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Abstract: In this paper two algorithms for register 

allocation are presented. The first algorithm is a simulated 

annealing algorithm. The core of the algorithm is the 

Metropolis procedure. The algorithm presented in the paper 

has a linear time asymptotic complexity. The second 

algorithm is a genetic algorithm. The algorithm has a linear 

time complexity. 
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I. INTRODUCTION 
 

Most RISC processors make a great effort to optimize 

register usage to reduce the number of variables that must 

be kept in memory. The choice of a suitable register 

allocation technique is vital to the performance of a RISC 

processor. Register allocation may be viewed as a graph 

coloring problem, where coloring a graph is an assignment 

of a color to each of its nodes such that two connected 

nodes have different colors. Each node in the graph stands 

for a computed quantity that resides in a machine register. 

Two nodes are connected by an edge if the quantities are 

simultaneously live at some point in the object program. 
The graph coloring problem is an NP-C problem. 

Exhaustive search approaches for coloring a graph imply 

an exponential time complexity. Heuristics of reasonable 

time complexity are required for large size problems. A 

number of factors can be considered in designing a graph 

coloring heuristics, e.g., a vertex of high degree is harder to 

color than a vertex of low degree, vertices with the same 

neighborhood should be colored alike, and coloring many 

vertices with the same color is a good idea. 
In this paper two  non-deterministic algorithms are 

presented and compared in terms of asymptotic time 

complexity and quality of solution. These algorithms are 

simulated annealing and genetic algorithms. 
In the last decade Simulated Annealing (SA) has been 

used extensively in solving various combinatorial 

problems, e.g., traveling salesman problem [1,2] and 

quadratic assignment problem [3]. SA is an adaptive 

heuristic and belongs to the class of non-deterministic 

algorithms. The heuristic was first introduced by 

Kirkpatrich, Gelatt and Vecchi in 1983 [2]. The name of 

Simulated Annealing is inspirited from the process of 

carefully cooling molten metals in order to obtain a good 

crystal structure. 
A recently proposed paradigm for solving hard 

optimization problems is Genetic Algorithms (GA). GA 

has been successfully employed for solving many 

combinatorial problems [4-7] in areas such as pattern 

classification, machine learning, scheduling, and VLSI 

placement and floor planning. Genetic algorithms are 

search algorithms which emulate the natural process of 

evolution as a means of processing toward the optimum. A 

genetic algorithm starts with an initial set of random 

configurations called a population. Each individual in the 

population, termed chromosome, is a string of symbols 

called genes. A solution for the optimization problem is 

represented by a chromosome. During each iteration, two 

individuals at a time, called parents, are selected from the 

population based on a fitness value. A number of genetic 

operators, as crossover or inversion, are applied on the 

selected parents to generate new individual solutions called 

offsprings. These genetic operators combine the features of 

both parents.  
 

II.  SIMULATED ANNEALING ALGORITHM 
 

In this section a simulated annealing algorithm for 

register allocation is presented. The algorithm is based on 

the  Metropolis procedure. The procedure accepts a new 

solution with less profit based on a probabilistic function. 

The objective of the heuristic is to color a graph 

representing the register allocation problem to maximize a 

profit function. The profit function is defined using the 

profit gained from coloring a subset of the nodes. The 

algorithm presented in the paper has a linear time 

asymptotic complexity.  
The algorithm is shown in Fig. 1. The core of the 

algorithm is the Metropolis procedure given in Fig.  2. It 

uses the procedure NEWSOLUTION to generate a local 

neighbor new_solution for any given solution. If the profit 

of the new_solution is greater than the profit of the current 

solution, then certainly the new_solution is acceptable. If 

the new_solution has less profit, Metropolis will accept the 

new_solution on a probabilistic basis. A random number is 

generated in the range 0 to 1. If this random number is 

smaller than edelta temperature/
, where delta is the 

difference in profits, then the inferior solution is accepted. 
The objective of the heuristic is to color a graph 

representing the allocation problem to maximize a profit 

function. The profit function is defined as follows: 
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 {alpha is the cooling rate < 1}; 

 {beta is a constant > 1}; 
 

begin 
 temperature = initial_temperature; 

 solution = initial_solution; 
 time = 0; 

 repeat 
  call Metropolis (solution, temperature, cooling_schedule); 

  time = time + cooling_schedule; 
  temperature = alpha * temperature; 

  cooling_schedule = beta * cooling_schedule; 
 until (time >= Maxtime); 

end {of Simulated Annealing}. 
Fig. 1 Procedure for Simulated Annealing Algorithm. 

 

 
netsave nodei( )  : A function representing the profit 

gained from allocating a variable to a register. 
 

The heuristic proceeds as follows: 
 

(1) Find the set of largest profitable nodes. The number  
of  nodes in this set is equal to the number of available 

colors. 
 (2) Color a new node from the uncolored set if it is 

possible. If there is no more nodes to be colored or 

time >= maxtime then stop. 
 (3) Calculate the change in profit after adding the 

colored node from step 2. 
4- (4) If the change is positive then add the node of step 2 

to the colored set, otherwise the node is colored based 

on a probabilistic comparison. 
(5) Go to step 2. 

 

 

 
Procedure Metropolis (solution, temperature, 

cooling_schedule); 
 

begin 
 repeat 

  get NEWSOLUTION; 
  delta = new_profit - old_profit 

  If ((delta > 0) or (random < 

                    edelta temperature/
 )) then 

   solution = new_solution; 
 

  cooling_schedule = cooling_schedule - 1; 
 until (cooling_schedule = 0); 

end {of Metropolis}. 
Fig.  2 The Metropolis Procedure. 

 

Experimental Results 

 

In this section we apply the simulated annealing algorithm  

for register allocation on a graph of size 128. The graph 

used for this study is of random nature and random values 

for the nodes' netsave. The effect of different parameters on 

the proposed algorithm performance is evaluated. The 

effect of the following parameters is considered : number 

of colors, cooling-schedule, beta, temperature, and alpha. 
 

Number of Colors 
To evaluate the effect of number of colors on the profit 

gained from coloring the graph and the number of trials to 

get the best solution, the number of colors has been 

changed from 10 to 20. The values for the parameters 

cooling-schedule, beta, temperature, and alpha are 1.0, 1.0, 

100, and 0.8 respectively. The following observations are 

concluded : 
 (1) The best solution achieved is 2965. This value is 

constant for colors greater than or equal to 14. 
 (2) While increasing the number of colors (i.e. greater 

than 14), the profit remains constant but the number of 

trials decreases. The effect of increasing the number of 

colors is reflected on decreasing the number of trials. 
 (3) The graph can be colored using 14 colors only 

while achieving a netsave of 2965. 
 

 
Cooling Schedule (M)  

To evaluate the effect of cooling schedule on the profit 

gained from coloring the graph and the number of trials to 

get the best solution, the cooling schedule has been 

changed from 1 to 20. The values for the parameters beta, 

temperature, and alpha are 1.0, 100, and 0.8 respectively. 

The following is noticed :  
1- The best solution is obtained at m = 1, and for m > 1 the 

solution may be less or equal to the solution at m = 1. 
2- 2- If the best solution remains constant while m is 

increased, the number of trials remains constant as 

well. 



3- If the solution decreases as m increases, the number of 

trials decreases as well. 
4- The profit does not change with m if the number of 

colors is greater than a certain threshold value (14 in 

this example). 
5- As m increases there is a better chance for a negative 

solution to be accepted. This implies that the solution 

may be worse or better than the previous solution. For 

example if the number of colors is 10 and m is 

increased from 4 to 5, the profit drops from 2565 to 

2415 and the number of trials drops from 107 to 99, 

and if the number of colors is 13 and m increases from 

9 to 10, the profit increases from 2685 to 2865. 
 

Beta 

To evaluate the effect of beta on the profit gained from 

coloring the graph and the number of trials to get the best 

solution, beta has been changed from 1 to 20.The values for 

the parameters cooling-schedule, temperature, and alpha 

are 1.0, 100, and 0.8 respectively. The following is noticed 

:  
1-  The best solution is obtained at low values for beta. 

This value is equal to 1 except for number of colors 

equal to 12 and 13, the best solution is obtained at beta 

equal to 3. 
 If the solution remains constant while beta is 

increased, the number of trials may decrease slightly ( 

number of colors is 15 ), or remains constant ( number 

of colors is 20 ). 
3- If the solution decreases as beta increases, the number 

of trials decreases as well. 
4- The profit does not change with beta if the number of 

colors is greater than a certain threshold value (14 in 

this example). 
5- As beta increases there is a better chance for a negative 

solution to be accepted. This implies that the solution 

may be worse or better than the previous solution. For 

example if the number of colors is 11 and beta is 

increased from 1 to 2, the profit drops from 2705 to 

2555 and the number of trials drops from 109 to 101, 

but if the number of colors is 12 and beta increases 

from 2 to 3, the profit increases from 2695 to 2785. 
 

Temperature 

 

To evaluate the effect of temperature on the profit gained 

from coloring the graph and the number of trials to get the 

best solution, the temperature has been changed from 1 to 

100. The values for the parameters cooling-schedule, beta, 

and alpha are 1.0, 1.0, and 0.8 respectively The following 

was noticed : 
 (1) The best solution is obtained at low values of 

temperature. 
2- (2) If the solution remains constant while temperature 

is increased, the number of trials remains constant as 

well. 
3- (3) If the solution decreases as temperature increases, 

the number of trials decreases as well. 

 (4) The profit does not change with temperature if the 

number of colors is greater than or equal to a certain 

threshold value (14 in this example). 
 (5) As temperature increases there is a better chance 

for a negative solution to be accepted. This implies 

that the solution may be worse or better than the 

previous solution. If the number of colors is equal to 

11 and temperature is increased from 10 to 20 the 

profit increases from 2885 to 2895, but if the 

temperature is increased from 20 to 30 the profit drops 

from 2895 to 2835. 
 

Alpha 

To evaluate the effect of alpha on the profit gained from 

coloring the graph and the number of trials to get the best 

solution, alpha has been changed from 0.1 to 0.99 The 

values for the parameters cooling-schedule, beta, and 

temperature are 1.0, 1.0, and 100 respectively.. The 

following is noticed :  
1-  The best solution is obtained at low values for alpha. 

This value is less than or equal to 0.6, except for 

number of colors equal to 11 the best solution is 

obtained at alpha in the range 0.2 to 0.6. 
 2- If the solution remains constant while alpha is 

increased, the number of trials remains constant as 

well. 
 3- If the solution decreases as alpha increases, the 

number of trials decreases as well. 
4- The profit does not change with alpha if the number of 

colors is greater than or equal to 14, except for the 

values of alpha in the range .95 to .99 where a 

significant change is noticed. 
5- As alpha decreases there is no chance that a negative 

solution is accepted. That explains why the solution 

remains constant for alpha less than or equal to 0.6. 
6- 6- The profit achieved is very sensitive for values 

of alpha greater than. 
 

The simulated annealing algorithm presented in this 

paper has a linear time asymptotic complexity. The 

experimental results of the algorithm show optimal 

solutions in many of the graphs used for testing. The results 

show better performance  compared with other 

deterministic and non-deterministic approaches. 
 

III. Genetic Algorithm 
 

In this section we introduce a new genetic algorithm for 

register allocation. A merge operator  is used by the 

selected parents to generate new individual solutions. The 

number of steps required to examine all pairs in the 

population matrix to generate candidate’s offspring is n2
 

(n  is the population matrix size). Generating an offspring 

from the parents needs m steps (m number of node. The 

experimental results show optimal solutions in many of the 

graphs used for testing. An outline of a genetic algorithm is 

shown in Fig.. 3.The algorithm for register allocation is 

shown in Fig. 4. The algorithm uses the following 

parameters: 



 
1-  Initial population 

An initial population consists of any random valid solutions 

or it can be generated using a starting procedure. The 

advantage of using a starting procedure is to start with a 

good solution that can be improved. 

2- Hamming distance 
Let A and B be any two individual strings of length N. The 

hamming distance is defined as the total number of 

positions where A Bi i . 
Example 

Let A = [0101100],  B = [1011100]. A and B are different 

in positions 1, 2, and 3, i.e., the hamming distance is 3. 
 

 
Procedure Genetic 
{ N p  : population size} 
{ Ng  : number of generations} 

{ No  : number of offsprings} 
{ Pi  : Inversion probability} 
{Population : population matrix of size N p} 
begin 

 Generate an initial valid population; 
 for j=1 to N p 

  do evaluate fitness(population[j]); 
 for i=1 to Ng  do 

 begin 
  for j=1 to No  do 

  begin 
   choose parents with probability proportional to fitness value; 

   perform crossover to generate offsprings; 
   for  k = 1 to N p  do 

    apply inversion(population[k]) with probabilityPi ; 
   Evaluate fitness(offspring[j]); 

  end; 
  populationselect(population,offspring,N p) 

 end; 
 Return highest scoring configuration in population; 

end. 

 
Fig.  3 Procedure for Genetic Algorithm. 

 
Procedure Register-Allocation-by-Genetic Algorithm 
{maxtime : is the total time allowed for the genetic process} 
begin 

 get the population-matrix and the corresponding profit vector ; 
 for x = 1 to maxtime do 

  begin  
   Evaluate the hamming-distance between two individuals; 

   If hamming-distance > 1 then 
    Merge the two individuals to generate the new offspring; 

   If offspring-profit > max(parents' profit) then 
    Accept the offspring as a new individual in the     

  population-matrix by deleting any of the       
 parents and replacing the generated offspring; 

  end; 
end. 

Fig.  4 Procedure for Register Allocation by Genetic Algorithm. 
  



3- Merge procedure 
 

Let A and B be any two individual strings of length N. An 

offspring C is generated by merging as follows: 
  

c ai i if a bi i 
 c ai i if a b ai i i   , 0 and   

  netsave ai( )  0 
 c bi i if a b bi i i   , 0  and   

  netsave bi( )  0 
 ci  0 otherwise 

 
4- Fitness value 

 
It is the profit function which is defined as follows : 
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Analysis 

 
The genetic algorithm presented in this paper may be 

used to enhance previous results obtained using a starting 

approach, e.g., simulated annealing. Let n be the population 

matrix size and m be the vector length (no of nodes). n2
 

steps are required to examine all pairs in the population 

matrix to generate candidate offspring. Generating an 

offspring from the parents needs m steps. The total number 

of steps required by the algorithm is n m2 , i.e., the genetic 

algorithm has a linear time complexity in terms of  number 

of  nodes. 
 

IV. CONCLUSIONS 
 

A reduced instruction set computer is a machine with a 

small number of instructions optimized for a specific 

application. A great effort is invested to optimize register 

usage which influences the memory traffic. Two quantities 

can share a register if their life times are mutually 

exclusive. The problem of allocating values to registers can 

be viewed as a graph coloring problem. Each node in the 

graph represents a computed quantity that resides in a 

machine register. Two nodes are connected if the residing 

quantities do not have disjoint life times. 
 

In this paper we introduce a combined two phase 

approach for graph coloring; a Simulated Annealing 

heuristic phase and a Genetic algorithm phase. The 

performance of the Simulated Annealing is controlled by a 

number of parameters, e.g., number of colors, cooling 

scheduling, beta, temperature, and alpha. The effect of 

different parameters on the performance has been 

thoroughly investigated. 

 
A Genetic algorithm is introduced for the second phase. 

It  is used to enhance results obtained from the SA phase. A 

new efficient genetic operator is introduced to generate an 

offspring from two parents. The GA proved to enhance the 

SA results. 
 

 Other areas of research related to this combined 

approach need more exploration. The approach can be 

extended to include a global phase to measure the effect of 

applying it across different subroutines. New genetic 

operators, other than the merging operator introduced in 

this paper, can be examined and compared with the 

merging operator.  
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