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Abstract

The potential of automated negotiating agents is high as it plays a prominent part

in various domains, such as economics, behavioural psychology, and commerce sys-

tems. However, in the literature, most of the negotiating agents use fixed or heuristic

strategies which possess scalability issues as they may play well in one domain but

not in another. Henceforth, endowing negotiating agents with a learning ability has

gained a great deal of attention in the community of automated negotiation recently,

in order to help obtain the beneficial agreement in a variety of negotiation situations.

In this thesis, we explore the idea of using a Deep Reinforcement Learning (DRL)

approach to develop learnable strategies for self-interested agents in the domain of

automated bilateral negotiations.

There are various forms of negotiation which require a strategy. This thesis starts

by looking at the strategy where an agent can learn when it negotiates with many

agents concurrently, but individual negotiations take place bilaterally over only one

issue, such as the price of an item. In this setting, we propose ANEGMA, a novel

agent model that uses an existing actor-critic architecture-based DRL to estimate

the agent’s negotiation strategy. The strategy also benefits from supervised training

from synthetic negotiation data generated by teachers’ strategies, thereby decreasing

the exploration time required for learning during negotiation. As a result, an auto-

mated agent has been built that can adapt to different negotiation domains without

the need to be pre-programmed. Experimental results show that the learned strat-

egy outperforms the state-of-the-art “teacher” strategies in a range of settings for
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single-issue bilateral negotiation.

We further extend our approach to deal with one-to-one non-concurrent negotiations

over multiple issues such as the size, color, and price of an item. In this setting, we

propose an extended model, called ANESIA, that relies upon interpretable “strategy

templates” representing negotiation tactics or heuristics with learnable parameters.

ANESIA uses a meta-heuristic approach offline, to learn the best combination of

these tactics so that they can be employed during negotiation. In addition, ANE-

SIA assumes that the agent has only partial information about the preferences of

the user and does not know the opponent agent’s preferences. To handle user pref-

erence uncertainties, ANESIA uses a stochastic search to best approximate the real

user preferences. Besides this, ANESIA also combines multi-objective optimization

and multi-criteria decision-making techniques to generate (near) Pareto-optimal bids

during negotiation. A revised model called DLST-ANESIA is also developed to learn

the combination of tactics on-line, using DRL. Both models, ANESIA and DLST-

ANESIA are experimentally evaluated, and the experiments show how these models

increase the number of “win-win” outcomes.

Since ANESIA agents attempt to approximate the real preferences of both negotiat-

ing parties, there is uncertainty involved in their estimated preferences. To address

this uncertainty while proposing bids to the opponent party, we further extend the

model by introducing an additional fuzzy component and name the model fuzzy-

ANESIA. This model involves a two-phase bid generation step involving the use of

fuzzy-multi-objective optimization and fuzzy-multi-criteria decision-making meth-

ods. The experimental evaluation empirically shows that our proposed negotiation

model outperforms the state-of-the-art agents (used in previous years’ negotiation

competition) in most of the settings.

On a short note, this thesis focuses on bilateral negotiations (i.e., negotiations
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between two agents), in which the agents exchange offers in turns. It primarily

contributes towards learning ability of a negotiating agent where concurrency con-

trol is required for one or more issues. During the negotiation, the domain is known

to both the negotiating agents, but their preferences and behaviour are private in-

formation. Our negotiating agent seeks to reach ‘win-win’ outcome within various

time constraints (such as a deadline or discount factor) including modelling the user

as well as the preferences of opponent agents.
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Chapter 1

Introduction

Negotiation is a process in which different parties with conflicting goals exchange

offers in order to mutually explore the likelihoods of reaching an agreement [46, 45].

Humans negotiate many times a day [48], even without realizing that they do so.

It has been said that ‘However much you think negotiation is a part of your life,

you’re underestimating it’ [140]. In fact, individuals during a negotiation spend a

great deal of their time during negotiations, as they try to pursue their interests

in the face of conflicting goals [35]. For example, a group of people may negotiate

in an attempt to choose a restaurant to eat, decide a meeting time, exchange of

goods or services, form employment contracts, or engage in diplomatic negotiations

between countries to decide how to act on global warming. However, despite the

frequency with which humans negotiate, it is not always easy for them to reach an

agreement. Often, in human negotiations, negotiators fail to see what is a better

deal, they make too large concessions, they reject an offer which was better than

any other available offer, or they are forced to reach an agreement even when the

agreement terms are not as good as other alternatives [140].

In order to avoid the above-mentioned human negotiation flaws, a large number

of researchers are attempting to automate and optimize the negotiation process. As

a result, negotiation has become an important research topic in many disciplines

including Economics, Law, Applied Mathematics, Psychology and Sociology, and

1



Computer Science [23]. One of the promising approaches to automate the negoti-

ation process is using software components referred to as agents. An agent (also

known as software robot or soft bot [121]) is a computer system which is situated

in some environment and can perform an autonomous action in that environment

in order to meet its design objectives [150]. An advantage of this approach in the

context of negotiation is that different strategies can be provided to agents, some of

which can be learned from negotiation experience.

In general, an agent-based negotiation (also known as automated negotiation) allows

autonomous agents to exchange the information in the form of offers and counter-

offers. An offer is a complete solution if it instantiates a value for each negotiated

issue and is currently preferred by an agent given its preferences, constraints, and

the negotiation history of offers and counteroffers [112]. The set of all the possi-

ble bids1 is known as outcome space. Based on the current available information,

different agents exchange a range of possible offers during the negotiation. These

ranges typically reduce to the final agreement (i.e., successful negotiation), or if they

become empty, a deal is not possible (i.e., unsuccessful negotiation) [112]. In other

words, when an offer is accepted by all the agents involved in the negotiation, an

agreement (or outcome) is achieved.

Autonomous agents are usually self-interested, and their aim is to maximize the

value of the agreement from the point of view of the human user they represent. A

numerical value representing how good an outcome or agreement is for an agent is

known as utility [150] and measures the satisfaction of an agent for a negotiation

state [4]. The states with higher utility value are preferred over the states with

lower utility value. For any agreement, this utility can be calculated according to

the agent’s utility function, which is based on the preferences of the user. The ul-

timate goal of each agent is to maximize its utility. In an automated negotiation,

1Throughout this thesis, we will use the terms ‘bid’ and ‘offer’ interchangeably.
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it is possible for the agents to exchange tens of thousands of offers with each other

before reaching an agreement. Consequently, automated negotiation is an iterative

process of: 1) evaluating offers, 2) updating the available options, and 3) making

counteroffers, according to the agent negotiation strategy (or high-level plan about

which actions to take). The negotiator’s strategy to decide which offer to send to the

other opponent agent involves decision-making which directs the negotiation process

and its outcomes.

In a simple negotiation, the agents may try to agree over a single issue2 (such

as a price when buying something on e-markets like E-bay), but in a more complex

setting like buying a car, the agents may negotiate over a range of issues, such as

price, model, colour, and mileage. The latter negotiation type makes the negotiation

more difficult because the seller is unlikely to know which feature the buyer is most

interested in. Likewise, the buyer is unlikely to know which type of car the seller

would prefer to sell.

Although the agent’s primary goal is to maximize the utility value of its agree-

ments, in order to maximize the chances of such agreement occurring, an agent

should identify the issue to be negotiated (e.g., price) that are interested to the

other party. In addition to uncertainty regarding the preferences of the other party,

each agent is also unaware of the behaviour of the other party. A seller may be

keen to make the sale to one particular buyer, and therefore will be willing to offer a

deal at a fairly low utility. Alternatively, the seller may have many other potential

buyers, and is therefore keen to reach an agreement with one of them at a high value.

Sometimes, the seller may not concede until the buyer concedes, or make offers in

the decreasing order of preference or just make some random offers in no particular

order, or just persist with the initial offer and not concede at all. The same also

2A negotiation over single-issue is not unrealistic for e-markets like e-Bay, where sellers advertise
a product with a fixed set of issues (e.g., Lenovo, 16 GB RAM, 250 GB HDD, i7 processor) and
the only issue being negotiated is price.
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applies to the behaviour of the buyer.

All the above-mentioned scenarios make the human negotiations a complex and

a tedious task. Thus, automated negotiation has gained increasing importance by

employing labour-saving and emotion-free agents in unknown and dynamic environ-

ments such as an e-marketplace to reduce time and negotiation costs [26, 27, 29, 90]

needed to reach the agreements and simultaneously increase the chance of deals

where both agents gain high utility (or ‘win-win’ deals) [14, 89]. It is important to

note that single-issue negotiation is a ‘win-lose’ situation [81], i.e., what one party

wins the other loses (e.g., seller and buyer negotiating over the price of a laptop). On

the other hand, multi-issue negotiation is a ‘win-win’ situation, because two parties

may have different preferences on the issues; and both parties may achieve better

agreement on issues that are most important for them by trading off some on those

not so important (e.g., seller may care about the laptop processor and RAM, but

buyer may care about the hard disk and operating system while negotiating for a

laptop). Thus, through negotiation on multiple issues, they may achieve agreement

on what they care about the most by conceding over some less important issues.

Other potential benefits of automated negotiations also include the opportunity

of finding more interesting deals by the exploration of large outcome spaces for an

agreement [60, 90], ability to improve the negotiation skills of the human user [60,

87, 116], and the potential increase in negotiation usage since the human user can

avoid social confrontation [24, 90].

1.1 Motivation

A large class of Multi-Agents System (MAS) applications are often developed using

heuristic strategies, e.g., [105, 106, 2], which are experimentally tested and evaluated

for only particular negotiation settings and hence, they are not adaptive. Also, these

strategies often don’t consider the feedback received from the environment during
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negotiation. In a real-world setting, the feedback issue with heuristic strategies

can be seen in the following two ways: firstly, there are many negotiation settings,

where positive feedback of an agent performing well in one domain (or against one

opponent) may become negative in another domain (or against another opponent).

Secondly, the state space increases exponentially with the increase in the number

of issues in the domain. As a result, developing a heuristic strategy can become a

challenging task.

In this thesis, we focus on considering this feedback using Reinforcement Learn-

ing (RL) as it allows agents to develop and improve the strategy from experience in

terms of feedback when there is a very little prior information about the environment

and other negotiating agents, and make it adaptive. Also, RL lets the agent make

decisions sequentially, i.e., the action output depends on the state of the current

input and the next input depends on the action output of the previous input, unlike

a Supervised Learning (SL) algorithm where the action output only depends on the

input state.

According to [121], learning is one of the features required for an agent to be con-

sidered rational. A rational agent can be defined as the one that is expected to

be self-interested in order to reach an agreement, resulting in a high utility for the

agent [4]. Moreover, the learning algorithms are more suitable for applications with

uncertain or dynamic environments such as an e-market, where the structure of the

environment changes in terms of the number of agents, resources, or agent deadlines

[108]. Furthermore, as argued in [119], the agent learning is an integral part of the

negotiation mechanism. Therefore, the advantages of learning in negotiation have

been addressed quite early by different authors. To sum up, it is widely recognized

that the ability of agents to learn from experience (where agents receive positive

or negative reinforcement/feedback from the environment), adapt and modify their

behaviour is of growing importance in the development of a MAS application.

5



Now, the question arises how to investigate the feasibility of RL approaches in

making the effective negotiations by making agents to learn from their experience.

We consider Deep Reinforcement Learning (DRL) methods, in particular, as they

have shown great learning ability in many environments [99] against many oppo-

nents [128, 130] and in very large state spaces [99, 128, 130]. While addressing the

learning feature, we are not interested in building up the learning mechanism for a

single agent without taking into account the presence of other agents in the environ-

ment in which it is situated. Instead, we are concerned with a learning mechanism

in which the agent will learn while interacting with the other agents and working

towards its own desired goal.

As a result, the research reported in this thesis is predominantly concerned with

the problem of learning a strategy for an agent in two different situations, i.e., when

an agent is engaged in:

• one-to-many bilateral3 negotiations with different multiple unknown agents (using

fixed strategies) concurrently over a single issue, and

• one-to-one bilateral negotiation with a single unknown opponent (using fixed or

dynamic strategy) over multiple issues under user preference uncertainty4.

To address the above-mentioned research problem, the following concrete research

questions arise:

• Which DRL algorithm an agent should employ to learn the negotiation strategy?

Should the chosen algorithm work for continuous action space (e.g., predicting

the value of price to offer to the opponent agent) and discrete action space (e.g.,

predicting whether to accept/make an offer from/to the opponent)? Can the

proposed work be used for both single and multiple issues?

3Bilateral negotiation means only two parties negotiate with each other over the same resource.
4The human users express their preferences by ranking only a few representative examples

instead of providing a fully specified utility function [141], thus agents are uncertain about the
preferences characterising the profile of the user.
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• How can the current state of the negotiation environment be represented?

• Should the agent negotiate against opponent agents with fixed or dynamic strate-

gies during the learning process? Can we develop a generalized negotiation strat-

egy which is domain-independent as well as opponent-independent? Can the

resulting negotiation strategy be interpretable?

• How can we learn the preferences of an unknown opponent agent during the

negotiation?

• How can we estimate the preferences of the user if only partial information is

given to the agent before the negotiation begins?

• How can we reach Pareto-optimal5 agreements under incomplete information of

negotiating parties? How do we deal with the uncertainty in the estimated user

and opponent models during the negotiation process?

• What performance measures can we use to evaluate the decision-making process?

1.2 Hypothesis, Aims, and Objectives

The hypothesis of this thesis is that it is possible to let the agents learn a negotia-

tion strategy from their experience in negotiation settings, varying from negotiating

against different opponent agents to negotiating in different domains.

The central aim of this thesis is to design a learnable negotiation model using deep

reinforcement learning for concurrent and non-concurrent bilateral negotiations over

one or more issues.

Given this aim and the context set up in the research questions identified in the

motivation section, the concrete objectives of this work are as follows.

5A Pareto-optimal solution is one which can not be improved further without sacrificing other
agent’s utility, i.e., if there is another solution from which one of the agents can get more than from
this Pareto-optimal solution, then the other agent must get less by that other solution [123, 44].
Pareto-optimal solutions lead to ‘win-win’ negotiation outcomes.
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• To propose and develop a learning-based bilateral negotiation model which can

support self-interested agents to make decisions on behalf of their human users in

concurrent and non-concurrent negotiations for one or more issues.

• To propose a strategy that takes into account (a) incomplete information about

the user’s and opponent’s preferences; (b) estimates the user model as well as

generates the bids using approaches including fuzzy-based to deal with the uncer-

tainties in the estimated preference models; (c) reaches agreements with maximum

individual and joint utility; and (d) negotiates against unknown opponent agents.

• To propose the use of generalizable and interpretable negotiation strategy with

learnable choice parameters to avoid the use of one-size-fits-all negotiation strategy

in all the different negotiation settings.

• To explore the idea of using both SL and DRL for a negotiating agent to decide

which action to take out of a discrete as well as continuous action space.

• To generate the synthetic negotiation data to be used for supervised learning to

avoid the exploration time during the DRL process.

• To investigate the use of meta-heuristic approaches for user modelling as well as

estimation of (near) Pareto-optimal bids during negotiation.

• To compare the performance of proposed learnable strategy with the existing

state-of-the-art negotiation strategies using different evaluation parameters such

as average negotiation time, average number of negotiation rounds, average indi-

vidual utility rate, average social welfare utility rate, average distance to Pareto

curve, and the percentage of successful negotiations.

1.3 Contributions of the Research

The contributions made in this research work are the following:
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• We propose three different variants of DRL-based agent negotiation model for

automated bilateral negotiations, which can be possibly concurrent, over one or

more issues.

• We propose the use of stochastic search-based approach for user preference esti-

mation during the negotiation.

• We also propose the use of a combination of Multi-Objective Optimization (MOO)

algorithm and Multi-Criteria Decision-Making (MCDM) methods to generate

(near) Pareto-optimal bids.

• We explore the use of fuzzy-based MOO and MCDM approaches to address the

uncertainties in the estimated user and opponent models.

• We also introduce the use of “strategy templates” to learn the best combination

of acceptance and bidding tactics at any negotiation phase.

• We extend an existing state-of-the-art simulation environment to generate data

and perform experiments that support agent learning for concurrent bilateral ne-

gotiation.

• We run extensive experiments on two different simulation environments for con-

current one-to-many single-issue as well as non-concurrent one-to-one multiple-

issues bilateral negotiations.

In particular, we contribute mainly towards the following important goals of auto-

mated negotiation:

• agent learn-ability (which enhances the autonomy of an agent),

• agent adaptiveness (which allows agent to negotiate against variety of opponent

agents)

• concurrent negotiations (which allows an agent to negotiate with different multiple

agents at the same time),
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• single or multiple issues (which depends on the choice of negotiation domain),

• user preference modelling (which allows the agent estimate the partial preferences

of human users which are submitted to the agent before the negotiation begins),

• social-welfare utility (which leads to more ‘win-win’ negotiation situations based

on Pareto optimality).

1.4 Structure of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 introduces the context and the background of agent-based negotiations

and further motivates the need of learning in automated negotiations. This chap-

ter also discusses the existing studies related to the work presented in this thesis

and identifies the gaps in the existing state-of-the-art of learning-based negotiation

literature.

• Chapter 3 presents and evaluates our first proposed DRL-based negotiation model,

called ANEGMA, for one-to-many single-issue negotiations. The model is applied

in concurrent bilateral negotiation and shows how it outperforms the current

state-of-the-art.

• Chapter 4 presents a new negotiation model, called ANESIA, for one-to-one

multiple-issues bilateral negotiation. The model introduces the notion of “strat-

egy templates” which represent the tactics the agent should employ during the

negotiation. More specifically, the model learns template choice parameters to de-

cide which tactic to employ for accepting an offer or generating a new bid against

various different opponents and considering user preference uncertainty. Here, the

tactic choice parameters are learned only once (i.e., during training) and used in

all the different negotiation settings (i.e., during testing).

• Chapter 5 revises the concept of learning tactic choice parameters for “strategy

templates” presented in the previous chapter. We explore the use of DRL ap-
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proach to estimate the choice parameter values for different tactics which helps in

accumulating the learning experience from different domains and against different

opponents, unlike the one-size-fits-all strategy parameters learned in the previous

chapter.

• Chapter 6 presents an extension of ANESIA model called fuzzy-ANESIA (or f-

ANESIA) which handles the uncertainties in the estimated user and opponent

preference models by proposing a two-phase process of generating the near Pareto-

optimal bids.

• Chapter 7 concludes this thesis by showing how the research goals have been met

and also provides a future research road-map.

1.5 Previous Publications

Some parts of this thesis have been published in conferences and journals papers as

follows:

• P. Bagga, N. Paoletti, B. Alrayes, K. Stathis. (2020) ‘Deep Reinforcement Learn-

ing Approach to Concurrent Bilateral Negotiation’. Published in the proceedings

of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020),

Yokohama, Japan.

This paper [16] includes a part of work described in Chapter 3. However, Chapter

3 discusses the existing research-related literature in detail and provides more

experimental results and discussions than [16].

• P. Bagga, N. Paoletti, B. Alrayes, K. Stathis. (2021) ‘ANEGMA: an Automated

NEGotiation model for e-MArkets ’. Published in the Journal of Autonomous

Agents and Multi-Agent Systems (JAAMAS).

Chapter 3 is based entirely on this paper [15], but here the work of [15] is put in

the context of the thesis. The work of [15] generalizes the work of [16] with extra

experiments and evaluation.
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• P. Bagga, N. Paoletti, K. Stathis. (2022) Deep Learnable Strategy Templates for

Multi-Issue Bilateral Negotiation. Accepted in the proceedings of the 21st In-

ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS

2022).

Chapter 5 is based entirely on this recently accepted paper. But here, the work

of this paper is put in the context of the thesis.

• P. Bagga, N. Paoletti, K. Stathis. (2021) ‘Pareto Bid Estimation for Multi-Issue

Bilateral Negotiation under User Preference Uncertainty ’. Published in the pro-

ceedings of IEEE CIS International Conference on Fuzzy Systems (Fuzz-IEEE

2021), Luxembourg.

Chapter 6 is based entirely on this paper [18]. But here, the work of [18] is put

in the context of the thesis.
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Chapter 2

Background and Related Work

In this chapter, we present the background concepts which provide the foundations

of automated negotiation. We also present the existing related work in the area of

learning-based negotiation, which is the focus of the thesis. In particular, we make

an attempt to identify the advantages and disadvantages of the way learning has

been applied in single-issue and multi-issue bilateral negotiation. We have structured

the chapter as follows. First, we discuss the preliminaries of automated negotiation

in Section 2.1. Then, in Section 2.2, we describe (a) the need of learning in negoti-

ation, (b) the different forms of learning, which allows an agent to learn a strategy

in a negotiation setting, (c) the existing learning-based negotiation literature, and

(d) the learning mechanisms used in this thesis along with other relevant decision-

making mechanisms. This discussion is followed by providing, in Section 2.3, a brief

overview of two negotiation simulation platforms used in the thesis. We summarize

the chapter in Section 2.4.

2.1 Automated Negotiation

In this section, we provide a classification of the automated negotiation and in

this context, we introduce the key concepts of agent technology for representing

negotiation parties as agents. This discussion is followed by an explanation of what

is the negotiation environment and the settings that characterize it. The section
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concludes with a presentation of negotiation strategies and their significance.

2.1.1 Classification of Automated Negotiation

Automated negotiation is mainly classified into two categories based on the number

of parties engaged in the negotiation and interactions that occur between them [91]:

bilateral (where only two parties negotiate with each other over the same resource),

and multilateral (which is a general case - over n parties). In this thesis, we focus

only on the former, as we are interested in the negotiations which involve private

exchange of bids. We also consider concurrent bilateral negotiations, which involve

many one-to-one bilateral negotiations happening at the same time.

The bilateral automated negotiation can be further classified as single-issue and

multi-issue. We focus on both of them. We consider single-issue bilateral negotia-

tions as we are interested in e-markets like E-bay where a buyer can negotiate for

a fixed set of issues (such as a laptop with the configuration: 8 GB RAM, 500 GB

hard disk, Lenovo model) over only one issue such as price of a laptop. On the other

hand, we consider multi-issue bilateral negotiations as we are also interested in do-

mains where participants can negotiate over a range of issues to reach an agreement,

e.g., deciding what laptop to buy by negotiating over issues such as RAM, hard disk,

model, and price.

In order to increase the effectiveness of automated negotiation applications in busi-

ness and organizational activities, we need to get as close as possible to how negotia-

tions are conducted in the real world, where parties negotiate over various issues and

seek to reach an agreement maximizing their own interests. However, a multi-issue

negotiation is more complex and challenging than a single-issue negotiation because

of the following main reasons [81]:

• The agent preferences over multiple issues can be complex. Traditionally, agent

preferences can be characterized mathematically with a utility function, such that
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agents make their decisions based on this function. However, it is not trivial for

a human to construct such a utility function over multiple issues. It is more

cumbersome when preference over one issue impacts the values of other issues; as

a result, preference elicitation may take a long time or sometimes be difficult.

• The outcome space is n-dimensional (where n is a number of issues and n > 1).

Every time an agent plans to concede, it needs to first decide the direction of

concession, i.e., to concede on which issue, either issue 1 or issue 2 and so on or

different combinations of these issues. Specifically, the decision on the concession

direction may also depend on the opponent’s preference because conceding on

the issue more important to the opponent can make the offer more acceptable

(i.e., ‘win-win’ outcome). Also, to decide how much to concede is now more

complicated because the direction can impact the amount as well. Hence, the

burden of computation and reasoning for the negotiation strategy is higher in a

multi-issue negotiation than in a single-issue negotiation.

• Also, an agent should realize that reaching a Pareto-optimal1 agreement is more

efficient than “leaving money on the table”2 in case of multi-issue negotiation.

There are a number of different procedures an agent can use while negotiating over

multiple issues, which greatly affects the outcome. In general, these procedures

specify how the issues will be settled [44]. Three main such procedures are the

following:

• package deal procedure: in which all the issues are bundled and discussed/settled

together;

• simultaneous procedure: in which the issues are discussed/settled simultaneously

but independently of each other;

1The better the two agents know each other, the more likely that they can make an agreement
which is Pareto-optimal [5].

2It means negotiators don’t get as much utility as they could, as they refrain from taking the
utmost advantage of another better deal [140].
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• sequential procedure: in which the issues are discussed/settled one after another

(also known as issue-by-issue negotiation).

In addition to maximizing an agent’s individual utility, one of our concerns is ensur-

ing Pareto optimality of the solutions. For this, we chose the package deal procedure

because unlike the other two it generates Pareto-optimal outcomes, even if it is com-

putationally more complex. It also gives rise to the possibility of making trade-offs

across issues [44].

Multi-issue negotiation can be further divided into sequential negotiation (where

each issue is negotiated in turn) as well as integrative negotiation (where all is-

sues are negotiated together). We focus on the integrative negotiation, where issues

are indivisible and independent of each other. Moreover, we consider non-mediated

negotiation, where there is no middle party between the two negotiating parties.

Furthermore, based on the degree of self-interest, the negotiating parties can be

classified as self-interested, cooperative and competitive. If the agents in the nego-

tiation always try to maximize their own utility, then they are considered to be

self-interested agents. If the agents are maximizing their utility at the cost of their

opponent’s, then they are called competitive. Finally, if the agents try to cooperate

with each other and maximize the utility keeping in mind the benefits of their op-

ponents, then they are considered as cooperative agents. We assume self-interested

agents in our work.

2.1.2 Representing a Negotiation Party as an Agent

In this thesis, we view ‘an agent as a computer system which is situated in some en-

vironment and that is capable of performing autonomous action in this environment

in order to meet its design objectives ’ [150]. In this context, agents are expected to

interact flexibly in the environment. Flexibility is understood in terms of reactiv-

ity, pro-activity and social ability. Reactivity means that the agent should be able

to perceive the environment and respond to it in a timely manner, pro-activeness
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Figure 2.1: A general architecture of an agent

entails that the agent should be able to take initiative to achieve its goals, and

sociability requires that the agent should interact with other agents or humans in

the environment. Other important features of agents include: autonomy : meaning

the agent should be able to act without the intervention of humans, learn-ability :

implying that the agent is capable of learning or improving its knowledge from its

experience with other agents in the environment and situatedness : signifying that

the agent should be able to perceive inputs from the environment and take actions

that changes the environment in some way.

Developing an agent system requires a general reference architecture, which is shown

in Figure 2.1. The agent is situated in an environment [150] (such as the World Wide

Web or the real world), and interacts with it through sensors and actuators [121].

The agent body aggregates the sensors and actuators in a single component, and

the agent mind encapsulates the decision-making components of the agent. In other

words, the agent’s mind decides what action to be taken based on what it perceives

from the environment through its sensors, and are executed using the actuators.

In this thesis, the environment is where agents can negotiate, e.g, an e-marketplace
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such as E-bay. Here, we assume that the negotiation environment is fully-observable

for an agent, meaning that the agent has access to all aspects that are relevant for

choosing an action, for e.g., a buyer agent knowing the number of seller agents in

the e-market, what was the last offer made by any of the seller agents, whether the

seller has accepted it s offer or not, etc. In addition, we assume that the environ-

ment is non-deterministic, referring to an environment in which the same action if

performed twice doesn’t result in the same outcome, for e.g., at one time, the seller

agent already left the negotiation before it received the offer from buyer agent, re-

sulting in failed negotiation, whereas at other time, the seller agent accepted the

offer from the buyer agent, resulting in successful negotiation. In other words, un-

certainty is involved. Also, we assume that the environment is dynamic, referring to

the environment which changes over time while the agent deliberates, for e.g., in an

e-market like E-bay, seller or buyer agents may enter or exit at any point of time.

Moreover, we assume a multi-agent environment, referring to an environment with

more than one agent, for e.g. a buyer negotiating with multiple sellers over price of

a laptop . More details about these properties of the environment can also be found

in [121].

Agents can be classified into various types, based on their capabilities and level

of intelligence [121]. In this thesis, we are more interested in agents that are ca-

pable to learn from experience, and known as learning agents. In such agents, the

mind can be thought of as being composed of four main components as shown in

Figure 2.2, where agent mind and agent body are separated as in Figure 2.1. Per-

formance element: selects what action to perform and send it to effectors to take

action in the environment. Later, we will see that this performance element behaves

like an actor in actor-critic RL. Critic: determines how well the agent is doing in

the environment and give its feedback to the learning element. Later, we will see

that this feedback is treated like a reward value from the environment. Learning

element: receives feedback/reward value from critic and modifies the performance
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Figure 2.2: A general architecture of a learning agent, adapted from [121]

element or actor. Later, we will see that this learning element is treated like a critic

in actor-critic architecture that we use in our work. Problem Generator: suggests

actions that can lead to new and informative experiences.

2.1.3 Negotiation Environment and Settings

We assume two agents negotiating bilaterally over some domain. A negotiation do-

main is a set of one or more issues (e.g., price, colour, delivery time etc.) over which

the agents negotiate to reach an agreement. Each issue can have a set of discrete

(e.g., colour) or continuous (integer or real) values (e.g., price). The mapping of

each issue to its value is known as a bid or an outcome. The set of all possible bids

is called the outcome space or negotiation space. The total number of all possible

bids in a negotiation domain is called the domain size. The bid/outcome which is

accepted by all the parties in a negotiation is called an agreement.
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Negotiation Protocol

Before the agents can begin the negotiation and exchange bids, they must agree on

a negotiation protocol, which is a set of rules (like a game stating the constraints on

actions taken by the agents [47]) that govern the interaction between agents, for ex-

ample, which agent can participate, what are the different states of the negotiation

process, what events can cause the negotiation states to change and what are the

valid actions of the participants in each particular state. The negotiation protocol

is known to be public, i.e., both the parties know the protocol before they start

the negotiation. A comprehensive negotiation protocol for concurrent bilateral ne-

gotiations is described in [3] whereas a well-established protocol for non-concurrent

bilateral negotiations is the Alternating Offers Protocol [120]. Both the protocols

are discussed in detail in Chapters 3 and 4 respectively.

Preference Profile

Each agent is associated with a preference profile which describes how bids are

preferred over other bids [88]. It is usually considered as private information. This

is because negotiators are always unwilling to reveal their private information (e.g.,

parameters such as the deadline, strategies, reservation prices) to their opponents

in case of being forced to a worse outcome, thus making learning in negotiation a

challenging problem. When the preference profiles of agents are combined with a

negotiation domain and a negotiation protocol, a negotiation scenario is created [70].

We assume that the preferences are never changed during the course of negotiation,

although dynamic preferences have also been considered [118, 114].

Utility function

A utility function is used to represent the preference profile of an agent. This func-

tion maps each possible bid in the negotiation domain to a real value in the interval

[0, 1] indicating its utility for the agent. The utility function can be defined in linear

or non-linear variations, but in most studies, the linear additive utility has been
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used. We also use linear additive utility in our work since we choose negotiation

domains without (preferential) dependencies between issues, i.e., the contribution of

every issue to the utility is linear and doesn’t depend on the value of other issues [95].

An advantage of independence between issues is that algorithms that search for a

proposal with a particular utility can be implemented in a computationally efficient

way. It also makes it easier for negotiation strategies to efficiently model the pref-

erences of parties involved, as it reduces the amount of information that is to be

learned by a preference learning technique [12].

Preference Uncertainty and User modelling

If a partial ordering is used as a preference profile instead of a utility function, then

it is called preference uncertainty [88]. In particular, the available information to

the agent is that bid X is preferred over bid Y for a subset of possible bids [88].

The agent’s goal is to estimate the utility function that approximates the real utility

function of the user for every possible bid as much as possible, which is also referred

to as user modelling [88]. In case of uncertain user preferences, an agent may also

want to elicit more information about the real utility in order to improve the user

model by querying the user during negotiation against an elicitation cost or bother

cost [9, 13].

Figure 2.3: Pareto Frontier [88]
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Optimality of a Bid

In general, given the set of all possible bids, there is a small subset of bids which

is more preferred as outcomes by both the negotiating parties. Identifying these

special bids might lead to a better agreement for both parties. From a single agent

perspective, the optimal bid is the one that has maximum utility value. But, in

general, an optimal bid involves the utilities of both the negotiating parties. One

approach to optimality is that a bid is not optimal for both the parties if there is

another bid that has the higher utility for one party and at least equal utility for

the other party. This type of optimality is called Pareto optimality. The collection

of Pareto optimal bids (green dots in Figure 2.3) is called the Pareto Frontier (red

line in Figure 2.3) [88].

In multi-issue bilateral negotiation, we approach the optimality of a bid as a con-

straint optimization problem, where the space of agreement is not empty (see Zone

of Agreement concept later in Chapter 3). In this case, at least one Pareto-optimal

bid always exists. For smaller domains or discrete domains of size |d|, one can use

Brute-force, which takes d2 comparisons to find the Pareto-front. For larger domains

or continuous domains, one can use the meta-heuristic approach as used in this the-

sis. We use this approach irrespective of the type (linear or non-linear) of the utility

function, as this is more general, and therefore our model can be applicable in more

domains, even if sometimes it will be computationally more complex unnecessarily.

This is the price that we choose to pay for generality.

Scenario parameters

A negotiation scenario includes three key elements that illustrate the complexity

of the negotiation process. These elements are negotiation deadline, reservation

value, and discount factor. The deadline of a negotiation denotes the point of time

before which an agreement must be reached. The deadline may be specified as

the maximum number of negotiation rounds, or alternatively as a real-time target.
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Usually, the negotiation time is normalized in [0, 1] so that 0 represents the start

of the negotiation and 1 represents the negotiation deadline. The reservation value

is the lowest level of utility that the agent can accept from its opponents, and any

bid with utility below that level is not acceptable. We also assume that if the

negotiating agents can’t reach an agreement, they will receive a utility equal to

their reservation value (when dealing with multiple-issues). The discount factor is

a way of modelling the time pressure on agents for decision-making indicating that

the resource is worth less as time passes, and makes the acceptance or rejection of

a bid to be more challenging. This makes the utility of bids decrease for the agents

over time.

2.1.4 Negotiation Strategies

The success of a negotiating agent is determined by the effectiveness of its decision-

making model. The basis of each decision-making apparatus is the strategy which is

employed to act in line with the negotiation protocol in order to achieve the agent’s

objectives. In simpler terms, it states how should agents negotiate. The negotiation

strategy is known to be private to each party, i.e., each party has its own strategy.

This is unlike game theoretic approaches, where each party is aware of its opponent’s

strategies [22].

In [11], a component-based architecture for agent negotiation called BOA is proposed

where a strategy is divided into three distinct components: a Bidding strategy (B),

an opponent modelling (O), and an Acceptance strategy (A). The Bidding strategy

determines a concession behaviour during negotiation and how to generate appro-

priate bids according to this behaviour. The Opponent model3 tries to model the

opponent’s preference profile or behaviour style using learning techniques so that the

3In some negotiation problems, one of the parties may know something of relevance that the
other does not. For instance, when negotiating over the price of a second hand car, the seller knows
its quality, but the buyer does not. Such situations are said to have asymmetry of information
between the parties. On the other hand, in symmetric information situations, both parties have
the same information [44]. In this thesis, we consider the latter case.
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agent can make more informed decisions and can act accordingly to cooperate with

the teammates more effectively or take the best advantage of the opponents. The

Acceptance Strategy determines whether the agent should accept the offer received

from the opponent. Let us assume that an agent Au has to decide an action at ∈ A

where A is a set of possible actions at time t, as a response to the opponent agent

Ao’s offer at time t. Since we assume that all the negotiating agents are situated

in the negotiation environment, the opponent’s offer comes from the environment,

which along with other environment, agent and domain (single/multi-issue) param-

eters contribute to the agent’s internal state st at time t. Now, we can formulate

the negotiation strategy SAu of Au as a function f in (2.1), which maps st at time t

to an action at to be taken by Au at time t.

SAu = at = f(st) (2.1)

Apart from the above, developing negotiation models that let an agent learn a

strategy during negotiation normally assumes the following three-phase process [77]:

• In Phase-I (or the pre-negotiation phase), the negotiating agent gets prepared

with details such as the settings and protocol, the negotiation parameters and

number of issues, and a user preference model. It also possibly involves learning

the user model from given partial information4 as well as eliciting5 the preferences

from the user under uncertainty [13, 9].

• In Phase-II (or the negotiation phase), the agent is deployed to negotiate, involving

offer generation and additional components such as opponent model prediction,

offer evaluation and acceptance.

• Finally, in Phase-III (or the post-negotiation phase), the optimality of the final

agreement is assessed in terms of various metrics such as average individual or

4Human users/negotiators do not necessarily know their own utility function explicitly.
5Preference elicitation is a tedious procedure to the users since they have to interact with the

system repeatedly and participate in lengthy queries [13, 9]. This process may continue until the
negotiation terminates.
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social welfare utilities, and distance to Pareto frontier, only if an agreement is

reached.

2.2 Learning in Automated Negotiation

The learning capability of agents is essential for the success of any MAS [119]. Such

a capability can be viewed as the ability of agents to perform unknown tasks (which

are not performed before) or known tasks (the old tasks) better as a result of changes

produced by the learning process [119]. The extant literature has demonstrated that

the ability to learn significantly contributes to the agent’s negotiation power and

ability to reach agreements faster.

2.2.1 Motivation for Learning in Negotiation

As we mention in Chapter 1, in a realistic negotiation situations, agents need to

work in a dynamic environment with different beliefs, goals, preferences, and levels

of knowledge. Moreover, the agents may exist in environments which may fluctuate

over time. The agents may also need to choose a solution/outcome out of a pool of

potential solutions/outcomes. This is more imperative when the decision has to be

made in a limited time. In such negotiation settings, the agents face uncertainties

due to the incomplete information about other agents or the environment. Moreover,

as there are many negotiation settings, an agent that performs well in one setting

may become ineffective in another. Furthermore, when considering multi-issue ne-

gotiations, the state space increases exponentially with the number of issues. To

this end, the agents need to learn about other agents or adapt their local behaviour

based on the environment to effectively utilize the opportunities [119]. In other

words, a general learning agent could help with the above challenges by scaling the

agent in both depth (by handling large outcome spaces) and breadth (by handling

multiple domains and opponents).
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2.2.2 Key Components of Agent Learning

Agent learning is an integral part of the negotiation mechanism [119]. The various

essential elements of learning on which the negotiating agents build their inference

are the following [119]:

• Agent’s Expectations : They represent the current information of the environment

internal to the agent, which guides the agent’s decision-making. It includes what

and how much agent expects to get from the others or what the others will do. A

continuous learning process will make the agent to modify its beliefs to be more

realistic during the negotiation.

• Feedback : This may originate from direct or indirect communication with other

agents, or without communication, directly through the learning agent’s observa-

tions of the effects of its decisions and other agent’s actions.

• Evaluation Criteria: They define how the agent evaluates the feedback from others

as a response to the agent’s last decisions or actions.

2.2.3 Different Forms of Learning

According to [147], three different forms of machine learning are normally considered

according to the learning feedback system - in our case the negotiating agent:

• Supervised learning : It is a type of machine learning, in which feedback specifies

the desired activity of the learning agent. The objective of the learning is to

match this desired activity as much as possible.

• Unsupervised learning : It is a type of machine learning in which no explicit feed-

back is provided. The objective of learning is to find out the useful and desired

activities based on trial and error and self-organized processes.

• Reinforcement Learning : It is a type of machine learning in which an agent learns

in an interactive environment by trial and error using feedback or reward from its

own actions and experiences. The reward only specifies the utility of the actual
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activity of the agent. The main objective of learning is to maximize the agent’s

utility.

In this work, we will use Supervised Learning for training an agent to interact with

the environment and Reinforcement Learning for the agent to build up experience

while interacting with the environment. We explain next Reinforcement Learning,

as it plays a significant role in this thesis.

2.2.4 Reinforcement Learning

Reinforcement Learning (RL) is a goal-oriented optimization technology that has

shown great promise in many complex domains. It learns a mapping from states to

actions, called a policy, to control the behaviour of an agent [136]. To obtain this

policy, an agent repeatedly interacts with an environment using a trial-and-error

method [136]. In general, this model consists of an agent, a set of possible states

S and a set of possible actions per state A, an unknown transition function, and

an unknown real-valued reward function. At each point in time, when an agent

performs an action at, it moves from one state st to a new state st+1 = δ(st, at)

observed by the agent, and receives a reward rt+1 = r(st, at) as a result of the

executed action [145]. The interaction of the agent with the environment is shown

in Figure 2.4. RL can be further classified based on model support as well as type

of learning:

• Model-based/Model-free RL: Model-based RL has an agent try to understand the

world and create a model to represent it. On the other hand, model-free RL lets

an agent learn a policy directly using algorithms without learning a model [136].

In other words, if, after learning, the agent can make predictions about what the

next state and reward will be before it takes each action, it’s a model-based RL

algorithm; otherwise, model-free. Here, model means a function which predicts

state transitions and rewards. Model-free methods are easier to implement and

tune as compared to model-based, this is because in the latter case, the ground-

truth model is usually not available to the agent and if an agent wants to use a
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Figure 2.4: Interaction of agent with the environment during Q-Learning

model, it has to learn the model purely from experience, which creates several

challenges, for e.g., exploitation of bias in the model by an agent, which results

in an agent that behaves well in the learned model rather than the real environ-

ment [102] (also known as overfitting in machine learning algorithms).

• Off-policy/On-policy RL: On-policy methods (such as SARSA [136]) attempt to

evaluate or improve the same policy that is used to make decisions, whereas off-

policy methods (such as Q-learning [145]) evaluate or improve a policy different

from the one that is used to make decision or select action. In other words,

in an off-policy RL, as an agent learns another policy than the one it uses to

select actions, the agent can continue exploration with trial-and-error actions

while learning an optimal policy. However, on-policy learns sub-optimal policy.

Since, off-policy allows parallel learning, learning is fast.

• Value-based/Policy-based/Actor-Critic RL: Value-based RL (such as Q-learning

[145]) learns the state or state-action value, and then policy infers from there,

i.e., agent chooses the action with the maximum value. On the other hand,

policy-based (such as REINFORCE [135]) directly learns the policy function that

maps state to action without evaluating the value-function. Actor-critic RL is

a combination of both value-based and policy-based RL. The ‘critic’ estimates
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the value function (action-value: Q-value or state-value: V-value). The ‘actor’

updates the policy distribution in the direction suggested by the Critic (such as

with policy gradients) [136].

Q-learning

Q-learning is one of the most popular methods to support the RL paradigm. It is

a model-free, off-policy, value-based RL algorithm that resorts to observable state

transitions and their corresponding rewards to estimate the long-term value of choos-

ing an action at a given state and following the optimal policy afterwards. Although

Q-learning was first introduced to address problems in single-agent environments,

it could also be used in MASs [28], with quite high chance of converging to the op-

timal policy [139]. In general, it assigns a value to <state, action> pairs and thus,

implicitly represents the policies [146]. Primarily, the goal of the agent is to find an

optimal policy π∗ : S → A that maximizes the sum of the immediate reward and

the value of the immediate successor state (see (2.2)).

π∗(s) = argmax
a

(Qπ(s, a)) (2.2)

The Q-function for policy is defined in (2.3), where, V π(s) is a utility value based

on the rewards received starting from state s and following the policy π, whereas

γ is a discount factor with the range of 0 to 1 (0 ≤ γ < 1) determining how much

importance should be given to the future rewards. In other words, if γ is closer to

0, the agent will tend to consider only immediate rewards, whereas, if γ is closer to

1, the agent will consider future rewards with greater weight, willing to delay the

reward.

Qπ(s, a) = r(s, a) + γV π(δ(s, a)) (2.3)
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2.2.5 Learning-Based Negotiation Literature Review

Automated negotiation has been at the forefront of the research interests in MASs

and AI communities for many years. Over time a large number of negotiation

strategies have been proposed [87, 96] including: bayesian learning, constraint based

learning, probabilistic decision theory, case-based reasoning, heuristic strategies,

RL and evolutionary strategies. As a result, the existing automated negotiation

literature is extensive. Since, our work is at the intersection of the domains of

autonomous negotiation and learning agents, in this section, we discuss the existing

literature on learning-based bilateral negotiation. Also, we consider Pareto-optimal

solutions and user preference uncertainties in our multi-issue negotiation work, which

motivates us to bring multi-objective and single-objective optimization approaches

as part of thesis background. Later, we also identify the gaps in the existing state-of-

the-art literature, with particular emphasis on negotiation strategies. We classify the

learning-based literature using the following attributes as demonstrated in Table 2.1:

• multilateral, whether the negotiation occurs between more than two agents (here,

Not Tested indicates that authors claim to support this feature, but do not test

it);

• continuous action space, whether the action space is continuous or discrete (we

put a hyphen where we could not evince this from the paper alone);

• concurrent negotiations, whether agents negotiate concurrently with multiple other

agents;

• dynamic environment, whether the environment can change during the negotia-

tion, for e.g., when new/old agents can enter/exit the environment at any time

(here, (hyphen is meant as per above);

• incomplete information, whether negotiating parties are unaware of each other’s

preferences (here, (hyphen is meant as per above);

• human-agent negotiation, as opposed to agent-agent negotiation;
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• adaptive, whether the model can adapt well to never-before-seen negotiation set-

tings (either domains or opponent agents) (Not Tested is meant as per above);

• mediated, whether the negotiation between two agents involve any third party;

• use of RL, such as Q-learning;

• use of DRL, as opposed to RL approaches that do not rely on deep learning;

• domain-independent, whether the strategy can work for more than one domain

(Not Tested and hyphen are meant as per above);

• multi-issue negotiation, as opposed to negotiating over a single issue (Not Tested

is meant as per above);

• Pareto-optimality, whether the Pareto-optimal bids have been considered during

experiments in multi-issue negotiations; and

• strategy component, whether the authors have focused on a specific component of

the negotiation strategy, e.g., bidding, opponent modelling, acceptance strategy,

or user modelling (in case of user preference uncertainty, including preference

elicitation).

From Table 2.1, it has been observed that most of the existing negotiation approaches

with RL have mainly focused on methods such as Tabular Q-learning for bidding

[20] or DQN for bid acceptance [117]. However, these approaches are neither opti-

mal for continuous action spaces nor can handle user preference uncertainty. It is

also observed that (a) very few strategies have targeted the Pareto-optimal agree-

ments; (b) few works have considered user preference modelling; (c) the use of DRL

is minimal; and (d) almost no work has been done on concurrent multiple-issue ne-

gotiations. In our work, we focus on (a) to (c) and leave (d) for future work.

We choose to use the actor-critic architecture combined with DRL as they provide a

rich class of strategy functions to capture the complex decision-making behind ne-

gotiation. In our research, the agent negotiates with fixed-but-unknown opponent
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strategies in a negotiation environment, which can be learnt by the buyers after some

simulation runs. Hence, we consider our negotiation environment as fully-observable.

Following this, for our dynamic environment, we use a model-free, off-policy RL ap-

proach which generates a deterministic policy based on the policy gradient method

to support continuous control. More specifically, we use Deep Deterministic Policy

Gradient (DDPG) algorithm (will be explained in detail in Chapter 3), which is

an actor-critic RL approach and generates a deterministic action selection policy

for the negotiating agent [86]. We consider a model-free RL approach because our

problem is how to make an agent decide what action to take next in a negotiation

dialogue rather than predicting the new state of the environment. In other words,

we are not learning a model of the environment, as the strategies of the opponents

are not observable properties of the environment’s state. Thus, our agent’s emphasis

is more on learning what action to take next and not the state transition function

of the environment. We consider the off-policy approach (i.e., an agent attempts to

evaluate or improve the policy which is different from the one which was used to

take an action) for independent exploration of continuous action spaces [86].

2.2.6 Optimization for Automated Negotiation

This thesis also requires an optimization process for finding the optimal solution

out of many possible solutions, such as finding which bid to offer from a set of bids,

while aiming for ‘win-win’ solutions, or estimating the user model using only given

partial preferences of the user.

Meta-heuristics for Automated Negotiation

Meta-heuristics are generally a family of approximate optimization techniques that

involves an interaction between local improvement procedures (heuristics) and higher

level strategies (with the use of memory, solution history and other forms of learn-

ing [152]) in order to find global optimal solutions for a problem [51, 138]. Although

finding global optimal solutions is not always guaranteed, they can provide “ac-
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ceptable” solutions in a reasonable time for solving complex problems by efficiently

exploring the search space [138].

Based on the multiplicity of solutions that are manipulated in the search guiding

process, meta-heuristics algorithms can be categorized as single-solution based and

population-based methods [51, 138]. In single-solution based algorithms (such as

Local Search [61], Simulated Annealing [76] and Tabu Search [52]), a single solution

is manipulated or transformed during the search. The population-based algorithms

(such as evolutionary algorithms, e.g., genetic algorithms [98], and swarm intelli-

gence techniques, e.g., particle swarm optimization [75]) guide the search procedure

by working on a number of solutions (based on the notion of population) sampled

from the search space and evolve them through the search until they include accept-

able solutions. More recently, many nature-inspired meta-heuristic methods have

also been developed [152], such as the Bat algorithm, the Firefly algorithm, and the

Cuckoo search, and most such algorithms are based on swarm-intelligence [79]. Al-

though, meta-heuristic methods are computationally-expensive [152], they are more

prominent than other traditional algorithms (such as linear programming) as: (a)

they often find true global optimality; (b) they can solve a wider range of problems

as they often treat problems as a black-box; (c) they are usually gradient-free; and

(d) they are stochastic and, hence, no identical solution can be obtained, even when

starting with the same initial points.

Single-objective optimization for User Modelling

For multi-issue bilateral negotiations, we assume that each agent has its own private

preference profile describing how bids are offered over the other bids in terms of a

utility function U . U is defined as a weighted sum of evaluation functions ei(v
i
ci
), as

shown in (2.4).

U(ω) = U(v1c1 , . . . v
n
cn) =

n∑
i=1

wi · ei(vici), where
n∑

i=1

wi = 1 (2.4)
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In (2.4), each issue i is evaluated separately and contributes linearly to the utility

U . This is a very common utility model and is also known as Linear Additive Utility

space. Here, wi are the normalized weights indicating the importance of each issue i

to the user, while ei(v
i
ci
) is an evaluation function that maps the vici value of the ith

issue to a utility. Here, an agent’s bid ω is a mapping from each issue to a chosen

value (denoted by ci for the i-th issue), i.e., ω = (v1c1 , . . . v
n
cn). Note that the linear

utility function does not take dependencies between issues into account.

In our settings, where the negotiation environment contains incomplete information,

because the user utility model Uu is unknown. Only partial preferences are given for

the user, i.e., a partial order⪯ over B bids w.r.t. Uu s.t. ω1 ⪯ ω2 → Uu(ω1) ≤ Uu(ω2).

Hence, during the negotiation, one of the objectives of our agent is to derive an

estimate Ûu of the real utility function Uu from the given partial preferences6. This

leads to a single-objective constrained optimization problem, expressed as (2.5)7:

max
ŵ1,...,ŵn,

ê1(v1c1 ),...,ên(v
n
cn

)

ρ

(
n∑

i=1

ŵi · êi(vici), B⪯

)

s. t.
n∑

i=1

ŵi = 1

ŵi > 0 and 0 ≤ êi(v
i
ci
),∀i ∈ n

(2.5)

B⪯ is the incomplete sequence of known bid preferences (ordered by ⪯), and ρ is

a measure of ranking similarity (e.g., Spearman correlation) between the estimated

ranking of Ûu and the true, but partial, bid ranking B⪯.

6Humans do not necessarily use an explicit utility function. Also, preference elicitation can be
tedious for users since they have to interact with the system repeatedly [13]. As a result, agents
should accurately represent users under minimal preference information [141].

7We note that this problem is under-determined, i.e., there are multiple solutions for ω̂i and
êi to maximize the similarity.
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Many meta-heuristic optimization algorithms have been adopted by researchers in

multi-issue automated negotiation, such as Particle Swarm Optimization for oppo-

nent selection [127]; and Genetic Algorithms [38], Chaotic Owl Search [41], Hill

Climbing (or local search) [126, 74] and Simulated Annealing [78, 126] for exploring

the outcome space in order to find the desired offers for generating bids during the

negotiation. These algorithms focus on different problem areas than ours, as we

are solving a constraint-satisfaction problem of estimating the user model that best

agrees with the given partial preference ranking order. This is important in order to

achieve optimal negotiation results given incomplete information on the human user

the agent represents. In our work (see Chapters 4 to 6), we explore the idea of using

nature-inspired single-objective (see 2.2.6) meta-heuristic algorithms called Firefly

algorithm [151] and Cuckoo Search Optimization algorithm [153] for estimating the

user utility model from the given partial preferences. These have been widely used

in many engineering problems, but not in the domain of bilateral negotiation. Both

algorithms are explained in detail in Chapters 4 and 6 respectively.

Multi-objective optimization for Pareto estimation

Originally, the idea of generating a Pareto-optimal offer with perfect information

was proposed by Raiffa in [113]. Jazayeriy et al. in [66] presented the Maximum

Greedy Trade-offs algorithm to generate Pareto-optimal offers with perfect infor-

mation. This was further extended in [67] to generate near Pareto-optimal offers

with incomplete information of the opponent’s preferences, but complete preference

information of the user. Sanchez-Anguix et al. in [125, 124] proposed a bottom-up

approach to achieve a Pareto-optimal solution in a group decision-making setting.

By assuming incomplete opponent preferences only, they also provided proof that

a Pareto-optimal solution in a sub-group is also Pareto-optimal in the super-group

containing the sub-group. In our work, we assume that the utility models of both

user and opponent agents are not given while generating Pareto-optimal offers.
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Ehtamo et al. in [40] considered a non-biased mediator-based negotiation approach

assuming that agents know their utility function during the negotiation and intro-

duced a constraint proposal method to reach the Pareto-optimal solutions, which

was extended later to multi-party negotiations in [58]. Hara and Ito in [56] used a

mediator-based negotiation approach in which a GA was used over interdependent

multiple issues. Instead, in our proposed approach, we do not rely on mediation,

and we assume independent issues and thus avoid the extra cost of a mediator dur-

ing the negotiation. A mediator was also used to exclude the unreasonable (or less

beneficial for buyer agent) offers from the feasible set of negotiation offers by the

negotiation strategy in the work of Montazeri et al. [100]. This work generated

Pareto solutions with the help of DRL for e-commerce, considering only preference

information about the opponent.

We have already seen that in our negotiation settings, we assume that each agent

has incomplete information of other agent’s preferences and behaviour. To increase

the agreement rate over multiple issues, an agent must estimate the preferences of

other agents to generate the (near) Pareto-optimal bid. This is a multi-objective

optimization (MOO) problem and can be defined as follows:

max
ω∈Ω

(Ûu(ω), Ûo(ω)) (2.6)

In (2.6), we have two objectives: Ûu, the user’s estimated utility, and Ûo, the oppo-

nent’s estimated utility. A bid ω∗ ∈ Ω is Pareto-optimal if no other bid exists ω ∈ Ω

that Pareto-dominates ω∗. In our case, a bid ω1 Pareto-dominates ω2 iff:

(
Ûu(ω1) ≥ Ûu(ω2) ∧ Ûo(ω1) ≥ Ûo(ω2)

)
∧(

Ûu(ω1) > Ûu(ω2) ∨ Ûo(ω1) > Ûo(ω2)
) (2.7)

In order to find Pareto-optimal solutions, the Genetic Algorithm NSGA-II (Non-

dominated Sorting Genetic Algorithm-II) [39] formulti-objective optimization (MOO)
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has been used previously in automated negotiation for QoS of web service appli-

cations [57]. What makes our approach novel in this regard is that we combine

NSGA-II with an MCDM method called TOPSIS (Technique for Order Preference

by Similarity to the Ideal Solution) [64] to choose the best among a set of ranked

near Pareto-optimal outcomes during negotiation.

Fuzzy-based MOO

We further explore the idea of using the extended-NSGA-II of Bahri et al. [19] to deal

with the MOO problem characterized by the necessity to simultaneously optimize

two conflicting objectives. Consider, for instance, maximizing the user’s utility and

the opponent’s utility in order to reach a ‘win-win’ solution in the presence of un-

certain input data (i.e., reflecting the uncertainties in estimated user and opponent

models). We hybridize this extended extended-NSGA-II with fuzzy TOPSIS [64] to

choose the best among a set of ranked near Pareto-optimal outcomes during nego-

tiation. We have seen this amalgamation of extended-NSGA-II and fuzzy-TOPSIS

only in an application called supplier selection and multi-product allocation order

problem [104]. Also, in [92], the prioritized fuzzy constraints were incorporated

by Luo et al. into a buyer-seller negotiation setting, and the negotiation prob-

lem was considered as a fuzzy constraint-satisfaction problem. However, we deal

with the fuzziness in the objective/utility functions of negotiating parties. So, to

the best of our knowledge, we are the first to introduce and study fuzzy/non-fuzzy

MOO with fuzzy/non-fuzzy MCDM in multi-issue bilateral negotiation to generate

near-Pareto-optimal outcomes between two negotiating agents under their prefer-

ence uncertainties.

Since the agent attempts to approximate the real preferences of both the nego-

tiating parties, there is uncertainty involved. Hence, the MOO with the set of

objective functions that may depend on uncertainty scenarios Usc can be defined as
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follows [19]:

max
ω∈Ω,ξ∈Usc

(Ûu(ω, ξ), Ûo(ω, ξ)) (2.8)

The cost of evaluating each uncertain objective function is represented by intervals

such as a Triangular Fuzzy number (TFN). Formally, a TFN is represented with a

triplet of values A = [a, â, a], where [a, a] is the interval of possible values called

its support and â denotes the most plausible (also known as its modal or kernel

value). TFN can also be deduced from transformations of other different shapes

by linguistic modifiers, compositions, projections and other operations. See [19]

for more details. The triangular fuzzy-MOO problem of generating (near) Pareto-

optimal bids in bilateral negotiation domain can be defined as a vector of objective

functions (Ûu(ω
τ ), Ûo(ω

τ )), which are disrupted by the triangular form τ such that

τ ∈ R as shown in (2.9). In this objective space, the vector can be defined as

a fuzzy cost function that represents the fitness of solutions or bids in terms of

a triangular-valued objective vector such that Ûu(ω
τ ) = [Ûu(ω),

̂̂
Uu(ω), Ûu(ω)] and

Ûo(ω
τ ) = [Ûo(ω),

̂̂
Uo(ω), Ûo(ω)].

max
ωτ ,ω∈Ω

(Ûu(ω
τ ), Ûo(ω

τ )) (2.9)

2.2.7 Multiple-Criteria Decision-Making methods

Multi-Criteria Decision-Making (MCDM) methods have proven their effectiveness in

addressing different complex decision-making problems where there is more than one

conflicting criterion [93]. In this work, we use a MOO approach called NSGA-II [39])

to generate a list of Pareto-optimal solutions, which is followed by an MCDMmethod

called TOPSIS [63] to let the agent decide one of them while considering two different

objective functions (Uu and Uo) together by ranking the different alternatives (Pareto

solutions) being evaluated during the negotiation. We choose TOPSIS among many

other MCDM techniques available in the literature as it is simple, reliable, intuitive

and easy to compute [143].
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2.2.8 Gaps in the existing state-of-the-art

As evidenced from the above-mentioned existing work, automated negotiation has

been an active area of research for over the past two decades. However, the extant

work has a number of limitations, which we summarize below:

• Although learning approaches are proposed for automated negotiation, work in

the domain of concurrent bilateral negotiations is missing.

• Existing DRL-based approaches used in automated negotiation strategies do not

support continuous action spaces.

• No use of dynamic threshold utility is seen in the multi-issue negotiation literature

under the BOA architecture.

• No “strategy templates” for acceptance and bidding strategies are explored in the

extant literature to the best of our knowledge.

• The combined uncertainties of the approximated user and opponent modelling

has never been considered together while generating Pareto-optimal bids.

• The amalgamation of MOO and MCDM methods has never been considered in

the domain of negotiation for generating Pareto-optimal bids.

• The fuzzy approaches have not been explored to address the uncertainties in

estimated utility models of both the negotiation parties while generating Pareto-

optimal bids.

There are also other limitations of the existing work, such as, less consideration

of preferential dependencies in multi-issue negotiation, minimal use of non-linear

utility functions and negotiation protocol which is more complex than alternating

offers protocol, and no exploration of learning approaches for the user preference

elicitation process to reduce the user bother cost. However, they are beyond the

scope of this thesis.
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2.3 Negotiation Simulation Platforms

We perform experiments related to single-issue concurrent and multi-issue non-

concurrent negotiations on two different simulation platforms called RECON [1]

and GENIUS [88] respectively. We use RECON because it allows us to run concur-

rent bilateral negotiations. We also employ GENIUS as it gives access to many other

strategies and a number of domains to perform experiments and compare results.

2.3.1 RECON

RECON stands for Robust multi-agent Environment for simulating COncurrent Ne-

gotiations. It supports the development of software agents interacting concurrently

with other agents in a negotiation domain. It also supports declarative strategies,

for applications where logic-based agents need to explain their negotiation decisions

to a user. It consists of a set of infrastructure agents that can manage an electronic

market and extract statistics from the negotiations that take place [1].

In general, RECON consists of the following three phases as shown in Figure 2.5:

• Phase 1 (Configuration) allows the user to define simulation parameters such

as market density, market ratio, Zone of Agreement (ZoA), deadline, number

of simulation runs, types of negotiating agents and their initial and reservation

prices.

• Phase 2 (Simulation) conducts the actual negotiations between market agents

(buyer agents and seller agents) based on the information from Phase 1 (Con-

figuration). These negotiations are managed with the help of two infrastructure

agents called market controller and market broker. The prime role of the market

controller is to oversee the simulations. This involves initializing the simulations,

creating the market agents and saving the negotiation logs at fixed time intervals.

The market broker helps in notifying each agent about the entry of new agent in

an e-market.
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Figure 2.5: Modified Architecture of RECON simulation environment. Here, buyer
agent stores the negotiation experience w.r.t. different sellers concurrently from each
run in a global database (Negotiation Experience) to use the updated negotiation
strategy (learned from experiences) in new simulation runs.

• Finally, Phase 3 (Analysis) analyses the negotiation logs to evaluate the perfor-

mance of negotiations in terms of the various metrics defined by the user, such as

average utility rate and average negotiation time.

We have substantially extended the RECON environment by adding a learning com-

ponent to Phase 2 (Simulation), motivated by our proposed model (see Chapter 3).

We will see later, in Chapter 3, that during each simulation run, our buyer agent

maintains a concurrent hash map of negotiation IDs and a stack of past experiences

while negotiating with different sellers concurrently, which is eventually added to

a global memory Negotiation Experience at the end of each run. These past expe-

riences are used by the buyer agent to learn and update the negotiation strategy

and use it during new simulation runs. We have further extended RECON’s market

controller to handle the whole learning process during all simulations.
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2.3.2 GENIUS

GENIUS stands for General Environment for Negotiation with Intelligent multi-

purpose Usage Simulation. It helps facilitate both the design and evaluation of

automated negotiators’ strategies. It implements an open architecture that allows

easy development and integration of existing negotiating agents and can be used to

simulate individual negotiation sessions, as well as tournaments between negotiat-

ing agents in various negotiation scenarios. GENIUS also allows the specification

of different negotiation domains and preference profiles by means of a graphical

user interface [88]. GENIUS incorporates several mechanisms that aim to support

the design of a general automated negotiator as shown in Figure 2.6. The first

mechanism is an analytical toolbox, which provides a variety of tools to analyse the

performance of agents, the outcome of the negotiation and its dynamics. The sec-

ond mechanism is a repository of domains and utility functions which let the user

define the preference profiles for their agents. Lastly, it also comprises repositories

of automated negotiators and negotiating protocols. In addition, Genius enables the

evaluation of different strategies used by automated agents that were designed using

the tool. In Figure 2.6, Simulation control and Logging components will allow users

to control and debug the simulations , as well as obtain the information [88]. This

is an important contribution as it allows researchers to empirically and objectively

compare their agents with others in different domains and settings [12]. GENIUS

tool has also been supporting the ANAC8 (Automated Negotiating Agents Compe-

tition) competition since 2010. ANAC is an international annual event which brings

together researchers from negotiation community and provides unique benchmarks

for evaluating practical negotiation strategies in multi-issue domains [70].

2.3.3 Other platforms

There are also some other negotiation frameworks/simulators in the literature such

as: IAGO (InteractiveArbitrationGuideOnline (for Human-Agent negotiations) [97]),

8http://ii.tudelft.nl/nego/node/7
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Figure 2.6: A High-level Architecture of GENIUS simulation platform [88]

BANDANA (BAsic eN vironment for D iplomacy playing Automated N egotiating

Agents) [69], Negowiki [94], Jupiter [50], MAN-REM (Multi-Agent N egotiation and

Risk management in E lectricityM arkets) [110], MASCEM (Multi-Agent S imulator

of Competitive E lectricity M arkets) [111], EMCAS (E lectricity M arket Complex

Adaptive System) [107], DESIRE [73], and Pocket Negotiator [71]. We do not con-

sider them because they cannot support concurrent bilateral negotiations, unlike

RECON, or they are not widely used and stable, and are domain-dependent, unlike

GENIUS.

2.4 Summary

This chapter presented the background knowledge on the key subject areas under-

pinning this thesis. In particular, it explained the terminology used in the domain

of automated negotiation, including the negotiation phases and the classification of

negotiation. It also discussed the need of learning in negotiation. Moreover, it pre-

sented the existing work related to ours and identified gaps in the state-of-the-art.

We observed the lack of specialized research on DRL-based negotiation strategies,

as well as single and multi-objective optimization techniques for user preference

modelling and generation of the Pareto-optimal bids, respectively. Finally, it gave
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a short overview of two widely-known negotiation simulation platforms used in this

thesis for experimental evaluation. In subsequent chapters, we will develop our own

agent negotiation models, which build upon some existing work discussed in this

chapter.
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Chapter 3

Single-Issue Bilateral Negotiation

Model

In this chapter, we present ANEGMA, our first agent model that deals with concur-

rent bilateral negotiations in an e-marketplace like E-bay. We start by discussing

the negotiation environment of ANEGMA and its associated settings in Section 3.1.

Then, in Section 3.2, we present the details of the model based on DRL to address

indivisible single-issue bilateral negotiation. In Section 3.3, we describe how we

generate synthetic supervision data for an ANEGMA agent to learn from ‘teacher

strategies’, we identify performance measures, and describe the employed SL and

DRL models. We, then, experimentally evaluate our proposed work by analysing

the results we obtain by playing our agent against the state-of-the-art in Section 3.4,

which is further followed by the summary of our conclusions in Section 3.5.

3.1 Negotiation Environment

In our work, we consider e-marketplaces like E-bay where the competition is visible,

i.e., a buyer agent can observe the number of competitors that are dealing with the

same resource from the same seller. In particular, we assume that the environment

E consists of a single e-market m with P agents, with a non-empty set of buyer

agents Bm and a non-empty set of seller agents Sm – these sets need not be mutu-
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ally exclusive. For a buyer b ∈ Bm and resource r, we denote with St
b,r ⊆ Sm the

set of seller agents from the market m which, at time point t, negotiate with b for a

resource r over a range of issues I. The buyer agent b uses |St
b,r| negotiation threads,

in order to negotiate concurrently with each seller in St
b,r. We further assume that

no agent can be both buyer and seller for the same resource at the same time, that

is, ∀b, r, t. s ∈ St
b,r =⇒ St

s,r = ∅. The set Ct
b,r = {b′ ̸= b ∈ Bm | St

b′,r ∩ St
b,r ̸= ∅}

includes the competitors of b, i.e., those agents negotiating with the same sellers and

for the same resource r as those of b.

We adopt the negotiation protocol of [2] because it reflects many realistic nego-

tiation scenarios in open e-markets, as follows. The buyer and seller have their own

private deadlines, they can negotiate in concurrent bilateral negotiations, and they

may be aware of competition (e.g., as in E-Bay1). Also, the protocol allows for

actions where a buyer can show interest for a product (e.g., as in Shpock2), to the

extent that it can reserve it for a period of time, with a penalty (deposit) if the

reservation is cancelled. In general, a negotiation protocol describes the set of rules

that each buyer b and seller s should follow during a negotiation thread, including

the valid moves agents can take at any state of the negotiation. The protocol is

known to all agents in advance. The protocol, illustrated in Figure 3.1, assumes an

open e-market environment, i.e., where agents can enter or leave the negotiation at

their own will. We assume each negotiation focuses on a single resource character-

ized uniquely by a class and a fixed, non-negotiable, set of properties. The class

‘laptop’ with properties ‘Lenovo/16 GB RAM/500 GB Hard disk’ is an example of

a resource r which can be used during negotiation between two agents. For such a

resource r, we negotiate over a single issue, namely, price. We further assume that

negotiation is represented internally for a buyer agent as a dialogue with a unique

identifier so that the agent can distinguish between different negotiations for the

same resource originating from different sellers. It is beyond the scope of this work

1https://ebay.com
2https://www.shpock.com
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Figure 3.1: Negotiation Protocol [2]

to deal with multiple resources.

Furthermore, we assume that a buyer agent b always starts the negotiation by mak-

ing an offer. With tstart we denote the start time of the negotiation, and with tb the

maximum duration of any negotiation, which for simplicity, is the same for all the

agents during all the negotiation sessions irrespective of which resource these agents

are negotiating for. The deadline for b is, thus, tend = tstart + tb. Information about

the deadline tb, Initial Price IPb (we assume that IPb > 0) and Reservation Price

RPb is private to each b ∈ Bm. Each seller s also has its own private Initial Price

IPs, and Reservation Price RPs. In other words, each agent has a private aspiration

zone, which is a maximum or minimum range that must be respected in order to

reach a deal. The intersection between the agents’ aspiration zones is known as

a bargaining zone or Zone of Agreement (ZoA). This is shown in Figure 3.2, and

it is denoted by Z. Here, Z = [IPb, RPb] ∩ [IPs, RPs] which is an overlapping re-
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Figure 3.2: Zone of Agreement

gion between buyer’s and seller’s reservation prices. Both parties reach a successful

agreement if Z ̸= ϕ. The protocol is turn-based and allows agents to take actions

from a pool Actions at each negotiation state (from S1 to S5, see Figure 3.1):

Actions = {offer(x ), reqToReserve, reserve, cancel , confirm, accept , exit}, (3.1)

where

• offer(x): The offer made by b or s, where x is the price.

• accept: On performing this action, b or s agrees to the last offer made by their

counterpart. When performed by the buyer, an accept leads to successful comple-

tion of the negotiation (see states S2 and S5). When performed by the seller, the

buyer either acknowledges it with a confirm action or can buy more time with a

reqToReserve action.

• reqToReserve: After s makes a counter-offer (state S2) or accepts b’s offer (state

S3), b can perform this action to request s to reserve the resource with the latest

offer. By not committing immediately to accepting the offer, b can wait for a

better offer from another seller (and negotiation thread) s′ ∈ St
b,r \ {s}.

• reserve: It is used by s to acknowledge and agree to a reqToReserve action from

b.
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• cancel : It allows both b and s to cancel their reserved offers. The cancelling agent

pays a penalty to the other negotiating agent to avoid unnecessary cancellations

and bias. Cancelling leads to no agreement.

• confirm: With this action, buyer b acknowledges that the seller has accepted b’s

offer, and the negotiation terminates with an agreement. When dealing concur-

rently with different sellers for the same resource, b is allowed to send a confirm

action only to one seller to reach an agreement.

• exit : It allows both b and s to withdraw from the negotiation at any time (without

notifying the opponent) implying that negotiation has failed.

An outcome is either Fail if b or s performs an exit or cancel ; or it is Succeed if b

accepts or confirms the current offer.

At any time point t, during negotiation, the following information about the state

of the environment can be identified:

• stb{ijk} ∈ Si
jk is a set of seller agents from the market i negotiating with a buyer b

at any time t for a resource j ∈ R over an issue k ∈ I.

• The buyer agent b has |stb{ijk}| negotiation threads, one for each seller ∈ stb{ijk},

thus negotiating concurrently with |stb{ijk}| sellers at time t. This relationship

between buyers and sellers can also be represented using a bipartite graph, as

shown in Figure 3.3. In Figure 3.3, the number of concurrent negotiation threads

for a buyer b1 refers to the degree of buyer node b1, which is equal to 3.

• Ct
b = set of competitor agents for buyer b ∈ B at any time t, where Ct

b ⊆ B \ {b}

negotiating with same seller for same resource over same issue. In Figure 3.3, b2

and b4 are competitor agents for b1 when dealing with s1 and s4 respectively.

• [IPb, RPb] represents the Initial Price and Reservation Price of buyer agent b ∈ B.

This information is private to each agent b.
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Figure 3.3: Bipartite Graph showing relation between buyers and sellers

Capping all above, for our research study, we have considered an environment con-

sisting of a single e-market with visible competition for bilateral negotiation where

each buyer is negotiating with different sellers for only one resource which is associ-

ated with one issue, i.e., single-issue single-resource negotiation.

3.2 The ANEGMA Model

When a negotiating agent enters the e-market, it will usually be surrounded by

multiple opponents offering its preferred resource, which reflects what happens in

real-life situations. When the agent starts to negotiate with multiple opponents at

the same time, the three main challenges are: firstly, how to maximize the agent’s

utility by selecting the negotiation with the opponent that will offer the best agree-

ment within a certain time limit; secondly, how to manage the ongoing concurrent

negotiation threads; and lastly, how to scrutinize the effect of progress in negotiation

with one opponent on the progress of negotiations with other opponents. In this

context, we introduce our proposed negotiation model called ANEGMA (Adaptive

NEGotiation model for e-MArkets) and explain its components.

3.2.1 ANEGMA Components

Our proposed agent negotiation model supports learning during concurrent bilat-

eral negotiations with unknown opponents (or opponent strategies) in dynamic and
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Figure 3.4: The Architecture of ANEGMA

complex e-marketplaces. This in unlike game-theoretic approaches where each party

is aware of other’s strategies [157]. In this model, we use a centralized approach in

which the coordination is done internally to the agent via multi-threading synchro-

nization. This approach minimizes the agent communication overhead and thus, im-

proves the run-time performance. The different components of the proposed model

are shown in Figure 3.4 and explained below.

Physical Capabilities

The sensors of the agent enable it to access an e-marketplace. They allow a buyer

b to perceive the current (external) state of the environment st and represent that

state locally in the form of internal attributes, as shown in Table 3.1. Some of
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Table 3.1: Agent’s State Attributes

Attribute Description

NSr Number of sellers that b is concurrently dealing for resource r at time t
(|St

b,r|).
NCr Number of buyer agents competing with b for resource r at time t

(|Ct
b,r|).

Sneg Current state of the negotiation protocol (S1–S5, see Figure 3.1).
Xbest Best offer made by either b or s in Sneg .
Tleft Time left for b to reach tend after the last action of s.
IPb Minimum price which b can offer at the start of the negotiation.
RPb Maximum price which b can offer to s.

these attributes (NSr, NCr) are perceived by the agent using its sensors, some of

them (IPb, RPb, tend) are stored locally in its knowledge base and some of them

(Sneg , Xbest , Tleft) are obtained while interacting with other seller agents during a

negotiation. At time t, the internal agent representation of the environment is st,

which is used by the agent to decide what action at to execute using its actuators.

Action execution then changes the state of the environment to st+1.

Learning Capabilities

The foundation of our model is a component providing learning capabilities similar

to those in the Actor-Critic architecture of [86]. It consists of three sub-components:

Negotiation Experience, Decide and Evaluate.

Negotiation Experience stores historical information about previous negotiation ex-

periences N which involve the interactions of an agent with other agents in the

market. Experience elements are of the form ⟨st, at, rt, st+1⟩, where st is the internal

representation of the e-market environment state perceived by the agent at time t,

at is an action performed by b at st, rt is a scalar reward or feedback received from

the environment and st+1 is the new e-market state after executing at.

The negotiation strategy is enacted by the decide component. At any given state st,

the strategy determines the optimal action for b, choosing among the available set
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of actions Actions, see (3.1). In particular, the strategy builds on two functions fa

and fo. Function fa takes state st as an input and returns a discrete action among

offer(x), accept, confirm, reqToReserve and exit, see (3.2). When fa decides to per-

form an offer(x) action, fo is used to compute, given an input state st, the value of

x, see (3.3). The functions fa and fo belong to the Machine Learning decision box

of the sequence diagram presented in Figure 3.5.

fa(st) = at, where at ∈ Actions (3.2)

fo(st) = x, where x ∈ [IPb, RPb] (3.3)

Evaluate refers to a critic which helps b learn and evolve the strategy for unknown

and dynamic environments. It is a function of K (where K < N) randomly selected

past negotiation experiences. The learning process of b is retrospective since it

depends on the feedback (or scalar rewards) obtained from the e-market environment

by performing action (either discrete or continuous) at at state st. Our design of

reward functions accelerates agent learning by allowing b to receive rewards after

every action it performs in the environment instead of receiving only at the end of

the negotiation. The reward at time t, rt is given by:

rt =



Ub(x, t), if Succeed

−1, if Fail

r′t if at = offer(x)

0, otherwise

(3.4)

r′t =


Ub(x, t), if x ≤ min(Ot)

−1, if x > min(Ot)

(3.5)

Ub(x, t) =

(
RPb − x

RPb − IPb

)
.

(
t

tend

)dt

(3.6)
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Figure 3.5: Sequence diagram of ANEGMA

The reward values rt and r′t computed in (3.4) and (3.5) evaluate the discrete action

decided by fa and continuous action decided by fo at time t respectively. Function

Ub(x, t), see (3.6), refers to the utility of offer x = fo(st) at time t and is calculated

using Initial Price (IPb), Reservation Price (RPb), offer x, and a temporal discount

factor dt ∈ [0, 1] to penalize delays in negotiation, which was set to 0.6 in our

experiments. Higher dt value implies higher penalty due to delay. In other words,

the discount factor reduces the utility of deals with the progression of time. The

reward r′t in (3.5) helps b learn that it should not offer more than what active sellers

have already offered: Ot is a list of preferred offers received from sellers s ∈ St
b,r at

time t, which b maintains during the negotiation. To sum up, our reward function is

designed to encourage (i.e., returns a positive reward value) our agent to conclude a

successful negotiation timely and discourage (i.e., returns a negative reward value)

no deal or when our buyer agent offers more than any of the offers proposed by

active sellers. Otherwise, it is neutral to all other actions (i.e., returns 0 reward).

3.3 Setting Up ANEGMA for Experiments

In our approach, we first use SL to pre-train the ANEGMA agent using supervision

examples collected from existing negotiation strategies. Such pre-trained strategy

is then evolved via RL using experience and rewards collected while interacting
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with other agents in the negotiation environment. This combination of SL and RL

approaches enhances the process of learning an optimal strategy. This is because

applying RL alone from scratch would require a large amount of experience before

reaching a reasonable strategy, which might hinder the online performance of our

agent. On the other hand, starting from a pre-trained policy ensures quicker conver-

gence (as demonstrated empirically in Section 3.4). In this section, we describe the

methods for collection of supervision examples and the relevant learning techniques.

3.3.1 Data set collection

In order to collect the data set for pre-training the ANEGMA agent via SL, we have

used the RECON simulation environment [1] as discussed in subsection 2.3.1. A key

advantage of this solution is that we can generate arbitrarily large sets of synthetic

negotiation data, and for different choices of buyer and seller strategies. While, in

principle, real-world market data could be used for this purpose as well, to the best

of our knowledge, no publicly available datasets exist that fit our settings. In par-

ticular, in our experiments, we generate supervision data using the buyer strategies

of [2] and [148] (see Section 3.4).

RECON supports concurrent negotiations between buyers and seller agents and is

built on the top of GOLEMlite [101],which is a Java library for managing e-markets

and extract relevant negotiation statistics.

3.3.2 Strategy representation

We represent both strategies fa and fo (see Equations 3.2 and 3.3) using ANNs [53],

as these are powerful function approximators and benefit from extremely effec-

tive learning algorithms. From a machine learning perspective, approximating fa

amounts to solving a classification problem because of fa’s discrete output domain,

see (3.2). On the other hand, approximating fo corresponds to solving a regression

problem because of fo’s continuous output, see (3.2).
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ANN In particular, we use feed-forward neural networks, i.e., functions organized

into several layers, where each layer comprises a number of neurons that process

information from the previous layer. Formally, let l be the total number of layers

in the network, which includes l − 1 hidden layers and one output layer. Let ni be

the number of neurons in layer i (i = 1, . . . , l), where n0 be the number of neurons

in the input layer (i.e., the input dimensionality). For input x ∈ Rn0 , the function

computed by a feed-forward neural network F is

F (x) = f (l)
(
f (l−1)

(
. . .
(
f (1)(x)

)
. . .
))

(3.7)

where f (i) : Rni−1 → Rni is the function computed by the i-th layer, which is given

by

f (i)(pi−1) = g(i)(W (i,i−1) · p(i−1) + b(i)), i = 1, . . . , l (3.8)

where pi−1 ∈ Rni−1 is the output vector of layer i − 1, W (i,i−1) ∈ Rni×ni−1 is the

weight matrix connecting pi−1 to the neurons of layer i, b(i) ∈ Rni is the bias vec-

tor of layer i, and g(i) is the activation function of the neurons of layer i. For our

experiments, we used a soft max activation function for classification and a linear

activation function for regression at the final output layer of our models fa (i.e.,

classification (3.4)) and fo (i.e., regression (3.5)) respectively.

Learning an ANN corresponds to finding values of its weights and biases that mini-

mize a given loss function. The learnable parameters are typically updated via some

form of gradient descent, where the gradient of the loss function w.r.t. the parame-

ters is computed via back-propagation [53].

In supervised learning, the loss function captures the deviation between the su-

pervision data and the corresponding model’s predictions. We used cross-entropy

and mean square error to approximate fa and fo respectively.
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For each data sample x ∈ Rn0 , the network’s prediction is compared to the actual

known target value of that data sample (discrete or continuous value). The function

parameters (weights and biases) are also learned and modified during training so

to minimize the loss. These modifications are performed in the backward direction

from the output layer through each hidden layer down to the first hidden layer.

To reduce over-fitting and generalization error, during the training of the ANN

we applied regularization techniques, drop-out in particular.

DRL When being in a state st, DDPG (as discussed in Chapter 2) uses a so-called

actor network µ to select an action at, and a so-called critic network Q to predict

the value Qt at state st of the action selected by the actor:

at = µ(st | θµ) (3.9)

Qt(st, at | θQ) = Q(st, µ(st | θµ) | θQ) (3.10)

In (3.9) and (3.10), θµ and θQ are, respectively, the learnable parameters of the actor

and critic neural networks. The parameters of the actor network are updated by

the Deterministic Policy Gradient method [129]. The objective of the actor policy

function is to maximize the expected return J calculated by the critic function:

J = E[Q(s, a|θQ)|s=st,a=µ(st)]. (3.11)

To this purpose, the parameters of µ are updated (via gradient ascent) using the

gradient of J w.r.t. the actor policy parameters. In particular, the expectation

in (3.11) is approximated using the average of K randomly selected past experiences

(or mini-batches) (si, ai, ri, si+1).

∇θµJ ≈ 1

K

K∑
i=1

[
∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s=si

]
(3.12)
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The critic network Q should predict the expected return obtained by performing

action at at state st and thereafter follow the policy entailed by the actor µ. For

this purpose, [85] shows that Q can be derived, using K random mini-batches, by

minimizing the following loss function:

L =
1

K

K∑
i=1

(yi −Q(si, ai|θQ))2, where (3.13)

yi = ri + γQ(si+1, µ(si+1|θµ)|θQ), (3.14)

and γ ∈ (0, 1) is a discount factor. Since the target Q-value yi used to update Q

depends on Q itself, which might cause divergence, DDPG employs two additional

neural networks called actor target network µ′ and critic target network Q′ in place

of µ and Q in (3.14). These are copies of µ and Q which are updated in a soft

manner, i.e., by slowing tracking µ and Q rather than exactly copying them, which

the effect of regularizing learning and increasing stability. See [85] for further details.

3.4 Experimental Setup and Results

In this section, we experimentally evaluate our ANEGMA approach in negotiations

against unknown opponents during concurrent bilateral negotiations in different e-

market settings.

3.4.1 Experimental Settings

We consider the following buyer strategies:

• CONAN [2]: A heuristic strategy which uses a weighted combination of agent’s

internal state attributes as well as environmental parameters (in which agent

situates) to calculate the concession rate. This strategy lets the agent negotiate

with multiple sellers concurrently without any additional coordinator.

• Williams [148]: A strategy performing Gaussian process regression for predicting

the seller agent’s future utility while bidding a counter-offer. This strategy is orig-
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inally used to negotiate with multiple opponents for the same item over multiple

issues with the help of a coordinator, which is responsible for finding the best of

all deals with different opponents based on time and utility.

• SL-C3.: An ANN-based strategy obtained using supervised learning from CONAN

data.

• SL-W3: An ANN-based strategy obtained using supervised learning fromWilliams’

data.

• DRL: A DRL strategy initialized with an ANN with random parameters.

• ANEGMA-C: Our ANEGMA strategy obtained via DRL and initialized with the

ANN pre-trained with CONAN data (SL-C).

• ANEGMA-W: Our ANEGMA strategy obtained via DRL and initialized with the

ANN pre-trained with Williams data (SL-W).

For carrying out the experiments, we have used the RECON simulation environment

[1] and extended it to support online agent learning, as shown in Figure 2.5. Since

the Williams’ strategy does not support ‘reserve’, ‘reqToReserve’ and ‘cancel’, we

omit these actions from our experimental analysis for fair comparison.

Performance Evaluation Measures. To successfully evaluate the performance

of ANEGMA (ANEGMA-C and ANEGMA-W) and compare it with other negotia-

tion approaches, we selected the following widely adopted metrics [148, 42, 106, 2]:

Average utility rate (Uavg), Average negotiation time (Tavg) and Percentage of suc-

cessful negotiations (S%), which are described in Table 3.2.

Seller Strategies. We consider two widely-known and standard groups of fixed

seller strategies developed by Faratin [42] as discussed briefly in Table 3.3: Time-

Dependent and Behaviour-Dependent, each consisting of three different types of

seller strategies. In time-dependent strategies (Linear, Conceder and Boulware),

3SL-X is identical to pre-training phase of ANEGMA-X, where X ∈ {C,W}
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Table 3.2: Performance Evaluation Metrics

Metric Definition Ideal Value

Uavg Total negotiation utility averaged over the successful nego-
tiations.

High (1.0)

Tavg Total time taken by the buyer agent (in milliseconds) av-
eraged over all successful negotiations to reach the agree-
ment.

Low (≈ 1000ms)

S% Proportion of successful negotiations High (100%)

Table 3.3: Different Faratin’s Seller Strategies

Time-Dependent

Linear
The agent concedes the same amount during whole ne-
gotiation.

Conceder
The agent concedes a lot in the early phase of the nego-
tiation.

Boulware
The agent keeps his initial offer almost until the deadline
and concedes considerably only at the end.

Behaviour-Dependent

Relative tit-for-
tat

The agent reproduces, in percentage terms, the be-
haviour that its opponent performed in the previous
rounds.

Random Abso-
lute tit-for-tat

The agent behaves same as that of relative tit-for-tat,
except that the behaviour is imitated in absolute terms.

Averaged tit-for-
tat

The agent uses the average of the percentage change in
a window (or slice) of the opponent’s history.

the seller considers the remaining negotiation time for calculating the counter-offer

value and the acceptance value for the offer received from the buyer. On the other

hand, in behaviour-dependent strategies (Relative tit-for-tat, Random Absolute tit-

for-tat and Averaged tit-for-tat), the seller imitates the observed behaviour of the

buyers in order to compute the counter-offer. During experimentation, the same

private deadlines were used for both sellers and buyer. Other parameters such as

IP s and RP s are determined by the ZoA parameter, as shown in Table 3.4.

Competitor Strategies. All competitor strategies are chosen randomly between

Simple Buyer (which generates offers randomly) and Nice Tit for Tat (which repro-

duces the opponent’s behaviours of the previous negotiation rounds by reciprocating

the opponent’s concessions).
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Simulation Parameters. We assume that the buyer negotiates with multiple

sellers concurrently to buy a second-hand laptop (r = laptop) based only on a sin-

gle issue Price (I = {Price}). We stress that the single-issue assumption is not

unrealistic for e-markets like e-Bay, where sellers advertise a product with a fixed

set of issues (e.g., Lenovo, 16 GB RAM, 250 GB HDD, i7 processor) and the only

issue being negotiated is price. The simulated market allows the agents to enter

and leave the market at their own will. The maximum number of agents allowed

in the market, the demand/supply ratio, the buyer’s deadline and the ZoAs are

simulation-dependent.

As in [2], three qualitative values are considered for each parameter during sim-

ulations, e.g., High, Average and Low for MD or tend . Parameters are reported in

Table 3.4. The user can select one of such qualitative values for each parameter.

Each qualitative value corresponds to a set of three quantitative values, of which only

one is chosen at random for each simulation (e.g., setting High for parameter MD

corresponds to choosing at random among 30, 40, and 50). The only exception is

parameter ZoA, which maps to a range of uniformly distributed quantitative values

for the seller’s initial price IP s and reservation price RP s (e.g., selecting Average for

ZoA leads to a value of IP s uniformly sampled in the interval [580, 630]). Therefore,

the total number of simulation settings is 81, as we consider 3 possible settings for

each of MD , MR, tend , and ZoA (see Table 3.4).

Neural Network Architecture. We represent the supervised learning policy as a

neural network with 2 fully-connected hidden layers of 64 units and one output layer.

The hidden layers use ReLU (Rectified Linear Unit) activation function whereas

the output layer uses softmax and linear activation functions for classification and

regression respectively. For DDPG, we represent deep neural networks with the

same above mentioned neural networks.
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3.4.2 Experimental Hypotheses

With our experiments, we aim to demonstrate the following hypotheses:

Hypothesis A: The Market Density (MD), the Market Ratio or Demand/Supply

Ratio (MR), the Zone of Agreement (ZoA) and the Buyer’s Deadline (tend) have a

considerable effect on the success of negotiations. Here,

• MD is the total agents in the e-market at any given time dealing with the same

resource as that of our buyer.

• MR is the ratio of the total number of buyers over the sellers in the e-market.

• ZoA refers to the intersection between the price ranges of buyers and sellers for

them to agree.

In practice, buyers have no control over these parameters except the deadline (tend),

which can be decided by the user, or constrained by a higher-level goal the buyer is

trying to achieve. While this hypothesis is not directly concerned with the perfor-

mance of ANEGMA, it establishes that, for an adequate performance evaluation, it

is necessary to fix a particular choice of these parameters. Otherwise, the perfor-

mance variability will be too high to make any useful assessment.

Hypothesis B: The ANEGMA buyer outperforms the SL-only, DRL-only, CO-

NAN, and Williams’ negotiation strategies in terms of Uavg , Tavg and S% in a range

of e-market settings.

Hypothesis C: An ANEGMA buyer, if trained against a specific seller strategy,

still performs well against other unknown seller strategies. This shows that the

ANEGMA agent behaviour is adaptive in the sense that the agent transfers knowl-

edge from previous experience to unknown e-market settings.
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Table 3.4: Simulation Parameter Values

Parameter Values range
100% ZoA (High) 60% ZoA (Average) 10% ZoA (Low)

IPb [300− 350] [300− 350] [300− 350]
RPb [500− 550] [500− 550] [500− 550]
IPs [500− 550] [580− 630] [680− 730]
RPs [300− 350] [380− 430] [480− 530]
MD {30, 40, 50} {18, 23, 28} {8, 10, 12}
MR {10:1, 1:1, 1:10} {5:1, 1:1, 1:5} {2:1, 1:1, 1:2}
tend [151s –210s] [91s –150s] [30s –90s]

3.4.3 Empirical Evaluation

We evaluate and discuss the three research hypotheses introduced at the beginning

of the section.

Hypothesis A (MD , MR, ZoA and tend Have Significant Impact on Nego-

tiations)

We experimented with 81 different e-market settings over 500 simulations using

the CONAN buyer strategy. Both time-dependent and behaviour-dependent seller

strategies were considered for each setting. These experiments suggest that MD

and ZoA have a considerable effect on S% (Figure 3.6 - Figure 3.9). In Figure 3.6,

we observe that the agents reach more negotiation agreements when MD is low.

This suggests that in small markets offering the required resource, the number of

successful deals is maximized, which in turn implies that being in a large market

isn’t always better. Also, there is not much difference in the agreement rate for 60%

and 100% ZoA when MD is low. The small number of successful negotiations for

10% ZoA is not unexpected, since only a minority of agents is willing to concede

more in such a small ZoA. On the other hand, MR and tend have, according to our

experiments, a comparably minor impact on the negotiation success (see Figures 3.8

and 3.9). Also, only some effect of MR on S% is observed under low MD against

behaviour-dependent strategies, as shown in Figure 3.7. Moreover, we performed

significance tests (i.e., Z-tests for independent proportions) for all the relevant pair-
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Figure 3.6: Effect of Market Density and ZoA on Percentage of Successful Negotia-
tions

wise comparisons. All the differences in the proportions of successful runs were

found significant at p < 2.12E−13.4 Hence, these results support our hypothesis.

Hypothesis B (ANEGMA outperforms SL, CONAN, and Williams’)

We performed simulations for our ANEGMA agent in low MD , 60% and 100%

ZoA, high MR, and a long tend because these settings yielded the best performance

in terms of S% in our experiments for Hypothesis A. To test how our strategy learns

against two different categories of fixed seller strategies (i.e., Time-dependent and

Behaviour-dependent) as well as to limit the experiments, we randomly choose Con-

ceder Time Dependent and Relative Tit for Tat Behaviour Dependent seller strate-

gies in the above simulation settings.

Firstly, we collected training data for ANN using two distinct strategies for su-

pervision, viz. CONAN [2] and Williams’ [148]. Both were run for 500 simulations

4For each ZoA=H,A,L, we tested (MD=H vs MD=A) and (MD=A vs MD=L). For each
MD=H,A,L, we tested (ZoA=L vs ZoA=A) and (ZoA=L vs ZoA=H).
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Figure 3.7: Effect of Market Density and Market Ratio on Percentage of Successful
Negotiations

Figure 3.8: Effect of Market Ratio and ZoA on Percentage of Successful Negotiations
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Figure 3.9: Effect of Deadline and ZoA on Percentage of Successful Negotiations

and with the same settings. Table 3.5 compares the performances of CONAN’s

and Williams’ models. CONAN outperforms Williams’ strategy in these settings in

terms of Uavg and S%.

Then, the resulting trained ANN models (SL-C and SL-W) were used as the ini-

tial strategies in our DDPG-based DRL approach. These strategies evolved using

negotiation experience from additional 500 simulations. In the remainder, we will

abbreviate these trained models by ANEGMA-C and ANEGMA-W respectively.

Finally, we used test data from 101 simulations involving online learning to compare

the performance of such derived ANEGMA-C and ANEGMA-W buyers against

CONAN, Williams’, SL-C, SL-W, and the so-called DRL model which used DDPG

but initialized with a random strategy.

According to our results shown in Tables 3.7 and 3.8, the performance of SL-C

is comparable to that of CONAN for both 60% and 100% ZoAs (see Table 3.5).
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We observe the same for SL-W and the William’s strategy. So, we conclude that

our approach can successfully produce ANN strategies which are able to imitate

the behaviour and performance of the CONAN and Williams’ models (the training

accuracies were in the range between 93.0% and 98.0% as shown in Table 3.6).

Even more importantly, the results demonstrate that ANEGMA-C (i.e., DDPG

initialized with SL-C) and ANEGMA-W (i.e., DDPG initialized with SL-W) im-

prove on their respective initial ANN strategies obtained by SL, and outperform

DRL initialized at random for both 60% and 100% ZoAs, see Tables 3.7 and 3.8.

This proves that both the evolution of the strategies via DRL and the initial super-

vision are beneficial. Furthermore, ANEGMA-C and ANEGMA-W also outperform

the existing ‘teacher strategies’ (CONAN and Williams’) in terms of Uavg used for

the initial supervision and hence can improve on them, see Table 3.5.

Moving further, we observe that our agent ANEGMA becomes selective and learns

to focus on how to obtain maximum utility from the end agreement (by accepting

or proposing a bid only if a certain dynamic threshold utility is met). Thus, the

successful negotiation rate is lower as compared to SL agents that seek to maximize

the average utility rate. This could be a reason why SL-W seems to outperform

ANEGMA-W in terms of successful negotiation rate. Although we could incorpo-

rate the number of successful negotiations in the reward function to bias our learning

to optimize this metric, we have opted for the simple and commonly used reward

function related to utility value only.
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Hypothesis C (ANEGMA is Adaptable)

In this final test, we evaluate how well an ANEGMA agent can adapt to environments

different from those used at training-time. Specifically, we deploy strategies trained

using Conceder Time Dependent opponents into an environment with Relative Tit

for Tat Behaviour Dependent opponents, and vice-versa. The ANEGMA agents

use experience from 500 simulations to adapt to the new environment. Results are

presented in Table 3.9 and show clear superiority of the ANEGMA agents over the

SL-C and SL-W strategies which, without online retraining, cannot maintain their

performance in the new environment. This confirms our hypothesis that ANEGMA

agents can learn to adapt at run-time to different unknown seller strategies.

Further Discussion

Pondering over the negative average utility of DRL (see Tables 3.7 and 3.8), recall

that we define utility as in Equation (3.6) but without the discount factor. Therefore,

if an agent concedes a lot to make a deal, it will collect negative utility. This is

precisely what happens to the initial random (and inefficient) strategy used in DRL.

The combination of SL and DRL prevents this problem as it uses an initial pre-

trained strategy which is much less likely to incur negative utility. For the same

reason, we observe a consistently shorter Tavg for DRL caused by a buyer that

concedes more to reach the agreement without negotiating for a long time with the

seller. Hence, a shorter Tavg alone does not generally imply a better negotiation

performance. An additional advantage of our approach is that it alleviates the

common limitation of RL, namely, that an RL agent needs a non-trivial amount of

experience before reaching satisfactory performance.

Results Summary

In this subsection, we summarize the results from Tables 3.7 to 3.9. When ZoA is

60% and 100%, ANEGMA-C outperforms all other strategies in comparison w.r.t

Uavg and S%. However, DRL outperforms in terms of Tavg. We have also shown
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the results for the adaptive behaviour of ANEGMA when ZoA is 60%, which also

reflects the same outcomes, i.e., ANEGMA-C outperforms all other agents in terms

of average utility rate and number of successful negotiations.

Here, we conclude that the ANEGMA strategy becomes picky in that it learns

to prefer settings where the agreements give high utility for the agent, even if in

the tournament the number of successful agreements achieved by the agent so far is

low. Moreover, ANEGMA supports single-issue negotiation where the issue has a

range of real (continuous) values like price, or any other issues with values that can

be mapped to intervals of real numbers. In this way, both negotiating parties will

have their own initial and reservation values to negotiate with.

3.5 Summary

In this chapter, we proposed ANEGMA, a novel agent model for single-issue concur-

rent bilateral negotiation based on DRL and SL. In order to implement our model,

we also extended the RECON simulation environment [1] to support agent learning

during concurrent bilateral negotiation. Moreover, we performed rigorous experi-

mental evaluations, demonstrating that ANEGMA outperforms the state-of-the-art

in one-to-many concurrent bilateral negotiations. Furthermore, we observed that the

ANEGMA agents can quickly adapt to a range of e-market settings. However, the

ANEGMA approach is not interpretable and supports only single-issue bilateral ne-

gotiations. In the next chapter, we will discuss what changes are required to extend

our current approach to support multi-issue negotiation and make it interpretable.
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Chapter 4

Multiple-Issues Bilateral

Negotiation Model - I

In the previous chapter, we discussed how to learn strategies for single-issue concur-

rent bilateral negotiation. In this chapter, we propose an agent model that provides

learnable, adaptive and interpretable negotiation strategies for multiple issues under

user and opponent preferences’ uncertainty. We start off with the motivation of such

an agent negotiation model in Section 4.1, and continue in Section 4.2 to describe the

agent negotiation environment. Then, in Section 4.3, we present our newly proposed

model ANESIA, including the idea of strategy templates and how they are used to

deal with multiple issues. Afterwards, we throw a light upon various methods used

along with the experimental settings in Section 4.4. In Section 4.5, we analyse the

experimental results and compare the proposed model with the winning strategies

of ANAC’17, ’18 and ’19 competitions using GENIUS. Finally, in Section 4.6, we

present the summary of this chapter.

4.1 Motivation

We are interested in bilateral negotiations over domains with multiple issues. Nego-

tiations in these domains are not necessarily concurrent, and may contain a possible

outcome for each combination that can be formed from the values of each issue.
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Consequently, such domains may have a large outcome space. In negotiations over

such domains, finding a bid that is acceptable to both parties becomes more of a

challenge than in a smaller domain. Another challenge in multi-issue negotiation is

modelling a self-interested agent that learns to adapt its strategy while bilaterally

negotiating against other agents. A model of this kind mostly considers the pref-

erences of the user the agent represents in an application domain. However, users

sometimes express their preferences by ranking only a few representative examples

instead of providing a fully specified utility function [141]. This might be because

(a) it is infeasible to ask a user to order or rank all outcomes when the outcome

space is large; and (b) the user may have difficulty in assessing their preferences

in a quantitative way. Thus, agents may be uncertain about the complete user

preferences. Another challenge is the lack of knowledge about the preferences and

negotiating characteristics of opponent agents [10].

A common assumption in automated negotiation is that normally there is no central

entity as a mediator during the negotiation, so agents should find the solutions using

a decentralized negotiation protocol. The closer our assumptions are to real-world

applications, the more complicated negotiation settings we face, and more parame-

ters are needed to design the negotiation strategy of the agent. Other assumptions

that must be considered prior to designing an agent’s negotiation strategy are as

follows:

• We assume that the agents are bounded rational, i.e., their rationality or intelli-

gence is limited while making decisions because of limited time or computational

resources or information privacy.

• These agents have no previous knowledge of the preferences and negotiating char-

acteristics of their opponents.

• The negotiation time is limited and there is a specific deadline for its termination,

which means negotiating agents are under time pressure to reach an agreement,
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therefore the agents must consider the risk of rejecting their offer from the oppo-

nent with regard to the limited time.

• The utility of offers might decrease over time (in negotiation scenarios with dis-

count factor), thus, timely decision on rejecting or accepting an offer and making

acceptable offers are of high importance for negotiators.

For such uncertain settings, one-size-fits-all negotiation strategies based on pre-

defined heuristics or hand-crafted tactics that, by empirical evidence or domain

knowledge, are known to work effectively are not suitable. This is because one

rather seeks strategies that can be learned from interactions with the opponents

and can be adapted to different negotiation domains. So, the question is how to

develop strategies that address the complexity of multi-issue negotiation, including

the time constraints and the preferences of the users.

In this context, we propose a model that builds on so-called strategy templates, i.e.,

parametric strategies that incorporate multiple negotiations tactics for the agent to

choose from. A “strategy template” is described by a set of condition-action rules to

be applied at different stages during the negotiation. Crucially, such templates re-

quire no assumptions from the agent developer as to which tactic to choose at which

particular phase of the negotiation: starting from a template, we automatically

learn, via stochastic search, the best combination of tactics (and values of possible

tactics’ parameters) to use at any time during the negotiation. Another advantage

is that, being logical combinations of individual tactics, the resulting strategies are

interpretable and, thus, can be explained to the user. While the template param-

eters are learned before the negotiation begins, the proposed model is designed to

enable online learning and adaptation as well.
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4.2 Negotiation Environment

We assume that our negotiation environment E consists of two agents Au and Ao

negotiating with each other over some domain D. A domain D consists of n different

independent issues,D = (I1, I2, . . . In), with each issue taking a finite set of k possible

discrete or continuous values Ii = (vi1, . . . v
i
k). In our experiments, we consider issues

with discrete values. An agent’s bid ω is a mapping from each issue to a chosen value

(denoted by ci for the i-th issue), i.e., ω = (v1c1 , . . . v
n
cn). The set of all possible bids

or outcomes is called outcome space and is denoted by Ω s.t. ω ∈ Ω. The outcome

space is common knowledge to the negotiating parties and stays fixed during a single

negotiation session.

Negotiation protocol Before the agents can begin the negotiation and exchange

bids, they must agree on a negotiation protocol P , which determines the valid moves

agents can take at any state of the negotiation [47]. Here, we consider the alternating

offers protocol [120], with possible Actions = {offer(ω), accept , reject}. One of the

agents (say Au) starts a negotiation by making an offer xAu→Ao to the other agent

(say Ao). The agent Ao can either accept or reject the offer. If it accepts, the

negotiation ends with an agreement, otherwise Ao makes a counter-offer to Au.

This process of making offers continues until one of the agents either accepts an

offer (i.e., successful negotiation) or the deadline is reached (i.e., failed negotiation).

Utility Each negotiating agent has certain preferences of how bids are offered

over the other bids (i.e., cardinal preferences [95]), which is described by a prefer-

ence profile. In contrast to the outcome space, the preference profile of the agent is

private information. This profile is given in terms of a utility function U , defined as

a weighted sum of evaluation functions ei(v
i
ci
) as expressed in (2.4) in Section 2.2.6.

Whenever the negotiation terminates without any agreement, each negotiating party

gets its corresponding utility based on the private reservation value. Reservation
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value is defined as the minimum acceptable utility for an agent. Note that the

reservation value may be different for different negotiation parties and also vary in

different negotiation domains. In case the negotiation terminates with an agreement,

each agent receives the discounted utility of the agreed bid, i.e., Ud(ω) = U(ω)dtD.

Here, dD is a discount factor in the interval [0, 1] and t ∈ [0, 1] is current normalized

time.

User and opponent utility models Recall from Chapter 2 that our the ne-

gotiation environment is one with incomplete information, because the user utility

model Uu is unknown. Also, estimating the user utility model Ûu from given partial

preferences of the user leads to a single-objective constrained optimization problem,

expressed as (2.5) in Section 2.2.6. In addition, we assume that our agent is unaware

of the utility structure of its opponent agent Uo. Hence, to increase the agreement

rate over multiple issues, our agent attempts to generate the (near) Pareto-optimal

solutions during the negotiation which can be defined as a MOO problem, expressed

as (2.6) in Section 2.2.6.

4.3 The ANESIA Model

In this section, we introduce ANESIA (Adaptive NEgotiation model for a Self-

Interested Autonomous agent) model and its components. Later, we also define the

strategy templates used in the proposed model.

4.3.1 ANESIA Components

As shown in Figure 4.1, our agent Au situates in an environment E, and interacts

with another agent in the same environment. At any time t, our agent senses the

current state (St) of E and represents it locally in the form of internal attributes.

These include information derived from the sequence of previous bids offered by

the opponent agent (e.g., utility of the best opponent bid so far, average utility of

all the opponent bids and their variability) and information stored in our agent’s

78



Figure 4.1: Interaction between the components of ANESIA

knowledge base (e.g., number of bids B in the given partial order, Ω, and n), and

the current negotiation time t. This internal state representation, denoted with st,

is used by the agent (in acceptance and bidding strategies) to decide what action at

to execute. Action execution then changes the state of the environment to St+1.

As before with the ANEGMA model, learning in ANESIA mainly consists of three

components: Decide, Negotiation Experience, and Evaluate. Decide refers to the

negotiation strategy for choosing a near-optimal action at among a set of Actions at

a particular state st based on a protocol P . Action at is derived via two functions, fa

and fb, for the acceptance and bidding strategies, respectively. Function fa takes as

inputs st, a dynamic threshold utility ūt (defined later in the Methods section), the

sequence of past opponent bids Ωo
t , and outputs a discrete action at among accept

or reject. When fa returns reject, fb computes what to bid next, with input st and

ūt, see (4.1–4.2). This separation of acceptance and bidding strategies is not rare,
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see for instance [11].

fa(st, ūt,Ω
o
t ) = at, at ∈ {accept , reject} (4.1)

fb(st, ūt,Ω
o
t ) = at, at ∈ {offer(ω), ω ∈ Ω} (4.2)

Since we assume incomplete user and opponent preference information, Decide uses

the estimated models Ûu and Ûo. In particular, Ûu is estimated once before the

negotiation starts by solving (2.5) and using the given partial preference profile ⪯.

This encourages agent autonomy and avoids continuous user preference elicitation.

Similarly, Ûo is estimated at time t using information from Ωo
t , see Section 4.4 for

more details.

Negotiation Experience stores historical information about N previous interactions

(or experiences) of an agent with other agents. Experience elements are of the form

⟨st, at, rt, st+1⟩, where st is the internal state of the negotiation environment E, at

is an action performed by the agent at st, rt is a scalar reward received from the

environment and st+1 is a new internal state after executing at.

Evaluate refers to a critic which helps our agent learn the dynamic threshold utility

ūt, which is evolved as new negotiation experience is collected. More specifically, it

is a function of random K (K < N) past negotiation experiences fetched from the

agent’s memory. The process of learning ūt is retrospective since it depends on the

reward rt obtained from E by performing action at at state st. The value of the

reward depends on the (estimated) discounted utility of the last bid received from

the opponent, ωo
t , or of the bid accepted by either parties ωacc and is defined as

follows:

rt =


Û(ωacc, t), on agreement

Û(ωo
t , t), on received offer

−1, otherwise

(4.3)
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where Û(ω, t) is the discounted reward of ω defined as

Û(ω, t) = Û(ω) · dt, d ∈ [0, 1] (4.4)

where d is a temporal discount factor included to encourage the agent to negotiate

without delay. If d = 1, the utility is considered undiscounted. We should not

confuse d, which is typically unknown to the agent, with the discount factor used to

compute the utility of an agreed bid (dD).

4.3.2 Specification of Strategy templates

ANESIA does not assume pre-defined strategies for fa and fb, and learns these

strategies offline. To enable strategy learning, we introduce the notion of strategy

templates, i.e., parametric strategies incorporating a series of tactics, where each

tactic is executed for a specific negotiation phase. The parameters describing the

start and duration of each phase, as well as the particular tactic choice for that

phase are all learnable (blue-coloured in (4.5), (4.6)). Moreover, tactics can expose,

in turn, learnable parameters themselves. We run multiple negotiations between our

agent and a pool of opponents. We select the combination of tactics that maximizes

the true user utility over these negotiations. So, in this stage only, we assume that

the true user model is known.

We assume a collection of acceptance and bidding tactics, Ta and Tb. Each ta ∈ Ta

maps the agent state, threshold utility, opponent bid history, and a (possibly empty)

vector of learnable parameters p into a utility value: if the agent is using tactic ta

and ta(st, ūt,Ω
o
t ,p) = u, then it will not accept any offer with utility below u, see

(4.5) below. Each tb ∈ Tb is of the form tb(st, ūt,Ω
o
t ,p) = ω where ω ∈ Ω is the

bid returned by the tactic. An acceptance strategy template is a parametric function
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given by

na∧
i=1

t ∈ [ti, ti+1) →

(
ni∧
j=1

ci,j → Û(ωo
t ) ≥ ti,j(st, ūt,Ω

o
t ,pi,j)

)
(4.5)

where na is the number of phases; t1 = 0, tna+1 = 1, and ti+1 = ti + δi, where the δi

parameter determines the duration of the i-th phase; for each phase i, the strategy

template includes ni tactics to choose from: ci,j is a Boolean choice parameter

determining whether tactic ti,j ∈ Ta should be used during the i-th phase. We note

that (4.5) is a predicate returning whether or not the opponent bid ωo
t is accepted.

Similarly, a bidding strategy template is defined by

nb⋃
i=1


ti,1(st, ūt,Ω

o
t ,pi,1) if t ∈ [ti, ti+1) and ci,1

· · · · · ·

ti,ni
(st, ūt,Ω

o
t ,pi,ni

) if t ∈ [ti, ti+1) and ci,n

(4.6)

where nb is the number of phases, ni is the number of options for the i-th phase,

and ti,j ∈ Tb. ti and ci,j are defined as in the acceptance template. The particular

libraries of tactics used in this work are discussed in the next Section. We stress

that both (4.5) and (4.6) describe time-dependent strategies where a given choice of

tactics is applied at different phases (denoted by the condition t ∈ [ti, ti+1)).

4.4 Setting Up ANESIA for Experiments

User modelling: Before the negotiation begins, we estimate the user model Ûu

by finding the weights wi and utility values ei(v
i
ci
) for each issue i, see (2.4), so that

the resulting bid ordering best fits the given partial order ⪯ of bids. To solve this

optimization problem (2.5), we use FA (Firefly Algorithm) [151], a meta-heuristic

inspired by the swarming and flashing behaviour of tropical fireflies, because, in

our preliminary analyses, it outperformed other traditional nature-inspired meta-

heuristics such as GA and PSO [115]. In the FA metaphor, the candidate solution
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Û ′
u can be perceived as an agent (firefly) whose brightness depends on the objective

function (or fitness value). The search space is explored by moving each firefly

towards a brighter partner firefly in each iteration. After the maximum number of

iterations, the brightest firefly (i.e., the one with maximum fitness value) is chosen

as the best solution. We compute the fitness of a candidate solution (i.e., the user

model Û ′
u) as the Spearman’s rank correlation coefficient ρ between the estimated

ranking of Û ′
u and the true, but partial, bid ranking ⪯. The coefficient ρ ∈ [−1, 1] is

indeed a similarity measure between two rankings, assigning a value of 1 for identical

and −1 for opposed rankings.

Opponent modelling: To derive an estimate of the opponent model Ûo during

negotiation, we use the distribution-based frequency model proposed in [142]. In

this model, the empirical frequency of the issue values in Ωo
t provides an educated

guess on the opponent’s most preferred issue values. The issue weights are estimated

by analysing the disjoint windows of Ωo
t , giving an idea of the shift of opponent’s

preferences from its previous negotiation strategy over time.

Utility threshold learning: As before, we use an actor-critic architecture with

model-free deep reinforcement learning (i.e., Deep Deterministic Policy Gradient

(DDPG) [86]) to predict the target threshold utility ūt. Also, as before, we consider

a model-free RL approach because our problem is how to make an agent decide what

target threshold utility to set next in a negotiation dialogue rather than predicting

the new state of the environment, which implies model-based RL. Thus, ūt is ex-

pressed as a deep neural network function, which takes the agent state st as an input

(see previous section for the list of attributes). Prior to RL, our agent’s strategy is

pre-trained with supervision from synthetic negotiation data. To collect supervision

data, we use the GENIUS simulation environment [88], which supports multi-issue

bilateral negotiation for different domains and user profiles. In particular, data was

generated by running the winner of the ANAC’19 (AgentGG) against other strate-
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gies1 in three different domains2 and assuming no user preference uncertainties [6].

This initial supervised learning (SL) stage helps our agent decrease the exploration

time required for DRL during the negotiation, an idea primarily influenced by the

work of [16].

Strategy learning: The parameters of the acceptance and bidding strategy tem-

plates (4.5–4.6) are learned by running the FA meta-heuristic. We define the fitness

of a particular choice of template parameters as the average true user utility over

multiple negotiations rounds under the concrete strategy implied by those parame-

ters. Negotiation data is obtained by running our agent on the GENIUS platform

against three (readily available) opponents (AgentGG, KakeSoba and SAGA) in

three different negotiation domains2.

We now describe the libraries of tactics (with learnable parameters in blue color

to distinguish them from non-learnable parameters) used in our templates. For the

acceptance tactics, we consider:

• Ûu(ωt), the estimated utility of the bid that our agent would propose at the time

t (ωt = fb(st, ūt,Ω
o
t )).

• QÛu(Ωo
t )
(a · t+ b), where Ûu(Ω

o
t ) is the distribution of (estimated) utility values of

the bids in Ωo
t , QÛu(Bo(t))

(p) is the quantile function of such distribution, and a

and b are learnable parameters. In other words, we consider the p-th best utility

received from the agent, where p is a learnable (linear) function of the negotiation

time t. In this way, this tactic automatically and dynamically decides how much

the agent should concede at time t.

• ūt, the dynamic DRL-based utility threshold.

• ū, a fixed, but learnable, utility threshold.

The bidding tactics in our library are:

1Gravity, HardDealer, Kagent, Kakesoba, SAGA, and SACRA.
2Laptop, Holiday and Party.
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• bBoulware , a bid generated by a time-dependent Boulware strategy [43].

• PS(a · t + b) extracts a bid from the set of Pareto-optimal bids PS (see (2.7)),

derived using the NSGA-II algorithm3 [39] under Ûu and Ûo. In particular, it

selects the bid that assigns a weight of a ·t+b to our agent utility (and 1−(a ·t+b)

to the opponent’s), where a and b are learnable parameters telling how this weight

scales with the negotiation time t. The TOPSIS algorithm [64] is used to derive

such a bid, given the weighting a · t+ b as input.

• bopp(ω
o
t ), a tactic to generate a bid by manipulating the last bid received from

the opponent ωo
t . This is modified in a greedy fashion by randomly changing the

value of the least relevant issue (w.r.t. Û) of ωo
t .

• ω ∼ U(Ω≥ūt), a random bid above our DRL-based utility threshold ūt
4.

Below we give an example of a concrete acceptance strategy learned in our experi-

ments: it employs time-dependent quantile tactic during the middle of the negotia-

tion, and the DRL threshold utility during the initial and final stages.

t ∈ [0.0, 0.4) → Û(ωo
t ) ≥ ūt ∧ ū

t ∈ [0.4, 0.7) → Û(ωo
t ) ≥ Û(ωt) ∧QÛ(Ωo

t )
(−0.67 · t+ 1.27)

t ∈ [0.7, 0.95) → Û(ωo
t ) ≥ Û(ωt) ∧QÛ(Ωo

t )
(−0.21 · t+ 0.9)

t ∈ [0.95, 1.0] → Û(ωo
t ) ≥ ūt

Below is an example of a learned concrete bidding strategy: it behaves in a Boulware-

like manner in the initial stage, after which it proposes near Pareto-optimal bids

3Meta-heuristics (instead of brute-force) for Pareto-optimal solutions have the potential to deal
efficiently with continuous issues.

4U(S) is the uniform distribution over S, and Ω≥ūt
is the subset of Ω whose bids have estimated

utility above ūt w.r.t. Û .
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(between time 0.4 and 0.9) and opponent-oriented bid in the final stage.

t ∈ [0.0, 0.4) → ω = bBoulware

t ∈ [0.4, 0.9) → ω = PS(−0.75 · t+ 0.6)

t ∈ [0.9, 1.0] → ω = bopp(ω
o
t )

We stress that our approach allows to automatically devise such combinations of

tactics so as to achieve optimal user utility, which would be infeasible manually.

NSGA-II: In order to contribute to more “win-win” negotiation agreements, our

agent attempts to offer Pareto-optimal bids during the negotiation. This Pareto

front represents a solution of a multi-objective optimization problem (i.e., maxi-

mizing our agent’s utility as well as opponent agent’s utility) expressed as (2.6),

dealing with multiple conflicting objectives (i.e., increasing one agent’s utility de-

creases the other). In our model, our agent uses a well-known fast non-dominated

sorting evolutionary algorithm known as NSGA-II [39] which has mainly three im-

portant features: elitism (few individuals from the population are given opportunity

to move to the next generation), crowding distance for diversity preserving and em-

phasising the non-dominated solutions. In our model, one individual, say A(x1, y1),

dominates other, say B(x2, y2), if x1 ≥ x2 and y1 ≥ y2 and (x1 > x2 or y1 > y2)).

Here, xi is a utility value obtained by applying x objective function on individual i.

For more details on the implementation of NSGA-II, see [39].

TOPSIS: During the bidding phase, NSGA-II generates a Pareto-frontier which

may contain more than one bid. In order to decide one bid among n alterna-

tives/choices, our agent uses a Multi-Criteria Decision-Making (MCDM) method

called TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution)

[64]. In our model, we have only two criteria (m = 2) or objectives: maximizing

user utility and maximizing opponent utility (since our focus is on more win-win

situations), based on which n alternatives will be ordered. Our agent implements
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TOPSIS as follows:

• A decision matrix M = n×m consists of n alternatives and m criteria is created.

We assume m = 2 i.e., m1 and m2, where m1 = Û(ωi) and m2 = Û(ωo
i ).

• The next step is normalizing the decision matrix M using (4.7), where i =

1, 2, . . . , n, j = 1, 2, . . . ,m and xij is a value assigned to the ith alternative w.r.t

jth criteria.

rij =
xij

[
∑n

k=1(xkj)2]
1/2

(4.7)

• Next step is to create a weighted normalized decision matrix W using where xij

is replaced with vij and vij = wj · rij. In our model, wj are learnable parameters

which tells how these weights scale with negotiation time t. So, w1 = a · t+ b and

w2 = 1− (a · t+ b). From the example given in the previous section of strategy

template, a = −0.75 and b = 0.6.

• Once the weighted normalized matrix is ready, the distance of each alternative

from an ideal positive and ideal negative solutions is computed.

• Finally, the ranks are ordered from high to bottom based on the relative closeness

of each alternative to the ideal solutions.

An alternative with top rank is chosen by our agent to propose to the opponent

agent during this time period.

4.5 Experimental Setup and Results

4.5.1 Experimental Hypotheses

All the experiments have been performed using the GENIUS negotiation plat-

form [88]. Our experiments are designed to prove the following hypotheses:

Hypothesis A: Our approach can well approximate user models under user pref-

erence uncertainty.
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Hypothesis B: The set of NSGA-II estimated Pareto-optimal bids are close to the

true Pareto-optimal front.

Hypothesis C: ANESIA outperforms the “teacher” strategies (AgentGG, Kake-

Soba and SAGA) in known negotiation settings in terms of individual and social

efficiency.

Hypothesis D: ANESIA outperforms not-seen-before negotiation strategies and

adapts to different negotiation settings in terms of individual and social efficiency.

4.5.2 Performance Metrics

We measure the performance of each agent in terms of six widely-adopted metrics

inspired by the ANAC competition:

• U total
ind : The utility gained by an agent averaged over all the negotiations (↑);

• U s
ind : The utility gained by an agent averaged over all the successful negotiations

(↑);

• Usoc: The utility gained by both negotiating agents averaged over all successful

negotiations (↑);

• Pavg : Average minimal distance of agreements from the Pareto Frontier (↓).

• Ravg : Average number of rounds before reaching the agreement (↓);

• S%: Proportion of successful negotiations (↑).

The first and second measures represent individual efficiency of an outcome, whereas

the third and fourth correspond to the social efficiency of agreements.

4.5.3 Experimental Settings

ANESIA is evaluated against state-of-the-art strategies that participated in ANAC’17,

’18, and ’19, and designed by different research groups independently. Each agent

has no information about another agent’s strategies beforehand. Details of all these
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strategies are available in [7, 72, 6]. We assume incomplete information about user

preferences, given in the form of B randomly-chosen partially-ordered bids. We

evaluate ANESIA on 8 negotiation domains (see Appendix A) which are different

from each other in terms of size and opposition [8] to ensure good negotiation char-

acteristics and to reduce any biases. The domain size refers to the number of issues,

whereas opposition5 refers to the minimum distance from all possible outcomes to

the point representing complete satisfaction of both negotiation parties (1,1). For

our experiments, we choose readily-available 3 small-sized, 2 medium-sized, and 3

large-sized domains. Out of these domains, 2 are with high, 3 with medium and 3

with low opposition (see [149] for more details).

For each configuration, each agent plays both roles in the negotiation to compensate

for any utility differences in the preference profiles. We call user profile the agent’s

role along with the user’s preferences. We set two user preferences uncertainties for

each role: |B| = 5%|Ω| and |B| = 10%|Ω|. Also, we set the ures and dD to their

respective default values, whereas the deadline is set to 60s, normalized in [0, 1]

(known to both negotiating parties in advance).

Regarding the optimization algorithms, for FA (hypotheses A and C), we choose

a population size of 20 and 200 generations for user model estimation and learning

of strategy template parameters. We also set the maximum attractiveness value

to 1.0 and absorption coefficient to 0.01. For NSGA-II (hypothesis B), we choose

the population size of 2% × |Ω|, 2 generations and mutation count of 0.1. With

these hyperparameters, on our machine6 the run-time of NSGA-II never exceeded

the given timeout of 10s for deciding an action at each turn, while being able to

retrieve empirically good solutions. We choose these hyper-parameters so that the

run-time of the algorithms do not exceed the given timeout of 10s for deciding an

5The value of opposition reflects the competitiveness between parties in the domain. Strong
opposition means a gain of one party is at the loss of the other, whereas, weak opposition means
that both parties either lose or gain simultaneously [8].

6CPU: 8 Cores, 2.10GHz; RAM: 32GB
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action at each turn, while being able to retrieve empirically good solutions.

4.5.4 Empirical Evaluation

Hypothesis A: User Modelling

We used two measures to determine the difference between Ûu and Uu [144]: First,

Ordinal accuracy (OA) measures the proportion of bids put by Û in the correct rank

order (i.e., as defined by the true user model), where an OA value of 1 implies a

100% correct ranking and verifies whether the estimated user model preserves the

rank order for all issues and its values in domainD as defined by the true user model.

It can be defined as the ratio of the number of elements of D for which the rank

order in estimated and true user models are concordant (i.e., ncon to the number of

all elements (n+1) defined in the negotiation domain D, as shown in (4.8).

OA =
ncon

n+ 1
(4.8)

Second, to capture the scale of cardinal errors, Cardinal Inaccuracy (CI) measures

the differences in ratings assigned in the estimated and true user models for all the

elements in domain D. It can be defined as a multi-dimensional distance formula

that determines the differences between the n various issue ratings and the value rat-

ings for each issue j in estimated and true user models, as shown in (4.9) and (4.10)

respectively.

II =
n∑

j=1

|wtrue
j − west

j | (4.9)

OIj = wtrue
j .

nj∑
k=1

|v̄true(xj
k)− v̄est(xj

k)| (4.10)

Finally, the CI index is defined as the sum of II and OIj determined for each issue

j ∈ 1, 2, . . . , n, as shown in (4.11).

CI = II +
n∑

j=1

OIj (4.11)
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We produced results in 8 domains and two profiles (5% and 10% of total possible

bids) which are averaged over 10 simulations as shown in Table 4.1. All the values

of OA (↑) and CI (↓), in each domain, for both the user profiles, are ≥ 0.67 and

≤ 0.90 respectively, which is quite accurate given the uncertainty and the fact that

the CI value ∝ |D|. We observed that ordinal and cardinal accuracies for 10% of

Ω are higher compared to 5% of Ω, which is desirable. It is also interesting to note

that within the ordinal accuracies (5% of Ω), for small values of |B| (e.g., Flight),

the accuracies are higher from large values of |B| (e.g., Fitness). We believe this

happens because of the randomness involved in a meta-heuristic approach where for

large size of |B| (e.g., Fitness), the uncertainty due to the combination of values in

the issues is more difficult to approximate in absolute terms. In other words, the

probability of making a mistake is higher in the presence of given ranking of more

bids as compared to the domains with small size of |B| where choices are very less.

Domain (n, |Ω|) Ordinal Accuracy (↑) Cardinal Inaccuracy (↓)
|B| 5% of |Ω| 10% of |Ω| 5% of |Ω| 10% of |Ω|
AirportSite (3, 420) (0.75,0.75) (0.85,0.87) (0.47,0.54) (0.78,0.76)
Camera (6, 3600) (0.77,0.63) (0.83,0.75) (0.32,0.32) (0.69,0.41)
Energy (6, 15625) (0.74,0.78) (0.83,0.84) (0.56,0.61) (0.57,0.69)
Fitness (5, 3520) (0.67,0.67) (0.70,0.75) (0.55,0.47) (0.46,0.59)
Flight (3, 48) (0.75,0.85) (0.82,0.90) (0.65,0.75) (0.58,0.79)
Grocery (5, 1600) (0.67,0.67) (0.75,0.72) (0.35,0.42) (0.39,0.56)
Itex-Cypress (4, 180) (0.70,0.74) (0.78,0.80) (0.56,0.48) (0.74,0.56)
Outfit (4, 128) (0.70,0.75) (0.80,0.84) (0.71,0.88) (0.89,0.79)

Table 4.1: Evaluation of User Modelling using FA for two profiles (separated by
comma) in each domain

Hypothesis B: Pareto-Optimal Bids

We used a popular metric called Inverted Generational Distance (IGD) [36] to com-

pare the Pareto Fronts found by the NSGA-II and the ground truth (found via brute

force), and is defined as:

IGD(Ptrue, Pest) =
∑

v∈Ptrue

d(v, Pest)

|Ptrue|
(4.12)
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In (4.12), Ptrue is a set of Pareto optimal bids in true Pareto Frontier, Pest is a set

of approximation of optimal bids in true Pareto Frontier, d(v, Pest) is the minimum

Euclidean distance between v and all the points in set Pest; and |Ptrue| is the cardi-

nality of set Ptrue. Small IGD values suggest good convergence of solutions to the

Pareto Front and their good distribution over the entire Pareto Front. Table 4.2

demonstrates the potential of NSGA-II7 for generating the Pareto-optimal bids as

well as the closeness of true utility models.

Domain IGD (↓) Domain IGD (↓)
Airport Site (|Ω| = 420) 0.000 Flight (|Ω| = 48) 0.006
Camera (|Ω| = 3600) 0.000 Grocery (|Ω| = 1600) 0.000
Energy (|Ω| = 15625) 0.011 Itex-Cypress (|Ω| = 180) 0.000
Fitness (|Ω| = 3520) 0.012 Outfit (|Ω| = 128) 0.000

Table 4.2: Evaluation of Pareto Frontier using Inverted Generational Distance esti-
mated using NSGA-II

Hypothesis C: ANESIA outperforms “teacher” strategies

We performed a total of 1440 negotiation sessions8 to evaluate the performance of

ANESIA against the three “teacher” strategies (AgentGG, KakeSoba and SAGA) in

three domains (Laptop, Holiday, and Party) for two different profiles (|B| = 5, 10).

These strategies were used to collect the dataset in the same domains for supervised

training before the DRL process begins. Table 4.3 demonstrates the average results

over all the domains and profiles for each agent. Clearly, ANESIA outperforms the

“teacher” strategies in terms of U s
ind (i.e., individual efficiency), Usoc, and Pavg (i.e.,

social efficiency).

7Population size = 0.02× |Ω|; Number of generations = 2.
8n× (n− 1)/2× x× y× z ×w = 1440 where n = 4, number of agents in a tournament; x = 2,

because agents play both sides; y = 3, number of domains; z = 20, because each tournament
is repeated 20 times; w = 2, number of profiles in terms of B. We consider tournament settings
to address some practical deep learning considerations, e.g., catastrophic forgetting, which means
tendency of abruptly losing knowledge gained while negotiating against old opponent agent as
information relevant to the current new opponent agent is incorporated [49].
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Hypothesis D: Adaptive Behaviour of ANESIA agent

We further evaluated the performance of ANESIA on agents (from ANAC’17, ANAC’18

and ANAC’19) unseen during training. For this, we performed a total of 23040 nego-

tiation sessions9. Results in Table 4.5(A) are averaged over all domains and profiles,

and demonstrate that ANESIA learns to make the optimal choice of tactics to be

used at run time and outperforms the other 8 strategies in terms of U s
ind and Usoc.

See Tables B.17 – B.24 in Appendix for results in separate domains and profiles.

Ablation Study 1: We evaluated the ANESIA-DRL performance, i.e., an ANE-

SIA agent that does not use templates to learn optimal combinations of tactics, but

uses only one acceptance tactic, given by the dynamic DRL-based threshold utility

ūt (and the Boulware and Pareto-optimal tactics for bidding) for the same negoti-

ation settings of Hypothesis D. We observe from Table 4.5(B) that ANESIA-DRL

outperforms the other strategies in terms of U s
ind and Usoc. See Tables B.9 – B.16 in

Appendix for results in separate domains and profiles.

Ablation Study 2: We evaluated the ANESIA-rand performance, i.e., an ANE-

SIA agent which starts from a random DRL policy, i.e., without any offline pre-

training of the adaptive utility threshold ūt, for the same negotiation settings of

Hypothesis D. From Table 4.5(B), we observe in ANESIA-rand some degradation of

the utility metrics compared to the fully-fledged ANESIA and ANESIA-DRL, even

though it remains equally competitive w.r.t. the ANAC’17,18 agents and outper-

forms the ANAC’19 agents in Pavg, U
s
ind and Usoc. This is not unexpected because,

with a poorly informed (random) target utility tactic, the agent tends to accept

offers with little pay-off without negotiating for more rounds. See Tables B.1 – B.8

in Appendix for results in separate domains and profiles. From the Table 4.5(B)

results, we conclude that the combination of both features (strategy templates and

pre-training of the DRL model) are beneficial, even though these two features per-

form well in isolation too.

9n× (n− 1)/2× x× y × z × w = 23040 where n = 9; x = 2; y = 8; z = 20; and w = 2.
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Figure 4.2: Increase in Dynamic Threshold Utility using DRL

During the experiments, we observed that ANESIA learns to increase the threshold

utility in situations where the utility of an agreement is higher. Consequently, this

makes an ANESIA agent push for deals where it maximizes its utility due to the

higher threshold learned, which in turn results in ignoring low utility deals, and

thus ANESIA agents have low success rate as compared to other agents. Figure 4.2

shows an example of such threshold utility increase over time in one of the domains

(Grocery) against a set of unknown opponents (Kakesoba and SAGA).

We note that AgentHerb is the best in terms of Pavg, which is not surprising be-

cause this is one of the agents that know the true user model. This is clearly an

unfair advantage over the agents, like ANESIA, that do not have this information.

That said, ANESIA attains the best Pavg among ANAC’19 agents (unaware of the

true user model) and the second best lowest Pavg among ANAC’17 and ANAC’18

agents (aware of the true user model). Even though they have an unfair advantage

in knowing the true user model, we consider ANAC’17 and ANAC’18 agents since,

like our approach, they enable learning from past negotiations.

To this end, we note that ANESIA uses prior negotiation data from AgentGG to

pre-train the DRL-based utility threshold and adjust the selection of tactics from

the templates. The effectiveness of our approach is demonstrated by the fact that

ANESIA outperforms the same agents it was trained on (see Hypothesis C), but,

crucially, does so also on domains and opponents unseen during training. We fur-

ther stress that the obtained performance metrics are affected only in part by an

adequate pre-training of the strategies: the quality of the estimated user and op-
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ponent models – derived without any prior training data from other agents – plays

an important role too. The results in Tables 4.5 (A to C) evidence that our agent

consistently outperforms its opponents in terms of individual and social efficiency,

demonstrating that ANESIA can learn to adapt at run-time to different negotiation

settings and against different unknown opponents.

Here, we conclude that the learned ANESIA strategy using ‘strategy templates’

can find the offers of higher individual and social welfare utility which are closer to

the Pareto front even under the preference uncertainties, irrespective of the number

of successful agreements.

4.6 Summary

This chapter introduced an agent negotiation model called ANESIA, which encap-

sulated different types of learning to support multi-issue negotiation under user

preference uncertainty. ANESIA relied upon stochastic search based on the Firefly

algorithm for user modelling and combined NSGA-II and TOPSIS for generating

(near) Pareto-optimal bids. It further exploited strategy templates to learn the best

combination of acceptance and bidding tactics at any negotiation time, and among

its tactics, it used an adaptive target threshold utility learned using the DDPG al-

gorithm. We have empirically evaluated the performance of ANESIA against the

winning agent strategies of ANAC’17, ’18 and ’19 competitions in different settings,

showing that our agent both outperforms opponents known at training time and can

effectively transfer its knowledge to environments with previously unseen opponent

agents and domains.

However, there are two main open issues with the work presented in this chap-

ter. (a) The strategy template parameters of ANESIA were learned offline during

training once, and then these fixed learned parameters were reused in all future

negotiations. This results in a one-size-fits-all strategy that is not adaptive in set-
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tings that were not used during training. (b) In ANESIA, the estimated user model

(computed once in the pre-negotiation phase – Phase-I) and the estimated opponent

model (updated continuously during the negotiation phase – Phase-II), are sources

of uncertainty which are not addressed during the generation of the (near) Pareto

optimal bids. We address (a) in Chapter 5 (next chapter), and (b) in Chapter 6.
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Chapter 5

Multiple-Issues Bilateral

Negotiation Model - II

In this chapter, we use DRL throughout an actor-critic architecture ANESIA, dis-

cussed in the previous chapter, to estimate various tactic parameter values for strat-

egy templates, in particular, (a) for a threshold utility, (b) when to accept an offer,

and (c) how to generate a new bid. This contrasts with the previous chapter, in

which we only estimate the threshold utility for those tactics in the template that

require it using DRL. In Section 5.1, we present an argument of using DRL for

learning the choice parameter values, which is followed by the discussion of pro-

posed extension of ANESIA called DLST-ANESIA model in Section 5.2. Then, in

Sections 5.3 and 5.4, we discuss materials and methods, and the experimental results

respectively. Finally, we give the summary of this chapter in Section 5.5.

5.1 Motivation

Interpretable strategy templates, developed in the previous chapter, guide the use

of a series of tactics whose optimal use can be learned during negotiation. The

structure of such templates depends upon a number of learnable choice parameters,

determining which acceptance and bidding tactic to employ at any particular time

during negotiation. As these tactics represent hypotheses to be tested, defined by
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the agent developer, they can be explained to a user, and can in turn depend on

learnable parameters. As an outcome, in the previous chapter, we formulated a

strategy template for bid acceptance and generation so that an agent that uses it

can make optimal decisions about the choice of tactics while negotiating in different

domains [17].

The benefit of the above approach is that it can use heuristics for the components

of the template and meta-heuristics or machine learning for evaluating the choice

parameter values of these components. The problem with the previous chapter,

however, is that the choice parameters of the components for the acceptance and

bidding templates are learned once (during training) and used in all the different

negotiation settings (during testing) [17]. This one-size-fits-all choice of tactics does

not accumulate learning experience and may be unsuitable for unknown domains

or unknown opponents. In other words, the mechanism for learning the choice pa-

rameter values used in the previous chapter [17] omits what is learned in a specific

domain once the negotiation has finished, and therefore, cannot transfer the knowl-

edge from one domain to new domains or unseen components.

To address the above limitation, we propose the idea of using DRL to estimate

the choice parameter values of components in strategy templates. We name the

proposed interpretable strategy templates as “Deep Learnable Strategy Templates

(DLST)”. Our contribution is that we study experimentally the ideas behind DL-

STs so that agents that employ them to learn parameter values from and across

negotiation experiences, hence being capable of transferring the knowledge from one

domain to the other, or using the experience against one opponent on the other.

This approach leads to adaptive and generalizable strategy templates. During all

our experiments, we assume the same negotiation environment E as for ANESIA in

Chapter 4.
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5.2 The DLST-ANESIA Model

In this section, we present the proposed extended version of ANESIA called DLST-

ANESIA as shown in Figure 5.1. When building a negotiation agent, we normally

consider three phases: pre-negotiation phase (i.e., estimation of agent owner’s pref-

erences, preference elicitation), negotiation phase (i.e., offer generation, opponent

modelling) and post-negotiation phase (i.e., assessing the optimality of offers) [77].

In this work, we are interested in the second phase, which involves a Decide com-

ponent for choosing an optimal action at. As in previous chapter, we assume that

our agent Au is situated in an environment E (containing the opponent agent Ao)

where, at any time t, Au senses the current state St of E and represents it as a set

of internal attributes, as shown in Figure 5.1; however this component was implicit

in Figure 4.1 of the previous chapter.

To estimate the threshold utility in DLST-ANESIA, the set of state attributes in-

clude information derived from the sequence of previous bids offered by Ao (e.g.,

utility of the most recently received bid from the opponent ωo
t , utility of the best

opponent bid so far Obest, average utility of all the opponent bids Oavg and their vari-

ability Osd) and information stored in Au’s internal state (e.g., number of bids B in

the given partial order, dD, ures, Ω, and n), and the current negotiation time t. This

internal state representation, denoted with st, is used by the agent (in acceptance

and bidding strategies) to decide what action at to execute from the set of Actions

based on the negotiation protocol P at time t. Action execution then changes the

state of the environment to St+1. The state attributes for acceptance strategy in-

volves the following attributes in addition to the above-mentioned ones: fixed target

utility u, dynamic and learnable target utility ūt, utility of the future bid ω (i.e., the

bid to be proposed by our agent) U(ω), q quantile value which changes w.r.t time

t, and utiltiy of the qth best bid received by the agent Ao during the negotiation

QÛ(Ωo
t )
(q). On the other hand, the state for bidding strategy involves the follow-

ing set of state attributes: a bid generated by Time-dependent Boulware strategy
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bBoulware , Pareto-optimal bid PS, a recently received bid from the opponent with

value of least important issue tweaked randomly bopp(ω
o
t ),and a random bid above

average utility threshold U(Ω≥ūt) (as discussed in the subsequent section), in ad-

dition to the state attributes used for estimating the dynamic threshold utility value.

Recall from Section 4.3, the action at is derived via two functions, fa and fb, for

the acceptance and bidding strategies, respectively. The function fa takes as inputs

st, a dynamic threshold utility ūt (defined later in Section 5.3), the sequence of past

opponent bids Ωo
t , and outputs a discrete action at among accept or reject. When fa

returns reject, fb computes what to bid next, with input st and ūt, see ((4.1)–(4.2) in

Section 4.3.1). This separation of acceptance and bidding strategies is not rare, see

for instance [11]. Also, fa and fb consists of a set of tactics as defined in Section 4.3.

We assume incomplete opponent preference information, therefore, Decide uses the

estimated model Ûo. In particular, Ûo is estimated at time t using information from

Ωo
t , see Section 4.4 for more details. Unlike the previous chapter, we employ DRL

in acceptance strategy templates and bidding strategy templates in this chapter,

in addition to threshold utility (represented by three green coloured boxes in Fig-

ure 5.1) in the Decide component. Each DRL component is based on actor-critic

architecture [136] and has its own Evaluate and Negotiation Experience components.

Evaluate refers to a critic helping our agent learn the dynamic threshold utility

ūt, acceptance and bidding strategy template parameters, with the new experience

collected during the negotiation against each opponent agent. More specifically, it

is a function of random K (K < N) experiences fetched from the agent’s memory.

Here, learning is retrospective, since it depends on the reward rt obtained from E

by performing action at at state st.
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The reward values for every critic that are used for estimating the threshold utility

(i.e., rūt
t - same as that of (4.3) in ANESIA - see Chapter 4) as well as choice

parameter values of acceptance (i.e., rbidt ) and bidding strategy templates (i.e., racct )

depend on the discounted user utility of the last bid received from the opponent ωo
t ,

or of the bid accepted by either parties ωacc and defined as (5.1), (5.2) and (5.3)

respectively.

rūt
t =


Uu(ω

acc, t), on agreement

Uu(ω
o
t , t), on received offer

−1, otherwise.

(5.1)

rbidt =


Uu(ω

acc, t), on agreement

−1, otherwise.

(5.2)

racct =


Uu(ω

acc, t), on agreement and Uo(ω
acc, t) ≤ Uu(ω

acc, t)

Uu(ω
o
t , t), on rejection and Uo(ω

o
t , t) ≥ Uu(ω

o
t , t)

−1, otherwise.

(5.3)

rūt
t (5.1) and rbidt (5.2) are straight-forward. In (5.3), Uo(ω, t) is used as the reward

value because reward is received from the environment E where the opponent agent

resides. In other words, we assume that E has access to Ao’s real preferences, i.e.,

Uo, but these preferences are not observable by our agent Au. The first case of the

racct deals with an agreed bid and returns a positive reward value, if the bid gives

higher utility to our agent than the opponent. The second case deals with a rejected

bid and returns a positive reward value, if the bid gives lower utility to our agent

than the opponent. In all other cases, it returns a negative value.

Also, in (5.1), (5.2) and (5.3), Uu(ω, t) is the discounted reward of ω defined as

defined in (4.4). In (4.4), d is a temporal discount factor to encourage the agent to

negotiate without delay. If d = 1, the utility is considered undiscounted. We should

not confuse d, which is typically unknown to the agent, with the discount factor
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used to compute the utility of an agreed bid (dD).

Negotiation Experience stores historical information about N previous interactions

of an agent with other agents. Experience elements are of the form ⟨st, at, rt, st+1⟩,

where st is the internal state representation of the negotiation environment E, at is

the performed action, rt is a scalar reward received from the environment and st+1

is the new agent state after executing at.

Strategy templates We use the same notion of “strategy templates” as defined

in Section 4.3.2 in Chapter 4. These are a general form of parametric strategies for

acceptance and bidding. These strategies apply different tactics at different phases

of the negotiation. The total number of phases n and the number of tactics ni to

choose from at each phase i = 1, . . . , n are the only parameters fixed in advance.

For each phase i, the duration δi (i.e., ti+1 = ti + δi) and the particular choice of

tactic are learnable parameters. The latter is encoded with choice parameters ci,j,

where i = 1, . . . , n and j = 1, . . . , ni, such that if ci,j is true then the (i, j)-th tactic

is selected for phase i. Tactics can be parametric in turn, and depend on learnable

parameters pi,j.

We consider the same set of admissible tactics as for ANESIA (see subsection 4.3.2).

The key difference is that the new approach allows evolving the entire strategy

(within the space of strategies entailed by the template) at every negotiation step,

which makes it more adaptable and generalizable. Below, we give an example of a

concrete acceptance strategy learned with our model. We use, as we will discuss in

Section 5.4, a specific domain (Party) and we show how the strategy adapts in other

negotiation domains (Grocery and Outfit) against the opponent strategy [17].
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(a) Party Domain

t ∈ [0.000, 0.0361) → Uu(ω
o
t ) ≥ max

(
QUΩo

t
(−0.20 · t+ 0.22), ūt

)
t ∈ [0.0361, 1.000] → Uu(ω

o
t ) ≥ max

(
u,QUΩo

t
(−0.10 · t+ 0.64)

)
y

(b) Grocery Domain

t ∈ [0.000, 0.1739) → Uu(ω
o
t ) ≥ max (u, ūt)

t ∈ [0.1739, 0.2104) → Uu(ω
o
t ) ≥ max

(
QUΩo

t
(−0.10 · t+ 0.17), ūt

)
t ∈ [0.2104, 1.000] → Uu(ω

o
t ) ≥ max (Uu(ωt), ūt)

y
(c) Outfit Domain

t ∈ [0.000, 0.0803) → Uu(ω
o
t ) ≥ u

t ∈ [0.0803, 0.1829) → Uu(ω
o
t ) ≥ max

(
ūt, QUΩo

t
(−0.33 · t+ 0.76)

)
t ∈ [0.1829, 0.2178) → Uu(ω

o
t ) ≥ max

(
ūt, QUΩo

t
(−1.33 · t+ 0.99), Uu(ωt)

)
t ∈ [0.2178, 1.000) → Uu(ω

o
t ) ≥ ūt

We can observe that the duration learned in the left-hand side of the tactics is

different for different domains, e.g., initially in the first domain (Party) the first rule

triggers when t ∈ [0.0, 0.0361), while in the second (Grocery) and third (Outfit)

domains, the first rule triggers at t ∈ [0.0, 0.1739) and t ∈ [0.0, 0.0803) respectively.

Similarly, the parameters on the right-hand side of the tactics rules, e.g., for the first

domain (Party) during the very early phase of the negotiation, the strategy uses a

quantile tactic as well as dynamic threshold utility. However, in the second domain

(Grocery), the strategy now employs dynamic target threshold utility and the fixed
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threshold utility tactics, whereas, in the third domain (Outfit), it only employs the

fixed utility tactic.

5.3 Setting Up DLST-ANESIA for Experiments

In our approach, we first use supervised learning (SL) to pre-train our agent us-

ing supervision examples collected from existing “teacher” negotiation strategies as

inspired by [17, 15]. Such pre-trained strategy is then evolved via RL using expe-

rience and rewards collected while interacting with other agents in the negotiation

environment. This combination of SL and RL approaches enhances the process of

learning an optimal strategy. This is because applying RL alone from scratch would

require a large amount of experience before reaching a reasonable strategy, which

might hinder the online performance of our agent. On the other hand, starting

from a pre-trained policy ensures quicker convergence (as demonstrated empirically

in [17, 15]).

5.3.1 Data set Collection

In order to collect the data set for pre-training our agent via SL, we have used the

GENIUS simulation environment [88]. In particular, in our experiments we generate

supervision data using ANESIA agent proposed in previous chapter. by negotiating

it against the winning strategies of ANAC-2019 competition, i.e., AgentGG, Kake-

Soba and SAGA. These strategies are readily available in GENIUS and requiring

minimal changes to work for our negotiation settings. They also assume no user

preference uncertainty in three different domains (Laptop, Holiday, and Party).

5.3.2 Strategy Representation

We represent both fa (4.1) and fb (4.2) using artificial neural networks (ANNs) [53],

as these are powerful function approximators and benefit from extremely effective

learning algorithms, unlike [17], which used the meta-heuristic optimization algo-
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rithm. We also use the same to predict the target threshold utility ūt as in [17].

Moreover, we keep the ANN configuration same as in Chapter 4. Furthermore, as in

Section 4.5, we use Deep Deterministic Policy Gradient (DDPG) algorithm, which

is an actor-critic RL approach, to generate a deterministic action selection policy

for the negotiating agent [86].

In our experiments, for predicting the dynamic threshold utility, the actor function

is a single-output regression ANN; on the other hand, for acceptance and bidding

strategies, it is a multiple-output regression ANN. In particular, when predicting

ūt, actt corresponds to ūt; whereas, for acceptance and bidding strategy templates,

actt consists of a vector of multiple outputs (δi, (ci,j,pi,j)j=1,...,ni
)i=1,...,n including the

duration of each negotiation phase δi, Boolean choice parameters ci,j and a set of

learnable parameters pi,j for each tactic j that can be used in a negotiation phase i.

We consider a negotiation environment with uncertainty about the opponent’s pref-

erences. To derive an estimate of the opponent model Ûo during negotiation, we use

the same distribution-based frequency model [142] as used in Chapter 4.

5.4 Experimental Setup and Results

All the experiments are performed using GENIUS [88]. The experiments are de-

signed to prove the hypotheses defined below:

5.4.1 Experimental Hypotheses

• Hypothesis A: DLST-ANESIA outperforms ANESIA (proposed in previous

chapter) and other “teacher” strategies in known negotiation settings in terms

of individual and social efficiency.

• Hypothesis B: DLST-ANESIA outperforms unseen strategies and adapts to

different negotiation settings in terms of individual and social efficiency.
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5.4.2 Performance Metrics

As in Chapter 4, we measure the performance of each agent in terms of the same

six widely-adopted metrics inspired by the ANAC competition:

• U total
ind : The utility gained by an agent averaged over all the negotiations (↑);

• U s
ind : The utility gained by an agent averaged over all the successful negotiations

(↑);

• Usoc: The utility gained by both negotiating agents averaged over all successful

negotiations (↑);

• Pavg : Average minimal distance of agreements from the Pareto Frontier (↓).

• S%: Proportion of successful negotiations (↑).

The first and second measures represent individual efficiency of an outcome, whereas

the third and fourth correspond to the social efficiency of agreements.

5.4.3 Experimental Settings

Our proposed DLST-ANESIA model is evaluated against state-of-the-art strategies

that participated in ANAC’17 and ANAC’18, which are designed by different re-

search groups independently. Each agent has no information about another agent’s

strategies beforehand. Details of all these strategies are available in [7, 70]. We eval-

uate our approach on total of 11 negotiation domains which are different from each

other in terms of size and opposition [8] to ensure good negotiation characteristics

and to reduce any biases. The domain size refers to the number of issues, whereas

opposition1 refers to the minimum distance from all possible outcomes to the point

representing complete satisfaction of both negotiation parties (1,1). For the exper-

iments of Hypothesis B, we choose readily-available 3 small-sized, 2 medium-sized,

and 3 large-sized domains. Out of these domains, 2 are with high, 3 with medium

1The value of opposition reflects the competitiveness between parties in the domain. Strong
opposition means a gain of one party is at the loss of the other, whereas, weak opposition means
that both parties either lose or gain simultaneously [8].
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and 3 with low opposition (see [149] for more details).

For each configuration, each agent plays both roles in the negotiation (e.g., buyer

and seller in Laptop domain) to compensate for any utility differences in the prefer-

ence profiles. We call user profile the agent’s role along with the user’s preferences.

Also, we set the ures and dD to their respective default values, whereas the deadline

is set to 180s, normalized in [0, 1] (known to both negotiating parties in advance).

For NSGA-II during the Pareto-bid generation phase, we choose the population size

of 2%× |Ω|, 2 generations and mutation count of 0.1. With these hyperparameters,

on our machine2 the run-time of NSGA-II never exceeded the given timeout of 10s

for deciding an action at each turn, while being able to retrieve empirically good

solutions.

5.4.4 Empirical Evaluation

In this section, we evaluate and discuss the two hypotheses introduced at the begin-

ning of the section.

Hypothesis A: DLST-ANESIA outperforms ANESIA and other “teacher”

strategies

We performed a total of 1200 negotiation sessions3 to evaluate the performance of

DLST-ANESIA agent against the four “teacher” strategies (ANESIA [17], AgentGG,

KakeSoba and SAGA) in three domains (Laptop, Holiday, and Party - see Ap-

pendix A). These strategies were used to collect the dataset in the same domains for

supervised training before the DRL process begins. Table 5.1 demonstrates the aver-

age results over all the domains and profiles for each agent. Clearly, DLST-ANESIA

agent outperforms the “teacher” strategies in terms of individual efficiency, as well

as social efficiency.

2CPU: 8 cores, 2.10GHz; RAM: 32 GB
3n × (n − 1)/2 × x × y × z = 1200 where n = 5, number of agents in a tournament; x = 2,

because agents play both sides; y = 3, number of domains; z = 20, because each tournament is
repeated 20 times.
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Agent Pavg(↓) Usoc(↑) U total
ind (↑) U s

ind(↑) S%(↑)
Laptop Domain

DLST-agent 0.0 ± 0.0 1.71 ± 0.03 0.91 ± 0.02 0.91 ± 0.02 1.00
ANESIA 0.0 ± 0.0 1.66 ± 0.20 0.86 ± 0.03 0.86 ± 0.03 1.00
KakeSoba 0.03 ± 0.12 1.48 ± 0.53 0.77 ± 0.20 0.82 ± 0.06 0.94
SAGA 0.01 ± 0.06 1.45 ± 0.48 0.89 ± 0.13 0.89 ± 0.10 0.99
AgentGG* 0.22 ± 0.35 1.14 ± 0.65 0.71 ± 0.38 0.91 ± 0.09 0.78

Holiday Domain
DLST-agent 0.05 ± 0.11 1.74 ± 0.14 0.96 ± 0.14 0.96 ± 0.14 1.00
ANESIA 0.06 ± 0.1 1.74 ± 0.14 0.85 ± 0.15 0.85 ± 0.15 1.00
KakeSoba 0.21 ± 0.35 1.53 ± 0.5 0.84 ± 0.27 0.92 ± 0.07 0.91
SAGA 0.19 ± 0.36 1.55 ± 0.5 0.70 ± 0.25 0.77 ± 0.12 0.91
AgentGG* 0.46 ± 0.58 1.16 ± 0.82 0.74 ± 0.45 0.96 ± 0.03 0.67

Party Domain
DLST-agent 0.15 ± 0.38 1.53 ± 0.6 0.74 ± 0.31 0.77 ± 0.14 0.87
ANESIA 0.37 ± 0.32 1.06 ± 0.5 0.52 ± 0.27 0.62 ± 0.14 0.83
KakeSoba 0.33 ± 0.32 1.11 ± 0.51 0.64 ± 0.3 0.75 ± 0.12 0.84
SAGA 0.15 ± 0.16 1.36 ± 0.26 0.61 ± 0.19 0.63 ± 0.16 0.87
AgentGG* 0.38 ± 0.42 0.92 ± 0.6 0.62 ± 0.4 0.77 ± 0.12 0.71

Table 5.1: Performance Comparison of DLST-ANESIA agent with “teacher” strate-
gies for all the 3 domains (Laptop, Holiday, and Party - Readily available in GE-
NIUS). Best Results are in bold. * means user preference uncertainty is considered.

Hypothesis B: Adaptive behaviour of DLST-ANESIA agent

We further evaluated the performance of a DLST-ANESIA agent against the op-

ponent agents from ANAC’17 and ANAC’18 unseen during training and having

capability of learning from previous negotiations. For this, we performed two exper-

iments against ANAC’17 and ANAC’18 agents, each with a total of 29120 negotia-

tion sessions4. Results in Table 5.2 are averaged over all domains, and demonstrate

that a DLST-ANESIA agent learns to choose a suitable set of tactics to be used at

run time and outperforms the other 8 strategies in terms of U s
ind and Usoc. We also

observed that DLST-ANESIA outperforms ANESIA in all the settings used for the

purpose of evaluation as shown in Figures 5.2 – 5.5. This indicates that the DLST-

ANESIA agent’s approach of dynamically adapting the parameters of acceptance

and bidding strategies leads consistently improve the ANESIA approach of keeping

these parameters fixed once the agent is deployed.

4n× (n− 1)/2× x× y × z = 29120 where n = 14; x = 2; y = 8; z = 20.
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Agent Pavg(↓) Usoc(↑) U total
ind (↑) U s

ind(↑) S%(↑)
Comparison of DLST and ANESIA with ANAC 2017 Agent Strategies

DLST-agent 0.0 ± 0.0 1.17 ± 0.12 0.90 ± 0.0 0.93 ± 0.0 1.0
ANESIA 0.0 ± 0.0 1.16 ± 0.12 0.70 ± 0.25 0.76 ± 0.26 0.89
PonpokoAgent 0.70 ± 0.49 0.44 ± 0.70 0.62 ± 0.19 0.93 ± 0.04 0.89
ShahAgent 0.54 ± 0.54 0.79 ± 0.79 0.57 ± 0.07 0.64 ± 0.04 0.75
Mamenchis 0.50 ± 0.05 0.80 ± 0.80 0.66 ± 0.16 0.82 ± 0.18 0.89
AgentKN 0.0 ± 0.0 1.17 ± 0.0 0.65 ± 0.05 0.65 ± 0.05 1.0
Rubick 1.08 ± 0.0 1.00 ± 0.0 0.50 ± 0.09 0.64 ± 0.04 0.76
ParsCat2 0.54 ± 0.54 0.80 ± 0.08 0.66 ± 0.16 0.82 ± 0.04 0.57
SimpleAgent 1.08 ± 0.0 0.90 ± 0.0 0.57 ± 0.14 0.57 ± 0.14 1.0
AgentF 1.18 ± 0.0 1.07 ± 0.06 0.51 ± 0.0 0.81 ± 0.0 0.89
TucAgent 0.08 ± 0.29 0.90 ± 0.03 0.65 ± 0.38 0.52 ± 0.16 0.69
MadAgent 0.67 ± 0.05 1.09 ± 0.17 0.57 ± 0.0 0.57 ± 0.0 1.0
GeneKing 1.08 ± 0.0 0.99 ± 0.14 0.75 ± 0.0 0.67 ± 0.24 0.63
Farma17 0.77 ± 0.49 0.44 ± 0.70 0.65 ± 0.19 0.93 ± 0.04 0.79

Comparison of DLST and ANESIA with ANAC 2018 Agent Strategies
DLST-agent 0.00 ± 0.08 1.54 ± 0.17 0.86 ± 0.07 0.87 ± 0.06 0.91
ANESIA 0.00 ± 0.09 1.41 ± 0.16 0.74 ± 0.14 0.84 ± 0.14 0.78
AgentHerb 0.02 ± 0.05 0.79 ± 0.11 0.78 ± 0.02 0.78 ± 0.11 0.61
AgreeableAgent0.05 ± 0.11 1.12 ± 0.23 0.53 ± 0.10 0.56 ± 0.05 0.54
Sontag 0.03 ± 0.07 0.73 ± 0.18 0.78 ± 0.08 0.79 ± 0.07 0.59
Agent33 0.04 ± 0.07 0.74 ± 0.18 0.68 ± 0.09 0.78 ± 0.09 0.79
AngentNP1 0.04 ± 0.06 0.73 ± 0.16 0.65 ± 0.10 0.65 ± 0.1 0.69
FullAgent 0.02 ± 0.04 0.67 ± 0.12 0.69 ± 0.05 0.77 ± 0.12 0.61
ATeamAgent 0.09 ± 0.06 0.58 ± 0.13 0.75 ± 0.10 0.75 ± 0.08 0.75
ConDAgent 0.06 ± 0.09 1.16 ± 0.20 0.68 ± 0.11 0.65 ± 0.11 0.56
GroupY 0.03 ± 0.06 0.66 ± 0.15 0.53 ± 0.07 0.54 ± 0.06 0.58
Yeela 0.04 ± 0.06 0.68 ± 0.14 0.73 ± 0.08 0.73 ± 0.07 0.66
Libra 0.10 ± 0.09 0.54 ± 0.19 0.71 ± 0.08 0.56 ± 0.04 0.77
ExpRubick 0.00 ± 0.02 1.10 ± 0.18 0.78 ± 0.08 0.80 ± 0.12 0.91

Table 5.2: Performance Comparison of DLST-ANESIA agent with existing strategies
averaged over all the 8 domains (Airport Site, Camera, Energy, Fitness, Flight,
Grocery, Itex-Cypress, Outfit - All are readily available in GENIUS). Best Results
are in bold.
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Figure 5.2: Comparison of DLST-ANESIA VS ANESIA agents in terms of Agree-

ment rate S%(↑)

Figure 5.3: Comparison of DLST-ANESIA VS ANESIA agents in terms of Social

welfare utility Usoc(↑)
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Figure 5.4: Comparison of DLST-ANESIA VS ANESIA agents in terms of individual

utility rate over successful negotiations U s
ind(↑)

Figure 5.5: Comparison of DLST-ANESIA VS ANESIA agents in terms of individual

utility rate over all negotiations U total
ind (↑)

Here, we conclude that the learned ANESIA strategy using Deep learning-based

strategy templates can find the offers of higher individual and social welfare utility,

while targetting the higher number of successful agreements.
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5.5 Summary

In this chapter, we described DLST-ANESIA, an actor-critic architecture based

DRL to support negotiation in domains with multiple issues. In particular, we ex-

ploited “interpretable” strategy templates used in the state-of-the-art to learn the

best combination of acceptance and bidding tactics at any negotiation time. Among

the DLST-ANESIA tactics, we used an adaptive threshold utility, all learned using

the DDPG algorithm which derives an initial neural network strategy via super-

vised learning. We also showed the empirical performance evaluation of our DLST-

ANESIA model against ANESIA and other “teacher strategies”. We also performed

comparison with the agent strategies of ANAC’17 and ANAC’18 competitions (since

the tournament allowed learning from previous negotiations) in different settings.

We observed that DLST-ANESIA agent outperforms opponent agents which are

known at training time and can effectively transfer its knowledge to environments

with previously unseen opponent agents and domains.
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Chapter 6

Dealing with Uncertainty in

Preferences

In this chapter, we are interested in the uncertainty that arises in the first two phases

of automated negotiation (namely, pre-negotiation phase and negotiation phase - see

Section 2.1.4). In pre-negotiation phase, the uncertainty is due to the estimation of

the user’s preferences/utility function, while in negotiation phase, the uncertainty

arises due to the estimation of opponent’s preferences/utility function. These un-

certainties present a critical and sensitive obstacle because it may influence the bid

search process and consequently hamper the identification of efficient solutions. In

this context, we start off with the argument of extending ANESIA to fuzzy-ANESIA

in Section 6.1. Then, in Section 6.2, we propose a two-phase process of generating

the (near) Pareto-optimal bids under incomplete preference information combining

MOO and uncertainty modelling with fuzzy techniques. Then, in Section 6.3, we

empirically evaluate the proposed method in a range of negotiation settings and

scenarios. Finally, Section 6.4 summarizes the chapter.

6.1 Motivation

Our proposed model known as fuzzy-ANESIA is an extension of the ANESIA model

discussed in Chapter 4. In particular, ANESIA assumed incomplete information
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Figure 6.1: Two-phase process of generating a Pareto-optimal solution during bid
generation phase

about the preferences of the user and opponent agents, and therefore estimated

them before taking any action. More specifically, ANESIA didn’t take into account

the uncertainty that arose from the approximation of real user’s and opponent’s

preferences while generating Pareto-optimal bids during the negotiation. As a result,

many of the envisaged agreements were not very close to the Pareto frontier. So

Chapter 4 opened an opportunity for addressing the issues with the estimated utility

models in the bidding phase of the negotiation. More precisely, we address the

uncertainties in the objectives of a MOO problem by means of triangular fuzzy

numbers (see Section 2.2.6), and call the new approach fuzzy-ANESIA.

6.2 The fuzzy-ANESIA Model

In this section, we present the proposed two-phase solution of generating (near)

Pareto-optimal bids as shown in Figure 6.1 and provide the background on the

fuzzy methodologies used in this work.

In fuzzy-ANESIA model, the user modelling (i.e., estimation of user utility function)

is done before the negotiation begins with the help of Cuckoo Search Optimization

(CSO) [153], whereas opponent modelling is done with the help of distribution-

based frequency model [142] (see also 4.4) during the negotiation. CSO [153] is a

meta-heuristic inspired by the brood parasitism of cuckoo birds. In this metaphor,

a cuckoo is an agent in search of its best user model Û (or nest or solution). A set

of candidate solutions (user models) is evolved, where at each iteration the worst-

performing p solutions are abandoned and replaced with new solutions generated
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by Lévy flights, that is, a kind of random walk combining long and short random

movements. In our case, the fitness of a candidate solution Û ′ is defined as the

Spearman’s rank correlation coefficient ρ between the estimated ranking of Û ′ and

the true, but partial, bid ranking ⪯. The coefficient ρ ∈ [−1, 1] is indeed a mea-

sure of the similarity between two rankings, which assigns a value of 1 for identical

rankings, and −1 for opposed rankings.

6.2.1 Phase I

In Phase-I, we address the effects of uncertainty propagation in the multi-objective

setting where uncertainty is assumed to occur in the objective functions i.e., user

and opponent utility functions because of lack of information. We use an extended-

NSGA-II [19], which replaces the classic Pareto dominance with the fuzzy Pareto

dominance. Let Y and Y ′ be two triangular fuzzy solutions. Y strong dominates

Y ′, if either yi total dominates or partial dominates yi’ in one objective and weak1

dominates it in another [19]. This modification allows ensuring the fitness assign-

ment ranking in a fuzzy setting. Afterwards, a crowding-comparison procedure is

applied based on a Crowding Distance (CD) that discriminates the solutions having

the same rank level. Formally, the CD of a solution is the sum of its individual

objectives’ distances, that in turn are the differences between the solution and its

closest neighbours as shown in (6.1).

CD(i) =
∑

i=1...n

(fi(i+ 1)− fi(i− 1))/(fmax
i − fmin

i ) s.t. i ∈ F (6.1)

In (6.1), n is the number of objectives, fi(i + 1) and fi(i − 1) are the neighbour

objective values of the ith objective, fmax
i and fmin

i are the maximum and minimum

objective values respectively in the population, and F is the ith front to which

solutions are associated. Since our objective functions are TFN vectors (Recall

from Section 2.2.6, TFN represents a triplet of values), the distance measure must

1yi partially weak dominates y′i iff there is fuzzy overlapping or fuzzy inclusion.
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be adapted to fuzziness. Thus, these objectives are approximated by computing

their expected values before applying CD. The expected value E of a given TFN

yi = [yi, ŷ, yi] (see (??)) is calculated as shown in (6.2):

E(yi) = (yi + 2× ŷi + yi)/4 (6.2)

To reflect the uncertainty in fuzzy objective values caused by the possibility of

multiple utility functions as solutions, we collectedK = 100 best user models derived

by CSO. Since, the fitness value for each objective function is a TFN, â is the average

utility of the K models for that bid, and the upper and lower bounds are 5th and

95th percentile of the k utility models respectively. Given this distribution of utility

values, we derive the principles’ triangular sets as triangular approximation of the

empirical normal approximation of the distribution. That is, let σ̂ be the observed

standard deviation, µ̂ be the observed mean, then the fuzzy-set could be: [l,m, u]

where m = µ̂, l = µ̂−kσ̂ and u = µ̂+kσ̂ for some k = 1, 2, 3 (we choose k = 2). The

membership U of each element is given by the corresponding Gaussian probability

density function value (see (6.3)).

U(x) =
1√
2πσ̂

e−
1
2(

x−µ
σ̂ )

2

(6.3)

Substituting the values of l, m and u in (6.3), we obtained U(m) = 1/(σ̂
√
2π),

U(l) = U(u) = e−k2/2/(σ̂
√
2π). For the fuzzy opponent objective function, â is the

current opponent model at any time t, the upper and lower bounds are opponent

models obtained at time t ∈ [0.4, 0.6] and t ≤ 0.2 respectively. Note that the per-

centiles are calculated to obtain the objective function (user model and opponent

model) values, which are triplets. The normal approximation is used as a fitness

function of NSGA-II, which are also triplet values.

The fuzzy NSGA-II generates a Pareto-frontier which has numerous (P ) optimal

solutions (P ∈ Ω) preferred according to the decision-making requirements. Hence,
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decision-making approaches are essential to pick an individual solution from the

Pareto Frontier.

6.2.2 Phase-II

We employ a fuzzy Multi-Criteria Decision-Making (MCDM) method called fuzzy

TOPSIS [32] to pick the best optimal solution from Pareto Frontier. In our model, we

have only two criteria (m = 2) or objectives: maximizing user utility and maximizing

opponent utility (since our focus is more on “win-win” situations), based on which

Ω solutions/bids/alternatives will be ordered. Our agent implements fuzzy TOPSIS

with the help of vertex method to calculate the distance between two triangular

fuzzy numbers y = (y1, . . . , ym) and y′ = (y′1, . . . , y
′
m) as follows:

√
1/3[(y1 − y′1)

2 + . . .+ (ym − y′m)
2] (6.4)

The procedure of fuzzy TOPSIS is defined as follows:

• A fuzzy decision matrix M = n×m consisting of n alternatives and m criteria is

created. Here, n = |P |, m = 2, and m1 = Û(ωi) and m2 = Û(ωo
i ).

• The next step is normalizing the fuzzy decision matrix M using (6.5), where

i = 1, 2, . . . , n, j = 1, 2, . . . ,m and xij is a value assigned to the ith solution w.r.t

jth criteria.

r̃ij =

(
y1

c∗j
,
ŷ1
c∗j
,
y1
c∗j

)
, and

c∗j = maxi{cij}
(6.5)

• In the subsequent step, we create a weighted normalized decision matrix W using

where xij is replaced with vij and vij = wj · rij. In our experiments, we use the

same weights which were learned in the existing ANESIA model. These weights

scale with negotiation time t. So, w1 = a · t + b and w2 = 1− (a · t+ b). Here,

a = −0.75 and b = 0.6.
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• Once the weighted normalized matrix is ready, the distance of each alternative

from fuzzy ideal positive and negative solutions is computed.

• Finally, the ranks are ordered from high to bottom based on the relative closeness

of each alternative to the ideal solutions.

A bid solution/bid/alternative with top rank is chosen by our agent to propose to

the opponent agent during this time period.

6.3 Experimental Results and Discussions

All the experiments have been performed using the popular GENIUS negotiation

platform [88] simulating our assumed complex negotiation environment.

6.3.1 Experimental Hypotheses

These experiments are designed to prove the following two hypotheses:

• Hypothesis A: Fuzzy versions of existing negotiation strategies outperform their

non-fuzzy variants in terms of Uind, Distp and Usoc.

• Hypothesis B: fuzzy-ANESIA outperforms the ANESIA agent and other win-

ning agents from ANAC’19 competition in terms of Uind, Distp and Usoc.

6.3.2 Performance Metrics

We consider the same (widely adopted) metrics [10] inspired by the GENIUS simu-

lation platform:

• Ravg: Average number of rounds over all successful negotiations (Ideal value:

Low(1))

• Distp: Average distance to the Pareto Curve2 (the nearest bid on the frontier)

(Ideal value: Low (0))

2Pareto frontier is obtained assuming complete preference information of both the negotiating
parties.

122



• Uind: Average utility gained by an agent on successful negotiations (Ideal value:

High (1.0)

• Usoc: Average utility gained by both negotiating agents on successful negotiations

(Ideal value: High(2.0)

• S%: Proportion of successful negotiations (Ideal value: High (100%))

6.3.3 Experimental Settings

We assume that prior to designing an agent’s negotiation strategy: (a) each agent

has no knowledge of the preferences and negotiating characteristics of its opponent;

(b) the negotiation time is limited and there is a specific deadline (known to both

negotiating parties in advance) for its termination (here, it is 60s normalised in

[0, 1]), therefore the agents must consider the risk of rejecting their offer from the

opponent with regard to the limited time; (c) the utility of offers might decrease

over time (in negotiation scenarios with discount factor; we use the default value in

GENIUS) [17]), thus, timely decision on rejecting or accepting an offer and making

acceptable offers are of high importance for negotiators.

We evaluate our approach on the same benchmark domains used in [17], i.e., Laptop

(|Ω| = 27), Holiday (|Ω| = 1024) and Party (|Ω| = 3072) (see Appendix A). For

each configuration, each agent gets the chance to play both sides of the negotiation

(e.g., buyer and seller in Laptop domain). We call user profile the specific agent’s

role along with its associated preferences.

6.3.4 Empirical Evaluation

Hypothesis A: Fuzzy versions outperform their Non-fuzzy variants

We performed the analysis of fuzzy hybrid approach of generating (near) Pareto-

optimal bids by combining it with different negotiation strategies dealing with user’s
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and opponent’s preference uncertainties. We used 12 combinations of negotia-

tions strategies involving 2 population-based user modelling approaches (Cuckoo

Search CS and Genetic Algorithm GA), whereas 3 opponent-modelling approaches3

(Bayesian model, Smith Frequency Model, and a Simple/Uniform model) with and

without the component of Fuzzy Hybrid approaches for the total of 6600 simula-

tions, each in 2 different domains (Party and Holiday) with 3 different user profiles

(B = 0.2 × |Ω|, 0.4 × |Ω|, 0.6 × |Ω|). Tables 6.1 and 6.2 show that the negotiation

strategies involving fuzzy component (starting with ′f ′−) outperform their non-fuzzy

variants, mainly in terms of Uind, Distp and Usoc leading to “win-win” situations.

Hypothesis B: fuzzy-ANESIA outperforms ANESIA and other winning

agents from ANAC’19

We also tested fuzzy-ANESIA in a GENIUS tournament setting against ANESIA

and winning agents from the ANAC’19 competition4, for a total of 1200 sessions

in 3 different domains, where each agent negotiates with every other agent. Table

6.3 compares their performance in terms of Uind, Ravg, and S%. Figure 6.2 shows

the increase in Usoc of fuzzy-ANESIA agent, whereas Figure 6.3 shows the decrease

in Distpareto w.r.t original ANESIA agent. Results demonstrate that our proposed

fuzzy approach of generating (near) Pareto optimal bids has significantly impacted

the performance of ANESIA agent. In this experiment, we chose two different user

profiles and two different preference uncertainties (|B| ∈ {10, 20}).

In addition, the low successful negotiation rate in Tables 6.1 and 6.2 with high

Uind and high Usoc (and in Figure 6.2) indicates the non-greedy behaviour of fuzzy-

ANESIA agent, which is often seen in the agents belonging to the same institution,

when they want to achieve the maximum mutual benefit instead of reaching an

agreement which can be less beneficial to one of them.

3Available in GENIUS.
4SAGA (Genetic algorithm), KakeSoba (Tabu Search), and AgentGG (Statistical frequency

modelling)
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Figure 6.2: Average Social Welfare Utility (↑): fuzzy-ANESIA Vs ANESIA in 3

different domains with 2 user profiles |B| = {10, 20}

Figure 6.3: Average Distance to Pareto Curve (↓): fuzzy-ANESIA VS ANESIA in

3 different domains with 2 user profiles |B| = {10, 20}

Here, we conclude that the learned strategy of fuzzy-ANESIA finds the offers of

higher individual and social-welfare utility which are closer to the Pareto front. In

other words, it is becoming picky and non-greedy as our other trained strategies

do in the previous chapters, even under the preference uncertainties of both the
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negotiating participants.

6.4 Summary

In Chapter 4, ANESIA relied on the meta-heuristic optimization for estimating the

user preferences in the pre-negotiation phase, and the combination of MOO and

MCDM to generate (near) Pareto-optimal bids in the negotiation phase. However,

ANESIA did not account for how uncertainty propagated from the first to the second

phase before generating (near) Pareto-optimal bids. To address this uncertainty, in

this chapter, we presented fuzzy-ANESIA agent, an extension of ANESIA, which

explored the use of amalgamation of fuzzy MOO and fuzzy MCDM methods. To

evaluate the performance of our fuzzy approach, we first compared fuzzy and non-

fuzzy variants of six different negotiation strategies in different negotiation domains.

Then, we compared the performance of fuzzy-ANESIA against ANESIA and the

winning agents of ANAC’19 competition, where all the agents are dealing with their

owner’s preference uncertainties, and span a wide range of strategies and techniques.
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Chapter 7

Conclusions and Future work

In this chapter, we provide an overall summary of the research presented, the main

findings and its contribution to the area of automated bilateral negotiation. We also

present a discussion of future research directions. We start off with the summary

in Section 7.1 which is followed by the main findings of the research in Section 7.2.

The research contributions are presented in Section 7.3. Lastly, Section 7.4 presents

some considerations for future work.

7.1 Thesis Summary

In this thesis, we presented a novel Deep Reinforcement Learning (DRL) model

based on the actor-critic architecture for automated bilateral negotiations. Specif-

ically, we proposed four different variants of this negotiation model: ANEGMA,

ANESIA, DLST-ANESIA and fuzzy-ANESIA. In all the variants, we explored the

use of DRL with agent technology to help the agent decide what action to take

while negotiating with different unknown opponents, which use fixed or adaptive

strategies in different negotiation domains. We also explored the use of fuzzy/non-

fuzzy multi-objective optimization approaches to generate the Pareto-optimal solu-

tion when there is incomplete information about the user’s and opponent’s prefer-

ences. In addition, we used a multiple-criteria decision-making method to select one

among many Pareto-optimal solutions generated by a multi-objective optimization
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approach. Moreover, we used the RECON and GENIUS simulation platforms to

perform extensive experimental evaluation.

More specifically, the thesis started by presenting ANEGMA in Chapter 3, a novel

agent negotiation model supporting agent learning and adaptation during concur-

rent bilateral negotiations for e-markets like E-bay. An ANEGMA agent derives an

initial neural network strategy via supervised learning from well-known negotiation

models, and evolves the strategy via DRL. We empirically evaluated the performance

of an ANEGMA buyer agent against fixed but unknown to the agent seller strategies

in different e-market settings. We showed that ANEGMA outperforms well-known

“teacher strategies”, the strategies trained with SL only and those trained with DRL

only. Crucially, our model also exhibits adaptive behaviour in that it can transfer

to environments with unknown sellers, viz., sellers that use different strategies from

those used during training.

The thesis continued with introducing ANESIA in Chapter 4, another agent model

encapsulating different types of learning to support negotiation over multiple issues

and under user preference uncertainty. An ANESIA agent exploited the notion of

“strategy templates” to learn the best combination of acceptance and bidding tactics

during negotiation. The model relied on a meta-heuristic approach to learn the tactic

choice parameters, and among its tactics, it estimated an adaptive target threshold

utility learned with the help of an actor-critic DRL algorithm. Also, ANESIA agent

used stochastic search based on a nature-inspired single-objective, population-based

meta-heuristic approach, called Firefly Algorithm, for user modelling. Moreover,

we combined a multi-objective, population-based meta-heuristic approach called

NSGA-II and a multiple-criteria decision-making method called TOPSIS for gen-

erating Pareto bids during negotiation. We empirically evaluated the performance

of ANESIA against the winning agent strategies of previous ANAC tournaments in

different settings, showing that our agent outperforms opponents known at training
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time and can effectively transfer its knowledge to environments with previously un-

seen opponent agents and domains.

We, then presented DLST-ANESIA, an extension of ANESIA in Chapter 5. DLST-

ANESIA used the same notion of “strategy templates” as ANESIA in the previ-

ous chapter. However, DLST-ANESIA employed an actor-critic DRL algorithm

throughout the strategy, i.e, to learn (a) the tactic choice parameters for acceptance

and bidding strategies, and (b) the dynamic threshold utility value. The use of DRL

for learning choice parameters in DLST-ANESIA allowed the agent accumulate and

transfer the knowledge from one negotiation setting to another. This contrasted with

ANESIA, which used a meta-heuristic approach to estimate choice tactic parame-

ters only once and used the same strategy in all the negotiation settings. Extensive

experiments showed that DLST-ANESIA agent outperforms ANESIA and other

agents in terms of individual and social efficiency.

We finally presented fuzzy-ANESIA, another extension of ANESIA in Chapter 6,

which proposed the use of two-phase Pareto-bid generation process during the bid-

ding phase of the negotiation. This chapter, in particular, involves the experimental

analysis of a fuzzy-NSGA-II and fuzzy-TOPSIS for the generation of (near) Pareto-

optimal bids under user and opponent preference uncertainties. To the best of our

knowledge, this combination was the first attempt for solving the multi-objective

problem of finding the Pareto-optimal outcomes in multi-issue bilateral negotiations.

Extensive experiments showed that the proposed hybrid approach outperforms the

other agents in the analysis, as well as the original non-fuzzy Pareto approach.

7.2 Main Findings

The aim of the thesis, which was stated in the Chapter 1, was to design a learn-

able negotiation model using deep reinforcement learning for concurrent and non-

concurrent bilateral negotiations over one or more issues. More specifically, the
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thesis work was designed to address the following research question: “How can

agents learn a negotiation strategy from experience in settings varying from negoti-

ating against different opponent agents to negotiating in different domains?” This

research question was further broken down into various concrete research questions.

Below, we summarize how we addressed all these questions:

• Which DRL algorithm an agent should employ to learn the negotiation strategy?

Should the chosen algorithm work for both discrete and continuous action spaces?

Can the proposed work be used for both single and multiple issues? Since there

are a number of learning algorithms available in the literature, deciding an appro-

priate RL algorithm was one of the most difficult tasks. Taking into account the

number and type of issues (such as discrete and continuous) and the properties

of environment (such as fully-observable, and dynamic), we made the decision

of choosing the DDPG algorithm which fitted well according to our assumptions

that we made about the negotiation environment. Also, we were interested in the

DDPG algorithm because it generates a deterministic action selection policy for

the negotiating agent [86]. In addition, it is a model-free RL approach, which lets

our agent decide what action to take next in a negotiation dialogue, rather than

predicting the new state of the environment which was beyond the scope of this

work. Moreover, DDPG is an off-policy approach, which lets our agent learn a

policy/strategy and is different from the one used to take an action. This allowed

our agent to do independent exploration of continuous action spaces [86].

• How can the current state of the negotiation environment be represented? The

choice of input state attributes in every RL algorithm is very important to get an

appropriate output value. In our work, we chose a set of different state attributes

for each DDPG algorithm, involving the following common attributes: informa-

tion about the negotiation domain (such as number of issues), preferences of the

user (such as initial price and reservation price), and the history of opponent bids

(such as last received bid utility and average of all bids received so far).
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• Should the agent negotiate against opponent agents with fixed or dynamic strate-

gies during the learning process? Can we develop a generalized negotiation strategy

which is domain-independent as well as opponent-independent? Can the result-

ing negotiation strategy be interpretable? In our work, we were interested in an

agent strategy which is adaptive, and hence should be learned to negotiate against

unseen opponents and in unseen domains (i.e., not seen during the training) ef-

ficiently. We were equally interested in a strategy that has the potential to be

interpretable, so we proposed the notion of “strategy templates” (see Chapter 4)

that consist of a set of negotiation tactics to decide which action to take. Our agent

learned the strategy parameters in two different ways: (a) using a meta-heuristic

approach by learning the tactic choice parameter values offline and using it in all

the negotiation settings, and (b) using an online DRL process, which could adapt

the acceptance and bidding strategy while negotiating against different opponents

and in different domains. We observed in Chapter 5 that the latter outperformed

the former.

• How can we learn the preferences of an unknown opponent agent during the ne-

gotiation? We used an existing distribution-based frequency model to learn the

characteristics of the opponent agent, and showed the increase in negotiation per-

formance with opponent modelling in terms of social welfare utility rate. Propos-

ing a strategy for the opponent model independently was beyond the scope of this

thesis.

• How can we estimate the preferences of the user if only partial information is

given to the agent before the negotiation begins? We introduced the idea of using a

nature-inspired meta-heuristic approach for user modelling approaches. However,

which meta-heuristic approach to use is negotiable in this thesis, and hence they

are treated as pluggable components and can be used according to the application

needs. In Chapters 4 and 5, we used the Firefly algorithm, whereas, in Chapter 6,

we evaluated the performance of our model using the Cuckoo Search algorithm.
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• How can we reach Pareto-optimal agreements under incomplete information of

negotiating parties? How do we deal with the uncertainty in the estimated user

and opponent models during the negotiation process? To reach a Pareto-optimal

outcome, our agent had to consider the preferences of both the user agent and the

opponent agent, which makes it a multi-objective optimization problem. Since

meta-heuristics can provide acceptable solutions in a reasonable time for solving

complex problems by efficiently exploring the search space [138], we proposed the

use of multi-objective optimization (MOO) method. Since, the MOE method gen-

erates a list of Pareto-optimal bids, we combined it with a multi-criteria decision-

making (MCDM) method to select one bid among many Pareto optimal bids dur-

ing the bidding phase of the negotiation. Since we were dealing with incomplete

information of the user and opponent utility models, to address the uncertainty

while generating the Pareto-optimal bids, we advocated the use of fuzzy MOO

and fuzzy MCDM techniques in Chapter 6, with very encouraging results.

• What performance measures do we need to use to evaluate the decision-making

process? In order to evaluate the overall performance of negotiation, we considered

the widely adopted following metrics [88, 2]: average number of rounds, average

negotiation time, average distance to the Pareto Curve, average individual utility

gained by an agent, average social-welfare utility, and proportion of successful

negotiations.

7.3 Contributions

The main contributions of the research work were presented in Chapter 1. For

completeness, these are reiterated here, as follows:

• agent learn-ability- by proposing four different variants of DRL-based agent ne-

gotiation model for automated bilateral negotiations;

• concurrent negotiations- by allowing an agent to negotiate with different multiple

agents at the same time over one or more issues;
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• agent adaptiveness- by introducing the notion of “strategy templates” to learn

the best combination of acceptance and bidding tactics at any negotiation phase

while negotiating against different opponent agents in different domains;

• user preference modelling- by proposing to use stochastic search-based approach

for estimating the partial preferences of human users which are submitted to the

agent before the negotiation begins;

• social-welfare utility- by exploring the use of a combination of non-fuzzy/fuzzy-

based Multi-Objective Optimization (MOO) algorithm and Multi-Criteria Decision-

Making (MCDM) method to generate (near) Pareto-optimal bids and to address

the uncertainties in the estimated user and opponent models.

7.4 Future Directions

The research described in this thesis has demonstrated the capability of DRL to

let agents learn negotiation strategies that are adaptive and work well against a

number of different opponent agents and in different negotiation domains. However,

the reported research has also laid the ground for some future research work, as

discussed below:

• User Preference Elicitation: Although we considered user preference uncertain-

ties in this thesis, we abstracted away from the user preference elicitation problem

because it requires multiple interactions with the user. However, preference elici-

tation is important for obtaining an accurate user model, but may result in user

displeasure and bother, especially if the outcome is too large to elicit in its en-

tirety [9]. The open problem here is to explore the use of DRL approaches (i.e.,

learning based on experience) to consider the trade-off between a good negotiation

outcome and the effort required in the elicitation process.

• Preferential Dependency: We have assumed independent issues, where the choice

of one issue value doesn’t have any impact on the choice of other issue’s value.
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However, often preferential dependencies [95] are ubiquitous in real-life negoti-

ations. To address these preferential dependencies, utility functions may have

a more convoluted, non-linear structure, that we leave for future researchers to

consider during multi-issue negotiation.

• Opponent Modelling: We have also used the existing opponent modelling approach

to estimate the characteristics of opponent’s behaviour. There are many learning-

based approaches proposed by numerous researchers in the literature [59, 25, 154,

158, 84], but, we have been more concerned with learning from experience. So,

the open problem here is to amalgamate the use of actor-critic-based learning and

opponent modelling that may improve the negotiation performance.

• Library of Tactics: In our work, we proposed the concept of “strategy templates”

consisting of a series of handcrafted tactics to decide an action. We chose few

tactics for acceptance and bidding strategy as per our educated guess, while be-

ing mindful of what information is available to the agent from the (external)

world/environment or (internal) knowledge base. The possibility of having differ-

ent tactics/heuristics for each strategy brings up an idea of accommodating a new

component in the ANESIA model called “Library of Tactics”. This could allow

developers to design or introduce tactics as they see fit and plug them in their

strategies as per their needs. However, how such tactics can be combined, and

how their parameters can be learned, is an open problem.

• Human-Agent Negotiation: Finally, we have only considered the negotiation be-

tween artificial agents. However, in the future, agents will have to negotiate with

humans in the real-world, where not all humans will be able to deploy agents

to negotiate on their behalf. This would introduce more challenges as the agent

would also need to understand emotional and cultural intelligence of humans dur-

ing negotiation.
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Appendix A

Domains Used for Multi-Issue

Negotiation

Various multi-issue domains (all are readily available in GENIUS [88]) which were

used during the evaluation of ANESIA, DLST-ANESIA and fuzzy-ANESIA are de-

scribed as follows:

• Itex-Cypress: It is a buyer–seller business negotiation for one commodity.

It involves representatives of two companies: Itex Manufacturing, a producer

of bicycle components and Cypress Cycles, a builder of bicycles. This domain

consists of 4 issues: the price of the components, delivery times, payment

arrangements and terms for the return of possibly defective parts. Each issue

has 3 or 4 values, resulting in a domain with total 180 possible outcomes.

• Laptop: In this domain, a buyer and a seller negotiates over the specification

of a laptop. This domain consists of 3 issues: the laptop brand, size of the

external monitor and the size of the hard disk. Each issue consists of 3 values,

and hence makes it the smallest domain with only 27 possible outcomes.

• Grocery: In this domain, two agents representing two people living together

negotiates in a local supermarket who have different tastes. The domain con-

sists of 5 types of products (or issues): bread, fruit, snacks, spreads and veg-

etables. Each category has further 4 or 5 products, resulting in a medium-sized
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domain with 1600 possible outcomes.

• Camera: In this domain, a buyer agent and a seller agent negotiates over a

camera. The domain consists of 6 issues: maker, body, lens, tripod, bags and

accessories. Each category has 3 to 5 values, resulting in a domain with total

3600 possible outcomes.

• Energy (or Small Energy): In this domain, an agent representing elec-

tricity distribution company negotiates with another agent representing large

consumer. They negotiate over issues representing how much the consumer is

willing to reduce its consumption over a number of time slots for a day-ahead

market. This domain is the largest with 15625 total possible outcomes.

• Holiday: In this domain, two agents representing two people plan for their

next holiday while negotiating over the following 5 issues: destination, dura-

tion, budget, type of activities involved, and the transportation. Each issue

has 4 values, resulting in a domain with 1024 possible outcomes.

• Party: In this domain, two agents reprinting two people living together while

organizing a party negotiates over 6 issues: the food type, drinks type, location,

type of invitations, music and the clean up service. Each issue further consists

of 3 to 5 values, resulting in a domain with 3072 total possible outcomes.

• Smart Energy Grid: This domain is similar to Energy domain with only

4 issues, each having 5 values. This domain consists of total 625 possible

outcomes.

• Fitness: In this domain, two agents representing two people negotiate over

fitness membership. The domain consists of 5 issues such as: kind of fitness,

duration, distance to fitness center venue, fitness intensity, and the member-

ship. Each issue has 4 or 11 values, resulting in a domain with 3520 possible

outcomes.
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• Flight Booking: In this domain, two agents negotiate while booking a flight

over 3 issues: ticket price, departure airport city and departure date. Each

issue has 3 to 5 values, resulting in the domain with only 48 total possible

outcomes.

• Outfit: In this domain, two agents negotiate over the dress they should put

on for an event. There are 4 issues: shirts, pants, shoes and accessories, each

having 2 or 4 values, resulting in a domain with 128 total possible outcomes.
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Appendix B

Performance of ANESIA model
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Airport Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 119.3 ± 125.27 0.2 ± 0.26 1.38 ±
0.38

0.6 ± 0.2 0.81 ± 0.2 0.95

AgentGP • 127.66 ± 116.52 0.04 ±
0.14

1.48 ±
0.21

0.64 ±
0.12

0.65 ±
0.12

0.99

FSEGA2019 • 439.89 ± 636.24 0.06 ±
0.14

1.47 ±
0.18

0.75 ±
0.16

0.75 ±
0.16

1.00

AgentHerb ⋄ 10.64 ± 7.45 0.2 ± 0.22 1.25 ±
0.24

0.48 ±
0.22

0.48 ±
0.22

1.00

Agent33 ⋄ 374.62 ± 500.5 0.2 ± 0.24 1.23 ±
0.35

0.54 ±
0.16

0.54 ±
0.16

0.99

Sontag ⋄ 434.54 ± 488.25 0.11 ±
0.24

1.38 ±
0.34

0.73 ±
0.19

0.74 ±
0.19

0.97

AgreeableAgent
⋄

673.59 ± 705.79 0.13 ±
0.27

1.34 ±
0.37

0.82 ±
0.19

0.83 ±
0.19

0.96

PonpokoAgent
⋆

688.06 ± 648.93 0.18 ±
0.31

1.29 ±
0.44

0.82 ±
0.14

0.85 ±
0.1

0.92

ParsCat2 ⋆ 492.9 ± 539.28 0.09 ±
0.17

1.42 ±
0.25

0.75 ±
0.19

0.75 ±
0.19

1.00

Airport Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 117.9 ± 82.03 0.2 ± 0.22 1.19 ±
0.54

0.58 ±
0.23

0.79 ±
0.14

0.73

AgentGP • 98.23 ± 88.77 0.04 ±
0.10

1.17 ±
0.34

0.72 ±
0.18

0.74 ±
0.17

0.98

FSEGA2019 • 365.7 ± 388.48 0.06 ±
0.09

1.09 ±
0.32

0.74 ±
0.19

0.75 ±
0.18

0.98

AgentHerb ⋄ 3.83 ± 1.39 0.02 ±
0.05

1.52 ±
0.13

0.60 ±
0.13

0.60 ±
0.13

1.00

Agent33 ⋄ 128.23 ± 215.83 0.06 ±
0.09

1.33 ±
0.19

0.61 ±
0.15

0.61 ±
0.15

1.00

Sontag ⋄ 363.22 ± 387.03 0.06 ±
0.12

1.09 ±
0.36

0.74 ±
0.16

0.77 ±
0.13

0.96

AgreeableAgent
⋄

516.15 ± 483.34 0.05 ± 0.1 0.94 ±
0.36

0.82 ±
0.18

0.83 ±
0.15

0.97

PonpokoAgent
⋆

516.42 ± 483.8 0.08 ±
0.14

0.92 ±
0.38

0.80 ±
0.18

0.84 ±
0.09

0.93

ParsCat2 ⋆ 417.44 ± 424.29 0.06 ± 0.1 1.05 ±
0.33

0.76 ±
0.16

0.77 ±
0.14

0.98

Table B.1: Performance of ANESIA-Random - Ablation Study2 - over domain AIR-
PORT (1440 ×2 profiles = 2880 simulations)
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Camera Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 274.92 ± 264.37 0.29 ±
0.09

1.19 ±
0.56

0.65 ±
0.15

0.71 ±
0.14

0.74

AgentGP • 110.31 ± 240.73 0.16 ± 0.2 1.14 ±
0.42

0.63 ±
0.19

0.65 ± 0.2 0.91

FSEGA2019 • 58.45 ± 37.13 0.16 ±
0.25

1.1 ± 0.49 0.78 ±
0.15

0.82 ± 0.1 0.86

AgentHerb ⋄ 5.15 ± 2.07 0.06 ±
0.09

1.4 ± 0.21 0.52 ±
0.22

0.52 ±
0.22

1.00

Agent33 ⋄ 410.81 ± 630.4 0.06 ±
0.07

1.4 ± 0.2 0.7 ± 0.18 0.7 ± 0.18 1.00

Sontag ⋄ 651.37 ±
1116.79

0.06 ±
0.1

1.36 ±
0.23

0.74 ±
0.14

0.74 ±
0.14

0.99

AgreeableAgent
⋄

1094.92 ±
1708.08

0.09 ±
0.19

1.14 ±
0.38

0.82 ±
0.17

0.84 ±
0.15

0.93

PonpokoAgent
⋆

966.69 ±
1428.05

0.17 ±
0.28

1.06 ±
0.54

0.79 ±
0.16

0.86 ±
0.09

0.82

ParsCat2 ⋆ 727.34 ±
1084.22

0.08 ±
0.15

1.22 ±
0.34

0.72 ±
0.22

0.73 ±
0.22

0.96

Camera Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 250.76 ± 274.49 0.2 ± 0.18 1.38 ±
0.49

0.56 ±
0.32

0.72 ±
0.12

0.78

AgentGP • 74.14 ± 210.46 0.14 ±
0.15

1.05 ±
0.48

0.62 ±
0.25

0.71 ± 0.1 0.88

FSEGA2019 • 50.78 ± 38.82 0.09 ±
0.15

1.03 ±
0.46

0.74 ±
0.28

0.83 ±
0.11

0.89

AgentHerb ⋄ 3.14 ± 0.94 0.06 ± 0.1 1.40 ±
0.2

0.51 ±
0.19

0.51 ±
0.19

1.00

Agent33 ⋄ 173.88 ± 189.77 0.05 ±
0.07

1.37 ± 0.2 0.66 ±
0.18

0.66 ±
0.18

1.00

Sontag ⋄ 594.8 ± 919.74 0.03 ±
0.07

1.26 ±
0.27

0.79 ±
0.15

0.8 ± 0.13 0.99

AgreeableAgent
⋄

1013.27 ±
1200.7

0.06 ±
0.13

0.92 ±
0.36

0.78 ±
0.26

0.84 ±
0.17

0.93

PonpokoAgent
⋆

754.45 ± 992.61 0.08 ±
0.17

1.02 ±
0.48

0.76 ±
0.31

0.88 ±
0.06

0.87

ParsCat2 ⋆ 532.5 ± 745.04 0.05 ±
0.09

1.16 ±
0.34

0.78 ±
0.17

0.80 ±
0.12

0.97

Table B.2: Performance of ANESIA-Random - Ablation Study2 - over domain Cam-
era (1440 ×2 profiles = 2880 simulations)
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Energy Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 824.42 ± 789.03 0.19 ±
0.21

1.11 ±
0.29

0.45 ±
0.22

0.46 ±
0.22

0.94

AgentGP • 56.54 ± 208.7 0.47 ±
0.38

0.64 ±
0.55

0.42 ±
0.19

0.54 ±
0.15

0.58

FSEGA2019 • 215.66 ± 125.98 0.6 ± 0.4 0.41 ±
0.53

0.48 ±
0.29

0.85 ±
0.08

0.38

AgentHerb ⋄ 35.12 ± 25.49 0.08 ±
0.08

1.08 ± 0.1 0.25 ±
0.16

0.25 ±
0.16

1.00

Agent33 ⋄ 7123.76 ±
9819.55

0.15 ±
0.12

1.10 ±
0.18

0.48 ±
0.17

0.48 ±
0.17

0.98

Sontag ⋄ 9379.17 ±
12799.92

0.37 ±
0.36

0.77 ±
0.51

0.57 ±
0.23

0.71 ±
0.12

0.71

AgreeableAgent
⋄

10773.89 ±
13829.31

0.23 ±
0.29

0.92 ±
0.39

0.46 ±
0.26

0.5 ± 0.27 0.86

PonpokoAgent
⋆

10507.22 ±
13470.76

0.52 ±
0.42

0.51 ±
0.54

0.53 ± 0.3 0.84 ± 0.1 0.47

ParsCat2 ⋆ 7395.98 ±
9537.85

0.37 ±
0.37

0.75 ±
0.51

0.55 ±
0.24

0.69 ±
0.17

0.69

Energy Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 796.79 ± 817.44 0.08 ±
0.09

1.14 ±
0.27

0.5 ± 0.21 0.51 ±
0.21

0.95

AgentGP • 54.79 ± 186.11 0.46 ±
0.39

0.66 ±
0.57

0.43 ±
0.19

0.56 ±
0.14

0.58

FSEGA2019 • 214.71 ± 125.46 0.59 ± 0.4 0.44 ±
0.53

0.49 ± 0.3 0.84 ±
0.08

0.41

AgentHerb ⋄ 35.2 ± 26.87 0.08 ±
0.08

1.10 ±
0.11

0.26 ±
0.16

0.26 ±
0.16

1.00

Agent33 ⋄ 6776.28 ±
8751.38

0.16 ±
0.17

1.08 ±
0.25

0.46 ±
0.17

0.47 ±
0.16

0.96

Sontag ⋄ 8960.3 ±
12934.01

0.36 ±
0.36

0.79 ± 0.5 0.57 ±
0.23

0.69 ±
0.13

0.72

AgreeableAgent
⋄

9835.89 ±
13329.52

0.2 ± 0.26 0.97 ±
0.35

0.49 ±
0.26

0.52 ±
0.27

0.89

PonpokoAgent
⋆

9539.13 ±
12556.79

0.54 ±
0.41

0.49 ±
0.55

0.52 ± 0.3 0.84 ±
0.09

0.46

ParsCat2 ⋆ 7983.96 ±
10401.7

0.38 ±
0.36

0.75 ±
0.51

0.54 ±
0.23

0.67 ±
0.15

0.69

Table B.3: Performance of ANESIA-Random - Ablation Study2 - over domain En-
ergy (1440 ×2 profiles = 2880 simulations)
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Grocery Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 237.6 ± 225.72 0.21 ±
0.24

1.27 ±
0.45

0.64 ±
0.28

0.73 ±
0.14

0.87

AgentGP • 91.72 ± 175.14 0.21 ±
0.15

1.27 ±
0.31

0.72 ±
0.19

0.75 ±
0.13

0.96

FSEGA2019 • 206.3 ± 292.85 0.22 ± 0.1 1.22 ±
0.22

0.64 ±
0.16

0.65 ±
0.14

0.98

AgentHerb ⋄ 4.96 ± 2.37 0.26 ±
0.07

1.24 ±
0.14

0.51 ±
0.15

0.51 ±
0.15

1.00

Agent33 ⋄ 90.53 ± 97.13 0.24 ±
0.07

1.25 ±
0.14

0.57 ±
0.16

0.57 ±
0.16

1.00

Sontag ⋄ 363.54 ± 669.3 0.21 ±
0.08

1.25 ±
0.17

0.66 ±
0.14

0.66 ±
0.13

0.99

AgreeableAgent
⋄

808.19 ± 812.66 0.23 ±
0.11

1.04 ±
0.19

0.68 ±
0.13

0.69 ±
0.09

0.98

PonpokoAgent
⋆

441.17 ± 605.81 0.22 ±
0.12

1.20 ±
0.24

0.68 ±
0.15

0.70 ± 0.1 0.97

ParsCat2 ⋆ 313.02 ± 395.48 0.22 ± 0.1 1.23 ±
0.22

0.66 ±
0.16

0.67 ±
0.13

0.98

Grocery Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 262.29 ± 255.59 0.22 ±
0.22

1.28 ±
0.36

0.67 ±
0.16

0.68 ±
0.16

0.95

AgentGP • 134.48 ± 252.2 0.25 ±
0.22

1.33 ±
0.34

0.70 ±
0.12

0.71 ±
0.11

0.95

FSEGA2019 • 291.65 ± 329.34 0.24 ±
0.09

1.32 ±
0.14

0.67 ±
0.11

0.67 ±
0.11

1.00

AgentHerb ⋄ 8.42 ± 3.82 0.22 ±
0.08

1.31 ±
0.12

0.54 ± 0.1 0.54 ± 0.1 1.00

Agent33 ⋄ 531.96 ± 769.85 0.27 ±
0.14

1.29 ±
0.22

0.63 ±
0.09

0.63 ±
0.09

0.98

Sontag ⋄ 392.43 ± 571.41 0.23 ± 0.1 1.33 ±
0.15

0.65 ±
0.11

0.65 ±
0.11

1.00

AgreeableAgent
⋄

1090.66 ±
1101.45

0.24 ±
0.12

1.31 ±
0.18

0.71 ± 0.1 0.72 ±
0.09

0.99

PonpokoAgent
⋆

769.14 ± 919.8 0.24 ±
0.13

1.32 ±
0.19

0.74 ±
0.1

0.74 ±
0.1

0.98

ParsCat2 ⋆ 598.63 ± 621.81 0.25 ± 0.1 1.31 ±
0.16

0.69 ±
0.09

0.69 ±
0.09

0.99

Table B.4: Performance of ANESIA-Random - Ablation Study2 - over domain Gro-
cery (1440 ×2 profiles = 2880 simulations)
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Fitness Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 7.11 ± 2.59 0.05 ±
0.07

1.49 ±
0.08

0.89 ±
0.13

0.89 ±
0.13

1.00

AgentGP • 577.86 ±
1122.43

0.19 ±
0.31

1.16 ±
0.56

0.64 ±
0.16

0.67 ±
0.16

0.82

FSEGA2019 • 1476.17 ±
1984.41

0.1 ± 0.16 1.3 ± 0.29 0.77 ±
0.13

0.78 ±
0.12

0.96

AgentHerb ⋄ 7.23 ± 3.22 0.04 ±
0.05

1.49 ±
0.05

0.58 ± 0.1 0.58 ± 0.1 1.00

Agent33 ⋄ 569.85 ± 956.24 0.07 ±
0.05

1.43 ±
0.07

0.69 ±
0.12

0.69 ±
0.12

1.00

Sontag ⋄ 1708.57 ±
2728.7

0.09 ±
0.14

1.33 ±
0.26

0.78 ±
0.14

0.78 ±
0.13

0.97

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

2805.01 ±
4277.85

0.09 ±
0.16

1.26 ±
0.28

0.83 ±
0.13

0.84 ±
0.11

0.96

ParsCat2 ⋆ 2641.97 ±
4328.13

0.11 ±
0.16

1.27 ±
0.29

0.79 ±
0.13

0.80 ±
0.12

0.96

Fitness Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 7.88 ± 2.6 0.08 ±
0.05

1.48 ±
0.08

0.77 ±
0.09

0.77 ±
0.09

1.00

AgentGP • 121.18 ± 359.01 0.08 ±
0.12

1.48 ±
0.17

0.76 ±
0.08

0.76 ±
0.06

0.99

FSEGA2019 • 2461.25 ±
3791.92

0.05 ±
0.04

1.51 ±
0.06

0.77 ±
0.11

0.77 ±
0.11

1.00

AgentHerb ⋄ 9.57 ± 3.75 0.06 ±
0.03

1.48 ±
0.05

0.6 ± 0.09 0.6 ± 0.09 1.00

Agent33 ⋄ 4209.9 ±
6395.93

0.09 ±
0.13

1.46 ±
0.18

0.78 ±
0.11

0.79 ±
0.09

0.99

Sontag ⋄ 3223.29 ±
6109.35

0.06 ±
0.05

1.49 ±
0.07

0.73 ±
0.11

0.73 ±
0.11

1.00

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

5035.09 ±
7372.96

0.08 ±
0.04

1.47 ±
0.05

0.8 ±
0.08

0.80 ±
0.08

1.00

ParsCat2 ⋆ 4005.65 ±
5637.52

0.07 ±
0.05

1.49 ±
0.07

0.77 ±
0.11

0.77 ±
0.11

1.00

Table B.5: Performance of ANESIA-Random - Ablation Study2 - over domain Fit-
ness (1440 ×2 profiles = 2880 simulations)
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Flight Booking Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 579.56 ± 684.55 0.34 ±
0.27

1.16 ±
0.63

0.66 ±
0.21

0.77 ±
0.24

0.46

AgentGP • 529.11 ± 275.89 0.43 ±
0.24

0.38 ±
0.57

0.55 ±
0.12

0.65 ±
0.16

0.32

FSEGA2019 • 3146.95 ±
4221.66

0.46 ±
0.24

0.24 ±
0.49

0.60 ± 0.2 1.0 ± 0.0 0.21

AgentHerb ⋄ 553.35 ±
1149.49

0.12 ±
0.2

1.16 ±
0.47

0.52 ±
0.16

0.52 ±
0.17

0.87

Agent33 ⋄ 1633.69 ±
2938.1

0.12 ±
0.2

1.01 ±
0.43

0.46 ±
0.15

0.45 ±
0.16

0.87

Sontag ⋄ 3183.22 ±
4665.68

0.38 ±
0.27

0.48 ±
0.62

0.66 ±
0.21

0.91 ±
0.11

0.39

AgreeableAgent
⋄

3320.16 ±
4423.85

0.47 ±
0.23

0.25 ±
0.51

0.60 ±
0.19

0.98 ±
0.02

0.20

PonpokoAgent
⋆

3631.62 ±
4792.51

0.4 ± 0.26 0.39 ±
0.56

0.64 ± 0.2 0.93 ±
0.06

0.33

ParsCat2 ⋆ 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

Flight Booking Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 423.39 ± 441.28 0.14 ±
0.36

1.37 ±
0.65

0.65 ±
0.27

0.71 ± 0.2 0.64

AgentGP • 379.36 ± 186.91 0.3 ± 0.35 0.94 ±
0.65

0.55 ±
0.24

0.68 ±
0.16

0.69

FSEGA2019 • 1785.01 ±
2478.1

0.43 ±
0.37

0.69 ±
0.66

0.59 ±
0.32

0.90 ±
0.04

0.52

AgentHerb ⋄ 15.74 ± 40.39 0.06 ±
0.07

1.38 ±
0.14

0.52 ±
0.18

0.52 ±
0.18

1.00

Agent33 ⋄ 844.28 ±
1399.65

0.12 ±
0.19

1.22 ±
0.34

0.47 ±
0.16

0.49 ±
0.16

0.94

Sontag ⋄ 1774.16 ±
2450.49

0.3 ± 0.34 0.92 ±
0.61

0.69 ±
0.29

0.87 ±
0.07

0.70

AgreeableAgent
⋄

1959.73 ±
2285.3

0.17 ±
0.22

1.1 ± 0.37 0.64 ±
0.25

0.68 ±
0.23

0.91

PonpokoAgent
⋆

1981.05 ±
2660.34

0.37 ±
0.36

0.76 ±
0.64

0.63 ±
0.32

0.89 ±
0.07

0.59

ParsCat2 ⋆ 1253.69 ±
1916.01

0.18 ±
0.21

1.17 ± 0.4 0.67 ±
0.22

0.71 ±
0.19

0.91

Table B.6: Performance of ANESIA-Random - Ablation Study2 - over domain Flight
Booking (1440 ×2 profiles = 2880 simulations)
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Itex Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 617.8 ± 561.02 0.14 ± 0.2 1.13 ±
0.44

0.67 ±
0.18

0.74 ±
0.22

0.53

AgentGP • 378.94 ± 185.01 0.11 ±
0.17

0.6 ± 0.36 0.53 ±
0.24

0.53 ±
0.26

0.80

FSEGA2019 • 2987.34 ±
3904.42

0.1 ± 0.15 0.68 ±
0.35

0.66 ± 0.2 0.68 ±
0.21

0.85

AgentHerb ⋄ 9.19 ± 5.43 0.04 ±
0.06

1.14 ±
0.09

0.26 ±
0.11

0.26 ±
0.11

1.00

Agent33 ⋄ 1731.26 ±
2910.4

0.06 ± 0.1 0.87 ± 0.3 0.41 ±
0.18

0.41 ±
0.18

0.96

Sontag ⋄ 2993.49 ±
4288.98

0.13 ±
0.18

0.65 ±
0.41

0.69 ±
0.19

0.75 ±
0.18

0.77

AgreeableAgent
⋄

3950.25 ±
4843.71

0.16 ± 0.2 0.49 ±
0.38

0.67 ±
0.22

0.75 ±
0.23

0.69

PonpokoAgent
⋆

3704.35 ±
4514.84

0.26 ±
0.21

0.35 ± 0.4 0.66 ± 0.2 0.86 ±
0.12

0.46

ParsCat2 ⋆ 2781.19 ±
3545.69

0.14 ±
0.18

0.62 ±
0.42

0.63 ±
0.21

0.67 ±
0.23

0.75

Itex Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 632.74 ± 580.27 0.12 ±
0.27

1.19 ±
0.47

0.60 ±
0.26

0.75 ±
0.19

0.75

AgentGP • 490.14 ± 513.72 0.14 ±
0.24

0.9 ± 0.42 0.65 ±
0.26

0.73 ±
0.21

0.83

FSEGA2019 • 1652.04 ±
2586.89

0.05 ±
0.13

1.1 ± 0.25 0.64 ±
0.22

0.65 ±
0.21

0.96

AgentHerb ⋄ 6.5 ± 4.92 0.04 ±
0.05

1.2 ± 0.08 0.36 ±
0.14

0.36 ±
0.14

1.00

Agent33 ⋄ 504.73 ± 674.86 0.05 ±
0.09

1.16 ±
0.17

0.43 ±
0.18

0.44 ±
0.18

0.99

Sontag ⋄ 1754.89 ±
2934.17

0.05 ±
0.13

1.12 ±
0.26

0.63 ±
0.22

0.65 ±
0.21

0.96

AgreeableAgent
⋄

3252.78 ±
4395.75

0.07 ±
0.18

0.98 ±
0.31

0.73 ±
0.24

0.77 ± 0.2 0.92

PonpokoAgent
⋆

2817.47 ±
4135.53

0.08 ±
0.19

1.01 ±
0.34

0.72 ±
0.21

0.76 ±
0.16

0.91

ParsCat2 ⋆ 1782.24 ±
2686.54

0.04 ±
0.13

1.11 ±
0.24

0.64 ±
0.23

0.66 ±
0.22

0.96

Table B.7: Performance of ANESIA-Random - Ablation Study2 - over domain
ItexVSCypress (1440 ×2 profiles = 2880 simulations)
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Outfit Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 231.72 ± 201.41 0.16 ±
0.25

1.16 ±
0.61

0.91 ±
0.22

0.95 ±
0.1

0.70

AgentGP • 434.14 ± 336.49 0.17 ±
0.25

0.85 ±
0.64

0.78 ± 0.2 0.91 ±
0.08

0.69

FSEGA2019 • 329.94 ± 300.72 0.02 ±
0.1

1.29 ±
0.35

0.81 ±
0.14

0.82 ±
0.12

0.96

AgentHerb ⋄ 4.03 ± 1.69 0.03 ±
0.08

1.54 ±
0.17

0.59 ±
0.19

0.59 ±
0.19

1.00

Agent33 ⋄ 133.28 ± 184.98 0.03 ± 0.1 1.45 ±
0.34

0.66 ±
0.15

0.67 ±
0.15

0.97

Sontag ⋄ 330.15 ± 416.61 0.02 ±
0.11

1.33 ±
0.37

0.79 ±
0.13

0.81 ±
0.11

0.96

AgreeableAgent
⋄

606.94 ± 603.53 0.06 ±
0.17

1.04 ±
0.46

0.89 ±
0.16

0.93 ±
0.09

0.89

PonpokoAgent
⋆

515.5 ± 528.72 0.10 ±
0.19

1.04 ±
0.48

0.86 ±
0.15

0.92 ±
0.06

0.86

ParsCat2 ⋆ 457.02 ± 446.94 0.03 ±
0.12

1.19 ±
0.37

0.85 ±
0.13

0.86 ±
0.11

0.95

Outfit Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-rand 244.09 ± 184.21 0.02 ±
0.35

1.48 ±
0.65

0.85 ±
0.31

0.92 ±
0.12

0.74

AgentGP • 471.28 ± 350.46 0.27 ±
0.38

0.99 ±
0.70

0.70 ±
0.32

0.92 ±
0.06

0.68

FSEGA2019 • 354.92 ± 351.88 0.04 ±
0.16

1.45 ±
0.34

0.8 ± 0.16 0.82 ±
0.12

0.96

AgentHerb ⋄ 5.81 ± 3.33 0.02 ±
0.06

1.57 ±
0.16

0.6 ± 0.17 0.60 ±
0.17

1.00

Agent33 ⋄ 238.07 ± 344.83 0.04 ±
0.16

1.49 ±
0.35

0.69 ±
0.17

0.71 ±
0.14

0.96

Sontag ⋄ 324.25 ± 378.77 0.02 ±
0.13

1.5 ± 0.28 0.8 ± 0.14 0.81 ±
0.11

0.97

AgreeableAgent
⋄

669.56 ± 600.28 0.09 ±
0.25

1.25 ±
0.46

0.85 ±
0.23

0.92 ±
0.12

0.90

PonpokoAgent
⋆

536.27 ± 546.4 0.12 ±
0.27

1.27 ± 0.5 0.83 ±
0.23

0.91 ±
0.06

0.88

ParsCat2 ⋆ 498.14 ± 487.94 0.05 ±
0.18

1.39 ±
0.36

0.83 ±
0.17

0.87 ± 0.1 0.95

Table B.8: Performance of ANESIA-Random - Ablation Study2 - over domain Outfit
(1440 ×2 profiles = 2880 simulations)
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Airport Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 414.88 ± 381.14 0.1 ± 0.5 1.43 ±
0.71

0.61 ±
0.16

0.86 ±
0.17

0.58

AgentGP • 159.14 ± 137.0 0.08 ±
0.22

1.43 ±
0.32

0.64 ±
0.13

0.65 ±
0.13

0.96

FSEGA2019 • 994.88 ±
1324.82

0.1 ±
0.24

1.41 ±
0.34

0.75 ±
0.17

0.75 ±
0.16

0.96

AgentHerb ⋄ 9.9 ± 3.64 0.19 ±
0.22

1.28 ±
0.24

0.5 ± 0.23 0.5 ± 0.23 1.00

Agent33 ⋄ 971.03 ±
1467.42

0.25 ±
0.31

1.16 ±
0.44

0.55 ±
0.16

0.55 ±
0.17

0.93

Sontag ⋄ 1101.3 ±
1448.19

0.14 ±
0.28

1.35 ±
0.41

0.72 ±
0.19

0.74 ±
0.18

0.94

AgreeableAgent
⋄

1778.16 ±
2007.86

0.17 ±
0.32

1.29 ±
0.45

0.79 ± 0.2 0.81 ±
0.19

0.92

PonpokoAgent
⋆

1716.79 ±
2102.82

0.21 ±
0.35

1.24 ± 0.5 0.81 ±
0.15

0.86 ± 0.1 0.88

ParsCat2 ⋆ 1137.39 ±
1502.72

0.14 ±
0.27

1.35 ±
0.38

0.72 ±
0.19

0.73 ±
0.19

0.95

Airport Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 328.8 ± 325.31 0.07 ±
0.24

1.52 ±
0.61

0.53 ±
0.26

0.84 ±
0.14

0.58

AgentGP • 116.17 ± 102.35 0.07 ±
0.15

1.1 ± 0.43 0.7 ± 0.21 0.74 ±
0.17

0.92

FSEGA2019 • 832.59 ± 857.95 0.07 ±
0.12

1.05 ±
0.37

0.72 ± 0.2 0.75 ±
0.18

0.95

AgentHerb ⋄ 4.42 ± 3.69 0.03 ±
0.08

1.51 ±
0.15

0.59 ±
0.13

0.59 ±
0.13

1.00

Agent33 ⋄ 255.76 ± 452.66 0.07 ±
0.09

1.34 ±
0.17

0.62 ±
0.15

0.62 ±
0.15

1.00

Sontag ⋄ 754.03 ± 784.9 0.08 ±
0.15

1.06 ±
0.41

0.72 ±
0.18

0.76 ±
0.13

0.92

AgreeableAgent
⋄

1142.5 ±
1144.36

0.07 ±
0.13

0.89 ± 0.4 0.79 ±
0.22

0.82 ±
0.17

0.93

PonpokoAgent
⋆

1066.46 ±
999.52

0.12 ±
0.18

0.86 ±
0.44

0.75 ±
0.23

0.84 ±
0.1

0.85

ParsCat2 ⋆ 875.01 ± 985.44 0.08 ±
0.13

1.02 ±
0.38

0.73 ±
0.18

0.76 ±
0.14

0.94

Table B.9: Performance of ANESIA-DRL - Ablation Study1 - over domain AIR-
PORT (1440 ×2 profiles = 2880 simulations)
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Camera Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 340.58 ± 320.93 0.04 ±
0.32

1.47 ±
0.62

0.64 ±
0.14

0.86 ±
0.11

0.57

AgentGP • 105.21 ± 268.21 0.17 ±
0.23

1.12 ±
0.45

0.65 ±
0.19

0.67 ±
0.19

0.88

FSEGA2019 • 59.61 ± 38.96 0.19 ±
0.29

1.03 ±
0.55

0.76 ±
0.16

0.83 ± 0.1 0.80

AgentHerb ⋄ 4.99 ± 2.94 0.06 ±
0.08

1.41 ± 0.2 0.53 ±
0.22

0.53 ±
0.22

1.00

Agent33 ⋄ 422.69 ± 630.12 0.06 ±
0.07

1.41 ±
0.19

0.69 ±
0.18

0.69 ±
0.18

1.00

Sontag ⋄ 704.9 ± 974.92 0.07 ±
0.14

1.35 ±
0.29

0.74 ±
0.15

0.74 ±
0.15

0.97

AgreeableAgent
⋄

1240.49 ±
1523.91

0.12 ±
0.23

1.1 ± 0.45 0.80 ±
0.18

0.84 ±
0.16

0.89

PonpokoAgent
⋆

1094.52 ±
1461.7

0.17 ±
0.28

1.06 ±
0.54

0.79 ±
0.16

0.86 ±
0.08

0.81

ParsCat2 ⋆ 873.76 ±
1259.51

0.09 ±
0.16

1.23 ±
0.34

0.74 ±
0.18

0.76 ±
0.18

0.95

Camera Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 280.15 ± 286.97 0.06 ± 0.2 1.47 ±
0.57

0.47 ±
0.37

0.88 ±
0.13

0.64

AgentGP • 83.22 ± 220.98 0.14 ±
0.16

1.04 ±
0.49

0.61 ±
0.25

0.7 ± 0.11 0.88

AgentHerb ⋄ 3.15 ± 0.77 0.05 ± 0.1 1.4 ± 0.19 0.5 ± 0.19 0.5 ± 0.19 1.00
FSEGA2019 • 52.5 ± 41.27 0.09 ±

0.17
1.02 ±
0.48

0.73 ± 0.3 0.85 ± 0.1 0.87

Agent33 ⋄ 180.65 ± 213.62 0.05 ±
0.08

1.39 ± 0.2 0.68 ±
0.18

0.68 ±
0.18

1.00

Sontag ⋄ 637.83 ± 979.8 0.03 ±
0.08

1.26 ±
0.29

0.79 ±
0.17

0.8 ± 0.13 0.98

AgreeableAgent
⋄

1115.14 ±
1334.16

0.07 ±
0.14

0.9 ± 0.38 0.76 ±
0.29

0.84 ±
0.17

0.91

PonpokoAgent
⋆

821.57 ±
1069.73

0.1 ± 0.18 0.99 ±
0.52

0.74 ±
0.33

0.88 ±
0.06

0.83

ParsCat2 ⋆ 666.97 ± 968.01 0.06 ±
0.11

1.15 ±
0.38

0.76 ±
0.21

0.8 ± 0.13 0.95

Table B.10: Performance of ANESIA-DRL - Ablation Study1 - over domain Camera
(1440 ×2 profiles = 2880 simulations)
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Energy Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 1397.63 ±
1143.1

0.08 ±
0.28

1.09 ±
0.49

0.56 ±
0.12

0.89 ±
0.16

0.36

AgentGP • 131.72 ± 319.48 0.29 ±
0.28

0.66 ±
0.48

0.5 ± 0.16 0.51 ±
0.19

0.68

FSEGA2019 • 227.86 ± 126.06 0.57 ±
0.24

0.19 ±
0.39

0.57 ±
0.14

0.84 ±
0.09

0.20

AgentHerb ⋄ 22.92 ± 14.14 0.07 ±
0.07

1.08 ±
0.08

0.24 ±
0.18

0.24 ±
0.18

1.00

Agent33 ⋄ 10734.09 ±
15636.62

0.22 ±
0.24

0.81 ±
0.43

0.51 ± 0.1 0.52 ±
0.12

0.80

Sontag ⋄ 12776.72 ±
18396.44

0.33 ±
0.31

0.57 ± 0.5 0.65 ±
0.17

0.76 ±
0.14

0.57

AgreeableAgent
⋄

16867.8 ±
20128.27

0.41 ±
0.31

0.42 ±
0.47

0.6 ± 0.17 0.72 ± 0.2 0.46

PonpokoAgent
⋆

15871.0 ±
19512.87

0.56 ±
0.26

0.2 ± 0.4 0.58 ±
0.17

0.89 ±
0.13

0.21

ParsCat2 ⋆ 11643.55 ±
14293.92

0.39 ± 0.3 0.49 ±
0.49

0.59 ±
0.15

0.68 ±
0.17

0.50

Energy Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 1332.93 ±
1083.96

0.09 ±
0.39

0.46 ±
0.55

1.1 ±
0.22

0.86 ±
0.16

0.41

AgentGP • 46.98 ± 167.92 0.55 ±
0.39

0.53 ±
0.57

0.4 ± 0.19 0.56 ±
0.16

0.47

FSEGA2019 • 225.93 ± 125.07 0.64 ±
0.39

0.36 ±
0.51

0.45 ±
0.28

0.83 ±
0.07

0.34

AgentHerb ⋄ 34.68 ± 26.82 0.08 ±
0.07

1.1 ±
0.1

0.26 ±
0.17

0.26 ±
0.17

1.00

Agent33 ⋄ 13342.01 ±
16011.07

0.22 ±
0.26

0.99 ±
0.38

0.43 ±
0.17

0.46 ±
0.16

0.88

Sontag ⋄ 17135.63 ±
22558.8

0.45 ±
0.38

0.66 ±
0.54

0.52 ±
0.24

0.70 ±
0.13

0.61

AgreeableAgent
⋄

18105.12 ±
22793.05

0.24 ±
0.29

0.92 ±
0.39

0.45 ±
0.26

0.48 ±
0.26

0.86

PonpokoAgent
⋆

18432.89 ±
22498.15

0.59 ±
0.41

0.42 ±
0.54

0.48 ± 0.3 0.86 ±
0.08

0.39

ParsCat2 ⋆ 14964.65 ±
18228.5

0.42 ±
0.38

0.7 ± 0.54 0.52 ±
0.24

0.67 ±
0.15

0.63

Table B.11: Performance of ANESIA-DRL - Ablation Study1 - over domain Energy
(1440 ×2 profiles = 2880 simulations)
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Grocery Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 277.41 ± 266.23 0.35 ± 0.3 1.24 ±
0.18

0.55 ±
0.35

0.76 ±
0.12

0.73

AgentGP • 102.75 ± 249.25 0.24 ± 0.2 1.22 ±
0.41

0.68 ±
0.24

0.75 ±
0.13

0.91

FSEGA2019 • 244.66 ± 356.63 0.25 ±
0.15

1.18 ±
0.32

0.62 ± 0.2 0.65 ±
0.13

0.95

AgentHerb ⋄ 5.22 ± 2.17 0.26 ±
0.08

1.23 ±
0.15

0.51 ±
0.15

0.51 ±
0.15

1.00

Agent33 ⋄ 90.96 ± 103.58 0.25 ±
0.08

1.24 ±
0.15

0.57 ±
0.17

0.57 ±
0.17

1.00

Sontag ⋄ 421.19 ± 754.88 0.22 ±
0.09

1.24 ±
0.19

0.65 ±
0.15

0.65 ±
0.13

0.99

AgreeableAgent
⋄

1018.44 ±
1054.97

0.26 ±
0.16

1.0 ± 0.28 0.65 ±
0.19

0.69 ±
0.09

0.94

PonpokoAgent
⋆

562.66 ± 838.23 0.25 ±
0.17

1.14 ±
0.35

0.64 ±
0.21

0.69 ± 0.1 0.93

ParsCat2 ⋆ 467.61 ± 675.5 0.23 ±
0.11

1.22 ±
0.24

0.66 ±
0.17

0.67 ±
0.13

0.97

Grocery Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 389.41 ± 336.37 0.35 ±
0.45

1.33 ±
0.69

0.64 ±
0.16

0.75 ±
0.14

0.60

AgentGP • 164.79 ± 327.31 0.33 ±
0.33

1.2 ± 0.51 0.68 ±
0.12

0.72 ± 0.1 0.85

FSEGA2019 • 336.73 ± 437.68 0.26 ±
0.18

1.28 ±
0.27

0.66 ±
0.11

0.67 ± 0.1 0.96

AgentHerb ⋄ 8.78 ± 3.58 0.22 ±
0.09

1.31 ±
0.12

0.53 ±
0.11

0.53 ±
0.11

1.00

Agent33 ⋄ 829.95 ±
1243.28

0.32 ±
0.24

1.22 ±
0.38

0.63 ±
0.09

0.64 ±
0.09

0.92

Sontag ⋄ 591.79 ± 969.8 0.25 ±
0.14

1.31 ±
0.21

0.64 ± 0.1 0.64 ± 0.1 0.98

AgreeableAgent
⋄

1513.15 ±
1551.39

0.32 ±
0.27

1.19 ±
0.42

0.69 ±
0.11

0.71 ± 0.1 0.90

PonpokoAgent
⋆

1067.18 ±
1318.49

0.31 ±
0.29

1.2 ± 0.43 0.72 ±
0.13

0.75 ±
0.11

0.89

ParsCat2 ⋆ 823.48 ± 888.27 0.28 ±
0.23

1.26 ±
0.35

0.67 ±
0.11

0.69 ± 0.1 0.93

Table B.12: Performance of ANESIA-DRL - Ablation Study1 - over domain Grocery
(1440 ×2 profiles = 2880 simulations)
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Fitness Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 6.5 ± 2.6 0.05 ±
0.06

1.48 ±
0.07

0.87 ±
0.15

0.87 ±
0.15

1.00

AgentGP • 507.39 ±
1234.05

0.1 ± 0.2 1.32 ±
0.37

0.67 ±
0.16

0.68 ±
0.16

0.93

FSEGA2019 • 2142.49 ±
3180.88

0.09 ±
0.14

1.32 ±
0.25

0.77 ±
0.13

0.78 ±
0.12

0.97

AgentHerb ⋄ 7.36 ± 3.51 0.05 ±
0.05

1.48 ±
0.05

0.58 ± 0.1 0.58 ± 0.1 1.00

Agent33 ⋄ 761.68 ±
1289.88

0.07 ±
0.05

1.44 ±
0.07

0.68 ±
0.12

0.68 ±
0.12

1.00

Sontag ⋄ 2813.95 ±
5044.51

0.07 ±
0.07

1.36 ±
0.14

0.78 ±
0.13

0.79 ±
0.13

1.00

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

3993.86 ±
5928.48

0.07 ±
0.09

1.3 ± 0.18 0.84 ±
0.11

0.84 ±
0.11

0.99

ParsCat2 ⋆ 3173.43 ±
4762.17

0.08 ±
0.08

1.32 ±
0.17

0.8 ± 0.12 0.8 ± 0.12 0.99

Fitness Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 8.05 ± 2.67 0.05 ±
0.05

1.51 ±
0.09

0.81 ±
0.08

0.81 ±
0.08

1.00

AgentGP • 86.82 ± 151.37 0.06 ±
0.03

1.50 ±
0.04

0.76 ±
0.07

0.76 ±
0.07

1.00

FSEGA2019 • 7584.39 ±
7834.62

0.05 ±
0.04

1.51 ±
0.06

0.77 ±
0.11

0.77 ±
0.11

1.00

AgentHerb ⋄ 9.39 ± 3.46 0.06 ±
0.04

1.48 ±
0.05

0.6 ± 0.08 0.6 ± 0.08 1.00

Agent33 ⋄ 11817.2 ±
11426.17

0.08 ±
0.06

1.48 ±
0.08

0.79 ±
0.09

0.79 ±
0.09

1.00

Sontag ⋄ 8291.78 ±
8988.64

0.06 ±
0.05

1.50 ±
0.06

0.73 ±
0.11

0.73 ±
0.11

1.00

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

13363.2 ±
12016.88

0.08 ±
0.04

1.47 ±
0.05

0.81 ±
0.08

0.81 ±
0.08

1.00

ParsCat2 ⋆ 11296.37 ±
10537.68

0.07 ±
0.05

1.49 ±
0.06

0.77 ± 0.1 0.77 ± 0.1 1.00

Table B.13: Performance of ANESIA-DRL - Ablation Study1 - over domain Fitness
(1440 ×2 profiles = 2880 simulations)
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Flight Booking Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 636.1 ± 658.93 0.13 ±
0.25

1.36 ±
0.58

0.59 ±
0.18

0.98 ±
0.2

0.29

AgentGP • 505.74 ± 291.15 0.41 ±
0.24

0.47 ±
0.61

0.55 ±
0.12

0.62 ±
0.16

0.39

FSEGA2019 • 3733.36 ±
5491.65

0.47 ±
0.23

0.23 ±
0.48

0.6 ± 0.2 1.0 ± 0.0 0.20

AgentHerb ⋄ 451.6 ±
1069.53

0.12 ±
0.19

1.18 ±
0.44

0.51 ±
0.16

0.51 ±
0.17

0.89

Agent33 ⋄ 1446.79 ±
3331.37

0.17 ±
0.23

0.98 ±
0.52

0.51 ±
0.17

0.51 ±
0.19

0.81

Sontag ⋄ 2994.05 ±
5633.23

0.36 ±
0.27

0.53 ±
0.65

0.67 ±
0.22

0.93 ±
0.09

0.41

AgreeableAgent
⋄

3674.2 ±
5496.21

0.46 ±
0.24

0.26 ±
0.51

0.6 ± 0.2 0.98 ±
0.02

0.21

PonpokoAgent
⋆

3749.03 ±
6108.73

0.42 ±
0.25

0.37 ±
0.57

0.63 ± 0.2 0.93 ±
0.04

0.30

ParsCat2 ⋆ 1887.62 ±
3405.91

0.3 ± 0.26 0.76 ±
0.65

0.6 ± 0.18 0.67 ±
0.21

0.59

Flight Booking Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 572.81 ± 538.65 0.06 ±
0.36

1.45 ±
0.64

0.44 ±
0.29

0.94 ±
0.17

0.33

AgentGP • 416.07 ± 215.14 0.35 ±
0.36

0.84 ±
0.68

0.52 ±
0.25

0.69 ±
0.17

0.62

FSEGA2019 • 2539.12 ±
4104.76

0.46 ±
0.37

0.63 ±
0.66

0.56 ±
0.33

0.9 ± 0.04 0.48

AgentHerb ⋄ 24.15 ± 115.88 0.06 ±
0.1

1.37 ± 0.2 0.52 ±
0.19

0.52 ±
0.19

0.99

Agent33 ⋄ 1111.08 ±
2227.52

0.13 ±
0.21

1.2 ± 0.38 0.46 ±
0.16

0.48 ±
0.16

0.92

Sontag ⋄ 2525.82 ±
4221.99

0.34 ±
0.35

0.84 ±
0.64

0.65 ±
0.3

0.87 ±
0.08

0.65

AgreeableAgent
⋄

3026.83 ±
4474.59

0.24 ±
0.29

0.98 ±
0.49

0.59 ±
0.27

0.67 ±
0.24

0.81

PonpokoAgent
⋆

2600.7 ±
4136.52

0.4 ± 0.37 0.72 ±
0.65

0.61 ±
0.33

0.9 ± 0.07 0.55

ParsCat2 ⋆ 1577.21 ±
2510.69

0.23 ±
0.27

1.07 ± 0.5 0.63 ±
0.24

0.7 ± 0.19 0.84

Table B.14: Performance of ANESIA-DRL - Ablation Study1 - over domain Flight
Booking (1440 ×2 profiles = 2880 simulations)
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Itex Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 555.81 ± 532.81 0.04 ±
0.16

1.27 ±
0.46

0.56 ±
0.12

0.91 ±
0.16

0.27

AgentGP • 371.01 ± 177.31 0.12 ±
0.18

0.58 ±
0.38

0.51 ±
0.23

0.52 ±
0.27

0.77

FSEGA2019 • 2714.98 ±
4328.78

0.11 ±
0.16

0.67 ±
0.37

0.66 ±
0.21

0.69 ±
0.21

0.82

AgentHerb ⋄ 9.12 ± 6.25 0.05 ±
0.06

1.15 ±
0.08

0.26 ±
0.11

0.26 ±
0.11

1.00

Agent33 ⋄ 1850.84 ±
3677.84

0.07 ±
0.12

0.85 ±
0.34

0.42 ±
0.18

0.41 ±
0.18

0.92

Sontag ⋄ 2965.81 ±
5008.5

0.14 ±
0.19

0.63 ±
0.43

0.69 ±
0.19

0.76 ±
0.17

0.73

AgreeableAgent
⋄

3933.17 ±
5861.42

0.15 ±
0.19

0.49 ±
0.37

0.67 ±
0.22

0.75 ±
0.23

0.70

PonpokoAgent
⋆

3909.99 ±
5863.55

0.27 ± 0.2 0.32 ± 0.4 0.65 ±
0.19

0.85 ±
0.14

0.43

ParsCat2 ⋆ 2808.13 ±
4315.82

0.15 ±
0.19

0.61 ±
0.43

0.62 ±
0.21

0.67 ±
0.24

0.72

Itex Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 381.27 ± 275.45 0.04 ±
0.02

1.24 ±
0.54

0.54 ± 0.3 0.82 ±
0.15

0.51

AgentGP • 542.41 ± 515.26 0.24 ±
0.29

0.73 ± 0.5 0.56 ±
0.27

0.7 ± 0.22 0.69

FSEGA2019 • 806.26 ±
1067.19

0.08 ±
0.19

1.03 ±
0.34

0.6 ± 0.24 0.64 ±
0.22

0.91

AgentHerb ⋄ 6.44 ± 5.1 0.04 ±
0.05

1.21 ±
0.07

0.37 ±
0.14

0.37 ±
0.14

1.00

Agent33 ⋄ 289.54 ± 402.6 0.05 ±
0.09

1.16 ±
0.18

0.44 ±
0.18

0.44 ±
0.18

0.98

Sontag ⋄ 881.04 ±
1273.89

0.07 ±
0.19

1.06 ±
0.36

0.61 ±
0.24

0.65 ±
0.22

0.91

AgreeableAgent
⋄

1398.88 ±
1655.48

0.11 ±
0.22

0.92 ±
0.37

0.69 ±
0.27

0.76 ±
0.22

0.87

PonpokoAgent
⋆

1190.43 ±
1689.85

0.13 ±
0.24

0.91 ±
0.43

0.68 ±
0.24

0.77 ±
0.16

0.83

ParsCat2 ⋆ 907.87 ±
1153.59

0.08 ± 0.2 1.03 ±
0.36

0.61 ±
0.25

0.65 ±
0.23

0.90

Table B.15: Performance of ANESIA-DRL - Ablation Study1 - over domain ItexVS-
cypress (1440 ×2 profiles = 2880 simulations)
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Outfit Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 355.37 ± 256.24 0.05 ±
0.27

1.57 ±
0.67

0.76 ±
0.25

0.98 ±
0.06

0.54

AgentGP • 704.03 ± 524.83 0.27 ±
0.27

0.71 ±
0.72

0.71 ±
0.22

0.91 ±
0.09

0.51

FSEGA2019 • 690.15 ± 766.83 0.04 ±
0.14

1.27 ±
0.42

0.8 ± 0.15 0.83 ±
0.12

0.93

AgentHerb ⋄ 4.04 ± 1.77 0.03 ±
0.07

1.55 ±
0.17

0.59 ±
0.18

0.59 ±
0.18

1.00

Agent33 ⋄ 244.91 ± 419.1 0.03 ± 0.1 1.47 ±
0.34

0.67 ±
0.14

0.67 ±
0.14

0.96

Sontag ⋄ 600.69 ± 765.69 0.04 ±
0.14

1.32 ±
0.42

0.79 ±
0.14

0.81 ±
0.11

0.93

AgreeableAgent
⋄

1207.69 ±
1217.1

0.1 ± 0.21 0.98 ±
0.53

0.86 ±
0.19

0.94 ±
0.08

0.82

PonpokoAgent
⋆

989.18 ±
1035.21

0.13 ±
0.21

1.01 ±
0.55

0.84 ±
0.17

0.92 ±
0.06

0.80

ParsCat2 ⋆ 807.16 ± 846.0 0.06 ±
0.16

1.15 ±
0.45

0.83 ±
0.15

0.87 ±
0.11

0.90

Outfit Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA-DRL 409.13 ± 289.53 0.05 ± 0.4 1.63 ±
0.73

0.67 ±
0.37

0.98 ±
0.08

0.57

AgentGP • 701.88 ± 540.79 0.4 ± 0.4 0.78 ±
0.77

0.6 ± 0.34 0.93 ±
0.08

0.51

FSEGA2019 • 632.52 ± 701.28 0.06 ±
0.22

1.41 ±
0.43

0.78 ±
0.19

0.82 ±
0.12

0.92

AgentHerb ⋄ 5.8 ± 3.34 0.01 ±
0.05

1.57 ±
0.16

0.6 ± 0.17 0.6 ± 0.17 1.00

Agent33 ⋄ 444.49 ± 712.8 0.05 ±
0.19

1.46 ± 0.4 0.67 ±
0.17

0.69 ±
0.14

0.94

Sontag ⋄ 643.55 ± 752.71 0.05 ± 0.2 1.45 ± 0.4 0.77 ±
0.18

0.81 ±
0.12

0.94

AgreeableAgent
⋄

1353.41 ±
1342.23

0.12 ±
0.28

1.19 ±
0.52

0.83 ±
0.26

0.92 ±
0.13

0.86

PonpokoAgent
⋆

1104.35 ±
1136.18

0.17 ±
0.32

1.19 ± 0.6 0.79 ±
0.27

0.92 ±
0.06

0.81

ParsCat2 ⋆ 978.63 ± 945.08 0.08 ±
0.24

1.34 ±
0.46

0.81 ±
0.21

0.86 ±
0.11

0.90

Table B.16: Performance of ANESIA-DRL - Ablation Study1 - over domain Outfit
(1440 ×2 profiles = 2880 simulations)
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Airport Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 502.96 ±
350.71

0.06 ±
0.53

1.76 ±
0.79

0.69 ±
0.21

0.92 ±
0.11

0.48

AgentGP • 774.69 ±
562.07

0.59 ±
0.53

0.72 ±
0.79

0.69 ±
0.21

0.92 ±
0.06

0.45

FSEGA2019 • 1023.41 ±
1450.49

0.07 ±
0.26

1.49 ±
0.38

0.77 ±
0.14

0.78 ±
0.13

0.94

AgentHerb ⋄ 10.58 ± 3.59 0.0 ±
0.01

1.55 ±
0.11

0.59 ±
0.14

0.59 ±
0.14

1.00

Agent33 ⋄ 1556.13 ±
2104.58

0.19 ±
0.41

1.3 ± 0.6 0.72 ±
0.13

0.76 ±
0.09

0.82

Sontag ⋄ 1285.67 ±
1931.73

0.08 ±
0.27

1.47 ±
0.41

0.73 ±
0.12

0.75 ±
0.11

0.93

AgreeableAgent
⋄

2206.13 ±
2724.1

0.18 ± 0.4 1.32 ±
0.59

0.82 ±
0.18

0.88 ±
0.12

0.84

PonpokoAgent
⋆

1988.18 ±
2717.28

0.19 ±
0.41

1.29 ± 0.6 0.82 ±
0.16

0.88 ±
0.07

0.82

ParsCat2 ⋆ 1490.62 ±
1833.53

0.09 ± 0.3 1.44 ±
0.44

0.77 ±
0.14

0.79 ±
0.12

0.92

Airport Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 387.84 ±
297.52

0.06 ±
0.27

1.64 ±
0.04

0.62 ±
0.36

0.96 ±
0.06

0.52

AgentGP • 646.55 ±
497.55

0.25 ±
0.27

0.69 ±
0.68

0.61 ±
0.34

0.92 ±
0.06

0.54

FSEGA2019 • 814.29 ±
813.53

0.05 ±
0.15

1.13 ± 0.4 0.74 ±
0.19

0.79 ±
0.13

0.92

AgentHerb ⋄ 3.13 ± 1.23 0.01 ±
0.02

1.54 ±
0.11

0.56 ±
0.12

0.56 ±
0.12

1.00

Agent33 ⋄ 182.67 ±
151.37

0.0 ± 0.01 1.46 ±
0.12

0.63 ±
0.13

0.63 ±
0.13

1.00

Sontag ⋄ 712.1 ± 746.85 0.06 ±
0.17

1.15 ±
0.45

0.72 ± 0.2 0.78 ±
0.12

0.89

AgreeableAgent
⋄

1192.59 ±
1179.95

0.08 ±
0.19

0.93 ±
0.47

0.79 ±
0.27

0.88 ±
0.16

0.86

PonpokoAgent
⋆

1091.71 ±
1197.91

0.12 ±
0.22

0.91 ±
0.54

0.75 ±
0.27

0.89 ±
0.07

0.78

ParsCat2 ⋆ 925.84 ±
884.29

0.06 ±
0.17

1.04 ±
0.44

0.76 ±
0.22

0.82 ±
0.13

0.89

Table B.17: Performance of fully-fledged ANESIA in the domain AIRPORT (1440
×2 profiles = 2880 simulations)
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Camera Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 387.64 ±
264.96

0.02 ±
0.37

1.78 ±
0.66

0.74 ±
0.21

0.91 ±
0.08

0.59

AgentGP • 615.41 ±
511.43

0.36 ±
0.37

0.78 ±
0.73

0.7 ± 0.2 0.87 ±
0.11

0.54

FSEGA2019 • 58.92 ± 33.98 0.09 ±
0.23

1.28 ±
0.45

0.82 ±
0.12

0.86 ±
0.05

0.89

AgentHerb ⋄ 7.48 ± 3.18 0.01 ±
0.02

1.43 ±
0.13

0.47 ±
0.15

0.47 ±
0.15

1.00

Agent33 ⋄ 589.89 ±
802.57

0.01 ±
0.08

1.46 ±
0.21

0.71 ±
0.14

0.71 ±
0.14

0.99

Sontag ⋄ 779.55 ±
1056.75

0.06 ± 0.2 1.37 ±
0.41

0.79 ±
0.12

0.81 ±
0.09

0.92

AgreeableAgent
⋄

1542.18 ±
1587.82

0.11 ±
0.26

1.11 ±
0.46

0.84 ±
0.16

0.90 ±
0.09

0.86

PonpokoAgent
⋆

1064.8 ±
1316.41

0.16 ± 0.3 1.11 ±
0.56

0.82 ±
0.17

0.90 ±
0.06

0.80

ParsCat2 ⋆ 879.17 ±
1171.17

0.1 ± 0.25 1.25 ± 0.5 0.79 ±
0.14

0.84 ±
0.09

0.87

Camera Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 370.23 ±
256.09

0.02 ±
0.25

1.64 ±
0.57

0.54 ±
0.46

0.93 ±
0.08

0.58

AgentGP • 555.57 ±
485.57

0.23 ±
0.24

0.72 ±
0.67

0.5 ± 0.44 0.89 ±
0.09

0.56

FSEGA2019 • 58.76 ± 35.67 0.06 ±
0.15

1.06 ±
0.41

0.78 ±
0.27

0.86 ±
0.06

0.90

AgentHerb ⋄ 4.63 ± 2.37 0.01 ±
0.02

1.41 ±
0.13

0.45 ±
0.13

0.45 ±
0.13

1.00

Agent33 ⋄ 272.72 ± 306.3 0.01 ±
0.05

1.4 ± 0.22 0.64 ±
0.21

0.65 ± 0.2 0.99

Sontag ⋄ 731.21 ±
956.39

0.03 ±
0.12

1.24 ±
0.38

0.77 ±
0.22

0.82 ± 0.1 0.94

AgreeableAgent
⋄

1231.69 ±
1291.81

0.07 ±
0.17

0.87 ± 0.4 0.76 ±
0.33

0.88 ±
0.15

0.86

PonpokoAgent
⋆

898.9 ±
1035.82

0.12 ±
0.21

0.9 ± 0.54 0.69 ±
0.39

0.90 ±
0.06

0.77

ParsCat2 ⋆ 721.07 ±
836.11

0.05 ±
0.15

1.11 ±
0.44

0.75 ±
0.27

0.84 ±
0.09

0.90

Table B.18: Performance of fully-fledged ANESIA in the domain Camera (1440 ×2
profiles = 2880 simulations)
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Energy Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 1885.12 ±
1220.17

0.59 ±
0.24

1.15 ±
0.36

0.57 ±
0.17

0.97 ±
0.04

0.15

AgentGP • 776.26 ±
1337.29

0.36 ±
0.34

0.58 ±
0.59

0.71 ±
0.21

0.92 ±
0.02

0.49

FSEGA2019 • 227.55 ± 94.34 0.53 ±
0.29

0.26 ±
0.46

0.6 ± 0.18 0.91 ±
0.06

0.24

AgentHerb ⋄ 209.5 ± 390.96 0.01 ±
0.03

1.11 ±
0.13

0.21 ±
0.15

0.21 ±
0.15

1.00

Agent33 ⋄ 9736.06 ±
11596.61

0.11 ±
0.24

0.98 ±
0.42

0.5 ± 0.16 0.5 ± 0.17 0.86

Sontag ⋄ 16164.98 ±
19874.32

0.3 ± 0.33 0.65 ±
0.56

0.66 ±
0.17

0.78 ±
0.12

0.59

AgreeableAgent
⋄

20110.81 ±
19539.26

0.21 ±
0.31

0.69 ±
0.45

0.69 ±
0.19

0.77 ±
0.18

0.71

PonpokoAgent
⋆

18600.12 ±
19064.62

0.33 ±
0.34

0.54 ±
0.52

0.69 ± 0.2 0.87 ± 0.1 0.52

ParsCat2 ⋆ 13441.85 ±
13936.75

0.25 ±
0.32

0.72 ±
0.52

0.64 ±
0.18

0.71 ±
0.18

0.65

Energy Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 2207.35 ±
1420.7

0.74 ±
0.36

1.21 ±
0.44

0.39 ±
0.28

0.96 ±
0.05

0.19

AgentGP • 157.6 ± 278.3 0.07 ±
0.21

1.13 ±
0.28

0.60 ±
0.31

0.62 ± 0.3 0.94

FSEGA2019 • 235.12 ± 104.56 0.48 ±
0.45

0.59 ± 0.6 0.56 ±
0.32

0.89 ±
0.06

0.49

AgentHerb ⋄ 200.51 ± 378.53 0.01 ±
0.03

1.15 ±
0.08

0.21 ±
0.15

0.21 ±
0.15

1.00

Agent33 ⋄ 24080.45 ±
23658.48

0.14 ± 0.3 1.14 ±
0.44

0.53 ± 0.2 0.57 ±
0.18

0.87

Sontag ⋄ 33677.34 ±
37660.47

0.4 ± 0.43 0.73 ±
0.62

0.54 ±
0.26

0.74 ±
0.14

0.59

AgreeableAgent
⋄

35654.55 ±
36140.39

0.15 ±
0.29

1.04 ±
0.41

0.57 ± 0.3 0.62 ±
0.29

0.88

PonpokoAgent
⋆

37176.59 ±
37296.11

0.47 ±
0.45

0.61 ±
0.61

0.57 ±
0.32

0.88 ±
0.08

0.50

ParsCat2 ⋆ 24819.35 ±
24326.69

0.35 ±
0.44

0.82 ±
0.64

0.52 ±
0.24

0.68 ±
0.16

0.63

Table B.19: Performance of fully-fledged ANESIA in the domain Energy (1440 ×2
profiles = 2880 simulations)
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Grocery Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 358.62 ±
240.22

0.26 ±
0.37

1.57 ±
0.65

0.65 ±
0.43

0.93 ±
0.06

0.70

AgentGP • 507.2 ± 380.16 0.27 ±
0.37

1.0 ± 0.68 0.62 ±
0.42

0.90 ±
0.09

0.69

FSEGA2019 • 379.88 ±
415.61

0.01 ±
0.07

1.49 ±
0.17

0.84 ±
0.13

0.84 ±
0.11

0.99

AgentHerb ⋄ 5.54 ± 1.73 0.02 ±
0.05

1.53 ± 0.1 0.56 ±
0.12

0.56 ±
0.12

1.00

Agent33 ⋄ 300.19 ± 371.5 0.03 ± 0.1 1.51 ±
0.22

0.67 ±
0.16

0.68 ±
0.14

0.99

Sontag ⋄ 606.43 ±
837.78

0.01 ±
0.01

1.53 ±
0.12

0.82 ±
0.11

0.82 ±
0.11

1.00

AgreeableAgent
⋄

1195.86 ±
1127.9

0.1 ± 0.26 1.2 ± 0.43 0.82 ±
0.31

0.92 ±
0.12

0.89

PonpokoAgent
⋆

776.33 ±
950.82

0.14 ± 0.3 1.24 ±
0.56

0.77 ±
0.34

0.92 ±
0.05

0.84

ParsCat2 ⋆ 665.25 ±
700.86

0.07 ±
0.22

1.38 ±
0.42

0.79 ±
0.25

0.86 ± 0.1 0.92

Grocery Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 423.55 ±
291.29

0.4 ± 0.52 1.65 ±
0.78

0.76 ±
0.21

0.91 ±
0.08

0.65

AgentGP • 606.72 ±
470.98

0.49 ±
0.53

0.93 ±
0.81

0.73 ±
0.21

0.91 ±
0.08

0.57

FSEGA2019 • 463.94 ±
485.36

0.02 ±
0.13

1.64 ± 0.2 0.81 ±
0.11

0.81 ±
0.11

0.99

AgentHerb ⋄ 7.81 ± 2.34 0.01 ±
0.04

1.54 ±
0.09

0.57 ±
0.12

0.57 ±
0.12

1.00

Agent33 ⋄ 975.11 ±
984.61

0.21 ±
0.41

1.37 ±
0.63

0.78 ±
0.16

0.84 ±
0.11

0.83

Sontag ⋄ 822.18 ±
1146.13

0.01 ±
0.06

1.65 ±
0.13

0.8 ± 0.11 0.8 ± 0.1 1.00

AgreeableAgent
⋄

1518.27 ±
1454.96

0.12 ±
0.34

1.46 ±
0.51

0.87 ±
0.17

0.91 ±
0.11

0.89

PonpokoAgent
⋆

1103.99 ±
1269.89

0.17 ±
0.39

1.43 ± 0.6 0.85 ±
0.15

0.91 ±
0.06

0.85

ParsCat2 ⋆ 826.77 ±
846.74

0.08 ±
0.28

1.57 ±
0.44

0.81 ±
0.13

0.84 ± 0.1 0.93

Table B.20: Performance of fully-fledged ANESIA in the domain Grocery (1440 ×2
profiles = 2880 simulations)
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Fitness Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 8.13 ± 1.19 0.0 ± 0.0 1.51 ±
0.01

1.0 ±
0.0

1.0 ±
0.0

1.00

AgentGP • 5025.1 ±
4975.25

0.01 ±
0.01

1.49 ±
0.05

0.92 ±
0.02

0.92 ±
0.02

1.00

FSEGA2019 • 6462.11 ±
5295.59

0.0 ±
0.01

1.45 ±
0.07

0.81 ±
0.11

0.81 ±
0.11

1.00

AgentHerb ⋄ 7.25 ± 2.01 0.01 ±
0.02

1.51 ±
0.04

0.55 ±
0.07

0.55 ±
0.07

1.00

Agent33 ⋄ 3483.88 ±
2350.29

0.01 ±
0.02

1.5 ± 0.04 0.7 ± 0.09 0.7 ± 0.09 1.00

Sontag ⋄ 6117.57 ±
6137.66

0.0 ±
0.01

1.47 ±
0.07

0.8 ± 0.11 0.8 ± 0.11 1.00

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

9504.37 ±
8067.99

0.0 ±
0.01

1.4 ± 0.1 0.92 ±
0.05

0.92 ±
0.05

1.00

ParsCat2 ⋆ 8187.34 ±
6755.87

0.01 ±
0.02

1.42 ±
0.09

0.87 ± 0.1 0.87 ± 0.1 1.00

Fitness Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 10.33 ± 1.05 0.0 ± 0.0 1.57 ±
0.01

1.0 ± 0.0 1.0 ±
0.0

1.00

AgentGP • 7520.09 ±
8454.27

0.01 ±
0.01

1.57 ±
0.04

0.93 ±
0.03

0.93 ±
0.03

1.00

FSEGA2019 • 10477.08 ±
7392.38

0.01 ±
0.04

1.56 ±
0.07

0.77 ±
0.12

0.77 ±
0.12

1.00

AgentHerb ⋄ 12.52 ± 3.01 0.01 ±
0.02

1.52 ±
0.04

0.54 ±
0.07

0.54 ±
0.07

1.00

Agent33 ⋄ 18549.4 ±
14784.47

0.03 ±
0.04

1.55 ±
0.07

0.84 ±
0.09

0.84 ±
0.09

1.00

Sontag ⋄ 12031.32 ±
10180.53

0.01 ±
0.01

1.57 ±
0.05

0.76 ±
0.12

0.76 ±
0.12

1.00

AgreeableAgent
⋄

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.00

PonpokoAgent
⋆

19677.92 ±
15053.14

0.01 ±
0.02

1.57 ±
0.04

0.9 ± 0.06 0.9 ± 0.06 1.00

ParsCat2 ⋆ 16583.31 ±
12421.79

0.01 ±
0.02

1.57 ±
0.05

0.84 ± 0.1 0.84 ± 0.1 1.00

Table B.21: Performance of fully-fledged ANESIA in the domain Fitness (1440 ×2
profiles = 2880 simulations)
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Flight Booking Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 457.11 ±
307.19

0.04 ±
0.28

1.54 ±
0.63

0.66 ±
0.21

0.9 ±
0.16

0.43

AgentGP • 664.13 ±
477.03

0.35 ±
0.28

0.56 ±
0.68

0.66 ± 0.2 0.9 ±
0.08

0.41

FSEGA2019 • 1021.27 ±
1249.01

0.09 ± 0.2 1.14 ±
0.46

0.78 ±
0.15

0.82 ±
0.12

0.87

AgentHerb ⋄ 7.7 ± 3.9 0.01 ±
0.05

1.37 ±
0.09

0.42 ±
0.13

0.42 ±
0.13

1.00

Agent33 ⋄ 543.69 ±
758.12

0.05 ±
0.13

1.26 ±
0.34

0.52 ±
0.11

0.52 ±
0.11

0.95

Sontag ⋄ 1041.66 ±
1365.84

0.1 ± 0.21 1.13 ±
0.51

0.75 ±
0.15

0.8 ± 0.11 0.84

AgreeableAgent
⋄

1838.85 ±
1648.32

0.12 ±
0.22

0.98 ±
0.47

0.79 ±
0.17

0.85 ±
0.12

0.82

PonpokoAgent
⋆

1500.68 ±
1771.53

0.12 ±
0.22

1.05 ±
0.51

0.81 ±
0.16

0.88 ±
0.06

0.82

ParsCat2 ⋆ 1143.01 ±
1320.89

0.09 ± 0.2 1.12 ±
0.45

0.78 ±
0.17

0.82 ±
0.14

0.86

Flight Booking Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 479.79 ±
300.63

0.02 ± 0.4 1.64 ±
0.66

0.56 ±
0.34

0.89 ±
0.15

0.49

AgentGP • 698.1 ± 501.62 0.47 ±
0.39

0.61 ± 0.7 0.53 ±
0.33

0.89 ±
0.1

0.43

FSEGA2019 • 1099.44 ±
1361.39

0.12 ±
0.27

1.23 ±
0.48

0.75 ±
0.22

0.83 ±
0.12

0.87

AgentHerb ⋄ 9.17 ± 2.93 0.01 ±
0.03

1.38 ±
0.09

0.43 ±
0.15

0.43 ±
0.15

1.00

Agent33 ⋄ 741.04 ±
1130.56

0.04 ±
0.12

1.35 ±
0.24

0.51 ±
0.15

0.51 ±
0.14

0.98

Sontag ⋄ 1103.64 ±
1566.31

0.12 ±
0.28

1.24 ±
0.52

0.72 ±
0.22

0.8 ± 0.11 0.86

AgreeableAgent
⋄

1981.51 ±
1924.17

0.11 ±
0.26

1.17 ±
0.44

0.75 ±
0.25

0.82 ±
0.19

0.88

PonpokoAgent
⋆

1565.29 ±
1663.12

0.15 ± 0.3 1.16 ±
0.54

0.78 ±
0.24

0.88 ±
0.06

0.83

ParsCat2 ⋆ 1135.35 ±
1244.4

0.12 ±
0.28

1.21 ± 0.5 0.74 ±
0.24

0.83 ±
0.14

0.85

Table B.22: Performance of fully-fledged ANESIA in the domain Flight Booking
(1440 ×2 profiles = 2880 simulations)

183



Itex Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 564.37 ±
402.32

0.39 ±
0.15

1.26 ±
0.09

0.56 ±
0.17

1.0 ± 0.0 0.13

AgentGP • 686.32 ±
481.19

0.32 ± 0.2 0.31 ± 0.5 0.6 ± 0.18 0.85 ±
0.14

0.29

FSEGA2019 • 1833.21 ±
2581.66

0.14 ±
0.21

0.64 ±
0.46

0.67 ±
0.18

0.75 ±
0.17

0.68

AgentHerb ⋄ 9.1 ± 2.82 0.0 ±
0.02

1.19 ±
0.04

0.23 ±
0.08

0.23 ±
0.08

1.00

Agent33 ⋄ 1187.91 ±
2093.66

0.11 ±
0.19

0.8 ± 0.49 0.47 ±
0.16

0.46 ±
0.18

0.76

Sontag ⋄ 1934.54 ±
2764.67

0.14 ± 0.2 0.65 ±
0.47

0.70 ±
0.17

0.79 ±
0.13

0.69

AgreeableAgent
⋄

2839.27 ±
3542.99

0.15 ± 0.2 0.52 ± 0.4 0.67 ±
0.17

0.76 ±
0.15

0.68

PonpokoAgent
⋆

2801.4 ±
3525.25

0.32 ± 0.2 0.28 ±
0.45

0.61 ±
0.17

0.86 ± 0.1 0.29

ParsCat2 ⋆ 2080.09 ±
3082.12

0.14 ± 0.2 0.64 ±
0.46

0.68 ±
0.18

0.77 ±
0.16

0.70

Itex Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 591.32 ±
412.93

0.06 ±
0.24

1.17 ±
0.41

0.36 ±
0.27

0.99 ±
0.03

0.15

AgentGP • 745.37 ± 490.4 0.46 ± 0.3 0.35 ±
0.53

0.43 ±
0.28

0.83 ±
0.16

0.32

FSEGA2019 • 1796.16 ±
2823.98

0.2 ± 0.3 0.79 ±
0.52

0.59 ±
0.26

0.74 ±
0.16

0.70

AgentHerb ⋄ 12.5 ± 4.59 0.0 ±
0.03

1.2 ± 0.05 0.26 ±
0.16

0.26 ±
0.16

1.00

Agent33 ⋄ 1124.77 ±
1744.99

0.12 ±
0.25

0.95 ±
0.45

0.4 ± 0.16 0.43 ±
0.16

0.83

Sontag ⋄ 2100.02 ±
2721.24

0.21 ±
0.29

0.78 ±
0.51

0.62 ±
0.26

0.77 ±
0.12

0.71

AgreeableAgent
⋄

2765.74 ±
3225.78

0.14 ±
0.25

0.81 ±
0.39

0.59 ±
0.28

0.67 ±
0.25

0.82

PonpokoAgent
⋆

2830.23 ±
3765.43

0.36 ±
0.33

0.48 ±
0.53

0.54 ±
0.32

0.88 ±
0.08

0.46

ParsCat2 ⋆ 2363.75 ±
3460.21

0.21 ± 0.3 0.76 ±
0.51

0.61 ±
0.27

0.77 ±
0.16

0.69

Table B.23: Performance of fully-fledged ANESIA in the domain ItexVSCypress
(1440 ×2 profiles = 2880 simulations)
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Outfit Domain B = 5% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 516.7 ± 352.5 0.05 ± 0.4 1.57 ±
0.73

0.67 ±
0.37

0.99 ±
0.02

0.56

AgentGP • 786.93 ±
580.41

0.39 ± 0.4 0.83 ±
0.79

0.61 ±
0.34

0.93 ±
0.07

0.53

FSEGA2019 • 854.18 ±
890.84

0.05 ±
0.19

1.44 ±
0.39

0.79 ±
0.18

0.83 ±
0.11

0.94

AgentHerb ⋄ 5.73 ± 3.37 0.01 ±
0.04

1.57 ±
0.16

0.60 ±
0.17

0.6 ± 0.17 1.00

Agent33 ⋄ 499.38 ±
763.55

0.04 ±
0.16

1.48 ±
0.37

0.68 ±
0.17

0.70 ±
0.15

0.96

Sontag ⋄ 749.45 ±
868.18

0.05 ±
0.18

1.47 ±
0.38

0.78 ±
0.17

0.81 ±
0.12

0.94

AgreeableAgent
⋄

1644.39 ±
1461.16

0.10 ±
0.27

1.22 ± 0.5 0.84 ±
0.25

0.92 ±
0.13

0.87

PonpokoAgent
⋆

1277.88 ±
1259.92

0.17 ±
0.32

1.19 ± 0.6 0.79 ±
0.27

0.92 ±
0.06

0.80

ParsCat2 ⋆ 1191.12 ±
1206.94

0.08 ±
0.24

1.33 ±
0.46

0.81 ±
0.21

0.87 ±
0.11

0.90

Outfit Domain B = 10% of Ω
Agent Ravg(↓) Pavg(↓) Usoc(↑) U total

ind (↑) U s
ind(↑) S%(↑)

ANESIA 868.7 ± 799.74 0.02 ±
0.27

1.54 ±
0.67

0.78 ±
0.25

0.99 ±
0.04

0.56

AgentGP • 1105.14 ±
1567.54

0.25 ±
0.26

0.83 ±
0.75

0.75 ±
0.22

0.93 ±
0.03

0.57

FSEGA2019 • 2026.02 ±
3050.22

0.04 ±
0.14

1.27 ±
0.41

0.81 ±
0.14

0.83 ±
0.12

0.93

AgentHerb ⋄ 3.64 ± 1.91 0.03 ±
0.08

1.54 ±
0.18

0.57 ±
0.17

0.57 ±
0.17

1.00

Agent33 ⋄ 888.24 ±
1927.38

0.02 ±
0.09

1.48 ±
0.31

0.68 ±
0.15

0.68 ±
0.15

0.97

Sontag ⋄ 2213.92 ±
3866.96

0.03 ±
0.12

1.35 ± 0.4 0.80 ±
0.13

0.81 ±
0.11

0.94

AgreeableAgent
⋄

4341.84 ±
6618.34

0.08 ± 0.2 1.01 ±
0.51

0.88 ±
0.18

0.95 ±
0.08

0.85

PonpokoAgent
⋆

3897.28 ±
5823.6

0.12 ± 0.2 1.04 ±
0.52

0.85 ±
0.17

0.92 ±
0.06

0.83

ParsCat2 ⋆ 3089.0 ±
4560.45

0.05 ±
0.15

1.18 ±
0.43

0.84 ±
0.14

0.87 ± 0.1 0.92

Table B.24: Performance of fully-fledged ANESIA in the domain Outfit (1440 ×2
profiles = 2880 simulations)
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