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ABSTRACT  

Subsurface storage of hydrogen, e.g. in depleted oil and gas fields (DOGF), is suggested 

as  means to overcome imbalances between supply and demand in the renewable energy 

sector. However, hydrogen is an electron donor for subsurface microbial processes, 

which may have important implications for hydrogen recovery, gas injectivity and 

corrosion. Here, we review the controls on the three major hydrogen consuming 

processes in the subsurface, methanogenesis, homoacetogenesis, and sulfate reduction, 

as a basis to estimate the risk for microbial growth in geological hydrogen storage. 

Evaluating our data on 42 DOGF showed that five of the fields may be considered sterile 

with respect to hydrogen-consuming microorganisms due to temperatures >122 °C. Only 

three DOGF can sustain all of the hydrogen consuming processes, due to either 

temperature, salinity or pressure constraints in the remaining fields. We calculated a 
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potential microbial growth in the order of 1-17*107 cells ml-1 for DOGF with favorable 

conditions for microbial growth, reached after 0.1-19 days for growing cells and 0.2-6.6 

years for resting cells. The associated hydrogen consumption is negligible to small 

(<0.01-3.2 % of the stored hydrogen). Our results can help inform decisions about where 

hydrogen will be stored in the future.  

Keywords: Hydrogen, underground storage, microbial hydrogen consumption, 

homoacetogens, methanogens, sulfate reducers 

Word count: 9422 words 

Highlights  

 Review of the most important hydrogen-oxidizing microorganisms in the 

underground 

 Elucidation of the growth criteria for 518 strains of the major hydrogen-

oxidizers 

 Screening of 42 depleted oil and gas fields (DOGF) for possible microbial 

growth 

 Calculation of the microbial growth and hydrogen consumption in DOGF 

 

Abbreviations and units 

SSR        Sulfur species reduction  

SSRM     Sulfur species reducing microorganisms 

DOGF    Depleted oil and gas fields  

EPS         Extracellular polymeric substances 

M            Molarity (mol L-1)    

MPa        Megapascal 
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1. Introduction 

Zero-carbon energy generation from renewable sources can help mitigate carbon emissions and 

abate climate change [1-3]. One of the most significant challenges for renewable energy is the 

imbalance between supply and demand [3, 4]. The generation of hydrogen (H2) via electrolysis 

of water during periods of renewable energy oversupply and subsequent H2 storage is one way 

of overcoming this imbalance, as H2 can be recovered and used for electricity generation during 

periods of renewable energy shortage [1, 5]. Subsurface storage of H2 in salt caverns, depleted 

gas or oil fields or saline aquifers is being considered as an alternative to expensive purpose-

built storage containers [6]. However, the artificial elevation of the H2 concentration in the 

subsurface may stimulate the growth of H2-oxidizing (hydrogenotrophic) bacteria and archaea, 

here collectively referred to as microorganisms, with possible adverse implications for gas 

injectivity and withdrawal via permeability reduction, H2 volume loss and corrosion of metal 

infrastructure [4, 7]. Understanding the controls on microbial H2 metabolism is therefore highly 

important.   

Much of the subsurface is characterized by combinations of elevated temperature [7], high salt 

concentrations and high pressure [3], reduced void space [8], limited nutrient availability [9] 

and typically highly reducing conditions [9-11]. The evidence for microbial life at depth is 

plentiful (e.g. [12-16]). Most microorganisms in nature grow in biofilms attached to surfaces 

(communities of aggregated microbial cells embedded in a secreted matrix of extracellular 

polymeric substances (EPS)) [17, 18]. Even small amounts of biofilm can reduce pore throat 

sizes and increase the flow-path tortuosity, resulting in dramatic decreases in permeability [19]. 

Hydrogen plays a central role in the energy metabolism of subsurface life [9]. Yet, a 

quantitative assessment of the consumption of H2 by deep microbial communities in the context 

of the global H2 cycle is lacking [20]. In underground gas storage sites and oil reservoirs the 
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most abundant H2-oxidizers are hydrogenotrophic sulfate reducers, that couple H2-oxidation to 

sulfate reduction to produce hydrogen sulfide (H2S); hydrogenotrophic methanogens that 

reduce carbon dioxide (CO2) to methane (CH4) by oxidizing H2; and homoacetogens that 

couple H2 oxidation to carbon dioxide (CO2) reduction producing acetate [7, 21-23]. These 

three groups of microorganisms are, amongst others, implicated in causing subsurface 

corrosion [7, 22, 24].  

Several recent reviews discussed the potentially very important role of microbial activity in 

geological H2 storage [6, 7, 23, 25, 26]. Gregory et al. [7] addressed the many possible abiotic 

and biotic H2-producing and H2-consuming processes in the subsurface. Dopffel et al. [23] 

characterized different microbial issues, giving key indicators for the processes, and advised in 

the monitoring and management of microbial activity in subsurface H2 storage. All of these 

efforts lacked a quantitative assessment of the processes of microbial growth and H2 

consumption relevant for H2 storage. Strobel et al. [26] summarized the concept and potential 

of underground methanation using experimental data from the Sun Storage project [27]. These 

authors highlighted controls on the growth of methanogens and changes in gas composition 

due to methanogenesis, but did not quantify microbial growth. Many studies report changes in 

gas composition, biofilm growth and clogging near injection wells but hardly any provide 

quantitative figures on microbial growth or on permeability changes [28].  

To date it remains unclear how subsurface microorganisms might react to elevated H2 

concentrations [7] and hence whether microbial growth is a concern for H2 storage. Even in 

natural, non-engineered subsurface environments, there is little information on microbial H2 

turnover rates [29] and the behavior and population kinetics of microorganisms are not fully 

understood [26]. The majority of the available data on microbial H2 turnover rates come from 

batch cultures at optimal growth conditions where the kinetics [29], the pace of life [30, 31], 
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the physiological states and the prominent organisms may differ widely from the subsurface 

environment [7, 30]. A further complication arises from the fact that many microorganisms in 

the deep subsurface are not culturable with modern enrichment techniques [12, 32].  

In this work, we review the state-of-the-art understanding of the controls of temperature, 

salinity, pH, pressure and nutrients and water on microbial growth on H2 in the subsurface, with 

emphasis on the three major H2-consuming processes methanogenesis, sulfate reduction and 

homoacetogenesis, to determine what reservoir conditions will be unfavorable to microbial 

activity and as such more suitable sites for long term gas storage operations of 30 years or 

longer, such as the UK Rough gas storage site.  

Physicochemical data from 42 depleted or close to depleted oil and gas fields (DOGF) of the 

British and Norwegian North Sea and the Irish Sea as well as five H2 storage test sites provide 

the base for an evaluation of the number of sites where microbial growth of methanogens, 

sulfate reducers and homoacetogens can be expected. Using average nutrient contents of the 

microbial cells and site-specific dissolved ion concentrations, we calculate significant growth 

and a small H2 consumption for growth-permitting DOGF.  

2. State of the art understanding  

2.1 Likely microbial hydrogen oxidation in hydrogen storage systems 

Hydrogen oxidizing processes may be ranked according to the magnitude of their H2 threshold 

and their standard free energy change (ΔG0’), two useful metrics to compare the likelihood of 

reactions to take place and the order at which they proceed (Table 1). The H2 threshold defines 

the concentration of H2 below which it is no longer consumed. Given all other factors are at 

optimum, the microbial population with the lowest H2 threshold value is expected to be the 

most successful population in competing for H2 [33].   
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Table 1. Biotic H2-consuming processes ranked according to their free energy yield (ΔG0’) and measured H2 threshold. Not included are 

Vanadium, Cobalt, Techneticum, Uranium and Selenium reduction, due their limited relevance for H2 storage. NA= not available. 

H2- oxidizing process Reaction (number) H2 threshold 

(nM) 

ΔG0’ (KJ  mol 

H2
-1) 

Typical ambient 

[H2] (nmol L-1) 

Relevance for 

H2 storage  

Chromate reduction  1

2
𝐻2 +

1

3
𝐶𝑟𝑂4

2−
+

5

3
𝐻+ →  

1

3
𝐶𝑟3+ +

4

3
𝐻2𝑂            (1) 

<0.1[34]  NA NA low 

Aerobic hydrogen 

oxidation (Knallgas) 
𝐻2 +

1

2
𝑂2 → 𝐻2𝑂                                                             (2) 0.051[7] -237[7, 34] 

 

NA low 

Denitrification 𝐻2  +
2

5
 𝐻+ + 

2

5
𝑁𝑂3

− →  
1

5
𝑁2 +

6

5
𝐻2𝑂                   (3) <0.05-0.5[7] -240.1[7, 34] 

-224[4, 35] 

 

<0.05[4, 33, 34] low 

Halorespiration 𝐻2  + ℎ𝑎𝑙𝑜𝑔𝑒𝑛𝑎𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 →
𝑑𝑒ℎ𝑎𝑙𝑜𝑔𝑒𝑛𝑡𝑎𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 + 𝐻𝐶𝑙                     (4) 

0.05-0.27[34] 

<0.3 [36] 

0.27-2[7] 

-230 to -187[7] NA low 

Iron (III) reduction 𝐻2 + 𝑓𝑒𝑟𝑟𝑖𝑐(𝑜𝑥𝑦)ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑𝑒𝑠 → 𝑓𝑒𝑟𝑟𝑜𝑢𝑠 𝑖𝑟𝑜𝑛 +
𝐻2𝑂                                                                                       (5) 

<0.11-0.8[34, 36]  
 

-228.3[7, 36] 

-182.5[34] 

-114[4] 

0.2[4, 33] 

0.2-1[34] 

intermediate  

Manganese (IV) 

reduction 

2𝐻2 + 𝑀𝑛𝑂2 → 𝑀𝑛(𝑂𝐻)2 + 2𝐻2𝑂                            (6) <0.05[33]  -163[4, 33] <0.05[4, 33] low 

Arsenate reduction  𝐻2 + 𝐻𝐴𝑠𝑂4
2− + 2𝐻+ →  𝐻3𝐴𝑠𝑂3 + 𝐻2𝑂             (7)     0.03-0.09[34]  -162.4[34] 0.4-0.7[34] low 

Ammonification 4𝐻2  + 2𝐻+ + 𝑁𝑂3
− → 𝑁𝐻4

+ + 3𝐻2𝑂                  (8) 0.015- 0.025[36, 

37] 

-150[4, 36] 

 

<0.05[4, 33] low 

Fumarate reduction 𝐻2  + 𝑓𝑢𝑚𝑎𝑟𝑎𝑡𝑒 → 𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒                                (9) 0.015[36, 37]  -86.2[36] NA low 

Hydrogenotrophic 

sulfate reduction 
4𝐻2 + 𝑆𝑂4

2− + 𝐻+ → 𝐻𝑆− + 4𝐻2𝑂                         (10) 1-15[36, 37] -38[7, 36] 

-48[34] 

-57[4] 

1-2[4, 33] high 

Hydrogenotrophic 

methanogenesis 

4𝐻2 + 𝐶𝑂2 →  𝐶𝐻4+ 2𝐻2𝑂                                    (11) 0.4-95[36-38] -34[4, 36] 

-43.9[34] 

5-10[4, 33] 

7-13[34] 

high 

Sulfur reduction 𝐻2 + 𝑆 → 𝐻𝑆− + 𝐻+                                               (12) 2500[7] -33.1[7] NA intermediate 

   Homoacetogenesis 4𝐻2 + 2𝐶𝑂2 → 𝐶𝐻3𝐶𝑂𝑂𝐻 + 2𝐻2                           (13) 

 

328-3640[36, 37] -26[4, 36] 

-36.1[34] 

100<[4], 117-150[34] high 
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The ΔG0’ marks the thermodynamic favorability of a reaction at ambient pressure and 

temperature, pH 7 and 1 M of all reactants. In oligotrophic (nutrient poor) high pressure and 

temperature environments, the order of the ΔG0’ may be used to determine which reaction is 

more energetically favorable. As can be seen from Table 1, more negative ΔG0’ values (more 

available free energy) are generally accompanied by lower H2 thresholds. Not included in Table 

1 are the kinetics which describe the rate of the electron transfer in the redox reaction. 

Abiotically, most of the H2-oxidizing reactions are very slow but mediated by microbial 

enzymes the processes are catalyzed [35, 39].  

The three main microbial processes with implications for H2 storage, hydrogenotrophic sulfate 

reduction, hydrogenotrophic methanogenesis (for simplicity from now on just referred to as 

sulfate reduction, and methanogenesis unless otherwise specified) and homoacetogenesis, 

require the highest threshold [H2] and are among the processes with lowest ΔG0’ (Table 1). 

Nevertheless, e.g. sulfate reduction is instantaneous in most geologic settings [40] possibly due 

to fast kinetics [35] and/or a relatively high availability of sulfate.  

Because sulfate reducers may use the same substrates as sulfur reducers (i.e. sulfide and 

thiosulfate [41, 42]), they are here collectively referred to as sulfur species reducing 

microorganisms (SSRM) performing sulfur species reduction (SSR). Direct respiration of 

sulfur is limited by its low solubility (1.6*10-7 M) and hence requires cell attachment to the 

sulfur particle [43]. However, sulfur readily reacts with sulfide formed during the reduction of 

sulfate to form easily metabolizable polysulphides  [43, 44].  

Iron (III) reduction relies on the availability of iron oxides and iron-bearing minerals such as 

smectite and chlorite [45, 46], as well as the availability of organic carbon, since dissimilatory 

iron reducing bacteria (DIRB) are strict heterotrophs, i.e. synthesize cell carbon from organic 

compounds [47]. Iron oxides are abundant in many sediments and aquifers [45] but are 
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typically not available in the carbon-rich oil fields because they have been reduced over 

millions of years and are not replenished [21]. Meanwhile, bacteria capable of reducing iron 

are frequently isolated from hydrocarbon-contaminated or oil-associated sites (reviewed in 

[48]). However, the mere observation of iron reduction by bacteria, which are given a DIRB 

enrichment medium in the laboratory, does not imply that these bacteria will reduce iron in 

nature. In addition, cell counts are often low to intermediate (10–100 cells ml-1) and may 

include non-hydrogenotrophs (e.g. [49, 50]). In non-engineered environments rich in Fe oxides 

and organic carbon, DIRB may have a great advantage over SSRM, methanogens and 

homoacetogens, due to a very high affinity for H2 [45]. We evaluate this process as of 

intermediate relevance for H2 storage in DOGF.  

Many DIRB and a few SSRM can also couple H2 oxidation to reduction of a variety of other 

trace metal oxides, e.g. MnO4
2⁻/MnO2, CrO4

2⁻, Co, SeO4
2⁻, UO2

2, TcO4
-, AsO³⁻, and VO4

- [41, 

51, 52]. After Fe, the most abundant metal in sedimentary environments is Mn (~10 % of Fe 

abundance) [45, 51]. Due to the trace content of these compounds in the environment, their 

reduction has low relevance for H2 storage.  

Oxygen and nitrate are scarce in the subsurface [11, 21, 53, 54] and aerobic hydrogen oxidation, 

denitrification and ammonification hence only become significant when contamination of the 

aquifer occurs, e.g. by drilling fluid [55-57]. 

Halogenated compounds are common in aquifers, and may arise from contamination or via 

natural processes in sediment [58, 59]. However, the concentrations of these compounds are 

extremely low: In aquifers of 170-1000 m depth, chloroflourocarbons reach maximum 

concentrations of ≤1.1 µg L-1 [59] and for pristine aquifers 0.003-0.007 µg L-1 of chlorinated 

hydrocarbons were measured [58]. We evaluate the relevance of this process to H2 storage as 

negligible. 
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Literature on the importance of anaerobic fumarate respiration using H2 is scarce. Fumarate 

may be used as an alternative electron acceptor by SSRM [41, 60] and homoacetogens [61-64]. 

In the non-engineered subsurface, readily metabolizable organic matter, like fumarate, is rare 

[65]. Oil fields being rich in organic C compounds may contain more fumarate. Payler et al. 

[12] confirmed the presence of fumarate reductase, the key enzyme in fumarate reduction, in 

three out of five metagenomes from subsurface brines within sandstone. However, the 

metagenomes belonged primarily to non-H2 utilizing bacteria (Halorubrum) and fumarate 

concentrations were not reported. Acknowledging the lack of data in this field, we evaluate this 

process as being of low relevance for H2 storage.   

2.2 Factors governing microbial growth 

Microbial growth and H2 consumption rates vary with nutrient availability and environmental 

variables (e.g. [17, 66].) Each strain is adapted to an optimum set of nutrients and 

environmental conditions where potentially the greatest growth rates occur. Beyond the 

optimum conditions, organisms may grow but at reduced rate or they become dormant. In this 

section, we discuss the requirements for nutrients and water, and the overall impact of 

temperature, salinity, pH and pressure on the growth of the major microbial H2–oxidizers in 

DOGFs, in the ranges relevant to H2 storage. The specific activity of microbial strains grown 

at optimum conditions varies as well (reviewed in [67]) but the elucidation of differences 

between strains is beyond the scope of this review.  

2.2.1 Nutrients  

The nutrient requirements of H2-oxidizing microorganisms are poorly elucidated. Often, only 

a limited number of single strains within each diverse metabolic group have been investigated, 

which are unlikely to be representative of all strains. Below we summarize the few knowns. 
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Apart from water of sufficient thermodynamic activity (see section 2.2.4), hydrogenotrophs 

require H2 as a source of electrons (energy), an electron acceptor and a carbon source for cell 

division, together with a set of macro and trace elements as well as various organic nutrients 

[68]. Microorganisms can only access H2(aq) and hence the solubility of H2(g) is of direct 

relevance for all H2-consuming reactions. Given a gas phase of ~100 % H2 in an H2 storage 

system, the equilibrium solubility of H2 exceeds the highest threshold value of an H2-

consuming microorganism of 3.6 µM (Table 1) by ~3 orders of magnitude at ambient pressure 

and temperature and under static conditions (Fig. A.1a), with further increase at higher 

pressures (Fig. A.1b and c). While under non-static conditions hydrogenotrophs will consume 

part of the H2, these figures suggest no limitation by the H2 solubility on microbial growth 

under H2 storage conditions.  

Elemental requirements include the macro elements C, N, H, P, Ca, Mg, S and Fe (>95 % of 

the microbial cell dry weight), and the trace elements Co, Mn, Ni, Mo, Cu, Zn, W as well as 

Se for some metabolic groups [69, 70]. For optimum growth, many microorganisms 

additionally require different vitamins (e.g. lipoic acid, biotin, riboflavin, folic acid, thiamine, 

etc.), yeast extract, coenzyme M, aromatic acids and phospholipids or a combination of these 

(e.g. [8, 63, 71-73]).  

Nutrients may be assimilated from the solution or directly from minerals (e.g., [74-77]), the 

latter being of particular importance in oligotrophic environments [75]. Carbon, sulfur, 

phosphorous and iron are amongst the key elements released by mineral weathering [75]. The 

extent to which subsurface microbial communities depend on mineral weathering is unknown 

[75]. For soils, Huang et al. [78] analyzed that >50 %  of the 1100 microbial strains were 

capable of mineral weathering, as tested by their ability to mineralize biotite. 
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Microbial cell carbon may be assimilated from CO2 alone (autotrophy) or from organic carbon 

compounds (heterotrophy) [79]. Methanogens and homoacetogens can grow autotrophically or 

heterotrophically, and several can grow mixotrophically (e.g. [64, 80, 81]). SSRM typically 

grow heterotrophically but some grow autotrophically or mixotrophically [82, 83]. Nitrogen 

may be assimilated from ammonia and nitrate or by nitrogen-fixation (diazotrophy). 

Diazotrophy is common amongst SSRM, methanogens and homoacetogens [84-87], though 

homoacetogens often inhabit ammonia-rich environments [86].  

Little is known about the differences in the nutrient requirements on the level of functional 

groups and the variation in nutrient requirement within a functional group. SSRM have a higher 

requirement for iron (1.8*10-6 M) than is usually observed for microorganisms [88] while 

methanogens have a higher requirement for sulfur with optimal levels ranging from 0.03 to 

0.79 mM (reviewed in [89]).  

Literature on when nutrients become limiting is also scarce. Sulfate reduction may occur down 

to 5-77 µM sulfate [90, 91]. Specific data on the phosphorous requirement of the major H2-

oxidizing microbial groups are outdated/lacking but research on other extremophiles indicates 

that phosphorous concentrations as low as 1.7 µM may be sufficient for growth [92]. 

Methanogens of the order Methanosarcinae require 29.6 mM Mg for optimum growth and 

growth ceases at 16.5 mM (reviewed in [89]). When grown under optimum conditions, the 

growth rate of autotrophs may be limited by the rate of transfer of H2 and CO2 from gas to 

liquid, as was shown for the methanogen Methanobacterium thermoautotrophicum [93] and 

for the sulfate reducers within Desulfotomaculum sp [94]. 

Carbon is unlikely to be limiting in the hydrocarbon-rich DOGF [54, 95, 96] but this is not a 

given in saline aquifers with no history of oil or gas. Sulfate is present in significant 

concentrations in most DOGF (Table 2) but H2 injection can cause sulfate depletion due to 
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accelerated growth of SSRM [97]. Nitrogen in the form of the preferred N-source, ammonium 

[98], may be limiting in DOGF [49, 54, 88] but nitrate levels of may be elevated [49], often 

due to contamination by drilling fluid [55-57].  

2.2.2 Temperature 

Temperatures of 22.5–80 °C or 20–100 °C have been suggested for H2 storage based on a 

recommended depth range of 500- 2000 m for H2 storage in DOGF and saline aquifers [99-

101]. Microorganisms are classified according to their preferred growth temperature: 

psychrophiles grow optimally below 20 °C, psychotrophs grow optimally at or above 20 °C 

and may tolerate temperatures below 5 °C, mesophiles grow between 20 and 45 °C, 

thermophiles grow above 45-50 °C, and hyperthermophiles show optimal growth at 

temperatures of 80 °C or above [102, 103]. The upper limit for life is 121-122°C [104, 105].  

High temperatures alter the energetic properties (e.g., vibrational modes) of biomolecules in 

their aqueous solvent, change the substrate solubility or viscosity and the ionization of the 

aqueous medium [106]. Adverse effects of high temperature include DNA denaturing or 

damage, decreased protein stability, hydrolysis of ATP and ADP, amongst others [104, 106]. 

The metabolic strategies of thermophiles are highly diverse. For a discussion, the reader is 

referred to [107].  

Thermophiles and hyperthermophiles are challenged by increased reaction rates at elevated 

temperature which can imply that abiotic reaction rates are so fast that there is no benefit to the 

microorganism if it catalyzes the reaction [39]. High-temperature-adapted microorganisms are 

therefore thought to produce enzymes with faster reaction rates [108].  

Most cultivated hydrogenotrophic methanogens are mesophiles but known optimal growth 

temperatures for methanogens range from 15 to 98 °C (Fig. 1a). A considerable number of  
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Figure. 1. Distribution of optimum growth temperature, critical growth temperature, optimum 

pH values and critical salinity for 101-143 methanogens (a-d), 19-88 homoacetogens (e-h) and 

165-277 sulfur species reducing microorganisms (SSRM) (i-l). Distributed between the graphs 

for the different groups of H2-oxidizers are the temperatures, pH values and salinities of 42 

depleted oil and gas fields (DOGF) and five test sites for H2 injection. Where ranges of a 

parameter were given (see Table A.4), the lower end value was plotted.  

 



 15 

methanogens favor temperatures above 60 ◦C (Fig. 1a). The highest temperature that a 

methanogen was found to grow under is 122 °C (Methanopyrus kandleri) (Fig. 1b) [105].  

Cultivated SSRM typically have optimum growth temperatures of 20-30 °C or 50-70 °C where 

sulfur reducing archaea have higher optimum growth temperatures than sulfur and sulfate 

reducing bacteria. The full range for optimum growth of SSRM spans 10-106 °C (Fig. 1i). The 

critical temperature for growth of cultivated SSRM is 113 °C (Pyrolobus fumarii) [109].  

Homoacetogens typically have optimum growth temperatures between 20-30 °C (85 % of the 

here gathered cultivated strains; Fig. 1e). Thermophilic growth temperatures ≥60 °C have been 

reported for eight strains, only (e.g. Moorella mulderi, Thermoanaerobacter kivui, 

Acetogenium kivui) [110-112]. Corresponding upper limits for growth are 70-72 °C (Fig. 1f) 

[110-112].  

2.2.3 Salinity  

The relevant salt concentration range for H2 storage is 0-5 M NaCl [100], at which highly 

diverse prokaryote communities can be found [113]. Microorganisms are classified according 

to their salt tolerance: Non-halophilic microorganisms grow up to 0.2 M NaCl, slight halophile 

grow at 0.2–0.5 M NaCl, moderate halophile between 0.5–2.5 M NaCl, and extreme halophile 

that grow best in hypersaline media containing 2.5–5.2 M NaCl [113].  

High salt concentrations exert osmotic stress [114], requiring any microorganism living at high 

salt concentrations to maintain its intracellular environment at least isosmotic with the 

environment [113]. Two main strategies to achieve osmotic balance exist: the salt-in strategy, 

and at the exclusion of salt and biosynthesis/accumulation of organic ‘compatible’ solutes 

[115]. For a discussion of these strategies in relation to different metabolic pathways, the reader 

is referred to [115]. Commonly, salt tolerance/requirement is enhanced at increased 

temperatures [113] but there are many examples of mesophilic halophiles.  
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Most cultivated hydrogenotrophic methanogens favor salt concentrations up to 0.77 M NaCl 

(the approximate salinity for seawater) but 16 known strains survive under more halophilic 

conditions. Two extremely halophilic mesophilic hydrogenotrophic methanogens, will tolerate 

salt concentrations of ~3.3- 3.4 M, Methanocalculus halotolerans FR1T [116] and 

Methanocalculus natronophilus [117] (Fig. 1d).  

The large majority of cultivated SSRM grow optimally at low salinities between >0-0.4 M. 

However, fourteen SSRM (all mesophiles) have upper salinity limits for growth of ≥ 1.7 M 

NaCl (Fig. 1h). Desulfovibrio oxyclinae, Desulfohalobium utahense and Desulfohalobium 

retbaense, have the highest upper salinity limits for growth of 4.0 to 4.2 M NaCl [118-120] 

(Fig. 1h).  

The salt tolerance of homoacetogens is poorly investigated. The majority of cultivated 

homoacetogens have low optimum salinities of >0-0.4 M NaCl. However, a few strains, i.e. 

Natroniella acetigena and Acetohalobium arabaticum, grow optimally around 2.5 M NaCl and 

will tolerate salinities up to 4.3-4.4 M (Fig. 1h) [121, 122]. The upper growth temperatures for 

these strains are 42 and 47 °C, respectively [121, 122]. 

A clear upper salinity limit to microbial activity has not been established [23, 115]. It appears 

to be the brine composition, rather than the salinity alone, that puts a hard limit on microbial 

growth [12], see section 2.2.4. Salt tolerances based on activity measurements from natural 

microbial communities match results from laboratory studies on cultivated microorganisms for 

most metabolic pathways [115]. For sulphate reduction, however, activity measurements of 

natural microbial communities (using any available electron donor) indicate an upper salinity 

limit of 4.7-8.1 M NaCl [123-125]. 

2.2.4 Brine complexity 
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Natural brines contain dissolved ions whose interaction is extremely complex and may cause 

physicochemical stressors to brine habitability such as low water activity (aw), high ionic 

strength, chaotropy (ability to disrupt the network of H2-bonds between water molecules) or a 

combination of these [12]. Most bacteria grow well at an aw around 0.98 (the approx. aw for 

sea water) but relatively few species can grow at aw of 0.96 or lower [126]. Halophilic 

microorganisms, including halophilic methanogens are one exception; several can grow at aw 

as low as 0.75 [127] in [126]; [128]. Steinle et al. [129] challenged these limits by detecting 

SSR in a nearly MgCl2 saturated brine with aw of ~0.4.  

There are indications of a more important role of chaotropy over aw in limiting microbial life 

[128]. Chaotropic agents include MgCl2, CaCl2, FeCl3, KI, LiBr, LiCl while examples of 

kosmotropic agents are NaCl, KCl, Na2SO4, MgSO4, K2SO4, FeSO4 [130]. As such one may 

speculate that most subsurface brines due to their dominance of NaCl and richness in sulfate 

are kosmotropic and albeit also stress-inducing, more permissive of microbial growth [12, 128]. 

Meanwhile, the interactions between chao- or kosmotropic agents, aw and other 

physicochemical properties of brines may be very complex and are hitherto not understood 

[12]. The further elucidation of this topic is subject to more research and beyond the scope of 

this paper.  

2.2.5 pH  

The brine pH may affect the growth of microorganisms via 1) a direct effect on the growth 

metabolism, and 2) an effect on the redox reaction. With respect to the former, most 

methanogens, homoacetogens and SSRM are adopted to a pH of 6.5-7.5 (Fig. 1c, g, k). Most 

methanogens and SSRM cannot grow outside the pH range 4–9.5 [26, 131, 132] (Fig. 1c, k). 

Eight known methanogens can endure a critical pH-value of 10 (e.g. the Methanocalculus 

natronophilus and alkaliphilus [133]). At the other end of the spectrum, ten known 
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methanogens can endure acidic conditions of pH 4, e.g. the Methanoregula boonei, the 

Methanothermococcus okinawensis, the Methanosarcina spelaei and the Methanocaldococcus 

bathoardescens [134-137].  

Eighteen known SSRM are adapted to highly alkaline environment >pH 10, e.g. the 

Desulfonatronovibrio hydrogenovorans, the Desulfurispira natronophila and the 

Desulfovibrio vietnamensis [138-140]. Thirteen known SSRM grow down to a pH of 4. Nine 

known SSRM, all of them sulfur reducers, grow down to a pH of 1, e.g. the Thiobacillus caldus, 

the Sulfolobus acidocaldarius, the Acidianus infernus and brierleyi, and the Stygiolobus 

azoricus [141-144].  

Six known homoacetogenic strains have high critical pH values of 10.0-10.7, i.e. Clostridium 

ultunense, Natroniella acetigena, Fuchsiella alkaliacetigena and ferrireducens, 

Peptostreptococcus productus B-52 and Moorella sp HUC22-1 [145-149]. The Clostridium 

drakai, ljungdahlii, scatologenes, coccoides and thermoautrophicum are the most acidophilic 

known strains; they can tolerate pH as low as 3.6-4.5 [150-154].  

2.2.6 Pressure 

Pressure ranges for H2 storage of 5-20 MPa [99] or 1-50 MPa [100] have been reported. Life 

at high pressure requires homeostatic changes [103]. The high pressures encountered in pore 

spaces in the crust are generally less inhibitory to microbial cellular activity than the high 

temperatures, partly because of the relatively high osmotic pressure of cytoplasm [102], in 

particular in thermophiles and hyperthermophiles [39]. Membrane fluidity, and DNA and 

protein synthesis are among the most pressure-sensitive cellular components and processes 

[103, 155, 156]. Different adaptive mechanisms and strategies are used by microorganisms to 

thrive in high-pressure environments, including efficient expression and activity of proteins 
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used in protein folding complexes (prefoldins), membrane fluidity maintaining, robust 

biocatalysts [156], and EPS [18] or spore formation [103].  

An upper pressure limit to microbial life has not been established [23]. At 30-50 MPa, the 

growth of various mesophilic, atmospheric-pressure-adapted microorganisms is inhibited [155] 

whereas pressure effects are generally favorable for the growth of hyperthermophiles; above 

100 °C, elevated pressures are required to maintain a liquid environment [104]. 

Microorganisms that grow optimally at 10 MPa or above are obligate and facultative 

piezophiles, where the former do not tolerate ambient pressure and the latter do [103]. A recent 

publication listed all identified piezophiles and grouped them according to their growth 

temperature optimum [103]. The list of species is rather short (and as we find incomplete 

despite being published in 2020), possibly due to the fact that, to date, it has not been possible 

to isolate genes associated with piezophily, so the effects of pressure on any particular organism 

can only be determined empirically [103, 156]. Empirical efforts however, do not commonly 

include pressure tolerance in the description of the environmental growth constraints of a 

microorganism. In addition, most mesophiles and thermophiles from habitats with pressures of 

<50 MPa will grow in enrichment cultures incubated at atmospheric pressure [32]. The large 

majority of identified cultivated piezophiles are psychrophiles (27 strains) [103], the relevance 

of which is low to our study. Only four mesophilic strains were reported, three of them 

hydrogenotrophic sulfate reducers (the Desulfovibro profundus, piezophilus, and 

hydrothermalis), growing optimally at 10-40 MPa [103]. Eight thermophiles were identified, 

including one hydrogenotrophic methanogen, Methanococcus thermolithrophicus, growing 

optimally at 50 MPa. The hyperthermophilic group hosts the hydrogenotrophic Methanopyrus 

kandleri and Methanocaldococcus jannaschii growing optimally at 20 to 75 MPa, respectively. 

Examples of hydrogenotrophic piezophiles that are not included in [103] are the mesophilic 

SSRM Paracoccus pantrotrophus and Pseudodesulfovibrio indicus which growth optimally at 
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30 and 10 MPa, respectively [157, 158], and the thermophilic SSRM Piezobacter thermophilus 

and Archaeoglobus fulgidus TF2 which grow optimally at 30 and 42 MPa, respectively [73, 

159].  

A temperature dependence of the pressure response was reported for the SSRM Desulfovibrio 

indonesiensis which has similar growth rates at high and ambient pressure 45 °C but reduces 

its growth rate at 20 °C and 30 MPa relative to at 0.1 MPa [160]. Elevated pressure may 

increase the maximum growth temperature by 2-12 °C relative to lower pressure (0.1-3 MPa) 

[104, 105, 161]. 

2.2.7 Inhibitors  

Exposure to hydrogen sulfide, H2S, and its bisulfide ion, HS–, causes damage to microbial 

proteins and coenzymes [89, 162]. It remains unclear whether H2S or HS– is responsible for 

the toxicity effect but there is general consensus that H2S can penetrate the microbial cell 

membrane more easily than HS– [162]. Hydrogen sulfide dissociates with a pK1 of 6.99 at 10 

MPa and 25 °C to form >99 % HS– at pH 8.5 [163].  

Growth of SSRM and methanogens is adversely affected at concentrations of H2S >3.8-4.0 

mM [164-166]. At 5.0-6.3 mM H2S growth is completely inhibited for SSRM [164, 166], 

without however stopping all metabolic activity [164]. For methanogens and homoacetogens  

3.8-7.5 mM H2S and total sulfide concentrations of 3.3 mM, respectively, stop the growth [162, 

166]. In systems with circumneutral pH and ferric ion concentrations above 1 mM, the 

concentrations of H2S are predicted to be kept below toxic levels due to its precipitation in 

makinawite [44].   

Carbon dioxide pressure above 1 bar can be toxic for microorganisms as shown for the SSRM 

Desulfotomaculum geothermicum and the methanogen Methanothermococcus 
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thermolithotrophicus [167]. For many anaerobes like methanogens and homoacetogens, 

oxygen is toxic too [62, 102].  

Nitrate inhibits homoacetogenesis [168], and ammonium [169] and sulfate inhibit 

methanogenesis (reviewed in [170]), with minimum inhibitory concentrations varying 

depending on the environment [166, 169]. For instance, sulfate concentrations as low as 2*10-

4 M were shown to inhibit methanogenesis for 10 hours in lake sediments, possibly by 

competition with SSRM for available H2 and C-substrate [165] (see section 2.3.9). Under H2 

storage conditions however, sulfate is likely not to affect methanogenesis, because sulfate 

inhibition was shown to be reversed by addition of H2 [165]. For a discussion of an inhibitory 

effect of H2, see section 2.5.  

2.2.8 Summary of environmental growth constraints 

Acknowledging the lack of data for the pressure sensitivity of many microorganisms [103], 

and considering a general abundance of nutrients in DOGF (Table 2), we evaluate temperature 

and salinity as the most crucial environmental factors constraining the growth of 

homoacetogens, methanogens and SSRM in DOGF. Pressures encountered in the crust are 

documented to have less effect than temperature on microbial cellular activity, particularly in 

thermophiles and hyperthermophiles [39, 102]. The pH does not pose a similar constraint to 

the growth of homoacetogens, methanogens and SSRM because the pH ranges for growth 

typically span two to three pH units (not shown) and for most species they comprise the typical 

aquifer pH values of 6-7 [171] (Table A.4). Brine complexity and inhibitors were not included 

in this analysis due a lack of information on the brine composition of DOGF beyond a limited 

set of dissolved ions.  

Figure 2 shows the critical temperature versus critical salinity for 287 cultivated strains and 

reveals that salt tolerances up to 1-1.7 M are widely distributed over the entire temperature  
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Table 2. Reservoir conditions for depleted, or soon to be depleted oil and gas fields. Except where otherwise indicated, the data are from [172]. 

֍= reference [171]. The salinity was calculated from the chloride concentration and the concentrations of dissolved N2 was estimated from the 

mol percentage in the gas phase, neglecting any effect of salinity. NA= not analyzed. See Table A.4 for extended data.  

Field name Area 

(Km2) 

P 

(MPa) 

Temp 

(°C) 

Salinity 

(M) 

pH HCO3
- 

(mM) 

 

N2 

(mM) 

 

SO4
2- 

(mM) 

 

K+ 

(mM) 

 

Ca+2 

(mM) 

 

Mg+2 

(mM) 

 

P (mM) 

 

Na+ 

(mM) 

 

Cl- 

(mM) 

 

Fe+2 

(mM) 

 

Organic 

acids 

(mM) 

 

Frigg 100 19.5 61 0.07-0.53 6.5-

7.4 

16.3 

 

0.4 NA 26.3-

31.2 

0.4-2.0 1.9-7.1 NA 75.2-

534.8 

58.7-

490.3 

0.04-

0.27 
NA 

Hamilton 15 9.6 30 1.59-4.18 5.8 4.8 2.1 0.6-

7.4 

8.4-

29.7 

72.8-

720.0 

19.5-

37.6 

0.012-

0.028 

1354.8-

2210.9 

1453.3-

3700.7 

4.03 NA 

Barque  36 26.0 79 4.83 4.7 0.3 0.8 3.5 42.2 535.0 156.8 NA 2920.4 4405.4 2.15 NA 

Hamilton 

North 

8 10.5 30 2.93 7.9 

 

11.0 2.3 23.1 18.8 13.6 13.6 NA 2640.9 2662.9 NA NA 

Miller 45 49.3 121 1.61 7.2 NA 0.6 0.0 41.6 30.0 NA NA 1358.7 1471.9 0.02 NA 

Beryl 49 36.0 101 1.88 6.1 5.6 0.4 0.0 20.8 90.0 NA NA 1469.6 1717.9 0.05 1.9 

Judy 

(Andrew 1) 

NA 46.9 137 0.14-0.15 6.8 8.4 0.6 6.4 2.9 4.5 NA 0.002 117.4 131.7 0.11 NA 

Amethyst 97 27.9 88 4.45 5.6 1.0 1.6 3.7 33.2 521.5 148.5 0.452 2673.9 4064.6 2.51 NA 

Rhyl  NA 14.9 36 5.80 5.5 13.5 2.8 14.0 62.4 147.0 21.2 0.031 4777.0 5297.9 0.81 >1.2 

Dalton NA 28.8 91 0.26 5 0.9 1.0 1.8  15.6 5.5 NA 189.1 237.0 0.00 NA 

Davy 6 28.2 88 3.87 6.8 6.5 NA 7.0 219.2 15.6 10.7 0.155 818.3 1142.7 0.66 NA 

Veslefrikk֍ NA 29.8-

35.0 

67-114 0.29-0.72 6.5 8.4-

17.2 

NA 0.1-

0.15 

NA NA NA NA 298.0-

666.0 

281.0-

745.0 

NA 2.2-8.1 

Average      7.9 1.1 5.2 44.7 166.8 42.2 0.113 1473.7 1857.4 0.97 3.3 
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Figure. 2. Critical temperature (without salinity stress) versus critical salinity (without 

temperature stress) for methanogens, homoacetogens and SSRM. 

range while salt tolerances >1.7 M are mainly found at a critical temperature tolerances of 40- 

50 °C. Hence, from the point of view of minimizing microbial impacts on H2 storage, sites with 

temperatures >55 °C and salinities >1.7 M are preferred. 

Growth of all cultivated strains in the investigated microbial groups occurs up to 72 °C (Fig. 

1). Above 72 °C, known homoacetogens will not grow, and at 80-94 °C sulfate reducers cease 

to grow. Thirty-six cultivated SSRM and eleven methanogens have optimum growth 

temperature of ≥80 °C (Fig.1a and g) and will still grow, albeit at reduced rate, beyond their 

optimum temperatures. The maximum growth temperature for known methanogens and sulfur 

reducers is 122 °C and 113 °C, respectively. The upper limits for salinity and pH that allow 

growth of all cultivated strains of the major groups of H2-oxidizing microorganisms are 3 M 

NaCl and pH 10.2, respectively.  The upper pressure limit for most mesophiles is 30-50 MPa.  

2.3 Growth regulation by competition and syntrophy 
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Homoacetogenic bacteria are ubiquitous in anaerobic sediments [63, 173] and often co-exist 

with SSRM and methanogens [15, 174], as revealed by a combination of molecular (16S RNA 

gene sequences) and culturing (e.g. metabolites, radiotracer) techniques. Few habitats have 

been identified in which homoacetogens compete with other H2-consumers (culturing studies) 

[173, 175]. Exceptions include a low-temperature and low-salinity petroleum reservoir where 

homoacetogens dominated over methanogens and SSRM (molecular study) [60], a granite 

groundwater at 400 m depth where cell numbers of methanogens and homoacetogens were 

balanced (molecular study) [81], and subsurface marine sediments where mixotrophic 

homoacetogenesis outperformed methanogenesis (culturing study) [80].  

Kinetic advantages of SSRM and methanogens (i.e. a higher affinity for H2, expressed as a 

low Michaelis-Menten constant, KM, or Monod half saturation constant, KS  (H2 concentration 

at which growth rate reaches half maximum growth rate), and a higher maximum 

growth/reaction rate, Vmax or µmax for Michaelis-Menten kinetics and Monod kinetics, 

respectively) were proposed as the underlying cause for the few examples of the poor 

competitiveness of homoacetogens [176]. Very limited information on the H2 consumption 

kinetics of homoacetogenic bacteria is available in literature [177]. The available data show 

that µmax differs by one order of magnitude between strains (0.02-0.5 h-1) [4, 177]. This may or 

may not be lower than the µmax for SSRM 0.057-5.5 h-1 [4, 38, 178] and methanogens 0.032-

1.4 h- 1 [38, 178]. Krumholz et al. [176] showed that homoacetogens were not able to compete 

effectively for H2 in the presence of SSRM in a subsurface sandstone ecosystem at 30 °C 

regardless of pH2, and despite significant homoacetogenesis at excess H2. Findings by Berta et 

al. [4] for a groundwater sediment held under excess pH2 and 20 °C contrasts this as 

homoacetogenesis rates were up to 21 times higher than SSR.  
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Environmental conditions may be a crucial determinant for the competitiveness of 

homoacetogens, as low temperatures (~15 °C) [179, 180] and low pH values [62, 181] favor 

their growth over methanogens. Under excess pH2, homoacetogenic strains with high µmax such 

as Acetobacterium bakii will outcompete methanogens [180]. The outstanding metabolic 

flexibility of homoacetogens for utilizing a vast variety of substrates may additionally explain 

why homoacetogens can compete with more specialized microorganisms like SSRM or 

methanogens [63, 180, 182].  

As for the competitiveness of methanogens and SSRM, the H2 thresholds of methanogens 

may be comparable (1-15 nM) or higher (>15-95) than for sulfate reducers and significantly 

lower than for sulfur reducers (≪2500 nM; Table 1), indicating an advantage of sulfate 

reducers over methanogens and sulfur reducers in most non-engineered, low pH2 

environments. In line with this, Lackner [183] recently reviewed that sulfate reducers 

outcompete methanogens for H2 in most studies. However, at excess H2, methanogens and 

sulfate reducers would be expected to process equal shares of the in situ H2 pool [178]. Also, 

since concentrations of sulfate are much lower than bicarbonate in non-marine natural 

environments [38] (Table 2), the growth of sulfate reducers at excess H2 will be limited by the 

availability of their electron acceptor, making it possible for methanogens to compete [38]. As 

a general rule pH values below 7 favor the growth of methanogens over sulfate reducers [132]. 

Above pH 7.5, sulfate reducers grow faster than methanogens and would be expected to 

outcompete them [132]. 

Syntrophic relationships between different functional groups have been documented frequently 

(whereby the metabolic products of one group serve as substrates for the other). For example, 

SSRM and homoacetogens were shown to participate cooperatively in microbial induced 

corrosion of steel where SSRM grew on acetate produced by homoacetogenesis [68]. Substrate 
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provision by the co-culturing Desulfovibrio vulgaris enhanced growth of the dehalogen 

Dehalococcoides ethenogenes 195 by 24 % and caused three times higher dechlorination rates 

[184]. Syntrophy may also explain the detection of a combination of the SSRMs Desulfovibrio 

and the homoacetogens Acetobacterium in petroleum and subsurface CO2 reservoirs [60, 185], 

and the presence of H2-producing heterotrophs along with methanogens in petroleum reservoirs 

where the latter rely on H2-transfer by the former [186].  

2.4 Microbial ecology in natural gas and petroleum reservoirs 

Recent years have seen a considerable effort in describing deep subsurface microbial 

communities, including those from gas and petroleum reservoirs. Isolated hydrogenotrophic 

microbes from these habitats are from the SSRM families Hydrogenothermaceae, 

Sulfurospirillaceae, Rhodobacteraceae, Ectothiorhodospiraceae,  Desulfomicrobiaceae, 

Peptococcaceae, Archaeoglobaceae, Desulforobacteraceae, Desulfobulbaceae, 

Desulfovibrionaceae, Syntrophobacteraceae where the latter seven families are known with 

certainty to be capable of thiosulfate reduction [22, 54, 96, 97, 187-194], the 

Eubacteriaceae  and Sporomusaceae families which host homoacetogenic  strains [96, 190, 

195], and the methanogen families Methanosarcinaceae, Methanobacteriaceae, 

Methanomicrobiaceae, Methanopyraceae, Methanococcaceae, Methanocalculaceae and 

Methanosaetaceae [97, 116, 190] in addition to uncultured microbial taxa [54, 188, 189, 194, 

196]. Our collection of hydrogenotrophs (Fig. 1) lists many examples of the above microbial 

families, including the strain that holds the highest critical temperature for a methanogen, 

Methanopyrus kandleri.  Sulphur reducing families that define the upper temperature limits for 

SSRM like Thermoproteaceae and Pyrodictiaceae were not reported. The cause for their 

absence may be a predominance of mesophilic and thermophilic sites but may also reflect a 

generally stronger growth of sulfate reducers over sulfur reducers in oil and gas reservoirs. 

https://www.google.com/search?rlz=1C1GCEV_enGB883GB883&sxsrf=ALeKk03ZDIDtMmUR174-FYC1nduEwk50wQ:1602172480537&q=Rhodobacteraceae&stick=H4sIAAAAAAAAAONgVuLUz9U3MCk3SjJ-xGjCLfDyxz1hKe1Ja05eY1Tl4grOyC93zSvJLKkUEudig7J4pbi5ELp4FrEKBGXkp-QnJSaXpBYlJqcmpgIAntw-jVcAAAA
https://www.google.com/search?rlz=1C1GCEV_enGB883GB883&sxsrf=ALeKk03zHFWWw3h_raV3LaiNGTH7xUxOaA:1602242578214&q=Archaeoglobaceae&stick=H4sIAAAAAAAAAONgVuLUz9U3MDU0Tkp5xGjCLfDyxz1hKe1Ja05eY1Tl4grOyC93zSvJLKkUEudig7J4pbi5ELp4FrEKOBYlZySm5qfn5CclJqcmpgIAsW767FcAAAA
https://www.google.com/search?rlz=1C1GCEV_enGB883GB883&sxsrf=ALeKk02ARqlmsuxYlOnbIOVXjr4nGPCtAw:1602242150228&q=Pyrodictiaceae&stick=H4sIAAAAAAAAAONgVuLSz9U3MCo0SM4wesRoyi3w8sc9YSmdSWtOXmNU4-IKzsgvd80rySypFJLgYoOy-KR4uJC08Sxi5QuoLMpPyUwuyUxMTk1MBQCqAVy7VwAAAA
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Ranchou-Peyrouse et al. [97] showed that the microbial community in 35 out of 36 subsurface 

wells from seven natural gas storage sites was dominated by sulfate reducers.  

2.5 Effect of high hydrogen concentrations on the microbial metabolism and community 

structure 

A range of studies investigated the metabolism of methanogens at excess H2 and ambient 

pressure, with unambiguous results. Conrad et al. [197] demonstrated that excess H2 stimulated 

methanogenesis and growth rates in a paddy soil (species not specified). Opposed to this, 

results by Topcuoglu et al. [186] and Stewart et al. [198] suggest an inhibitory effect of high 

partial pressures of H2, pH2, expressed as a ~10-fold drop in the growth yield (cells per mole 

CH4) of Methanocaldococcus jannaschii and a slight drop of ~0.1-0.7 h-1 in the growth rate. 

Similar observations were made for Methanothermobacter thermoautotrophicus [199]. 

However, within the excess H2 experiment, higher H2 concentrations stimulated growth [186], 

suggesting a complex influence of pH2. Methanogens seem to express a pH2-dependent change 

in their ecological strategy, i.e. maximum growth rate vs. maximum growth yield, as a means 

to cope with different environmental conditions [186]. Indeed, M. jannaschii is capable of 

sensing subtle changes in dissolved H2 concentration and restraining the energy-intensive 

growth of flagella to H2-limiting conditions whereas at excess H2 cells are mostly flagella 

devoid [200]. 

Only few studies investigated microbial H2 turnover at high pH2 of up to 1.5-24.8 MPa [4, 201, 

202]. Methanogens (M. jannaschii) showed a strong inhibitory effect at high pH2 [201]. 

However, the authors added CO2 at a pressure of at least 0.2 MPa to the hydrogen gas mixture 

which at pCO2 >0.1 MPa can be toxic methanogens [167]. Hence it is not clear whether H2 or 

CO2 performed the toxic action. For homoacetogens and SSRM, the H2 consumption was 

shown not to change in response to different pH2 of 0.1-3.5 MPa [4, 202], indicating neither 
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stimulation nor toxicity at different levels of excess H2. The comparison to limiting H2 

conditions was not made.  

Apart from the microbial metabolism, the microbial community may also change in response 

to high pH2. Given a pertubation by H2 injection it can be anticipated that other types of 

microorganisms, e.g. the in hydrocarbon reservoirs, common fermenters [21, 95, 97, 187] will 

decrease in abundance while hydrogenotrophs will increase [7], in line with the Baas Becking 

principle [203]. An increase in hydrogenotrophs in response to H2 addition was recently 

confirmed for soils, however H2 consumption increased in only one of the investigated soils, 

suggesting a pronounced influence of  the indigenous microbial community [204]. Bioreactor 

experiments support a decrease in microbial diversity in response to high pH2 as well [205, 

206]. Puente-Sanchez et al. [207] were the first to report differences in the subsurface H2-

consuming community in response to varying pH2 within the Iberian Pyrite Belt. Ranchou-

Peyruse et al. [97] showed that town gas storage with more than 50 % H2 changed the microbial 

community from a predominantly sulfate reducing community to a dominance of methanogens, 

and this balance was active even decades after injection stopped, possibly via H2 trapping in 

the microporous system [97]. It was suspected that all sulfate was initially used up by SSRM 

following increased growth of methanogens [97].   

3. Evaluating the potential hydrogen consumption in DOGFs 

3.1 Calculation of the microbial growth  

We screened 42 DOGF in the North Sea and the Irish Sea and five H2 storage test sites for 

temperature, salinity, pH and pressure data (Fig. 1, Table A.4). We discovered significant 

differences in the salinity for the DOGF reported by sources [208] and [172]. Because we relied 

on the solution compositions for the calculation of the potential microbial growth in the fields, 

which are available from [172], we chose to use the salinity data from the same source.  
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The environmental data from the DOGF and H2 storage test sites were aligned with the 

constraints for growth of methanogens, homoacetogens and SSRM (Fig. 1-2) to select in which 

fields growth can be expected. For the few fields that fulfil the growth constraints of all 

investigated microorganisms, we calculated a first-order estimate of the microbial growth using 

the elemental cell composition as a proxy for the nutrient requirement [209, 210] (Text A.1).  

Our calculations assumed that the supply of N and C are covered by diazotrophic and 

autotrophic growth, respectively. Requirements for trace elements were neglected in the 

calculation due to a lack of information on the relevant trace element contents in the reservoirs. 

Where a nutrient for a specific field was not available we used the average value from the fields 

given in Table 2. Any effect of the pH2 on microbial growth was neglected. We assumed that 

cells neither die nor are removed, and that nutrients are not replenished by inflow, re-

mineralization from decaying biomass or mineral dissolution. Simultaneous growth by 

different microorganisms was not considered.  

Percentages of nutrients in the cells (Text A.1) were converted to mass using a wet cell mass 

of 1.77*10-12 g for methanogens [211], 3.2-6.2*10-13 g for homoacetogens and 7.81*10-13 g for 

SSRM. The cell wet weight of homoacetogens was calculated by dividing the cell volume of 

1.62-3.14 µm3 for the subsurface mixotrophic homoacetogen Acetobacterium psammolithicum 

[176] with an assumed bacterial density of 1*10-12 g µm-3 [212]. The cell wet weight of SSRMs 

was calculated using a cell dry weight of 3.125*10-13 g for Desulfovibrio desulfuricans [213] 

and dividing this with a general bacterial dry weight to wet weight ratio of 0.4 [214]. 

Subsequently, the concentrations of C, H, O, Ca, K, Na, S, Mg, P and Fe in the DOGF (Table 

2) were divided by the mass of the respective cell nutrients per microbial cell calculated above. 

This resulted in the maximum cell count within each microbial group, G, that could potentially 
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be created based on a single nutrient, where the lowest G indicated the limiting nutrient for cell 

growth. For an example of those calculations, see Text A.1. 

3.2 Estimation of the cell-specific hydrogen consumption 

Hydrogen may be consumed by growing and resting microbial cells at rates of 0.02-5.0*105 

nM h-1 for homoacetogens, 0.02-5.8*105 nM h-1 for methanogens and 0.005-130*105 nM h-1 

for SSRM (Tables A.1-A.3), the latter considering sulfate concentrations in the range of 0-

2.3*10-2 M in the DOGF (Table 2). In a few studies, the microbial H2 consumption was related 

to growth (Tables A.1-A.3), enabling the calculation of the H2 consumption per synthesized 

cell and the time for when the microbial cell count G would be reached (Text A.2).  

3.3 Calculation of the hydrogen consumption in a hydrogen storage system  

We calculated the minimum H2 consumption for the DOGF Frigg and Hamilton by dividing 

the H2 consumption per synthesized cell with the microbial cell count. The calculation of the 

moles of H2 the in aquifer anticipated equal volumes of H2 and water and used the ideal gas 

law and the field size, temperature and pressure data in Table 2 and Table A.3. The percentage 

of H2 that was consumed as a function of growing and resting microbial cells was calculated 

by dividing the potential H2 consumption with the H2 concentration in the reservoir. Text A.3 

shows our calculations for the Frigg reservoir and methanogens.  

4. Results and discussion 

4.1 Characterization of the likelihood for growth in 42 DOGF 

Using the environmental limits constraining microbial growth on H2, we analyzed the 

physicochemical parameters for 42 DOGF in the British and Norwegian North Sea and the 

Irish Sea and five H2 storage test sites (Fig. 1, Table A.4). Of the 47 fields, five fields have a 

temperature of 122 °C or higher and may be considered sterile with respect to H2-consuming 
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microorganisms. Where long-term injection of cold sea water has been a practice, cooling of 

reservoirs is a likely scenario. Therefore, any H2 storage operation in these fields will require 

a renewed measurement of the reservoir temperature. Thirty-two fields have a temperature >72 

°C, implying that homoacetogenesis cannot take place. Twenty fields have a temperature ≥90 

°C implying that homoacetogenesis and sulfate reduction cannot take place. Fourteen DOGF 

have a temperature >90 °C and <122 °C and pressures of 18.2-44 MPa where (piezophile) 

methanogens and SSRM will grow.  

Of the fifteen sites with temperatures <72 °C where all investigated groups of microorganisms 

will grow, only six fields (Frigg, Hamilton, Veslefrikk, Ketzin, Lehen and Lobodice) fulfill the 

remaining pressure and salinity requirements for growth. Five fields, Lennox, North 

Morecambe and South Morecambe, Leman and Rhyl, have salinities ≥4.4 M where no 

cultivated microbial H2-oxidizing microorganisms can grow but not cultivable SSRM may still 

be active. This finding is supported by stable gas compositions at the similarly saline H2-storage 

test sites of the H2STORE project, Emsland and Altmark (Fig. 1, Table A.4), where low 

microbial populations of ~102 cells ml-1 were present [215]. Hamilton North, Camelot and The 

V gas field complex with salinities of 2.9-5.0 M may permit the growth of SSRM and 

homoacetogens. The Viking field has temperature of 65-80 °C and a salinity of 3.8 M and so 

is likely to host only mesophilic SSRM, although pressures >30 MPa could become growth 

inhibiting [155]. The H2-storage test site Ketzin has similar salinity to the Viking field but a 

lower pressure (4.0 M NaCl, 35 °C, 6 MPa). Here SSRM were suspected to cause a 2-4 % 

decrease in H2 and a reduction in the concentration of sulfate from 22 to 8*10-3 M [215].  

4.2 Microbial growth estimates for three low-temperature and low-salinity DOGF 

Our first order approach to calculating microbial growth, designed to give a first approximation 

to microbial numbers, only, yielded a maximum of 1*108 methanogenic cells mL-1, 2*108 
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SSRM cells mL-1 or 5*108 homoacetogenic cells mL-1 in the Veslefrikk reservoir. The Frigg 

reservoir a maximum of 1*108 methanogenic cells mL-1, 1*108 SSRM cells mL-1 or 2*108 

homoacetogenic cells mL-1. The Hamilton reservoir could host a maximum of 1*107 

methanogenic cells mL-1, 2*107 SRCM cells mL-1 or 6*107 homoacetogenic cells mL-1. These 

cell counts describe a maximum cell growth for each hydrogenotrophic group because 

simultaneous growth of hydrogenotrophs was not considered. The higher growth of 

homoacetogens over SSRM and methanogens results from a lower wet cell mass that causes a 

lower nutrient demand per cell (see Text A.1). Our calculations are in line with total cell 

concentrations of 105-1015 cells/ mL-1 in oil reservoirs [216], and equal to or up to four order 

of magnitudes higher than cell counts from gas reservoirs (0.001-1.2*107 cells mL-1)[49, 96, 

189].  

Acknowledging that trace elements were not accounted for in our calculation, N and P are the 

first limiting nutrients in the reservoirs Frigg, Hamilton and Veslefrikk. However, this does not 

imply that microbial growth is N and P limited, as many microorganisms may use of 

ammonium (not measured) as N-source, and in the Hamilton reservoir the C:P ratio was 

between 59:1 and 158:1, whereas the limiting C:P ratio for microbial growth is in the range of 

400:1 to 800:1 (reported for the SSRM D. desulfuricans) [217]. At moderately acidic pH values 

such as the pH of 5.8 in the Hamilton reservoir, P may further be continuously replenished by 

mineral buffering with apatite.  

4.3 Hydrogen consumption in three low-temperature and low-salinity DOGF 

The H2 consumption in the Frigg reservoir by homoacetogens constitutes <0.01- 3.2 % of the 

H2 in the aquifer, <0.01- 1.3 % for methanogens and <0.01- 1.3 % for SSRM. In the Hamilton 

reservoir, the rates are <0.01- 2.0 %, <0.01- 2.3 % and <0.01- 0.5 % for homoacetogens, 

methanogens and SSRM, respectively. For actively growing cells these consumption rates may 
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be reached after only 0.1-19.1 days, which is the time it takes for the microorganisms to grow 

up to their maximum cell counts, based on the dissolved nutrient concentrations. Resting cells, 

i.e. cells that undergo no or only very little cell division, need 2.5-3.5 months (SSRM) or up to 

3.6-6.6 years (methanogens) to reach the maximum cell count and consume the given 

percentage H2. 

In a real aquifer system, nutrients are likely to at least partly be replenished by decaying cells, 

mineral weathering and inflowing brine, and cells will continue to consume H2 beyond the time 

it takes to reach the maximum cell count (maintenance). As such our H2 consumption estimates 

may be regarded as minima. On the other hand, considering that, with the exception of one 

study (Berta et al. [4]), our calculations employ laboratory H2 consumption rates at optimal 

nutrient supply and optimal physicochemical conditions (Tables A.1-A.3), the H2 consumption 

in the oligotrophic subsurface is likely overpredicted. Comparing the employed laboratory H2 

consumption rates to H2 consumption rates by SSR and methanogenesis in oil and natural gas 

reservoirs of ~0.4-330 nM h-1 and 0.02-1205 nM h-1, respectively (SO4
2-: 8.3-805*10-5 M; 

HCO3
-: 3.5-246*10-4 M) [49, 187], shows that the field H2 consumption by SSR is 1.5 times to 

five orders of magnitude lower, and 1.4 times to 7 orders of magnitude lower for 

methanogenesis. Within the operation and injection wells of a natural gas reservoir, H2 

consumption rates by SSR and methanogenesis were 2393 and 4475 nM h-1, respectively, [49], 

which falls within the lower range of the values reported from laboratory studies. 

Acknowledging the unknown but presumably low pH2 in above experiments, and that 

maintenance requirements were not included in our H2-consumption calculations, we expect 

the actual H2 consumption in a H2 storage system to lie within the higher range of our calculated 

values. 
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Our upper end results are in agreement with H2 losses of ~3 % by methanogens and 2-4 % by 

sulfate reducers at the H2 storage test sites in Lehen, Austria [27] and Ketzin, Germany [215], 

respectively. Reports from H2-rich town gas in Beynes, France, reports are contradictive 

ranging from no H2 consumption during storage operations [218] to significant (unspecified) 

reductions of H2 and CO2 contents along with increases in CH4 [219, 220]. A H2 consumption 

of 17 % by methanogens at the Lobodice town gas storage site over a time span of seven months 

[218, 221] seems exceptional in the light of our calculations and the reported SSR and 

methanogenesis rates from the field. With a very low salinity of 0.03 M, temperatures of 20-

45 °C, a pH of 6.7 and 4 MPa pressure, Lobodice is among the few sites which has highly 

favorable conditions for microbial growth considering all of these parameters (Table A.4). The 

high H2 consumption at Lobodice highlights the importance of environmental parameters for 

controlling microbial activity, as H2 storage may face serious economic and technical 

problems if a site with growth-favoring conditions is selected.   

As mentioned, Berta et al. [4] measured high H2 consumption rates under excess H2 and 

oligotrophic conditions (P< 9.7*10-7 M; SO4
2-≤ 9.5*10-4 M; DOC= 2.6*10-4 M), indicating that 

nutrient scarcity does not imply low H2 consumption. A comparison to the nutrient 

concentrations in the DOGF reveals that many of them have a higher nutrient status (P= 0.002-

0.452*10-3 M; SO4
2-= up to 23.1*10-3 M; organic acids= 1.2-8.1*10-3 M, Table 2), implying 

that H2 consumption in DOGF under excess H2 conditions may be even higher than reported in 

[4]. The experiment by Berta et al. [4] is further highly relevant because cells were at steady 

state, i.e. at the predominant growth stage in nature, but still consumed vast amounts of H2. 

Indeed the H2 consumption of cells at steady state or resting may be just as high as or higher 

than for growing cells but growth is low or absent (Tables A.1-A.3).  

4.4 Knowledge gaps and future research 
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More work is needed to predict the magnitude of microbial growth, H2 consumption rates, and 

(not least) the mutual interaction of the microbial processes in DOGFs. The list of unknowns 

and uncertainties is long. To begin with are the poorly elucidated nutrient requirements of the 

microorganisms, especially in mixed cultures (e.g., [69]). Adding to this are the missing or 

incomplete datasets on the physical environment of certain reservoirs along with their gas phase 

and brine compositions, including chaotropy and kosmotropy characteristics. A better 

elucidation of the latter would allow the calculation of the dominating microbial processes via 

their free energies of the reaction. Combined with an analysis of the microbial community and 

metabolism this could give new insights into whether or not we can theoretically predict which 

microbial processes occur in DOGF and to which extend. 

A further complication is the non-cultivability of many microorganisms in the deep subsurface, 

including DOGF [12, 32, 54, 97, 187]. Considering tiny culturabilities of  ≤0.1% of the total 

viable cell count in many subsurface environments [32], any attempts to assign sterile habitats 

or quantify microbial H2 consumption via cultivated microorganisms, only, are characterized 

by a significant uncertainty. In gas reservoirs, the percentage of cultured bacteria may be 

higher, ranging between 86-95% within each phylum [97]. Field-based metabolic activity 

measurements could circumvent any non-cultivability issues observed in laboratory 

experiments. Initially, however, DNA-based laboratory tests are recommended to obtain 

general cell numbers. The number of cultivable microbes may be maximized using a large array 

of modern cultivation techniques [222-227]. 

The lack of knowledge about the changes in microbial ecology as a response to increased H2 

concentrations beyond the level of functional groups is one of the major hurdles in our attempt 

to understand of the effect of high H2 concentrations on the subsurface microbiology. Emerging 

evidence on the subject highlights species-specific responses to high pH2 [97, 205, 207], and 
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that H2 injection may leave its fingerprint on the subsurface microbial community for decades 

[97]. Knowledge about the initial effect of a drastic increase in pH2 in the subsurface is lacking. 

Considering the pressure increase and the toxicity of high pH2 on methanogens [186, 199, 201], 

one possibility is that more EPS will be produced as a response to the perturbation with elevated 

H2 pressures, as has been shown for other types of perturbation [18, 217, 228], with possible 

adverse effects on gas injectivity and withdrawal.  

Future research should address the effect of high pH2 on the metabolisms of different functional 

groups in different geological settings and under changing nutritional supply and 

physicochemical conditions. Mixed culture studies at low and high pH2 can give insight into 

competitive and syntrophic relations under these conditions and reveal changes in the microbial 

community structure due to the pertubation with elevated H2. More base-line research includes 

determinations of the critical salinities and pressure tolerances that to date are missing for many 

cultivated strains, as well as the study of the brine compositional effects on the microbial 

community and metabolism. Future lab-based research should aim to employ chemostat studies 

that mimic the natural environment [17].   

5. Conclusion  

In this work we presented the growth conditions of 518 cultivated strains from the three major 

groups of H2-oxidizing microorganisms and aligned those with physicochemical data from 42 

DOGF in the British and Norwegian North Sea and the Irish Sea to predict where microbial 

growth can be expected in a future H2 storage scenario. Our results can –with some certainty- 

exclude life in several high-temperature, i.e. deeper reservoirs. For low-salinity and low-

temperature reservoirs our initial calculations indicate significant microbial growth and a small 

H2 consumption, both of which may further increase during repeated storage cycles, giving 

replenishment of nutrients by mineral weathering, decaying microbial cells and inflowing 
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water. Hence, from the point of view of minimizing H2 loss, clogging and corrosion, sites with 

more extreme conditions may be chosen over low-temperature and low-salinity reservoirs 

where the majority of microorganisms can proliferate. Yet, any storage operation will have to 

consider increased operational difficulties and costs with increased depth. Experimental 

investigations of subsurface life on H2 are needed to verify our calculations and manifest 

whether H2 consumption in low-temperature aquifers is a threat to H2 storage. All sites of 

interest to H2 storage should be carefully investigated and tested for microbial growth 

beforehand. 
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