

tariffs, such as economy 7 where a cheaper electricity price is available for 7 hours during the night. A 

newer form of tariff is time-of-use where electricity prices fluctuate hourly (or sub-hourly) and are 

linked to the wholesale market. This encourages users to shift demand from peak periods. 

Table 6: Existing electricity tariff descriptors and examples 

Tariff Description Pricing structure example 

Flat rates Fixed price £130/MWh – All times 

Variable 
periods 

Variable hourly with a fixed 
structure, e.g., day/night, 
weekday/weekend  

£150/MWh – Day 
£75/MWh - Night 

Time-of-use 
Variable hourly, or sub-hourly, e.g., 
linked to wholesale market 

Linked to wholesale market, premium 
pricing period between 4pm and 7pm, 
maximum set to £350/MWh 

 



 

Figure 4: Existing electricity tariffs over 72 hours 

4.3.2. Future 
Possible future renewable tariff synthesis can be supported in PyLESA. This future wind-based tariff 

mimics the low-cost electricity that might be available to avoid curtailment and the high-cost 

electricity resulting from the least optimal backup generation being used on low wind days.  

For example, a future tariff could be synthesised in PyLESA using the following method. Firstly, an 

existing tariff is chosen as a base: (i) a continuously fixed tariff, (ii) low demand coupled with inflexible 

generation (such as nuclear) causing low price periods during the night, or (iii) a flexible tariff based 

on avoidance of peak late afternoon demands. Then, a wind farm output is modelled using the same 

method for the on-site wind power generation described previously, and the resultant hourly power 

output is separated into top and bottom bands of production. A discount is applied to the base tariff 

where wind power output is in the top band of production and a premium applied where it is in the 

bottom band. The wind bands, the discount, and premium to be applied to the base tariff are defined 

by the user. Figure 5 shows PyLESA synthesised tariffs with the wind generation discount and premium 

applied to each of the three base cases. The functionality in PyLESA allows other future tariff scenarios 

to be generated and investigated, e.g., capturing grid service market opportunities. 



 

Figure 5: Top graph: wind farm modelled output including upper band and lower band over 72 hours; Bottom graph: 
renewable electricity tariff with discounts and premiums applied over the same 72 hours. 

5. PyLESA Modelling Inputs 
This section sets out the modelling of the proposed design using PyLESA by (i) presenting input data, 

and (ii) outlining the parametric ranges for multiple runs for different size combinations of heat pump 

and hot water tank, and reruns for all combinations of control strategy and electricity tariffs. 

5.1. Input Data 
This section details each component of the proposed setup outlining the required, and available, input 

data. 

Resource and Demand Assessment and Input Methods 
Local resources: MERRA reanalysis hourly dataset [63] for 2017 for wind speed (at 10m height). Air 

temperature was collected using local sensors for 2017 for air temperature. 

Electrical Demand: Generic community electrical demand profile synthesised in HOMER [64]. 

District Heating Demand: Hourly monitored data from WWHC for the year 2017. 

Electrical Production Technologies 
PV: 1.74MW rated capacity, 6000 x 290W LG LG290N1C-G3 [2013] panels, south-facing, with 40° 

surface tilt and LG295A1C-B3 [240V] 240V [CEC 2018] inverters. Incentives for PV are not to be 

included in this modelling exercise. 

Heat Pumps and Auxiliary Heat Units 
Heat pump: Star Refrigeration ASHP Neatpump [65] with variable speed compressor and 65/55 

flow/return temperatures feeding a district heating network at 60/40 flow/return temperatures,  with 

backup electric heater with 100% efficiency sized to peak heat demand. Heat pump performance 

curves available. Capital cost assumed linear at £600/kW [66] and no economy of scale was assumed 

in this illustrative example. Incentives for the heat pump are not to be included in this modelling 

exercise. 



Hot Water Tank 
Hot water tank: Modelled using the following inputs: 5 nodes, polyurethane insulation, located 

outside, 5 thermostat tank openings with diameter 35mm, and 2 insulated connections for the flow 

and return with diameter 50.8mm. Capital cost is presumed to follow an exponential decay function 

for £/m3 [66]. 

Electricity Tariffs 
Four different electricity import tariffs are modelled in the sizing study using the following inputs. For 

clarity in this example, exports to the grid from the on-site PV have been set to zero value, and other 

on-site uses of PV generation are not considered. 

Flat rate: £130/MWh. 

Day and night: 12am to 7am - £75/MWh, 7am to 12am - £150/MWh. 

Time-of-use: Tracks wholesale market with £120/MWh premium from 4pm to 7pm and £350/MWh 

maximum. 

Wind: Combination of day and night base tariff adjusted by wind pricing structures. 12am to 7am - 

£75/MWh, 7am to 12am - £150/MWh; and a £50/MWh discount applied during top 20% of wind 

output and a £50/MWh premium applied during bottom 20% of wind output. Wind output is based 

upon Whitelee Wind Farm, which consists of 215x Siemens SWT-2.3MW. 

Fixed Order Control 
The fixed order controller requires an import setpoint. For the flat rate electricity tariff the import 

setpoint was set below the import cost to avoid unnecessary charging and discharging of the hot water 

tank using high-cost grid imports. For the day and night electricity tariff the import setpoint was set 

between the day and night import costs to enable load shifting from day to night. For the time-of-use 

and wind electricity tariff the import setpoint was set to £100/MWh. 

Model Predictive Control 
MPC requires the prediction horizon as an input. For the existing electricity tariffs a 24-hour period 

was used to capture day and night pricing etc. and for the wind tariff a 168-hour (1 week) prediction 

horizon was used to capture periods longer than a day with high or low wind generation affected 

prices.  

5.2. Parametric Ranges 
The following parametric ranges are modelled using PyLESA for the control strategies and electricity 

tariffs: 

• Fixed Order Control and Model Predictive Control with existing tariffs: 

o Hot water tank capacity range: 0 -> 800m3 in 100m3 steps. 

o Heat pump thermal output capacity: 0 -> 2000kW in 250kW steps. 

• Fixed Order Control with wind tariff: 

o Hot water tank capacity range: 0 -> 3000m3 in 250m3 steps. 

o Heat pump thermal output capacity: 0 -> 3000kW in 500kW steps. 

• Model Predictive Control with wind tariff: 

o Hot water tank capacity range: 0 -> 3000m3 in 1000m3 steps. 



o Heat pump thermal output capacity: 0 -> 3000kW in 500kW steps. 

6. Operational Analysis 
To illustrate the modelling of the PV, heat pump and thermal storage system with both FOC and MPC 

for different tariff arrangements two scenarios are examined in this section: (i) FOC with a daily tariff 

with low-cost imports at night, and (ii) MPC with a wind-based tariff where there are variable periods 

with high import costs. A summer week is shown for a day and night tariff with fixed order control 

using an example 1000kW heat pump and 500m3 hot water tank size combination. A windless winter 

week is shown for the wind-based tariff with MPC using an example 3000kW heat pump and 3000m3 

hot water tank size combination. The operational graphs presented here consist of four plots: heat 

pump output, auxiliary, and heat demand; hot water tank node temperatures; import cost; and 

surplus and export. These scenarios were selected to provide an insight into the operation of the 

underlying models, analysis for a wider range of system sizes and combinations of control strategies 

and electricity tariffs, and modelling validations, can be found in [42]. Modelling results have been 

compared to an EnergyPLAN model of the same case study showing similar overall results for 

comparable scenarios, while PyLESA offered improved level of detail, e.g., in hot water tank and 

controls including MPC [53]. 

6.1. Day and Night Tariff and Fixed Order Control  
The operation of the fixed order control with the day and night tariff is displayed for a summer week 

in Figure 6. Load shifting occurs in this example for both utilising excess PV generation and avoiding 

importing during high-cost electricity tariff periods during the day (3rd plot). 



During the low-cost period, when the hot water tank is full, the heat pump modulates its output to 

match demand and charge the hot water tank. During the high-cost period the hot water tank 

discharges and the heat pump turns off, unless there is surplus PV generation, in which case the heat 

pump meets demand and charges the hot water tank. However, often the hot water tank has only 

briefly been discharging after fully charging from the low-cost overnight period, and there is little 

spare capacity to utilise the surplus PV generation. 

6.2. Wind Tariff and MPC 

The operation of the MPC with the wind tariff is displayed for a winter 10-day period with an 8-day 

windless spell from the end of day 2. The MPC is modified to a 168-hour prediction horizon when 

modelling using the wind-based tariff with a 3000kW heat pump and 3000m3 hot water tank. 

In the first two days (50 hours) there are periods of high wind resulting in low cost, and it is during 

these periods the heat pump operates at maximum output to fill storage and meet demand. 

Additionally, the auxiliary electric heat turns on because the direct electric heat is cheaper in these 

periods than operating the heat pump in the high-cost periods. The hot water tank is then used to 

cover a large proportion of the 8-day high-cost period, as can be seen by the trend of reducing node 

temperatures. However, there is not enough capacity to cover this entire period and the heat pump 

occasionally operates to charge the hot water tank. This occurs during the highest heat pump 

performance periods which are when the air temperature is highest. 

Figure 6: Operational graphs with FOC and variable periods tariff over a summer week. HPt = heat pump heat output, aux = 
auxiliary heat output, and HD = heat demand. 



7. Sizing Study 
The heat pump and hot water tank sizes are now investigated for three existing electricity tariffs (flat 

rate, variable day and night periods, and time-of-use) and the future wind-based electricity tariff, for 

each of the two control strategies (FOC and MPC).  

Results for the optimum LCOH size combinations of heat pump and hot water tank are shown in Table 

6 for the existing electricity tariffs and control strategies, and in Table 7 for the wind electricity tariff 

and control strategies. 

The remainder of this section describes 3D plots of the KPIs (LCOH, ORESpv, HRESpv, and 

HRESpv+windtariff) for MPC with the time-of-use tariff and wind tariff. Further 3D plots for all 

combinations of control strategies and electricity tariffs can be found in [42]. 

 

 

 

 

 

  

Figure 7: Operational graphs with MPC and wind tariff over a windless winter 10-day period. HPt = heat pump 
heat output, aux = auxiliary heat output, and HD = heat demand. 



Table 7: Optimum LCOH results for the existing electricity tariffs and control strategies including KPIs (brackets is the 
relative change from FOC to MPC) 

Tariff Control HP (kW) TS (m3) 
HRESpv  

(%) 
ORESpv  

(%) 
LCOH (p/kWh) 

Fixed Rate 
FOC 750 400 33.8 92.7 4.75 

MPC 750 500 32.7 96.7 
4.62 

(-2.7%) 

Day and night 
FOC 1000 400 18.7 70.2 4.49 

MPC 1000 500 33.6 95.5 
4.13 

(-8.0%) 

Time-of-use 
FOC 750 300 15.8 67.0 3.86 

MPC 750 500 32.1 95.9 
3.11 

(-19.4%) 
 

Table 8: Optimum LCOH results for the wind electricity tariff and control strategies including KPIs (brackets is the relative 
change from FOC to MPC) 

Tariff Control HP (kW) TS (m3) 
HRESpv+windtariff 

(%) 
ORESpv  

(%) 
LCOH (p/kWh) 

Wind 
FOC 1000 1500 52.8 73.8 5.81 

MPC 1000 2000 70.2 98.1 
3.25 

(-44.1%) 

 

7.1. Time-of-use Tariff and MPC 
The time-of-use tariff is variable hourly throughout the day and the MPC should be adept at ensuring 

that electrical consumption coincides with the lowest cost periods, including utilising surplus PV 

generation. The LCOH optimum size combination is a 750kW heat pump and a 500m3 hot water tank. 

Using MPC over the fixed order control decreases LCOH by 19.4%, making it the lowest LCOH tariff for 

this control strategy (Figure 8). The savings come about because the fixed order controller is limited 

to avoiding the premium period and does not use the storage to shift load in the other price-varying 

periods. The MPC has the advantage of not requiring a setpoint and can therefore utilise all the storage 

to shift load outside the premium period to minimise operating cost across all periods. Additionally, 

the MPC optimises the usage of the excess PV generation.  

The MPC enables almost all of the surplus PV generation to be self-consumed above a hot water tank 

capacity of 300m3 (Figure 9). A drop in the self-consumption for large heat pump and hot water tank 

combinations is due to the greater proportion of heat demand being met by the heat pump which is 

more efficient than the auxiliary electric heat. An increase in percentage of heat demand met from 

on-site PV is achieved by increasing either heat pump or hot water tank capacities (Figure 10). 



 

 

Figure 8: 3D plot of LCOH (levelized cost of heat) for MPC with time-of-use tariff 

Figure 9: 3D plot of ORESpv (on-site PV self-consumption) for MPC with time-of-use tariff 



 

7.2. Wind Tariff and MPC 
The wind tariff incentivises load shifting by offering high price differentials between windy and non-

windy periods, in addition to the day/night differential. The MPC with the wind tariff uses a 168-hour 

prediction horizon which allows the operation to account for long periods of lots of wind or no wind. 

The LCOH optimum size combination is a 1000kW heat pump and a 2000m3 hot water tank, marking 

a significant increase in optimal hot water tank size and similar optimal heat pump size compared to 

the existing tariffs. Due to the larger parametric steps used for the hot water tank sizes, two additional 

simulations were undertaken for a 1000kW heat pump with both 1500m3 and 2500m3 hot water tank 

capacities. These both result in an increase in LCOH, therefore a 2000m3 hot water tank remains the 

optimal size.  

Using MPC over the fixed order control decreases LCOH by 44.1%, which clearly shows that using MPC 

is beneficial (Figure 11). These substantial savings are possible due to the ability of the MPC, with the 

week-long prediction horizon, to optimally shift the heat pump electrical consumption to the periods 

of low-cost. The wind tariff is highly variable with a large differential between low-wind and high-wind 

periods, and this heavily incentivises the load shifting mechanism which is enabled by a large hot water 

tank and use of MPC.  

As with the existing electricity tariffs, the MPC enables almost all of the surplus PV generation to be 

self-consumed (Figure 12). A drop in the self-consumption for larger heat pump and hot water tank 

combinations is due to the greater proportion of heat demand being met by the heat pump which is 

more efficient than the auxiliary electric heat.  

Figure 10: 3D plot of HRESpv (heat demand from on-site PV) for MPC with time-of-use tariff 



Unlike the existing tariffs, importing using the wind tariff during periods of high-wind can be classed 

as from RES. Figure 13 shows the percentage of heat demand met from on-site PV and high wind grid 

import increasing with additional heat pump capacity and hot water tank capacity. With the wind tariff 

and MPC, along with a large hot water tank, the percentage of heat demand met from on-site PV and 

high wind grid import is greater than any of the other tariff and control combinations. This illustrates 

the importance of combining MPC with a large hot water tank in future highly renewable energy 

systems in order to maximise the local energy system renewable usage. In this case over 70% of the 

heat was generated from on site PV and low cost wind grid import. 

 

Figure 11: 3D plot of LCOH (levelized cost of heat) for MPC with wind tariff 



 

Figure 12: 3D plot of ORESpv (on-site PV self-consumption) for MPC with wind tariff 

Figure 13: 3D plot of HRESpv+windtariff (heat demand from on-site PV and electrical imports during 
high wind periods) for MPC with wind tariff 



8. Discussion 
PyLESA has been presented and applied to a sizing study for a residential district heating scheme. This 

has showcased the ability of PyLESA as a useful aid to investigate the benefits of model predictive 

control and different electricity tariffs including a novel future wind tariff.  

Future PyLESA tool development could include emerging balancing markets could provide a greater 

incentive for flexibility e.g. balancing mechanism, frequency response, and new ancillary markets such 

as the European wide balancing energy market TERRE [67]. Another important aspect of future work 

could be the inclusion of uncertainties in the MPC formulation as these are currently modelled with 

perfect foresight [68,69]. 

The operational analysis results provided a platform for discussion of the control strategies and the 

electricity tariffs. The time-of-use tariff is highly variable outside the premium period meaning that 

using the fixed order control is limited to avoiding imports during the premium period. The fixed order 

control is not suited to avoid the premium period and load shift based on price variations outside of 

the premium. MPC makes it possible to avoid premium prices and take advantage of the other variable 

prices. Additionally, the self-consumption of PV can be maximised, and imports limited to the lowest 

cost periods and restricted to only meeting the remainder of the demand in the calculation period. 

Using the fixed order control with the wind tariff shows great potential for the use of large hot water 

tanks and heat pumps with this type of tariff. The heat pump only runs in the low-cost and renewable 

periods which should lead to low operating costs and a high percentage of heat met by renewables. 

The wind tariff with MPC requires a longer prediction horizon than that used for the existing electricity 

tariffs to account for the large windows of fluctuations, over periods closer to a week. The auxiliary 

electric heater is still needed to see the system through long periods of high cost. However, the sizing 

results should show employing the MPC resulting in a higher proportion of renewables meeting 

demand. 

A 750kW heat pump and 500m3 hot water tank using MPC and a time-of-use electricity tariff were 

found to deliver the lowest LCOH in comparison with the existing electricity tariff structures and 

control strategies. This marks a significant 10x expansion of the existing hot water tank at the case 

study site. This signifies a shift in the methods which are used to size hot water tanks in district heating 

systems; sizing to enable load shifting and not only for flattening peak demands.  

An optimal size combination of a 1000kW heat pump and a 2000m3 hot water tank was found with 

MPC and the future wind-based tariff. For the wind tariff performance improvements were found by 

using MPC over the fixed order control: LCOH reducing from 5.81p/kWh to 3.25p/kWh (44.1% 

reduction); and heat demand met by on-site PV and high wind grid import increasing from 52.8% to 

70.2%. The optimal heat pump size for the wind tariff was found to be similar, or the same, as for the 

existing tariffs. The optimal hot water tank capacity is significantly larger. Therefore, the proposed 

design could be sized for an existing electricity tariff and later additional hot water tank capacity can 

be added to take advantage of future tariffs. 

9. Conclusions 
The open-source tool PyLESA has proven capable of usefully aiding the design of local energy systems 

and it can be used to support further research and development in the modelling of local energy 

systems. PyLESA may be less user friendly than expensive commercial software, however, it joins a 

growing community of energy system tools written in Python, and it can be reused and easily modified 

to suit the needs of future users.  



PyLESA can capture flexibility benefits at the planning stage of design and quantify the advantage of 

combining flexible tariffs with MPC. While this functionality in predictive controls and temperature 

tracking of thermal storage may be available in detailed tools, they are not available in planning tools, 

and PyLESA offers this missing functionality. 

In the presented case study, MPC has been demonstrated to reduce costs and increase the usage of 

renewable energy; and sizing hot water tanks larger than is currently common has been shown to be 

beneficial with future highly variable wind tariffs. The lowest levelized cost of heat for the existing 

tariffs was for a time-of-use tariff, 750kW heat pump and 500m3 hot water tank combination. For the 

future wind-influenced tariff a 1000kW heat pump and 2000m3 hot water tank was cost optimal and 

showed model predictive control benefits over fixed order control with levelized heat costs reducing 

41%, and heat demand met by renewables increasing 18%.  
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