Empirical Analysis of Federated Learning in
Heterogeneous Environments

Ahmed M. Abdelmoniem*

Queen Mary University of London
United Kingdom

Pantelis Papageorgiou’
KAUST
Saudi Arabia

Abstract

Federated learning (FL) is becoming a popular paradigm
for collaborative learning over distributed, private datasets
owned by non-trusting entities. FL has seen successful de-
ployment in production environments, and it has been adopted
in services such as virtual keyboards, auto-completion, item
recommendation, and several IoT applications. However, FL
comes with the challenge of performing training over largely
heterogeneous datasets, devices, and networks that are out
of the control of the centralized FL server. Motivated by this
inherent setting, we make a first step towards characteriz-
ing the impact of device and behavioral heterogeneity on
the trained model. We conduct an extensive empirical study
spanning close to 1.5K unique configurations on five popular
FL benchmarks. Our analysis shows that these sources of
heterogeneity have a major impact on both model perfor-
mance and fairness, thus shedding light on the importance
of considering heterogeneity in FL system design.

Keywords: Federated Learning, Heterogeneity, Performance,
Fairness

1 Introduction

The growing computational power of end-user devices (e.g.,
mobile phones) coupled with the availability of rich sets
of distributed data and concerns over transmitting private
information make offloading model training to these devices
increasingly attractive. Federated Learning (FL) [32] is a ML
approach wherein client devices owning different sets of data
collaborate with the assistance of a central FL server to learn
a global model without ever transmitting the private data.
Recently, FL has gained popularity as a range of practical
applications and systems are readying deployment [7, 26, 53,
54]. However, a major challenge with FL, is dealing with the
intrinsic heterogeneity of real-world environments.

To appreciate the extent of the problem, Figure 1 con-
trasts two scenarios: (U) the ideal case where devices have
uniform computational and network access capabilities and
are sampled uniformly at random; and (H) the realistic case

“Corresponding author. Work primarily done while at KAUST.
TWork done during an internship at KAUST.

Chen-Yu Ho
KAUST
Saudi Arabia

Marco Canini
KAUST
Saudi Arabia

=
N
y

T
e[

Normalized
average - test accuracy

e 0o o o ©°
o N B o ®

Figure 1. Impact of heterogeneity on model performance.
The test accuracy is averaged over learners and normalized
by the baseline accuracy of the benchmark in default setting.

where client devices have heterogeneous hardware and net-
work resources and their availability varies over time. The
box-plot presents the test accuracy across a large number of
experiments sweeping several hyper-parameters for five FL
benchmarks (c.f. §4 for details). The figure shows that het-
erogeneity has a significant impact on model performance:
for 50% of the experiments, the average accuracy is below
0.88x relative to corresponding baselines, and at the extreme,
training does not converge.

In this work, we focus on Device heterogeneity (DH),
which is caused by variations in client devices’ computation
and communication speeds and Behavioral heterogeneity
(BH), which is caused by the churn patterns of the client
devices. Despite a growing body of work in FL (see [22] for
a detailed survey), we find that a systematic assessment of
the impact of heterogeneity on the performance and fairness
of FL trained models has received little attention. Existing
works [27, 28, 37, 44, 49] primarily focus on methods to
mitigate the impact from heterogeneity. In particular, we
aim to answer the following questions:

1. How does heterogeneity impact the model performance
and introduce bias in the FL training process?

2. How sensitive is the FL training process to the hyper-
parameters of both the FL server and the local learning
algorithm?

Conference’17, July 2017, Washington, DC, USA

Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini

Rourlmd (i) Rounclj (i+1)
[Selection Configuration Reporting ' I Selection Configuration !
% W | 3 Training “ » Training —
o | | | |
| |
\ ’ 3 | \
@ | E:] “ “
~ | L ‘ !
| [TT f Training
—) | |

S |

«‘A’»f || 2
° l‘\ |

pl

Training

/¢Training —>

]

| ||
BERAIN

!

o[T T T

N / Training >
/

| |/ |
l#«v V

Deadline

I

Aggregation :1 .
5

%

N
ﬂ Mobile Device

O FL Server

¥

c@ Global Model x Unselected (1) Devices check-in with FL Server ‘3 On-device training and reporting to server
4 Server aggregates in-time clients' updates
8 Local Dataset x Unreported 2 Model and config sent to clients gares P

5 Server updates global model & checkpoints

Figure 2. Phases of the typical federated learning process.

To this end, we conduct an extensive set of experiments to
collect measurements for analyzing empirically the impact
of heterogeneity on model performance and fairness. Our
experiments span = 1.5K different configurations for five
FL benchmarks resulting in a total of ~ 5K experiments and
total compute time of ~36K GPU hours.

The experimental results demonstrate that:

e the impact of heterogeneity varies significantly, and,
in many cases, it can lead training to divergence.

e both DH and BH have an impact, and confounded
together (H) yields even greater impact on both the
model’s performance and fairness.

e DH, BH, number of epochs, learning rate are the most

important factors contributing to the impact for most
benchmarks.

2 Background

We review FL with emphasis on its system design and then
cover the impact of various sources of heterogeneity.

As depicted in Fig. 2, training of the global model occurs
over a series of rounds, until the model converges to a satis-
factory accuracy. At the start of each round, the server waits
for available devices to check-in. The server selects a subset
of these devices which meet certain conditions such as being
idle, and connected to WIFI and a power source. Then, the
server sends the current version of the global model along
with the necessary configurations (i.e., hyper-parameter set-
tings) to the selected participant. Each learner performs an
equal number of local optimization steps as controlled by
the Local Epochs hyper-parameter set at the server. Then,
learners send their updated models (or a model update, i.e.,

the delta from the global model) to the server. Typically, all
communications are encrypted and some work proposed
using differential privacy to prevent information leakage [1].
Finally, the server aggregates, with the global model, the
model updates sent by the clients (possibly via secure aggre-
gation [8]) and then checkpoints the new global model.
Beyond maintaining the global model, as shown in Fig. 2,
the server performs three phases that allow FL to be practical
at scale: selection, configuration and reporting management,
which are described below [7].
Selection: When each round starts, the server first waits
for available devices to check-in. This takes place within the
Selection Time Window. From the set of connected clients,
the server samples up to Selection Count devices that will
perform the training. If there are fewer devices by the end of
the time window, the server progresses when at least there
are Min Selection Count devices; else it aborts the round.
Configuration: After sufficient number of clients are se-
lected, the server proceeds with sending the current version
of the global model and the hyper-parameters of the training
to the selected clients. Then, the clients train the received
model on their local datasets using the hyper-parameters
configuration pre-set by the server (e.g., number of epochs,
batch size, learning rate, optimizer, etc).
Reporting: After pushing the training procedure to the
selected devices, the server waits for the devices to push
their updates. The server uses a Reporting Deadline as the
timeout. The round completes successfully if, by the end of
the deadline, at least Target Update Fraction of devices report
to the server; otherwise, the round fails and the received
model updates are ignored.

Empirical Analysis of Federated Learning in Heterogeneous Environments

2.1 Effects of heterogeneity in federated learning

Real FL deployments are exposed to a variety of environ-
mental factors, like differences in data samples, device capa-
bilities, quality of network links and availability (see Fig. 2).
As a result, heterogeneity is endemic although its ultimate
impact is not directly clear.

For instance, the popular FedAvg algorithm [32] assumes
homogeneous devices, with equal participation probability
in training. In practice, Device Heterogeneity (DH) and Be-
havior Heterogeneity (BH) skew the distribution of partici-
pating devices. From a system perspective, slower devices
and devices with poor connectivity are less likely to meet
the reporting deadline (DH). To be less intrusive to the own-
ers of devices, FL systems consider devices to be eligible
when they are plugged to a power source, are connected to
an unmetered network and are otherwise idle — all factors
influenced by user behavior (BH).

We view our work as a first step towards characterizing
the effects of heterogeneity-induced bias. To make our study
concrete and tractable, among the above issues, we focus
on the fairness aspect. Ideally, FL should ensure that the
model has a fair representation of all user groups, under some
definition of fairness. The existence of bias can be revealed
by measuring the level of fairness among the participants.

We use Jain’s fairness index [19] to measure the level of
fairness in a distribution of values. Jain’s index is commonly
used as a measure of fairness of the attained throughput
among TCP flows that compete for scarce network band-
width. Jain’s fairness index Fj is expressed as Fj = %
where, N is the number of clients and x; is the per-ciilezrit
performance measure under consideration for fairness eval-
uation (typically for us, the clients’ test accuracy).

3 Methodology

To characterize and quantify the impact of heterogeneity on
model performance and fairness, we use an experimental
design approach [14] following these driving questions:
1. Is there a definite trade-off between model perfor-
mance/fairness and heterogeneity-induced bias?
2. To what extent does BH versus DH affect the bias and
how do their individual effects confound?

3.1 Experimental design

The experimental design approach comprises a careful selec-
tion of influencing factors chosen to allow an accurate view
of the system’s response. Repeating runs allow to account
for the variance of individual experiments.

Factors: The factors are the heterogeneity vs. uniform sce-
nario and the many hyper-parameters that influence the FL
process. We subdivide the latter into three categories: envi-
ronment, application-specific, and FL system/algorithm. We
list them out in Table 2 along with the ranges of used values.

Conference’17, July 2017, Washington, DC, USA

Experiments: The space of possible instantiations of fac-
tors is huge, which makes it hard to use a space-filling ap-
proach to cover the large experimental space uniformly. To
principally cover the space of experiments, we identify a de-
fault configuration for each benchmark and we then system-
atically perform experiments while varying factors, typically
one by one as a deviation from the default configuration.
However, certain characteristics of any experiment are ran-
dom: e.g., the assignment of data partitions to devices, the
proportion of device types, or the available clients during
selection phase. We control for variance by repeating experi-
ments five times using distinct seeds to initialize randomness.
A noteworthy aspect of a benchmark’s default configu-
ration is the reporting deadline. We search for the critical
deadline, that is, an appropriate minimal round duration such
that the fraction of successful clients over the rounds is on
average above the target update fraction.
Platform: We use Flash [52] to run realistic experiments.
Flash simulates runs of FL applications and faithfully models
wall-clock execution time while multiplexing execution of
many devices onto a single GPU. Flash bins devices into three
capability-classes: low-end (LE), moderate (M) and high-end
(HE) devices. The computational speed of these groups follow
the execution profiles of three real-world devices [52]. Finally,
the devices’ network access links in terms of upload and
download speeds, are randomly chosen from 20 different
distributions covering a wide-variety of network conditions
observed in practice. Flash also comes with a trace of user
behavior collected from a real-world FL application deployed
across three countries.
Heterogeneity: Since our objective is to tease out the influ-
ence of heterogeneous settings, we consider four scenarios
for every experiment. The baseline case (U) is the ideal sce-
nario where clients are always available and uniform (i.e.,
their devices are homogeneous in hardware and link speed)
and the server sets a large enough deadline for all clients to
finish in time. The heterogeneity scenarios are as follows:
1. device heterogeneity (DH) - the clients are always online
but their device hard and link speed are sampled at random
from the real-world trace and link speed distributions, re-
spectively; 2. behavioral heterogeneity (BH) - the clients use
the moderate device model and same link speed but their
availability follows the timeline of the user in the real-world
trace [52]; 3. full heterogeneity (H) - is the simultaneous
combination of (DH) and (BH) where device model and link
speed are sampled at random and client availability follows
the real-world user trace.

4 Experimental evaluation

Benchmarks: We use five benchmarks covering a variety
of FL applications used in several prior works [27, 28, 32, 52].

Table 1 summarizes the application, dataset, and default
configuration of each benchmark.

Conference’17, July 2017, Washington, DC, USA

Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini

Table 1. Summary of the benchmarks used in this work.

Selection Reporting

Task M].d Model Dataset ‘ Model Tf)tal Count Deadline Maximum Learning Quality metric Divergence
technique Size [bytes] Clients Sample Count Rate Accuracy Threshold
(sc) (ddl) [s]
Image CNN 2 Conv2D Layers FEMNIST [13] 26,414,840 3,400 100 60 340 0.01 79.91% <17%
Classification 1 Conv2D Layer CelebA [29] 124,808 9,343 100 15 30 0.01 90.63% <59%
Next Word RNN LSTM Reddit [41] 24,722,496 813 100 27 50 0.5 11.88% <5%
Prediction Shakespeare [32] 3,271,488 1,129 50 142 50 0.8 40.10% <10%
Cluster Traditional Logistic .
Identification ML Regression Synthetic [9] 2,400 9,367 50 23 340 0.005 83.00% <30%
FEMNIST CelebA Reddit Shakespeare Synthetic
> ——
08 —u
305 —— BH
g0 — DH
<‘§‘ — H
0.0
! 0.95
w >
g0 1.0 0.8 —
£3 0.90 BH
ne 0.6 —— DH
R 4
=105 0.5 — H
&8 0-85 0.4
~ 100 100 [T—— 100 100 100
£Z m o
=
LE 50 50 50 50 50 F
03 S
o
0 0 0 0 0
0 200 400 0 200 400 0 500 1000 O 500 1000 0 1000 2000 3000
o2 1.0y 1.0 1.0 1.0 1.0
83 —u
gLos | 0.5 0.5 0.5 0.5 — BH
> : m | BN AVASS”\\ [
Z220.0 0.0 0.0 b 0.0 0.0 — H

Figure 3. Impact of different heterogeneity settings on model performance and level of fairness for different FL benchmarks.
The 1% and 2™ rows show the median value (solid line) and one standard deviation (filled range) among all seeds for the
average test accuracy and Jain’s fairness index, respectively. The 3¢ row shows the online (O), failed (F) and successful
(S) client counts throughout rounds. The 4" row shows normalized frequency for each label on which the clients trained
throughout training. Note that, CelebA (binary classification) has only 2 labels, thus using grouped bars. X-axis label for rows
1, 2, and 3 is round number and is unique data labels for row 4.

We partition the training and testing datasets so that each

client owns a partition of each dataset as done in prior works.

During a training round, a selected client uses samples from
its training partition. To evaluate the model accuracy on
the testing dataset, we run the test rounds 100 times during
the whole experiment (i.e., test rounds are set to run every
% training round where R is the total training rounds). For
each round, we evaluate the model accuracy at every client
or from a random sample of 3,500 clients, if the total client
count is higher than this cap.

The default configuration of each benchmark is primarily
based on the information from prior works [7, 9, 16]. The
reporting deadline is set by us based on the search of the
critical deadline (§3). For all benchmarks, the server uses a
selection time window of 20 seconds and the clients use SGD

as their local optimizer. We also note that the default batch
size is 10, number of epochs is 1, min selection count is 10
and update fraction is 0.8 (80%). The default FL aggregation
algorithm we use is FedAvg [32] as employed in [7] wherein
the clients upload the model updates (i.e., model deltas) to
the server for aggregation.

While our evaluation results are for the more realistic con-
ditions with Non Independent, Identically, and Distributed
(Non-LLD.) data, we also ran each benchmark using an L1D.
version of the dataset where each data point is equally likely
to be sampled and so all clients have the same underlying
distribution of data.. Our analysis of both cases (i.e., non-LLD.
and LLD.) support that the results and observations reported
are not due to data heterogeneity.

Empirical Analysis of Federated Learning in Heterogeneous Environments

Table 2. FL hyper-parameters. ddl and sc are the default
reporting deadline and selection count as in Table 1.

Values
[10, 50, 100, 500]
[100, 200, 300, 400]

[0.0, 0.3, 0.6, 0.8, 0.85, 0.9]
[1.25xddl, 1.5xddl, 1.75xddl, 2xddl]
[(0.0, 0.0, 1.0), (0.0, 1.0, 0.0),
(1.0, 0.0, 0.0), (0.0, 0.5, 0.5),
(0.5, 0.5, 0.0), (0.5, 0.0, 0.5),
(0.1, 0.1, 0.8), (0.8, 0.1, 0.1),
(0.1, 0.8, 0.1), (0.2, 0.2, 0.6),
(0.2, 0.6, 0.2), (0.6, 0.2, 0.2),
(0.33, 0.34, 0.33)]
[0.25%s¢, 0.5%sc, 0.75Xsc, sc]

Hyper-parameter
Selection count
Max samples per client
Target update fraction
Deadline

(LE%, M%, HE%)

Min selection count

We run experiments on a GPU cluster. We run = 5K ex-
periments, requiring a total of ~36K GPU-hours (x4 years).
Next, we discuss the results in detail. We mainly present the
average test accuracy and Jain’s fairness index, both normal-
ized by the corresponding values of the baseline (i.e., the
setting (U) with default configurations). In the figures, the
missing values marked as (*), represent the divergent cases.

4.1 Heterogeneous settings and their impact

Fig. 3 presents the model performance (the average test ac-
curacy across devices) and fairness (based on Jain’s fairness
index) for every benchmark contrasting the heterogeneous
scenarios (BH, DH, H) to uniform (U). We observe that
both DH and BH have an impact, and generally, they to-
gether confound (H) to yield even greater impact on both
the model’s performance and fairness.

The impact of BH is more significant for benchmarks that
either have a relatively small client population (Reddit) or
have a small number of data samples per client (CelebA and
Synthetic). These cases are more sensitive to variations in
device availability as it affects the quantity and diversity of
the training data. For the converged runs, the degradation
caused by BH on average performance and fairness varies
from 1.1X to 3.9% and from 1X to 2.2, respectively.

The impact of DH is in general more profound despite all
devices are always available. This is because the device type
is determined at random following a distribution skewed in
favor of low-end devices. Since, the device’s ability to finish
training before the deadline depends on the time needed to
process the device’s data samples, low-end devices are more
likely to fail to finish the training in time. In our DH and
H experiments, there are on average 55% LE, 44% M, and
1% HE devices. Over the converged runs, the degradation
caused by DH on average performance and fairness ranges
from 1.13% to 4.1x and from 1X to 1.96X%, respectively.

The composition of device types and client availability is
the main contributor to the average performance and fairness

Conference’17, July 2017, Washington, DC, USA

FEMNIST Reddit Deadline
15 fraction
1.0
Lo Wi ° IS R UE S A125
0.5 m1l5
1 2 3 1 2 3 +1.75
. Normalized training time Normalized training time %2.0
g
3
v .
| | M B
@
L0
. 10 50 100 500 10 50 100 500
N Selection count Selection count
©
o —
3 BH
= i |
o s DH
% 0 k% * *%k H
1S 0.0 0.3 0.6 0.8 0.85 0.9 0.0 0.3 0.6 0.8 0.85 0.9
§ Update fraction Update fraction
|11 II ||| ||
| L e |

0
10 50 100 200 300340400
Max samples

10 50 100 200 300 400
Max samples

Figure 4. The sensitivity of the average accuracy to the
choice of the FL hyper-parameters for FEMNIST and Reddit
Benchmarks. We mark the default settings of the uniform
scenario in bold in all following figures.

degradation seen for H. This degradation can be attributed to
the confounding effect of DH, which results in a mixture of
device types dominated by low-end devices and BH, which
results in unavailability of moderate and high-end devices.
As aresult, within heterogeneity, the global model is updated
using updates from fewer clients than the uniform case. This
is supported by the lower number of unique clients (or data
samples) as indicated by label frequency in last row of Fig. 3.

4.2 FL hyper-parameters and heterogeneity settings

We now study the sensitivity of the heterogeneity settings
to the choice of FL hyper-parameters. Due to space limit, we
focus on the results of FEMNIST and Reddit. However, we
note that the observations from the other benchmarks are
mostly in line with the ones we discuss next.

We observe that the average performance is quite sensitive
to the choice of the FL hyper-parameters as shown in Fig. 4.
We describe the effects of each of hyper-parameter below.
Reporting Deadline: The deadline is one of the key FL
hyper-parameters, which directly influences the success rate
of the clients. The default setting is set to allow, on aver-
age, just enough fraction of clients to submit the updates
in time. The results show that increasing the deadline re-
sults in improvement of the obtained average test accuracy.
Moreover, the improvements are more pronounced for DH
and H settings. However, we observe that the improvements
flatten at a certain point after which the extra time spent in
training due to waiting for the deadline would be wasteful.
Hence, there is a clear trade-off between the performance

Conference’17, July 2017, Washington, DC, USA

and run-time costs which can be mainly controlled by tuning
the reporting deadline.

Selection Count: We observe that a higher selection client
count leads to almost no improvement in the average model
performance for U and BH settings. However, we observe
larger variations, with larger numbers of selection count, as
indicated by the error bars for BH. In contrast, for DH and
H, increasing the selection count leads to severe degradation
in the model performance and fairness (esp. for Shakespeare).
This can be attributed to both the over-fitting of the model
due to larger global batch sizes coupled with the increased
number of client failures in DH and H in which the majority
of clients are low-end devices.

Target Update Fraction: We note that, for all heterogene-
ity settings, the target update fraction of uploading clients
directly impacts both the performance and fairness and in-
troduces a noticeable trade-off. Specifically, higher targets
for update fraction means greater likelihood for round fail-
ure (i.e., not meeting the target) which results in a model
with low levels of fairness and quality (or divergence in
many cases especially for DH and H). In contrast, low up-
date fraction can help with reducing the failed rounds but
fewer clients would contribute to the aggregated update po-
tentially increasing the model bias. Therefore, the tuning of
this hyper-parameter is quite vital for the convergence of
the model.

Maximum Samples: is the maximum number of samples
each client is allowed to use when participating in training
or testing. This is useful for Non-LLD. data to bound each
client’s contributed samples which would make the learn-
ing updates more fair among clients. However, the results
show lower values of maximum number of samples can limit
the learning process (i.e., slow convergence and hence low
model performance) which equally impacts all settings. In
general, the results show that, in BH settings, the quality
and fairness of the model are mildly impacted by the choice
of the maximum number of samples. In contrast, we observe
noticeable impact (and in some cases divergence) for both
DH and H settings. This is because, for large maximum
number of samples, clients with low-end devices, needing
to process more samples per epoch, will likely fail to report
within the deadline. In addition, the maximum number of
samples results in a trade-off between ensuring a higher de-
gree of inclusion and diversity of clients’ data. This suggests
that it should be tuned depending on the distribution of data
points available with the clients at the time of training.

4.3 Importance analysis

We now leverage functional ANOVA analysis [18] to evalu-
ate the importance of different factors towards the impact
on model performance. Fig. 5 shows the individual impor-
tance of different factors on the experiments. The error bars
show the confidence interval around the estimated values

Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini

Importance for relative accuracy - Importance for relative Jain's fairness -

eddit Reddit
|
0.20 025 |
I 0.20
£0.15
g 0.15
go1e 0.10
0.05 0.05
0.00 + 0.00 +
Importance for relative accuracy - Importance for relative Jain's fairness -
CelebA CelebA
0.20 | 0.25 |
8015 0.20
s
5010 0.15
8
£ 0.10
0.05 0.05
0.00 0.00

Importance for relative accuracy - Importance for relative Jain's fairness -
FEMNIST FE

MNIST

0.20 | 0.25
0.15 020 |
0.15
0.10
0.10
0.05 . 0.05
0.00 + 0.00 +

Importance for relative accuracy - Importance for relative Jain's fairness -
Shakespeare Shakespeare

0.4
| 1
03 03
2 0.2
. 0.1 ,
,
1 + 0.0

Importance for relative accuracy - Importance for relative Jain's fairness -
Synthetic Synthetic

0.25
X 0.20 I
0.15
. 0.10
0.05
0.0 0.00 min
00
<

Importance

Importance
o o
o

o
=3

o
W

Importance
o
N

o
-

@ & & 2 2 2 2 & &
LS FE T F LS E s
6‘6\-0‘\(’ & (_\\QQ (;o&og & & é‘»o(\(« & \(\q (’,b@oe:b & &
P &S S aF 2 & P &S SIS 2 &
SRR N ¥ E N F
o X o NIl

Figure 5. Functional ANOVA analysis.

based on 100 repeated runs of functional ANOVA. We ex-
clude the divergent runs for this analysis (i.e., runs with
average accuracy below the divergence threshold listed in
Table 1). We see from the figure that, for most benchmarks,
BH, DH, number of epochs, learning rate are the most im-
portant factors. BH and DH have a noticeable impact on
the model performance and fairness, while the remaining
hyper-parameters have a comparable or smaller influence
to the performance variations. The importance of number
of epochs is linked to the default value for the reporting
deadline: a larger number of epochs make it more likely to
miss the deadline. And, learning rate impacts the ability of
achieving reasonable convergence which requires per-task
tuning as results suggest that some tasks are more amenable
to the learning rate setting than the others.

The exceptions of these observations are with Shakespeare
(for both accuracy and fairness performance metrics) where

Empirical Analysis of Federated Learning in Heterogeneous Environments

users have many more samples than they can process and
increasing the threshold on the maximum samples can cause
clients to miss the reporting deadline due to increased com-
putational needs. Therefore, max samples has the highest
importance in that case.

4.4 Discussion

We expect that the heterogeneity impact might be reduced
by means of proportional load balancing during the selec-
tion phase [37], computation offloading techniques at the
edge [50], adaptive compression of model for computation [3]
and communication [2, 4] or asynchronous mode of model
updates [30].

A question also arises: how helpful would it be if one could
maintain at the server some level of non-sensitive informa-
tion about clients’ hardware and network characteristics?
Then, adaptive methods could be designed for per-client tun-
ing of the hyper-parameters. For instance, to mitigate BH,
the server may keep historical information on clients’ partic-
ipation and adapt the minimum selection count accordingly.
We leave exploration of such strategies for future work.

5 Related Work

Federated Learning (FL): is a paradigm that has recently
emerged mainly for privacy-preserving learning. In this para-
digm, training is distributed on decentralized devices such as
smart edge devices (i.e., mobile or IoT sensor devices) which
produces data samples, so that data does not leave the local
storage of the data source [25, 32]. For this reason, FL has
seen an emerging popularity and is currently deployed for
a large number of users to enhance the functionality of the
virtual keyboards (e.g., the search suggestion quality[7, 54]).
Moreover, to facilitate and expedite research efforts, several
works developed FL frameworks for experimentation with
FL settings [9, 38, 45, 48, 52]. In this work, we dissect het-
erogeneity and provide a comprehensive evaluation of their
impact on the model quality and fairness.

System heterogeneity: Heterogeneity is one of the ma-
jor challenges for distributed systems. In datacenters, the
compute nodes need to aggregate their local model updates
among each other via some form of communication back-
end (e.g., using parameter server [25, 40] or peer-to-peer
collective aggregation [31, 39, 46, 51]). In this context, de-
vice heterogeneity results in performance degradation due
to stragglers (i.e., slow workers) who slow down the training
process [10, 20]. Several works tried to address this problem
via system and algorithmic solutions [5, 10, 11, 17, 20, 39, 42].
In FL settings, the heterogeneity is sourced from other sys-
tem artifacts and is not limited to the heterogeneity in device
capabilities. Specifically, data distribution among the clients,
client sampling method, and user behavior are other main
sources of heterogeneity in FL scenarios.

Conference’17, July 2017, Washington, DC, USA

Improvements in FL: In FL, some proposals try to address
the communication bottlenecks during the training via ex-
ploiting number of communication reduction techniques
like compression, periodic update, and layer-wise asynchro-
nous updates [2, 4, 5, 7, 12, 15, 23, 43, 47, 51]. Other works
try to study and improve the privacy guarantees of FL en-
vironments [6, 7, 33, 34, 36]. Additionally, others focus on
personalizing the global model resulting from FL [21] and
minimizing the energy consumption on edge devices [24].
Moreover, recent works highlighted the problems of bias and
proposed mitigation schemes to enforce fairer representation
of the clients in the trained model [27, 28, 35].

6 Conclusion

We present an experimental study of the impact of hetero-
geneous learners on the performance and bias in federated
learning. We empirically study the factors that play a role in
introducing heterogeneity, such as device and behavioral het-
erogeneity. We evaluate how different FL hyper-parameters
amplify the impact of heterogeneity on both model perfor-
mance and fairness. Our evaluation, shows that heterogene-
ity can cause up to 4.6x and 2.2Xx degradation in the average
test accuracy and the fairness of the model.

Acknowledgments
We thank Muhammad Bilal for his help with the work.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. Deep Learning with
Differential Privacy. In CCS.

[2] Ahmed M. Abdelmoniem and Marco Canini. 2021. DC2: Delay-aware
Compression Control for Distributed Machine Learning. In INFOCOM.

[3] Ahmed M. Abdelmoniem and Marco Canini. 2021. Towards Mitigat-
ing Device Heterogeneity in Federated Learning via Adaptive Model
Quantization. In EuroMLSys.

[4] Ahmed M. Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini,
and Marco Canini. 2021. An Efficient Statistical-based Gradient Com-
pression Technique for Distributed Training Systems. In MLSys.

[5] Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and
Suhaib A. Fahmy. 2021. Resource-Efficient Federated Learning. arXiv
2111.01108 (2021).

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and

Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In

AISTATS.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,

Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Koneé¢ny, Ste-

fano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David

Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards Federated

Learning at Scale: System Design. In MLSys.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and

Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving

Machine Learning. In CCS.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub

Kone¢ny, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar.

2018. LEAF: A Benchmark for Federated Settings. arXiv 1812.01097

(2018).

[7

—

[8

[}

[9

—

Conference’17, July 2017, Washington, DC, USA

(10]

[11

—

(12]

[13

[t

[14

—
[
w

—_

[16

—

[17

—

(18]

[19

—

[20

—

[22]

(23]

[24]

[25]

[26

—

[27

—

[28

[t

[29

—

(30

[t

(31]

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei
Zhang, and Kailash Gopalakrishnan. 2018. AdaComp : Adaptive Resid-
ual Gradient Compression for Data-Parallel Distributed Training. In
AAAL

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016.
Revisiting Distributed Synchronous SGD. In ICLR Workshop Track.
Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2019. Communication-
Efficient Federated Deep Learning With Layerwise Asynchronous
Model Update and Temporally Weighted Aggregation. IEEE TNNLS
(2019).

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.
2017. EMNIST: Extending MNIST to handwritten letters. In IJCNN.
Ronald Fisher. 1971. The Design of Experiments (9 ed.). Macmillan.
Rishikesh R. Gajjala, Shashwat Banchhor, Ahmed M. Abdelmoniem,
Aritra Dutta, Marco Canini, and Panos Kalnis. 2020. Huffman Coding
Based Encoding Techniques for Fast Distributed Deep Learning. In
Workshop on Distributed Machine Learning.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Francoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. 2018. Federated Learning for Mobile Keyboard
Prediction. arXiv:1811.03604 (2018).

Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P.
Xing. 2013. More Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server. In NeurIPS.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2014. An effi-
cient approach for assessing hyperparameter importance. In ICML.
Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness
index: An explanation. ATM Forum contribution 99, 45 (1999).

Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-
Aware Distributed Parameter Servers. In SIGMOD.

Yihan Jiang, Jakub Kone¢ny, Keith Rush, and Sreeram Kannan. 2019.
Improving Federated Learning Personalization via Model Agnostic
Meta Learning. arXiv 1909.12488 (2019).

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. 2019. Advances and open
problems in federated learning. arXiv:1912.04977 (2019).

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. In Workshop on
Private Multi-Party Machine Learning - NeurIPS.

Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu.
2019. SmartPC: Hierarchical Pace Control in Real-Time Federated
Learning System. In RTSS.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In OSDL

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
Federated Learning: Challenges, Methods, and Future Directions. IEEE
Signal Processing Magazine 37, 3 (2020).

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. 2020. Federated Optimization in Het-
erogeneous Networks. In MLSys.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020.
Fair Resource Allocation in Federated Learning. In ICLR.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep
Learning Face Attributes in the Wild. In ICCV.

Xiaofeng Lu, Yuying Liao, Pietro Lio, and Pan Hui. 2020. Privacy-
Preserving Asynchronous Federated Learning Mechanism for Edge
Network Computing. IEEE Access 8 (2020).

Liang Luo, Peter West, Arvind Krishnamurthy, Luis Ceze, and Jacob
Nelson. 2020. PLink: Discovering and Exploiting Datacenter Network

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini

Locality for Efficient Cloud-based Distributed Training. In MLSys.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agiiera y Arcas. 2017. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In AISTATS.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
2018. Learning Differentially Private Recurrent Language Models. In
ICLR.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. 2019. Exploiting Unintended Feature Leakage in Collabo-
rative Learning. In IEEE Symposium on Security and Privacy (SP).
Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. 2019. Ag-
nostic Federated Learning. In ICML.

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehen-
sive privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In IEEE
Symposium on Security and Privacy (SP).

Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Federated
Learning with Heterogeneous Resources in Mobile Edge. In ICC.
PaddlePaddle.org. 2020. PArallel Distributed Deep LEarning: Machine
Learning Framework from Industrial Practice. https://github.com/
PaddlePaddle/PaddleFL

Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce
algorithms for clusters of workstations. J. Parallel and Distrib. Comput.
69, 2 (2009), 117 — 124. https://doi.org/10.1016/j.jpdc.2008.09.002
Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communica-
tion Scheduler for Distributed DNN Training Acceleration. In SOSP.
Pushshift.io. 2020. Reddit Datasets. https://files.pushshift.io/reddit/.
Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011.
Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In NeurIPS.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jad-
babaie, and Ramtin Pedarsani. 2020. FedPAQ: A Communication-
Efficient Federated Learning Method with Periodic Averaging and
Quantization. In AISTATS.

Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong.
2021. Towards Flexible Device Participation in Federated Learning .
In AISTATS.

Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Man-
cuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2018. A
generic framework for privacy preserving deep learning. arXiv
1811.04017 (2018).

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv:1802.05799 (2018).
Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Tal-
walkar. 2017. Federated Multi-Task Learning. In NeurIPS.
tensorflow.org. 2020. TensorFlow Federated: Machine Learning on
Decentralized Data. https://www.tensorflow.org/federated

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent
Poor. 2020. Tackling the Objective Inconsistency Problem in Hetero-
geneous Federated Optimization. In NeurIPS.

Wentai Wu, Ligang He, Weiwei Lin, and Rui Mao. 2020. Accelerating
Federated Learning over Reliability-Agnostic Clients in Mobile Edge
Computing Systems. IEEE Transactions on Parallel and Distributed
Systems (2020).

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta,
El Houcine Bergou, Konstantinos Karatsenidis, Marco Canini, and
Panos Kalnis. 2021. GRACE: A Compressed Communication Frame-
work for Distributed Machine Learning. In ICDCS.

Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui
Bian, Yunxin Liu, and Xuanzhe Liu. 2021. Characterizing Impacts of
Heterogeneity in Federated Learning upon Large-Scale Smartphone
Data. In The Web Conference.

https://github.com/PaddlePaddle/PaddleFL
https://github.com/PaddlePaddle/PaddleFL
https://doi.org/10.1016/j.jpdc.2008.09.002
https://files.pushshift.io/reddit/
https://www.tensorflow.org/federated

Empirical Analysis of Federated Learning in Heterogeneous Environments

(53]

[54]

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Feder-
ated Machine Learning: Concept and Applications. ACM Transactions
on Intelligent Systems and Technology 10, 2 (2019).

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li,
Nicholas Kong, Daniel Ramage, and Francoise Beaufays. 2018. Applied
Federated Learning: Improving Google Keyboard Query Suggestions.
arXiv 1812.02903 (2018).

Conference’17, July 2017, Washington, DC, USA

	Abstract
	1 Introduction
	2 Background
	2.1 Effects of heterogeneity in federated learning

	3 Methodology
	3.1 Experimental design

	4 Experimental evaluation
	4.1 Heterogeneous settings and their impact
	4.2 FL hyper-parameters and heterogeneity settings
	4.3 Importance analysis
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

