
© 1997 IEEE. Reprinted, with permission, from K. M. Elleithy, and E. G. Abd-El-

Fattah, “New Non-deterministic Approaches for Register Allocation,” Proc. of 4th

IEEE International Conference on Electronics, Circuits, and Systems, Cairo, Dec.

1997.

This material is posted here with permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement of any of the University of

Bridgeport's products or services. Internal or personal use of this material is

permitted. However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution must be obtained from the IEEE by writing to pubs-

permissions@ieee.org. By choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52956186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

New Non-deterministic Approaches for Register Allocation

K. M. Elleithy E. G. Abd-El-Fattah
Computer Engineering Department Computer Department

King Fahd University of Petroleum and Minerals Mosahmit Beherah Company
Dhahran 31261, Saudi Arabia Alexandria, Egypt

elleithy@dpc.kfupm.edu.sa

Abstract: In this paper two algorithms for register

allocation are presented. The first algorithm is a simulated

annealing algorithm. The core of the algorithm is the

Metropolis procedure. The algorithm presented in the paper

has a linear time asymptotic complexity. The second

algorithm is a genetic algorithm. The algorithm has a linear

time complexity.

Keywords
RISC, register allocation, simulated annealing, genetic

algorithms.

I. INTRODUCTION

Most RISC processors make a great effort to optimize

register usage to reduce the number of variables that must

be kept in memory. The choice of a suitable register

allocation technique is vital to the performance of a RISC

processor. Register allocation may be viewed as a graph

coloring problem, where coloring a graph is an assignment

of a color to each of its nodes such that two connected

nodes have different colors. Each node in the graph stands

for a computed quantity that resides in a machine register.

Two nodes are connected by an edge if the quantities are

simultaneously live at some point in the object program.
The graph coloring problem is an NP-C problem.

Exhaustive search approaches for coloring a graph imply

an exponential time complexity. Heuristics of reasonable

time complexity are required for large size problems. A

number of factors can be considered in designing a graph

coloring heuristics, e.g., a vertex of high degree is harder to

color than a vertex of low degree, vertices with the same

neighborhood should be colored alike, and coloring many

vertices with the same color is a good idea.
In this paper two non-deterministic algorithms are

presented and compared in terms of asymptotic time

complexity and quality of solution. These algorithms are

simulated annealing and genetic algorithms.
In the last decade Simulated Annealing (SA) has been

used extensively in solving various combinatorial

problems, e.g., traveling salesman problem [1,2] and

quadratic assignment problem [3]. SA is an adaptive

heuristic and belongs to the class of non-deterministic

algorithms. The heuristic was first introduced by

Kirkpatrich, Gelatt and Vecchi in 1983 [2]. The name of

Simulated Annealing is inspirited from the process of

carefully cooling molten metals in order to obtain a good

crystal structure.
A recently proposed paradigm for solving hard

optimization problems is Genetic Algorithms (GA). GA

has been successfully employed for solving many

combinatorial problems [4-7] in areas such as pattern

classification, machine learning, scheduling, and VLSI

placement and floor planning. Genetic algorithms are

search algorithms which emulate the natural process of

evolution as a means of processing toward the optimum. A

genetic algorithm starts with an initial set of random

configurations called a population. Each individual in the

population, termed chromosome, is a string of symbols

called genes. A solution for the optimization problem is

represented by a chromosome. During each iteration, two

individuals at a time, called parents, are selected from the

population based on a fitness value. A number of genetic

operators, as crossover or inversion, are applied on the

selected parents to generate new individual solutions called

offsprings. These genetic operators combine the features of

both parents.

II. SIMULATED ANNEALING ALGORITHM

In this section a simulated annealing algorithm for

register allocation is presented. The algorithm is based on

the Metropolis procedure. The procedure accepts a new

solution with less profit based on a probabilistic function.

The objective of the heuristic is to color a graph

representing the register allocation problem to maximize a

profit function. The profit function is defined using the

profit gained from coloring a subset of the nodes. The

algorithm presented in the paper has a linear time

asymptotic complexity.
The algorithm is shown in Fig. 1. The core of the

algorithm is the Metropolis procedure given in Fig. 2. It

uses the procedure NEWSOLUTION to generate a local

neighbor new_solution for any given solution. If the profit

of the new_solution is greater than the profit of the current

solution, then certainly the new_solution is acceptable. If

the new_solution has less profit, Metropolis will accept the

new_solution on a probabilistic basis. A random number is

generated in the range 0 to 1. If this random number is

smaller than edelta temperature/
, where delta is the

difference in profits, then the inferior solution is accepted.
The objective of the heuristic is to color a graph

representing the allocation problem to maximize a profit

function. The profit function is defined as follows:

Pr () ()ofit netsave node netsave nodei

i

all colored nodes

i

i

all uncolorednodes

 


 



 

 
1 1

 {alpha is the cooling rate < 1};

 {beta is a constant > 1};

begin
 temperature = initial_temperature;

 solution = initial_solution;
 time = 0;

 repeat
 call Metropolis (solution, temperature, cooling_schedule);

 time = time + cooling_schedule;
 temperature = alpha * temperature;

 cooling_schedule = beta * cooling_schedule;
 until (time >= Maxtime);

end {of Simulated Annealing}.
Fig. 1 Procedure for Simulated Annealing Algorithm.

netsave nodei() : A function representing the profit

gained from allocating a variable to a register.

The heuristic proceeds as follows:

(1) Find the set of largest profitable nodes. The number
of nodes in this set is equal to the number of available

colors.
 (2) Color a new node from the uncolored set if it is

possible. If there is no more nodes to be colored or

time >= maxtime then stop.
 (3) Calculate the change in profit after adding the

colored node from step 2.
4- (4) If the change is positive then add the node of step 2

to the colored set, otherwise the node is colored based

on a probabilistic comparison.
(5) Go to step 2.

Procedure Metropolis (solution, temperature,

cooling_schedule);

begin
 repeat

 get NEWSOLUTION;
 delta = new_profit - old_profit

 If ((delta > 0) or (random <

 edelta temperature/
)) then

 solution = new_solution;

 cooling_schedule = cooling_schedule - 1;
 until (cooling_schedule = 0);

end {of Metropolis}.
Fig. 2 The Metropolis Procedure.

Experimental Results

In this section we apply the simulated annealing algorithm

for register allocation on a graph of size 128. The graph

used for this study is of random nature and random values

for the nodes' netsave. The effect of different parameters on

the proposed algorithm performance is evaluated. The

effect of the following parameters is considered : number

of colors, cooling-schedule, beta, temperature, and alpha.

Number of Colors
To evaluate the effect of number of colors on the profit

gained from coloring the graph and the number of trials to

get the best solution, the number of colors has been

changed from 10 to 20. The values for the parameters

cooling-schedule, beta, temperature, and alpha are 1.0, 1.0,

100, and 0.8 respectively. The following observations are

concluded :
 (1) The best solution achieved is 2965. This value is

constant for colors greater than or equal to 14.
 (2) While increasing the number of colors (i.e. greater

than 14), the profit remains constant but the number of

trials decreases. The effect of increasing the number of

colors is reflected on decreasing the number of trials.
 (3) The graph can be colored using 14 colors only

while achieving a netsave of 2965.

Cooling Schedule (M)

To evaluate the effect of cooling schedule on the profit

gained from coloring the graph and the number of trials to

get the best solution, the cooling schedule has been

changed from 1 to 20. The values for the parameters beta,

temperature, and alpha are 1.0, 100, and 0.8 respectively.

The following is noticed :
1- The best solution is obtained at m = 1, and for m > 1 the

solution may be less or equal to the solution at m = 1.
2- 2- If the best solution remains constant while m is

increased, the number of trials remains constant as

well.

3- If the solution decreases as m increases, the number of

trials decreases as well.
4- The profit does not change with m if the number of

colors is greater than a certain threshold value (14 in

this example).
5- As m increases there is a better chance for a negative

solution to be accepted. This implies that the solution

may be worse or better than the previous solution. For

example if the number of colors is 10 and m is

increased from 4 to 5, the profit drops from 2565 to

2415 and the number of trials drops from 107 to 99,

and if the number of colors is 13 and m increases from

9 to 10, the profit increases from 2685 to 2865.

Beta

To evaluate the effect of beta on the profit gained from

coloring the graph and the number of trials to get the best

solution, beta has been changed from 1 to 20.The values for

the parameters cooling-schedule, temperature, and alpha

are 1.0, 100, and 0.8 respectively. The following is noticed

:
1- The best solution is obtained at low values for beta.

This value is equal to 1 except for number of colors

equal to 12 and 13, the best solution is obtained at beta

equal to 3.
 If the solution remains constant while beta is

increased, the number of trials may decrease slightly (

number of colors is 15), or remains constant (number

of colors is 20).
3- If the solution decreases as beta increases, the number

of trials decreases as well.
4- The profit does not change with beta if the number of

colors is greater than a certain threshold value (14 in

this example).
5- As beta increases there is a better chance for a negative

solution to be accepted. This implies that the solution

may be worse or better than the previous solution. For

example if the number of colors is 11 and beta is

increased from 1 to 2, the profit drops from 2705 to

2555 and the number of trials drops from 109 to 101,

but if the number of colors is 12 and beta increases

from 2 to 3, the profit increases from 2695 to 2785.

Temperature

To evaluate the effect of temperature on the profit gained

from coloring the graph and the number of trials to get the

best solution, the temperature has been changed from 1 to

100. The values for the parameters cooling-schedule, beta,

and alpha are 1.0, 1.0, and 0.8 respectively The following

was noticed :
 (1) The best solution is obtained at low values of

temperature.
2- (2) If the solution remains constant while temperature

is increased, the number of trials remains constant as

well.
3- (3) If the solution decreases as temperature increases,

the number of trials decreases as well.

 (4) The profit does not change with temperature if the

number of colors is greater than or equal to a certain

threshold value (14 in this example).
 (5) As temperature increases there is a better chance

for a negative solution to be accepted. This implies

that the solution may be worse or better than the

previous solution. If the number of colors is equal to

11 and temperature is increased from 10 to 20 the

profit increases from 2885 to 2895, but if the

temperature is increased from 20 to 30 the profit drops

from 2895 to 2835.

Alpha

To evaluate the effect of alpha on the profit gained from

coloring the graph and the number of trials to get the best

solution, alpha has been changed from 0.1 to 0.99 The

values for the parameters cooling-schedule, beta, and

temperature are 1.0, 1.0, and 100 respectively.. The

following is noticed :
1- The best solution is obtained at low values for alpha.

This value is less than or equal to 0.6, except for

number of colors equal to 11 the best solution is

obtained at alpha in the range 0.2 to 0.6.
 2- If the solution remains constant while alpha is

increased, the number of trials remains constant as

well.
 3- If the solution decreases as alpha increases, the

number of trials decreases as well.
4- The profit does not change with alpha if the number of

colors is greater than or equal to 14, except for the

values of alpha in the range .95 to .99 where a

significant change is noticed.
5- As alpha decreases there is no chance that a negative

solution is accepted. That explains why the solution

remains constant for alpha less than or equal to 0.6.
6- 6- The profit achieved is very sensitive for values

of alpha greater than.

The simulated annealing algorithm presented in this

paper has a linear time asymptotic complexity. The

experimental results of the algorithm show optimal

solutions in many of the graphs used for testing. The results

show better performance compared with other

deterministic and non-deterministic approaches.

III. Genetic Algorithm

In this section we introduce a new genetic algorithm for

register allocation. A merge operator is used by the

selected parents to generate new individual solutions. The

number of steps required to examine all pairs in the

population matrix to generate candidate’s offspring is n2

(n is the population matrix size). Generating an offspring

from the parents needs m steps (m number of node. The

experimental results show optimal solutions in many of the

graphs used for testing. An outline of a genetic algorithm is

shown in Fig.. 3.The algorithm for register allocation is

shown in Fig. 4. The algorithm uses the following

parameters:

1- Initial population

An initial population consists of any random valid solutions

or it can be generated using a starting procedure. The

advantage of using a starting procedure is to start with a

good solution that can be improved.

2- Hamming distance
Let A and B be any two individual strings of length N. The

hamming distance is defined as the total number of

positions where A Bi i .
Example

Let A = [0101100], B = [1011100]. A and B are different

in positions 1, 2, and 3, i.e., the hamming distance is 3.

Procedure Genetic
{ N p : population size}
{ Ng : number of generations}

{ No : number of offsprings}
{ Pi : Inversion probability}
{Population : population matrix of size N p}
begin

 Generate an initial valid population;
 for j=1 to N p

 do evaluate fitness(population[j]);
 for i=1 to Ng do

 begin
 for j=1 to No do

 begin
 choose parents with probability proportional to fitness value;

 perform crossover to generate offsprings;
 for k = 1 to N p do

 apply inversion(population[k]) with probabilityPi ;
 Evaluate fitness(offspring[j]);

 end;
 populationselect(population,offspring,N p)

 end;
 Return highest scoring configuration in population;

end.

Fig. 3 Procedure for Genetic Algorithm.

Procedure Register-Allocation-by-Genetic Algorithm
{maxtime : is the total time allowed for the genetic process}
begin

 get the population-matrix and the corresponding profit vector ;
 for x = 1 to maxtime do

 begin
 Evaluate the hamming-distance between two individuals;

 If hamming-distance > 1 then
 Merge the two individuals to generate the new offspring;

 If offspring-profit > max(parents' profit) then
 Accept the offspring as a new individual in the

 population-matrix by deleting any of the
 parents and replacing the generated offspring;

 end;
end.

Fig. 4 Procedure for Register Allocation by Genetic Algorithm.

3- Merge procedure

Let A and B be any two individual strings of length N. An

offspring C is generated by merging as follows:

c ai i if a bi i
 c ai i if a b ai i i  , 0 and

 netsave ai()  0
 c bi i if a b bi i i  , 0 and

 netsave bi()  0
 ci  0 otherwise

4- Fitness value

It is the profit function which is defined as follows :

)()(Pr
11











nodesuncoloredall

i

i

nodescoloredall

i

i nodenetsavenodenetsaveofit

Analysis

The genetic algorithm presented in this paper may be

used to enhance previous results obtained using a starting

approach, e.g., simulated annealing. Let n be the population

matrix size and m be the vector length (no of nodes). n2

steps are required to examine all pairs in the population

matrix to generate candidate offspring. Generating an

offspring from the parents needs m steps. The total number

of steps required by the algorithm is n m2 , i.e., the genetic

algorithm has a linear time complexity in terms of number

of nodes.

IV. CONCLUSIONS

A reduced instruction set computer is a machine with a

small number of instructions optimized for a specific

application. A great effort is invested to optimize register

usage which influences the memory traffic. Two quantities

can share a register if their life times are mutually

exclusive. The problem of allocating values to registers can

be viewed as a graph coloring problem. Each node in the

graph represents a computed quantity that resides in a

machine register. Two nodes are connected if the residing

quantities do not have disjoint life times.

In this paper we introduce a combined two phase

approach for graph coloring; a Simulated Annealing

heuristic phase and a Genetic algorithm phase. The

performance of the Simulated Annealing is controlled by a

number of parameters, e.g., number of colors, cooling

scheduling, beta, temperature, and alpha. The effect of

different parameters on the performance has been

thoroughly investigated.

A Genetic algorithm is introduced for the second phase.

It is used to enhance results obtained from the SA phase. A

new efficient genetic operator is introduced to generate an

offspring from two parents. The GA proved to enhance the

SA results.

 Other areas of research related to this combined

approach need more exploration. The approach can be

extended to include a global phase to measure the effect of

applying it across different subroutines. New genetic

operators, other than the merging operator introduced in

this paper, can be examined and compared with the

merging operator.

V. ACKNOWLEDGEMENTS

The first author would like to acknowledge the support of

King Fahd University of Petroleum and Minerals for

providing the necessary facilities to support this research.

VI. REFERENCES

[1] E. Bonomi and J. L. Lutton, "The N-City Traveling

Salesman Problem Statistical Mechanics and the

Metropolis Algorithm," SIAM Review, vol. 26, 1984,

pp. 551-568.

[2] S.Kirkpatrich, J.C.Gelatt and M.Vecchi, "Optimization

by Simulated Annealing," Science, vol. 220, May 1983,

pp. 498-516.

[3] R. E. Burkard and F. Rendl, "A Thermodynamically

motivated Simulation Procedure for Combinatorial

Optimization Problems," European Journal of

Operational Research, vol. 17, 1984, pp. 169-174.

[4] J. P. Cohoon, S. U. Hegde, W. N. Martin and D. S.

Richards, “Distributed Genetic Algorithms for

Floorplan Design Problem,” IEEE Trans. Comput.

Aided Des., vol. 4, April 1991, pp. 483-492.

[5] L. Davis, “Job Shop Scheduling with Genetic

Algorithms,” Proceedings of International Conference

on Genetic Algorithms and their Applications, 1987,

pp. 136-140.

[6] D. E. Goldberg, Genetic Algorithms in Search

Optimization and Machine Intelligence, Addison-

Wesley, 1989.

[7] K. Shahookar and P. Majumder, “A Genetic Approach

to Standard Cell Placement using Meta-Genetic

Parameter Optimization,” IEEE Trans. Comput. Aided

Des., vol. 5, May 1990, pp. 500-512.

