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Abstract

In his paper “Kings in Bipartite Hypertournaments” (Graphs & Com-
binatorics 35, 2019), Petrovic stated two conjectures on 4-kings in mul-
tipartite hypertournaments. We prove one of these conjectures and give
counterexamples for the other.

1 Introduction

Given two integers n and k, n > k > 1, a k-hypertournament T on n vertices
is a pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples
of vertices, called arcs, so that for any k-subset S of V, A contains exactly
one of the k! tuples whose entries belong to S. For an arc zixs...xE, we
say that x; precedes x; if i < j. A 2-hypertournament is merely an (ordinary)
tournament. Hypertournaments have been studied in a large number of papers,
see e.g. [1,2,3,4,5,8,9, 11, 12].

Recently, Petrovic [10] introduced multipartite hypertournaments in a simi-
lar way. Let n and k be integers such that n > k > 2. Let V be a set of n vertices
and V =Viu V- WV, be a partition of V into p > 2 non-empty subsets. A
p-partite k-tournament (or, multipartite hypertournament) H can be obtained
from a k-hypertournament 7' on vertex set V by deleting all arcs x1x5...xx
such that {z1,29,...,2,} CV; for some i € [p]. We call V;’s partite sets of H.
The set of arcs of H = (V, A) will be denoted by A(H), ie., A(H) = A. A
p-partite 2-tournament is a p-partite tournament.

For u € V;,w € V; with i # j, Ag(u,w) is the set of arcs of H which contain
uw and w and where u precedes w. We will write zey if e € Agy(z,y). We let
Ap(z,y) = 0 if either 2 and y belong to the same partite set of H. A path in H
is an alternating sequence P = x1a1%202 ... Tq—104—14 of distinct vertices z;
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and distinct arcs a; such that z;a;x;41 for every j € [¢ — 1]. We will call P an
(x1,24)-path of length ¢ — 1.

Let ¢ > 1 be a natural number. A vertex x of H is a g-king if for every
y € V, H has an (z,y)-path of length at most ¢. Generalizing a well-known
theorem of Landau that every tournament has a 2-king (see e.g. [6]), Brcanov
et al. [4] showed that every hypertournament has a 2-king. A vertex v of H is a
transmitter if for every vertex u from a different partite set than v, Ay (u,v) = 0.

Note that for every u € V;,w € V; (i # j), we have |Ag (u, w)|+|An(w,u)| =
(72). A majority multipartite tournament M (H) of H has the same partite sets
as H and for every u € V; and w € V; with ¢ # j, ww € M(H) if |Ag(u,w)| >
(0 2). I [Ag (u,w)| = 3 (722) then we can choose either uw or wu for M (H).

For a graph G = (V,E) and U CV,let Nog(U) ={v e V\U: w e E,u €
U}.
Gutin [7] and independently Petrovic and Thomassen [11] proved the follow-
ing:

Theorem 1. [7, 11] Every multipartite tournament with at most one transmit-
ter contains a 4-king.

Petrovic [10] proved that the same result holds for bipartite k-tournaments:

Theorem 2. [10] Every bipartite k-tournament (k > 2) with at most one trans-
mitter contains a 4-king.

In the same paper he conjectured the following:

Conjecture 3. [10] Fvery multipartite k-tournament (k > 2) with at most one
transmitter contains a 4-king.

In this short paper, we will solve this conjecture in the affirmative.

The next conjecture of Petrovic [10] is motivated by the fact that Petro-
vic and Thomassen [11] proved that the assertion of the conjecture holds for
bipartite tournaments.

Theorem 4. [11] Every bipartite tournament B without transmitters has at
least two 4-kings in each partite set of B.

Conjecture 5. [10] Every bipartite k-tournament B (k > 2) without transmit-
ters has at least two 4-kings in each partite set of B.

In this paper, we will first show a couterexample to Conjecture 5 and then
exhibit a wide family of bipartite hypertournaments for which the conclusion of
the conjecture holds.

The paper is organized as follows. In the next section, we prove a lemma
(Lemma 7) which we call the Majority Lemma, and which is used to show the
positive above-mentioned results. In Section 3, we provide the counterexample
and positive results. The terminology not introduced in this paper can be found
in [6].



2 The Majority Lemma

The Majority Lemma, Lemma 7, is the main technical result of this paper. To
prove Lemma 7, we will use the following simple lemma.

Lemma 6. Let G be a bipartite graph with partite sets U and W and let every
vertex in U have degree at least p > 1 and every vertex in W have degree at
most p, except for one vertex which has degree at most 2p — 1. Then G has a
matching saturating U.

Proof. By Hall’s theorem, if for every S C U, |S| < |Ng(S)| then G has a
matching saturating U. Suppose that there is a subset S of U such that |S| >
INc(S)| + 1. Let e be the number of edges in the subgraph of G induced by
S U Ng(S) and observe that

plS[<e < (IN(S)| = Dp+(2p—1) < (IS|=2)p+ (2p—1) =S]p— 1,
a contradiction. O

Proposition 14 proved in the next section shows that Lemma 7 cannot be
extended to n =4 and p = 2.

Lemma 7. Let H be a p-partite k-tournament with p > 2. Let n > 5 and
n >k > 3. If a majority p-partite tournament M(H) has an (z,y)-path P of
length at most 4, then H has such a path of length at most /.

Proof. Tt suffices to prove this lemma for the case when P is of length 4 as the
other cases are simpler and similar. Thus, assume that P = xyx2x32475. By
definition of a path, for every i € [4], x; and x;41 belong to different partite sets
of H. Now consider the following cases covering all possibilities.
Casel: n>9and 3<k<norn>7and 4 <k <n-—1. Observe that if
for every i € {1,2,3,4},

|[Ag (i, i1)| > 3 (1)
then we can choose distinct arcs a; € Ag(x;, ;41) such that z1a1x0022303T404%5
is the required path in H. In particular, inequalities (1) will hold if %(Z:;) > 3.

If n>9and 3 <k < n, we have

1(n—2 SN 2 >3
2\k—-2/ = 2
and hence inequalities (1) hold. If n > 7 and 4 < k < n — 1, we have

1(n—2) . (n—QL(n—S)

2\ k9 > 3.

Case 2: k=3 and 5 <n <8. Then

1/n—-2 1/3 3
A iy T > = >~ = — 2
| H(xz7$z+1)| - 2(162) = 2<1> 9 ( )



fori =1,2,3,4. Consider a bipartite graph G with partite sets Z = {z1, 22, 23, 24}
and A(H). We have an edge z;a; if a; € Ag(x;,zi41). By (2), each vertex in Z
has degree at least two. Since k = 3, vertices z; and z; in G’ have no common
neighbor unless |i — j| = 1. Thus, every vertex of G in A(H) has degree at most
2. Thus, by Lemma 6, G has a matching saturating Z. In other words, there
are distinct ay, as,as,as € A(H) such that z1a1z2a9z3a3240475 is a path in H.
Case 3: k=4 and 5 < n < 6. Consider the bipartite graph G constructed
as in the previous case. Using the computations analogous to those in (2), we
see that the minimum degree of a vertex in Z is at least 3 when n = 6 and at
least 2 when n = 5. Since k = 4, there is no common neighbor of all vertices in
Z. Thus, every vertex of G in A(H) has degree at most 3. Now consider two
subcases.

Subcase 1: n = 6. Since every vertex of G in A(H) has degree at most 3 and
every vertex of G in Z has degree at least 3, by Lemma 6, G has a matching
saturating Z and we are done as in Case 2.

Subcase 2: n = 5. Recall that the minimum degree of a vertex in Z is at least
2. Suppose that there are two vertices of G in A(H) of degree 3. This means
that

Ng(zi) N Ng(zit1) N Ng(zire) # 0 (3)

for i =1 or 2. Indeed, since k =4, Ng(z1) N Ng(zj) N Ng(z1) = 0 when either
j =2 or 3. Without loss of generality, we assume that (3) holds when ¢ = 1 and
let e; € Ng(z1) N Ng(22) N Ng(z3). Thus, e1 = x120x324.

If 21 and x4 are in different partite sets of H, then x1e1x4. Since e; does not
contain x5, we can choose an arc es of H which is different from e; such that
xaeoxs. Then x1ejx4e0x5 is a path in H. Now we assume that 1 and x4 are in
the same partite set of H. Then there is an arc e; of H such that z;e;x3. Since
the degree of z3 in G is at least 2, we can choose an arc e; of H which is different
from eq such that xzesxs. We can also choose an arc es of H which is different
from e; and ey such that zsezzs. Indeed, e # ey since e; does not contain x5
and ez # es since the degree of z4 in G is at least 2. Then ziejx3esrqesrs is
a path in H. Thus, we may assume that every vertex of G in A(H) has degree
at most 2, except for one vertex which has degree at most 3. Then we can use
Lemma 6 and thus we are done as above.

Case 4: k € {5,6,7} and n = k+1. Consider the bipartite graph G constructed
as in Case 2.

Subcase 1: k € {6,7}. Using the computations analogous to those in (2), we
see that the minimum degree of a vertex in Z is at least 3. If there is a vertex
with degree 4 in A(H), then it means {x1, xa, 23,24, T5} is a subset of a vertex
set of an arc e; and the relative order is x1, s, 3,24, x5. If 1 and x5 are in
different partite sets, then xi1e1x5 is a path in H. Otherwise x1 and z4 are in
different partite sets, so xyejx4. There is an arc ey different from e; such that
x4eaxy (since the degree of z4 is at least 3). Now xjejxqesxs is a path in H.
Thus, we assume each vertex in A(H) has degree at most 3, and we are done
by Lemma 6.



Subcase 2: k = 5. Suppose that the lemma does not hold in this case. Using
the computations analogous to those in (2), we see that the minimum degree of
a vertex in Z is at least 2. To obtain a contradiction, it suffices to show that
G has at most one vertex of degree at least 3 in A(H). Suppose that G has at
least two vertices of degree at least 3 in A(H). This means that (3) holds for
i =1 or 2. Since H can have only one arc with vertex set {z1, 2, x5, 24,5},

we have
3

> INa(21) N Na(z) N Na(z)| <1 (4)

=2

Without loss of generality, we assume that (3) holds when ¢ = 1 and let e; €
Ng(z1) N Ng(z2) N Ng(z3). If we restrict eg to the vertices {x1, z2, x3, 24}, we
obtain e} = x1T2w31,.

If 1 and x4 are in the different partite sets, then x1e1x4. Since the degree
of z4 in GG is at least 2, we can choose an arc es of H which is different from e;
such that z4esxs. Then zieix4esx5 is a path in H, a contradiction. Now we
assume x; and x4 are in the same partite set. Then xje;x3. Since the degree
of z3 in G is at least 2, we can choose an arc e; of H which is different from ey
such that zzesx4. Since the degree of z4 in G is at least 2, we can choose an arc
es of H such that z4esxs and es # ey. Suppose es = e;. Then e; = z1z9x32425
and xie1x5, a contradiction. Thus, e3 # e; and x1e1x3esx4e3T5 is a path in H,
a contradiction. O

3 Main Results

In Section 3.1, using the Majority Lemma and other results, we solve Conjecture
3 in affirmative. In Section 3.2, we describe a family of couterexamples to Con-
jecture 5 and prove a sufficient condition of when the statement of Conjecture
5 holds.

3.1 Results on Conjecture 3

Lemma 8. Let H = (V, A) be a multipartite k-tournament with at most one
transmitter and let M(H) be a majority multipartite tournament of H. Let
n>5andn >k > 3. If M(H) has at least one transmitter, then H has a
2-king.

Proof. Let V4 be the partite vertex set containing all transmitters of M (H). Let
v be the transmitter of H, if H has a transmitter, and an arbitrary transmitter
of M(H), otherwise. Clearly, v € V4. Observe that for every u € V'\ V4, there is
an arc a € Ay (v,u) implying that vau. Note that for every w € Vi \ {v}, there
are a vertex u € V' \ V; and an arc e of H such that uew. As in Lemma 7, it
is easy to see that |Ap(v,u)| > 2. Thus, there is an arc a € Ay (v,u) distinct
from e implying that vauew is a path. U



Lemma 9. Let H = (V, A) be a multipartite k-tournament and let n > 5 and
n >k >3. Then H has a 4-king.

Proof. Let M(H) be a majority multipartite tournament of H. If M(H) has
no transmitters, then by Theorem 1, M (H) has a 4-king x. By Lemma 7, x is
a 4-king of H. If M (H) has transmitters, then we apply Lemma 8. O

Lemma 10. Let H = (V, A) be a p-partite k-tournament with k = 3, n = 4 and
p > 2. If H has at most one transmitter then H has a 4-king.

Proof. By Theorem 2, this lemma holds for p = 2 and so we may assume that
p > 3. It is well known that every k-hypertournament with more than k vertices
has a Hamilton path [8]. Observe that for p = 4 the first vertex of a Hamilton
path in H is a 3-king. Now we may assume that p =3. Let V=V, U VL U V3
be a partition of vertices of H. Without loss of generality, we may assume that
V1 = {il,fﬂz}, V2 = {1‘3} and V3 = {I4}

First assume that H has the unique transmitter v. If v = x3 or v = x4, then
v is a 1-king of H. Thus, we assume without loss of generality that v = ;.
Since v is a transmitter, vaizs and vasxy for some arcs a; and as of H. Since
Zo is not a transmitter, there is an arc e; such that yejzo, where y € V5 U V3.
By the definition of a transmitter, v precedes y in every arc containing v and
y. Consequently, there is an arc ey different from e; such that vesy. Hence
vegye1 o is a path from v to xo. So v is a 2-king.

Now assume that 7" has no transmitter. Consider the arc e; containing 1,
x3, and x4. If z1 is in the first position of ey, since x5 is not a transmitter, there
is an arc ey different from e; such that xz3esxs or z4esrs. Hence xqej1x3esxo or
r1ei1xiesxo is a path from z; to xo, implying that x; is a 2-king. Without loss
of generality, we now assume that z3 is in the first position of e;. Since x5 is
not a transmitter, there is an arc es, where x3 or x4 preceeds . Hence x3 is a
2-king. O

Lemmas 9 and 10 imply the following result solving Conjecture 3 in affirma-
tive.

Theorem 11. Every multipartite hypertournament with at most one transmitter
has a 4-king.
3.2 Results on Conjecture 5

The next result describes a family of counterexamples to Conjecture 5.

Proposition 12. For every k > 3, there is a bipartite k-tournament B without
transmitters which has at most one 4-king in both U and W, where U and W
are partite sets of B.

Proof. Let u € U and w € W. Let every arc of B with both v and w have both
of them in the first and second position such that in at least one such arc u is
first and in at least one such arc w is first. Clearly, B has no transmitters, but
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Figure 1: M(H)

no vertex v in (U U W) \ {u,w} can be a 4-king as there is no path from v to
either u or w. O

The next result is a sufficient condition of when the conclusion of Conjecture
5 holds. It follows directly from Theorem 4 and the Majority Lemma.

Theorem 13. Let B be a bipartite hypertournament with partite sets U and W
and with at least 5 vertices. If a majority bipartite tournament M(B) has no
transmitters, then B has at least two 4-kings in each U and W.

Our final result shows that the Majority Lemma cannot be extended to n = 4
and p = 2. The proof provides another counterexample to Conjecture 5.

Proposition 14. For k = 3 and n = 4, there is a bipartite hypertournament H
with partite sets U and W such that (i) [U| = |W| = 2, (ii) a majority bipartite
tournament M (H) has no transmitters, (iii) M(H) has an (x,y)-path of length
3, but H has no (x,y)-path, (iv) H has only one 4-king in U.

Proof. Let H be a bipartite hypertournament with partite sets U = {x1,23}
and W = {xq, 24}, arc set {a1,aq,as,aq} where

A1 = L4112, A2 = T2T3T4,03 = T3T2T1,04 = T4T3T].-

Let the arcs of M(H) be x421, X122, T2x3, x3x4 (see Fig. 1). Clearly, (i) and
(ii) hold and xixoxsxy is an (x1,x4)-path in M(H).

Now consider H. Suppose that H has an (21, x4)-path P. Since Ag(z1,24) =
(0, P = x1b1x9box3bsxy4 for some distinct arcs by, be, b3 of H. By inspection of the
arcs of H, we conclude that by = a1, by = ag, bs = ag, which is impossible since
b1,be, bs must be distinct. So H has no (z1,x4)-path and (iii) holds. Observe
that x3 is a 4-king of H since xgaszs, rsasxrs and r3asxsa12 is an (3 z1)-path
of length 2. Moreover, x; cannot be a 4-king by the discussion in (iii), so (iv)
holds.
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