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Abstract As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria

control and elimination efforts on reducing forest-related transmission, greater understanding of

the relationship between deforestation and malaria incidence will be essential for programs to

assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance

data and forest cover data in a spatio-temporal modeling framework, we found evidence that

deforestation is associated with short-term increases, but long-term decreases confirmed malaria

case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations

with deforestation measured within 30 km of villages but not with deforestation in the near (10 km)

and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and

were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for

Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria

transmission in the GMS.

Introduction
Engaging in forest activities, such as logging, hunting, or spending the night in the forest, is consid-

ered a primary risk factor for malaria infection in the Greater Mekong Sub-region (GMS)

(Chaveepojnkamjorn and Pichainarong, 2004; Das et al., 2004; Lansang et al., 1997;

Erhart et al., 2005; Trung et al., 2004) with recent outbreaks attributed to deforestation activities

(Lyttleton, 2016). This is most likely the result of increased human exposure to the forest dwelling

Anopheles dirus and Anopheles minimus, the most efficient and widespread malaria vectors in the

GMS (Obsomer et al., 2007; Obsomer et al., 2013). However, deforestation may also alter this ‘for-

est malaria’ (Sharma and Kondrashin, 1991) ecosystem and eventually reduce malaria incidence, as

is generally accepted to be the case in Southeast Asia (Guerra et al., 2006). Several previous studies

have assessed the relationship between deforestation and malaria, but the majority focused outside

of the GMS, most notably in the Amazonian forest (Wayant et al., 2010; Olson et al., 2010;

Hahn et al., 2014a; Valle and Clark, 2013; Terrazas et al., 2015) where the evidence has been met

with conflicting interpretations (Tucker Lima et al., 2017). As national malaria programs across the

GMS target forest-going populations for prevention and treatment efforts (Guyant et al., 2015;

WHO, 2016), improved understanding of the relationship between deforestation and malaria is
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critical for programs to assess and meet national 2030 malaria elimination goals (World Health

Organization, 2016; WHO, 2018).

In the Amazon, the ‘frontier malaria’ hypothesis (Sawyer, 1988) posits that malaria temporarily

increases following deforestation efforts to open a human settlement area in the forest. Subse-

quently, after approximately 6–8 years, settlements become more urbanized and isolated from the

surrounding forest, and less suitable for malaria vectors, resulting in reduced malaria transmission

(de Castro et al., 2006). Recent work has challenged this hypothesis, however, and found that some

older settlements were also likely to have high malaria incidence (Ilacqua et al., 2018), highlighting

the importance of assessing the relationship between deforestation and malaria at different spatio-

temporal scales (Singer and de Castro, 2006).

A recent review of the literature on deforestation and malaria in the Amazon (Tucker Lima et al.,

2017) recommended the integration of multiple socio-economic, demographic and ecological mech-

anisms to disentangle the relationship between deforestation and malaria. The complexity of land-

use changes driving deforestation such as urbanization, agriculture, irrigation or resource mining can

alter the environment in different ways. For example, deforestation in the Amazon has been shown

to increase mosquitoes’ larval habitat (Vittor et al., 2009) through the creation of areas with abun-

dant sunlight and pooling water, resulting in increased human biting activity (Vittor et al., 2006).

Alternatively, immigration and rapid population movements, stirring human-vector interactions, are

other mechanisms affecting malaria transmission in frontier areas (Moreno et al., 2007). A modeling

study (Baeza et al., 2017) showed that the temporal pattern of increased incidence followed by a

decrease can vary depending on ecological and socio-economic parameters in frontiers areas.

The importance of addressing complex confounding structures influencing the relationship

between deforestation and malaria was also highlighted by Bauhoff and Busch, 2020. Variables

such as temperature (Beck-Johnson et al., 2013; Mordecai et al., 2013), precipitation (Parham and

Michael, 2010; Parham et al., 2012), or seasonality Hay et al., 1998 are known environmental

eLife digest Biting mosquitos spread the malaria parasite to humans. Along the Mekong River

in Southeast Asia, spending time in the surrounding forest increases a person’s risk of malaria. This

has led to a debate about whether deforestation in this area, which is called the Greater Mekong

Sub-region (GMS), will increase or decrease malaria transmission. The answer to the debate is not

clear because some malaria-transmitting mosquitos thrive in heavily forested areas, in particular in

the GMS, while others prefer less forested areas.

Scientists studying malaria in the Amazon in South America suspect that malaria transmission

increases shortly after deforestation but decreases six to eight years later. Some studies have tested

this ‘frontier malaria’ theory but the results have been conflicting. Fewer studies have tested this

theory in Southeast Asia. But deforestation has been blamed for recent malaria outbreaks in the

GMS.

Using data on malaria testing and forest cover in the GMS, Rerolle et al. show that deforestation

around villages increases malaria transmission in the first two years and decreases malaria rates

later. This trend was driven mostly by a type of malaria called Plasmodium falciparum and was less

strong for Plasmodium vivax. The location of deforested areas also mattered. Deforestation within

one to 10 kilometer of villages did not affect malaria rates. Deforestation further away in about a 30

kilometer radius did affect malaria transmission. Rerolle et al. suggest this may be because villagers

have to spend longer times trekking through forests to hunt or harvest wood when the wider area is

deforested.

Currently, National Malaria Control Programs in the GMS focus their efforts on reducing forest-

related transmission. This study strengthens the evidence supporting this approach. The results also

suggest that different malaria elimination strategies may be necessary for different types of malaria

parasite. Using this new information could help malaria control programs better target resources or

educate villagers on how to protect themselves. The innovative methods used by Rerolle et al.

reveal a more complex role of deforestation in malaria transmission and may inspire other scientists

to think more carefully about environmental drivers of malaria.
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predictors of malaria, although the spatio-temporal scale of those effects often varies across differ-

ent areas (Teklehaimanot et al., 2004). Furthermore, remote areas may experience higher malaria

rates because of poor access to public health services, but also have denser forest cover or lower

deforestation rates (Busch and Ferretti-Gallon, 2017). Finally, forest-going populations in the GMS

are also at higher risk for malaria (Parker et al., 2017) due to poor adherence to protective meas-

ures against mosquitoes such as insecticide-treated bed nets (ITNs) or long-lasting insecticidal ham-

mocks (LLIHs) (Peeters Grietens et al., 2010; WHO, 2016) and inadequate access to treatment

(Guyant et al., 2015).

Bauhoff and Busch, 2020 identified only 10 empirical studies that assessed the relationship

between deforestation and malaria with appropriate adjustments for confounding. Of these, seven

reported a positive association (Austin et al., 2017; Wayant et al., 2010; Olson et al., 2010;

Terrazas et al., 2015; Pattanayak et al., 2010; Garg, 2015; Fornace et al., 2016), two did not find

any associations (Bauhoff and Busch, 2020; Hahn et al., 2014a), and one disputed study found a

negative association (Valle and Clark, 2013; Hahn et al., 2014b; Valle, 2014). Most recently, a

study found deforestation to increase malaria risk and malaria to decrease deforestation activities in

the Amazon, using an instrumental variable analysis to disentangle any reverse causality loop

(MacDonald and Mordecai, 2019). However, only half of the above-mentioned studies used high-

resolution forest data, with most studies using spatially aggregated data and exploring only a limited

range of spatial and temporal scales. Only three of these studies were conducted in Southeast Asia

(Pattanayak et al., 2010; Garg, 2015; Fornace et al., 2016), and none in the GMS. Importantly, all

three found that malaria increases after deforestation, but all had limitations. The two studies in

Indonesia Pattanayak et al., 2010; Garg, 2015 used coarsely aggregated forest data and poten-

tially biased self-reported malaria data. The third study, in Malaysia (Fornace et al., 2016), focused

on a specific and geographically confined malaria parasite, Plasmodium knowlesi, whose primary

host is the long-tailed macaque and whose presence in the GMS, where P. falciparum and P. vivax

dominate, is limited.

In this analysis, we examined the relationship between deforestation and malaria incidence by

combining high-resolution forest coverage data (Hansen et al., 2013) and monthly malaria incidence

data from 2013 to 2016 from two separate regions in the GMS: northern Lao People’s Democratic

Republic (PDR) with very low malaria transmission and southern Lao PDR where P. falciparum and P.

vivax are seasonal. By conducting the analysis at the village level, we were able to explore a wide

range of spatial scales (1, 10, and 30 km around villages) that might be relevant in characterizing the

relationship between deforestation and malaria. In addition, we leveraged the longitudinal nature of

both the incidence data collected and the forest data produced from annual remote sensing imagery

(Hansen et al., 2013) to explore the most relevant temporal scales. Finally, we considered alterna-

tive definitions of deforestation, restricted to areas with at least certain levels of forest cover, to

investigate the type of deforestation driving the relationship with malaria.

To date, no prior studies have quantified the relationship between deforestation and malaria inci-

dence in the GMS. Understanding this relationship is especially important in the GMS, where forest-

going activities are a main source of income generation (Lao PDR, 2016) and malaria clusters in for-

est-going populations (World Health Organization, 2016; WHO, 2016). To assess the relationship

between deforestation and malaria incidence, we modeled the monthly village-level malaria inci-

dence in two regions of Lao PDR using health facility surveillance data and evaluated the most rele-

vant spatio-temporal scale.

Results

Forest and environmental data
Figure 1 shows the average tree crown cover within 10 km for the year 2016 and the percent area

within 10 km that experienced forest loss between 2011 and 2016 in two regions of southern and

northern Lao PDR. Overall, the forest cover was denser in the north than in the south and deforesta-

tion over this period was higher in the north than in the south. Appendix 1—figure 6 and Appen-

dix 1—figure 7 show the distribution of forest and deforestation variables as the temporal scales

and spatial scales around study villages were varied. For example, the cumulative percent area within

30 km of a village that experienced forest loss between 2011 and 2016 ranged from 0 to 10% in the
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north, whereas it rarely exceeded 2.5% in the south. Deforestation rate in 2015 within 10 km of a vil-

lage was of about 1% in the south and 2.5% in the north. The average tree crown cover increased

with increasing buffer radius around villages (1, 10, and 30 km). However, the relationship with the

0 20 40 60 80 100

(a) Average tree crown cover (%) within 10 km in
2016 in northern Lao PDR.

0 5 10 15 20 25

(b) Percent area within 10 km with forest loss be-
tween 2011 and 2016 in northern Lao PDR.

0 20 40 60 80 100

(c) Average tree crown cover (%) within 10 km in
2016 in southern Lao PDR.

0 5 10 15 20 25

(d) Percent area within 10 km with forest loss be-
tween 2011 and 2016 in southern Lao PDR.

Figure 1. Average tree crown cover (%) in 2016 (left) and percent area that experienced forest loss between 2011 and 2016 (right) within a 10 km radius

in northern (top) and southern (bottom) Lao PDR. See Materials and methods for details on forest and deforestation metrics. Upper right indent maps

northern and southern (Champasak province) Lao PDR regions.
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percent area that experienced forest loss was less clear because both the area that experienced for-

est loss (numerator) and the area around villages (denominator) increased. Appendix 1—figure 15

and Appendix 1—figure 16 show the raw time series of forest cover and percent area with forest

loss.

The 284 villages in the north were overall less populated (mean 2015 population size: 498, IQR:

[241; 548]) than the 207 villages in the south (2015 mean: 1095, IQR: [584; 1384]), but with some

highly populated outliers. As expected, altitude differed substantially between villages of the moun-

tainous northern region (mean: 557 m, IQR: [378; 679]) and the lowlands of the south (mean: 120 m,

IQR: [98; 130]). Although both regions exhibited similar seasonal trends in precipitation and temper-

ature, with a rainy season spanning from April to October, villages in the south experienced higher

monthly precipitation and temperature than in the north over the study period (Appendix 1—figure

8).

Treatment-seeking data
For villages with an estimated travel time of 0 hr to the closest health facility (same 300 m2 pixel),

the predicted probability of seeking treatment for fever was 0.87 (95% CI: [0.79; 0.92]) in the north

and 0.78 (95% CI: [0.63; 0.89]) in the south. A 1 hr increase in travel time to the closest health facility

was associated with a similar 0.79 (95% CI: [0.55; 1.13]) reduction in the odds of seeking treatment

in the north and 0.76 (95% CI: [0.43; 1.34]) in the south, almost reaching statistical significance when

pooling data from both regions: 0.77 (95% CI: [0.56; 1.04]). See detailed results in Appendix 1 - S2.

Malaria case data
Malaria infections
A total of 63,040 patient records were abstracted from the malaria registries of all public health facil-

ities in four southern districts between October 2013 and October 2016 and 1754 from all health

facilities in four northern districts between January 2013 and December 2016.

In the south, 91.2% of the patients in the registries were tested for malaria, of which 78.1% were

tested by RDT and 26.2% by microscopy. Overall test positivity was 33.2% for any infection, 16.4%

for P. falciparum and 18.2% for P. vivax. Monthly incidence peaked to about six cases per 1000 peo-

ple in the 2014 rainy season, eventually decreasing to below one case per 1000 in 2016. Incidence

and test positivity were similar between P. falciparum and P. vivax in the south (Figure 2).

In the north, 92.1% of the patients in the registries were tested for malaria, of which 96.3% were

tested by RDT and 9.6% by microscopy. Overall test positivity was 23.8% for any infection, 2.8% for

P. falciparum and 22.5% for P. vivax. Monthly malaria incidence in the north was very low, never

exceeding 0.3 per 1000 people. Most infections in the north were P. vivax cases with only a few sea-

sonal P. falciparum cases (Figure 2).

Appendix 1—figure 9 shows the number of patients and cases recorded per month in health

facility malaria registries as well as how the smoothed test positivity rates varied over time.

Socio-demographics
Age, gender, and occupation of patients seeking treatment at health facilities were also recorded in

the malaria registries. On average, patients in the south were older than patients in the north with

mean age of 28 years and 23 years, respectively. In the north, about half of the patients were male

(53.1%), while most patients in the south were male (71.1%). Finally, the vast majority (68.2%) of

patients in the south were farmers, whereas only 8% of patients in the north were farmers. Most

patients in the north reported being unemployed (41.7%) or a student (31.2%) (Appendix 1—figure

10).

Geo-referencing
Overall, 88.1% of malaria records were matched to one of the 491 villages in study districts. The

remaining (11.7% in the south and 17.3% in the north) were removed from the analysis because of

ambiguous village names, local nicknames for small villages and dissolving and grouping of villages

over time. Test positivity in the south was similar in matched (33.1%) and unmatched (34.2%) records

but higher in matched (26.5%) than unmatched (10.5%) records in the north. No substantial differ-

ence was found in the distribution of socio-demographic variables available in malaria registries
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Figure 2. Malaria incidence (per 1000) and test positivity (%) over time. Upper left boxed indent zooms in malaria incidence in the North to better show

the temporal variation (see y axis for scale).

The online version of this article includes the following source data for figure 2:

Source data 1. Data for Figure 2.
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between matched and unmatched records (Appendix 1—figure 11). Fewer than 0.3% of matched

malaria records were missing dates and also removed from the analysis.

Spatio-temporal analysis
Deforestation
Table 1 and Figure 3 show the adjusted incidence rate ratio (IRR) associated with deforestation,

measured by a 0.1% increase in the percent area that experienced forest loss, in the previous 1–5

years within 1, 10, and 30 km of villages. Models controlled for various environmental factors and

accounted for the probability of seeking treatment and the spatio-temporal structure of the data.

Deforestation within 1 or 10 km of a village was not associated with malaria incidence rate in

either the south or the north, regardless of the temporal lag. However, in the south, deforestation

within 30 km of a village in the previous 1 and 2 years was associated with higher malaria incidence

rates (e.g. 1 year lag, IRR = 1.16, 95% CI: [1.10; 1.22]). In the north, where incidence was much lower,

the results were not as clear, but a similar trend was observed with wide confidence intervals com-

patible with a short term increased risk. On the other hand, deforestation within 30 km of a village in

the previous 3, 4, or 5 years was associated with approximately a 5% lower malaria incidence rate

both in the south (e.g. 5 year lag, IRR = 0.94, 95% CI: [0.91; 0.97]) and in the north (e.g. 5 year lag,

IRR = 0.96, 95% CI: [0.93; 0.98]).

These results suggest deforestation around villages, but not in the near vicinity (1 or 10 km), is

associated with higher risk of malaria in the first 2 years and lower risk of malaria beyond. There was

stronger evidence of associations with deforestation in the south than in the north.

The IRR effect estimates in Table 1 assume a linear relationship between deforestation and

malaria. Appendix 1—figure 5 shows a few of these relationships when such linearity isn’t assumed

in the models. The functional forms reveal that they can be reasonably well summarized linearly,

especially in the south. In the north, the functional forms highlight potential non-linearities for long-

term temporal lags but come with wide confidence intervals at extreme levels of deforestation.

Table 1. IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 10, or 30 km (left-

right) of a village in the previous 1– 5 years (top-down) in northern and southern Lao PDR.

Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in

the model and forest cover within 30 km in the year before the deforestation temporal scale considered as well as for malaria inci-

dence in the previous 1 and 2 years. See Materials and methods for details.

South North

Time lag Buffer radius Buffer radius

1 km 10 km 30 km 1 km 10 km 30 km

Previous 1 1.01 1.16 1 1.03 1.01

1 year [0.99; 1.01] [0.99; 1.04] [1.10; 1.22] [1; 1.01] [0.99; 1.06] [0.94; 1.08]

Previous 1 1 1.08 1 1.01 0.99

2 years [0.99; 1.01] [0.98; 1.01] [1.04; 1.13] [1; 1.01] [0.99; 1.04] [0.95; 1.03]

Previous 0.99 0.98 0.93 1 1.01 0.96

3 years [0.99; 1] [0.97; 1] [0.90; 0.97] [1; 1.01] [0.99; 1.02] [0.94; 0.99]

Previous 0.99 0.98 0.94 1 1 0.97

4 years [0.99; 1] [0.97; 0.99] [0.92; 0.97] [1; 1.01] [0.99; 1.02] [0.94; 0.99]

Previous 1 0.97 0.94 1 1.01 0.96

5 years [0.99; 1] [0.96; 0.99] [0.91; 0.97] [1; 1.01] [0.99; 1.02] [0.93; 0.98]

The online version of this article includes the following source data for Table 1:

Source data 1. Data for Table 1.
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P. falciparum and P. vivax
In addition to different overall levels of transmission in the north and south, the relative species com-

position also differs by region. In the north, P. vivax is more prevalent with only a few sporadic and

seasonal P. falciparum infections, whereas P. falciparum and P. vivax are co-endemic in the south
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Figure 3. Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 10, or 30 km (left-right) of a

village in the previous 1–5 years (top-down) in Lao PDR. Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the

environmental covariates selected in the model and forest cover within 30 km in the year before the deforestation temporal scale considered as well as

for malaria incidence in the previous 1 and 2 years. See Materials and methods for details.

The online version of this article includes the following source data for figure 3:

Source data 1. Data for Figure 3.
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(Figure 2). We used the co-endemicity and the larger amount of malaria case data collected in the

south to assess the relationship between deforestation and malaria for both species separately.

Table 2 and Figure 4 show that the pattern of adjusted spatio-temporal associations identified in

Table 1 is primarily driven by P. falciparum, with no associations for deforestation in the near vicinity

of villages (1 or 10 km) but a short-term increase (e.g. 1 year lag, IRR = 1.27, 95% CI: [1.18; 1.36])

and long-term decrease (e.g. 5-year lag, IRR = 0.83, 95% CI: [0.80; 0.87]) in P. falciparum malaria

incidence for deforestation within 30 km of villages.

On the other hand, all the associations were attenuated for P. vivax infections. In the previous 2

years and within 30 km of villages, deforestation is still associated with a higher incidence of P. vivax

(e.g. 1 year lag, IRR = 1.07, 95% CI: [1.01; 1.13]) but less so than for P. falciparum. However, regard-

less of the temporal lag or spatial scale, deforestation was no longer associated with lower P. vivax

malaria risks.

Appendix 1—figure 17 plots the species-specific relationships when not assuming linearity in the

models.

Alternative definitions of deforestation and interaction with forest cover
In previous models, our definition of deforestation did not distinguish between forest losses in

densely forested areas and less forested areas. To explore potential interactions between deforesta-

tion and baseline forest cover, Table 3 and Figure 5 show how the adjusted IRR estimates vary as

we consider deforestation in more densely forested pixels only (tree crown cover over 68% and 87%

– see Materials and methods for rationale on thresholds). We conducted this secondary analysis only

for the non-null relationships previously identified, that is, when considering a 30 km buffer radius

around villages.

The associations with deforestation became more pronounced as we restricted forest losses to

more forested areas: the adjusted IRR for deforestation in the previous 1 year, within 30 km of south-

ern villages, increased from 1.16 (95% CI: [1.10; 1.22]) to 1.28 (95% CI: [1; 1.64]) when considering

deforestation in areas with more than 0% and 87% tree crown cover respectively. On the other

hand, the adjusted IRR for deforestation in the previous 5 years, within 30 km of southern villages,

decreased from 0.94 (95% CI: [0.91; 0.97]) to 0.83 (95% CI: [0.76; 0.90]) when considering deforesta-

tion in areas with more than 0% and 87% tree crown cover, respectively. A similar trend was

observed in the north, although statistical significance was not reached as frequently as in the south.

These evidence strengthen our previous results and suggest that deforestation in deep and dense

forests is more closely associated with malaria incidence in villages than deforestation in less for-

ested areas.

Discussion
Based on a large dataset of health facility surveillance records in two regions of Lao PDR, we found

evidence that deforestation around villages is associated with higher malaria incidence over the

short-term but lower incidence over the long-term (e.g, in the south, within 30 km of villages:

IRR = 1.16 [1.10; 1.22] for deforestation in the previous year and IRR = 0.93 [0.90; 0.97] for defores-

tation in the previous 3 years). Our evaluation of alternative spatial scales identified strong associa-

tions for deforestation within a 30 km radius around villages but not for deforestation in the near (10

km) and immediate (1 km) vicinity. Our results incorporated correction for the probability of seeking

treatment, modeled as a function of distance to the closest health facility, as well as adjustment for

several environmental covariates. Results appear driven by deforestation in densely forested areas

and the patterns exhibited are clearer for infections with P. falciparum than for P. vivax.

The wide availability and longitudinal nature of malaria surveillance records collected routinely by

the national program enabled exploration of the relationship between deforestation and malaria

incidence over multiple spatio-temporal scales and across different levels of forest density. The spa-

tio-temporal variability highlighted here provides insights into the causal mechanisms driving local-

scale malaria incidence in the GMS. This approach not only quantified the deforestation-malaria inci-

dence association in the GMS, but also strengthened the evidence for the key influence of forest-

going populations on malaria transmission in the GMS.

This study’s results echo the frontier malaria hypothesis from the Amazon region, which posits an

increase in malaria incidence in the first few years following deforestation and a decrease over the
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Figure 4. Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 10, or 30 km (left-right) of a

village in the previous 1–5 years (top-down) in southern Lao PDR, differentiated by malaria species. Adjusted for the probability of seeking treatment,

the spatio-temporal structure of the data, the environmental covariates selected in the model and forest cover within 30 km in the year before the

deforestation temporal scale considered as well as for malaria incidence in the previous 1 and 2 years. See Materials and methods for details.

The online version of this article includes the following source data for figure 4:

Source data 1. Data for Figure 4.
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long term. However, we found an earlier inflexion point, 1–3 years after deforestation compared to

6–8 years in the Amazon (de Castro et al., 2006), most likely because of very different underlying

human processes. Indeed, the frontier malaria hypothesis considers non-indigenous human settle-

ments sprouting deeper and deeper in the forest whereas forest-going populations in the GMS are

primarily members of established forest-fringe communities who regularly tour the forest overnight

to hunt and collect wood (Dysoley et al., 2008). Industrial and agricultural projects or lucrative for-

est-based activities also attract mobile and migrant populations (MMPs) Guyant et al., 2015 in

remote forested areas of the GMS but not on the same scale as the politically and economically

driven unique colonization of the Amazon (de Castro et al., 2006).

Our results are also consistent with the three previous multivariable empirical studies (Garg, 2015;

Pattanayak et al., 2010; Fornace et al., 2016) that assessed the effect of deforestation on malaria

in Southeast Asia. Our study builds on these findings by using higher resolution forest data and

exploring additional spatio-temporal scales. Using biennial village census data from Indonesia

between 2003 and 2008 and district-aggregated remote sensing forest data, Garg, 2015 reported a

2–10.4% increase in the probability of a malaria outbreak in each village of districts that lost 1000

hectares of their forest cover in the same year. Using data from a 1996 cross-sectional household

survey conducted in a quasi-experimental setting around a protected area in Indonesia,

Pattanayak et al., 2010 found a positive association between disturbed forest (vs undisturbed) and

malaria in children under 5, again using no temporal lag. Our analysis plan was largely inspired by

Fornace et al., 2016, which used similar high-resolution forest data (Hansen et al., 2013) and 2008–

2012 incidence data from Sabah, Malaysia. They reported a 2.22 (95% CI: [1.53; 2.93]) increase in

the P. knowlesi incidence rate for villages where more than 14% (<8%, being the reference) of the

surrounding area (within 2 km) experienced forest loss in the previous 5 years. On the other hand,

our analysis explored wider spatial scales, bypassed any coarse categorization of forest and

Table 2. IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 10, or 30 km (left-

right) of a village in the previous 1–5 years (top-down) in southern Lao PDR, differentiated by malaria species.

Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in

the model and forest cover within 30 km in the year before the deforestation temporal scale considered as well as for malaria inci-

dence in the previous 1 and 2 years. See Materials and methods for details.

P. falciparum P. vivax

Time lag Buffer radius Buffer radius

1 km 10 km 30 km 1 km 10 km 30 km

Previous 1 1.04 1.27 1 1 1.07

1 year [0.99; 1.02] [1.01; 1.07] [1.18; 1.36] [0.99; 1.01] [0.97; 1.02] [1.01; 1.13]

Previous 1 1.01 1.15 1 1 1.06

2 years [0.99; 1.01] [0.99; 1.03] [1.08; 1.22] [0.99; 1.01] [0.98; 1.01] [1.01; 1.11]

Previous 0.99 0.99 0.85 1 0.99 1.02

3 years [0.98; 1] [0.97; 1.01] [0.80; 0.90] [0.99; 1.01] [0.98; 1.01] [0.97; 1.06]

Previous 0.99 0.98 0.85 1 0.99 1.01

4 years [0.98; 1] [0.96; 0.99] [0.81; 0.88] [0.99; 1] [0.98; 1.01] [0.98; 1.04]

Previous 1 0.97 0.83 1 0.99 1.01

5 years [0.99; 1] [0.95; 0.98] [0.80; 0.87] [1; 1.01] [0.98; 1] [0.98; 1.04]

The online version of this article includes the following source data for Table 2:

Source data 1. Data for Table 2.
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deforestation variables, corrected incidence for treatment-seeking probability, and most importantly

focused on P. falciparum and P. vivax, the dominant malaria parasites in the GMS.
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Figure 5. Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation within 30 km of a village in the

previous 1–5 years (top-down) and within areas with tree crown cover density above 0%, 68%, and 87% (left-right) in Lao PDR. Adjusted for the

probability of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in the model and forest cover within

30 km in the year before the deforestation temporal scale considered as well as for malaria incidence in the previous 1 and 2 years. See

Materials and methods for details.

The online version of this article includes the following source data for figure 5:

Source data 1. Data for Figure 5.
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Engaging in forest activities, such as logging, hunting or spending the night in the forest, has

been reported as a major risk factor by many studies in the region (Chaveepojnkamjorn and Pichai-

narong, 2004; Das et al., 2004; Lansang et al., 1997; Erhart et al., 2005; Trung et al., 2004). As

countries of the GMS work toward malaria elimination, the literature stresses the key role of forest-

going populations (Guyant et al., 2015; Nofal et al., 2019; Bannister-Tyrrell et al., 2019;

Wen et al., 2016; Smith and Whittaker, 2014), although research programs highlight the chal-

lenges of accessing them (Bennett et al., 2021 ; Lover et al., 2019) as well as their diversity

(Nofal et al., 2019; Bannister-Tyrrell et al., 2019). To our knowledge, no previous study has lever-

aged geo-spatial statistical analyses to characterize the importance of forest-going populations in

the GMS. Our results suggest that deforestation in dense forests (Table 3) around villages, particu-

larly areas further from the village (Table 1), is a driver of malaria in Lao PDR. We argue that this is

indicative of the existence of a key high-risk group linking the deforestation patterns identified to

malaria in the villages, namely a forest-going population. Deforestation captured by remote sensing

in this setting likely reflects locations and times of heightened activity in the forest areas near vil-

lages, and therefore greater human-vector contact. We suspect longer and deeper trips into the for-

est result in increased exposure to mosquitoes, putting forest-goers at higher risk.

We conducted this study in northern and southern Lao PDR, where the malaria species composi-

tion differs, and assessed species-specific relationships in the south where P. falciparum and P. vivax

are co-endemic. Our results highlight the challenges ahead of national programs with P. vivax elimi-

nation after successful P. falciparum elimination, as increasingly mentioned in the literature

(Cotter et al., 2013; Kaehler et al., 2019). This study identified a clear pattern of spatio-temporal

associations between P. falciparum and deforestation, but these were not apparent for P. vivax

(Table 2). The increase in P. vivax incidence in the first 2 years following deforestation was identified

as well but the associations were smaller than for P. falciparum. Importantly, deforestation was never

associated with lower risks of P. vivax. A recent study in the Amazon MacDonald and Mordecai,

Table 3. IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 30 km of a village in

the previous 1–5 years (top-down) and within areas with tree crown cover density above 0%, 68%, and 87% (left-right) in Lao PDR.

Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in

the model and forest cover within 30 km in the year before the deforestation temporal scale considered as well as for malaria inci-

dence in the previous 1 and 2 years. See Materials and methods for details.

South North

Deforestation within areas Deforestation within areas

with tree crown cover density above with tree crown cover density above

Time lag 0% 68% 87% 0% 68% 87%

Previous 1.16 1.32 1.28 1.01 1.04 1.34

1 year [1.10; 1.22] [1.14; 1.53] [1; 1.64] [0.94; 1.08] [0.96; 1.14] [0.99; 1.81]

Previous 1.08 1.18 1.35 0.99 0.98 0.94

2 years [1.04; 1.13] [1.08; 1.28] [1.15; 1.59] [0.95; 1.09] [0.93; 1.03] [0.80; 1.11]

Previous 0.93 0.93 0.89 0.96 0.96 0.86

3 years [0.90; 0.97] [0.89; 0.97] [0.81; 0.99] [0.94; 0.99] [0.92; 0.99] [0.76; 0.98]

Previous 0.94 0.94 0.87 0.97 0.96 0.87

4 years [0.92; 0.97] [0.91; 0.97] [0.80; 0.94] [0.94; 0.99] [0.93; 0.99] [0.78; 0.96]

Previous 0.94 0.93 0.83 0.96 0.95 0.83

5 years [0.91; 0.97] [0.90; 0.96] [0.76; 0.90] [0.93; 0.98] [0.92; 0.98] [0.75; 0.92]

The online version of this article includes the following source data for Table 3:

Source data 1. Data for Table 3.
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2019 reported a similar attenuation of the effects of deforestation on P. vivax compared to P. falci-

parum, most likely because of P. vivax parasites’ ability to relapse months or even years after infec-

tion, which decouples the association between transmission and incidence data. These species-

specific differences may also explain why the pattern of spatio-temporal associations between

malaria and deforestation were markedly clearer in the south than in the north where P. vivax

dominates.

Figure 6. Map of study’s districts.
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Figure 7. For every 30 m Landsat pixel within a buffer radius r (1, 10, and 30 km) of study’s villages, the tree crown cover density in 2000 and the year of

forest loss were combined to derive the deforestation and forest cover variables. The two upper plots highlight the raw data at two example pixels

from the lower plot.
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Our results did have some inherent limitations based upon routine health facility surveillance

data. First, reliability of such records varies across and within countries of the GMS and may depend

on malaria incidence level. This could lead to unmeasured residual confounding, further exacerbated

by the lack of available data on malaria control activities in the region. Another challenge with these

data is obtaining an accurate denominator for incidence, as not everyone attends a public health

center when febrile. We addressed this issue by modeling the probability of seeking treatment as a

function of travel time to the closest health facility using data from two cross-sectional surveys. Last,

the village-level geo-referencing of malaria registries ignores the possibility that patients may

become infected elsewhere. Unfortunately, these surveillance records did not include information

about patients’ forest-going trips. Research to track and analyse micro-scale movements of forest-

goers is needed to understand how they interact with the forest and where are the foci of infection.

The forest data we used has also been criticized, in particular for not distinguishing tropical for-

ests from agroforestry (Tropek et al., 2014; Hansen et al., 2014) or man-made from natural causes

of deforestation. The lack of temporal resolution for the forest gain variable (2000–2017 aggregate)

as well as the assumption that forest loss happens all in 1 year are additional limitations of these

data. Finally, our relative measure of deforestation, key to consistently compare the effects across

different spatial scales, also implies that a 0.1% of the area that experienced forest loss within 30 km

of a village is a much larger area (~280 hectares) than within 1 km (~0.3 hectare) and should be inter-

preted cautiously.

In conclusion, this study assessed the relationship between deforestation and malaria in Lao PDR.

Our approach leveraged surveillance records collected by the national malaria program and high-
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resolution forest data and rigorously explored the spatio-temporal pattern of associations. As coun-

tries of the GMS work toward malaria elimination, our results highlight the challenges to transition

from P. falciparum to P. vivax elimination, confirm and characterize the importance of high-risk popu-

lations engaging in forest activities and suggest malaria programs may benefit from monitoring

areas of on-going deforestation using remotely sensed data.

Materials and methods

Study site and population
Lao PDR has seen a 92% reduction in cases between 2000 (280,000) and 2010 (23,000) (Lao PDR,

2016). Much of this progress has been attributed to heightened funding and better testing and

treatments (Okayas, 2018).

This study was conducted in eight districts (Figure 6) to leverage the ecological and epidemiolog-

ical diversity of Lao PDR. Four districts (Moonlapamok, Pathoomphone, Sanasomboon, and

Sukhuma) are situated in the southern province of Champasak where both P. falciparum and P. vivax

are endemic. The four other districts (Et, Paktha, Nambak, and Khua) each come from one of four

northern provinces (Bokeo, Huaphanh, Phongsaly, Luang-Prabhang) where P. vivax is endemic but P.

falciparum has reached historical lows (Lao national malaria database (dhis2), 2018).

The four districts in the north were chosen in consultation with district and provincial level malaria

staff to represent the epidemiology of malaria in the region. They were selected as part of a cross-

sectional survey designed to assess the prevalence and risk factors for malaria in northern Lao PDR

(Lover et al., 2018). This region is very mountainous and characterized by a diverse climate, low-

population density and limited road access (UNFPA, 2016). Land clearing using fires for agriculture

is customary.

The four districts in the south were selected within a larger cluster randomized controlled trial

(RCT) study designed to assess the effectiveness of high-risk group targeted active case detection in

southern Lao PDR (Lover et al., 2019), where more than 95% of the country malaria burden is con-

centrated (Lao national malaria database (dhis2), 2018). This region is characterized by a moder-

ately hilly and forested terrain and a workforce primarily engaged in forest-based and agricultural

activities (Bennett et al., 2021).

When designing the study, in collaboration with the national control program, we purposefully

excluded regions where we knew large programmatic activities where being implemented.

Malaria data
Malaria case data
We conducted a retrospective review of malaria registries recorded at all health centers in the study

districts between January 2013 and December 2016 in the north and between October 2013 and

October 2016 in the south. The registries included information on every patient that was tested

(RDT and/or microscopy) for malaria at the health center. Date, species-specific test results, demo-

graphic variables (age, gender, and occupation) and the village of residence of the patient were

recorded in the registries. With help from local Lao experts, village names were matched to a geo-

registry of all villages in Lao PDR compiled from the 2005 and 2015 national census Lao national

census, 2020 and provided by the Center for Malariology, Parasitology and Entomology (CMPE).

The geo-registry contains GPS coordinates and population of Lao PDR’s villages. Unmatched records

and records with missing date were removed from the analysis. Finally, these data were aggregated

to extract the monthly village-level malaria incidence.

Treatment-seeking data
One issue with using passive surveillance data is that not everyone will seek treatment at a public

health facility for a febrile illness, which can lead to an underestimate of the true incidence, if not

accounted for. To correct for that, we modeled the probability that an individual in a given village of

the study’s district would seek treatment at a public health facility when febrile. We assumed that

such probability is essentially driven by the travel time to the closest health facility. See Appendix 1 -

S1 for methods used to calculate travel times to closest health facilities.
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To model the probability of seeking treatment, we used data from two cross-sectional household

surveys conducted in the eight districts where registries were collected. In the north, 1480 house-

holds across 100 villages were surveyed in September-October 2016 (Lover et al., 2018). In the

south, 1230 households across 56 villages were surveyed in the baseline assessment of the RCT

(Lover et al., 2019) in December 2017. In particular, survey respondents were asked whether or not

they would seek treatment at the closest health facility for a febrile illness and GPS coordinates of

their household were recorded.

We then used the cross-sectional surveys to model the probability of seeking treatment (at a pub-

lic health facility, implicit from now on), �, as a function of travel time to the closest health facility, t

(Equation 1). To account for the correlation structure induced by the stratified sampling approach

used in the surveys, we modeled the number of successes (febrile patients seeking treatment), Sh;v,

at the household level and included a random intercept for village in the logistic regression.

Sh;v ~Binð�h;v;Nh;vÞ

logitð�h;vÞ ¼ a0 þa1 � t h;v þav

(1)

where Nh;v is the number of febrile individuals in household h of village v and av ~Nð0;saÞ.

We fit the models separately in the north and in the south and used the region-specific model to

predict the probability of seeking treatment at all villages of the study districts based on their dis-

tance to the closest health facility. The population who seek treatment was then calculated by multi-

plying the village population by the probability of seeking treatment. See Appendix 1 - S2 for travel

times and treatment-seeking probabilities results.

Forest data
For every 30 m pixel in Lao PDR, tree crown cover density for the year 2000 and year of forest loss

between 2000 and 2017, were obtained from Hansen et al., 2013. These layers were produced

using decision tree classifiers on Landsat remote sensing imagery (Hansen et al., 2013). Trees are

defined as ‘all vegetation taller than 5 m in height’ (Hansen et al., 2013) and forest loss as ‘the

removal or mortality of all tree cover in a Landsat pixel’ (Hansen et al., 2014). For example, as

depicted in Figure 7, the Hansen data indicates that the tree crown cover in 2000 in pixel 1 is 54%,

meaning that 54% of the 30 m pixel is covered by vegetation taller than 5 m. The Hansen data also

indicates that forest loss occurred in pixel in 2013, meaning that all of the tree canopy disappeared

in 2013.

Deforestation variable
To define our primary exposure variable, for all villages in the study districts and year of the study

period, we calculated the percent area within a buffer radius of 1, 10, and 30 km that experienced

forest loss in the previous 1, 2, 3, 4, and 5 years (Figure 7). These distances were chosen to explore

a range of spatial scales at which the forest environment may be differentially relevant for village-

based populations and forest-goers. To explore potential interactions between deforestation and

forest cover, we computed an alternate exposure variable, restricting to areas that both experienced

forest loss and had a tree crown cover density above 68% and 87%. Those thresholds are limits of

the inter-quartile range (IQR) of the distribution of tree crown cover density in any 30 m pixels within

10 km of study’s villages that experienced forest loss between 2000 and 2017. This alternate defini-

tion captures deforestation activities occurring in areas with denser forest cover.

Forest cover variable
We also combined the two Hansen layers to produce annual tree crown cover maps of the study dis-

tricts, assuming no changes prior to the year of forest loss but setting to 0 the pixel tree crown cover

density afterwards (Figure 7). For all villages in the study districts and year of the study period, we

calculated the average tree crown cover density within a buffer radius of 1, 10, and 30 km and for 0,

1, 2, and 3 year lags. This is a secondary exposure, adjusted for in the primary analysis.

Environmental covariates
Village population sizes were needed to estimate monthly malaria incidence. 2005 and 2015 popula-

tion estimates for the 491 villages of study districts were obtained from the national census
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Lao national census, 2020. The annual population growth rate (3.7%) was used to impute popula-

tion values for two villages missing 2005 estimates and for two villages missing 2015 estimates.

Then, village-level population growth rates were used to estimate villages’ population per year

between 2008 and 2016, assuming linear annual growth rate (median = 1.7%, IQR = [0%; 4.5%]).

Altitude, temperature, rainfall, and access to health care were considered as potential village-

level confounders of the relationship between malaria and forest cover factors. Travel time to closest

health facility, computed for the treatment-seeking model, was used as a proxy for health care

access and villages’ remoteness. Altitude was extracted from SRTM (Jarvis et al., 2008) 1 km resolu-

tion layers. Monthly average day and night temperature were extracted from MODIS 1 km resolution

product (MOD11C3 Wan et al., 2015). Finally, monthly total rainfall was extracted from CHIRPS

(Funk et al., 2014) 1 km resolution publicly available data. The average and standard deviation of

the annual total precipitation and the average monthly temperature from the monthly time series

was computed over the 2008–2012 period, which corresponds to the 5 year time period directly

before our malaria data (2013–2016). This ‘long-term’ aggregation of the climatic variables is

included in the model to capture the spatial differences in overall climate between the villages of

our study area. To account for the seasonal effect of these climatic variables, monthly temperatures

and precipitation in the previous 1, 2, and 3 months were also extracted, as well as the average tem-

peratures and total precipitation over the previous 1, 2, and 3 months (seven ‘short-term’ variations:

in current month, in previous 1, 2, or 3 months and aggregated over current and previous 1, 2, or 3

months). See ‘Details on covariates’ below.

Altitude was missing for one village and we used an online elevation finder tool (FreeMapTools)

for imputation. Temperature was missing for 2.4% of the village-months over the study period, most

likely because of cloud coverage of the MODIS imagery. Monthly temperature was never missing

more than 2 years in a row at villages of the study’s districts and we imputed the temperature of the

same month of the following year (or prior year when needed), adjusting for average district-level

monthly temperature differences between the 2 consecutive years. Monthly rainfall was not missing

at any of the villages.

Statistical analysis
Statistical model
To model malaria incidence (Equation 2), the number of positive cases Yv;t at village v over month t

was modeled using a generalized additive model (GAM) (Wood, 2017). To account for overdisper-

sion, a negative binomial distribution was used, including an additional variance parameter n. The

probability of seeking treatment �v, estimated from the treatment-seeking model, was multiplied by

the village population Popv;t to derive the population seeking treatment, Popseekv;t . This was included as

an offset term in the incidence model. Spatial autocorrelation was accounted for by the bivariate

thin plate spline smoothing function on coordinates, f ðLat; LongÞ and village random intercepts were

included. A non-linear temporal trend was also included with the smoothing function on month, f ðtÞ.

Finally, the primary exposure, deforestation, and potential environmental confounders, including for-

est cover, were modeled with splines in f ðXi
v;tÞ. Splines add up polynomial basis functions in between

knots and allow to control for very flexible relationships with covariates and spatio-temporal trends.

Regularization was used to integrate model selection into the model fitting step by adding an extra

penalty to each term so that the coefficients for covariates can be penalized to zero, also meaning

that splines can be kept minimal if the data does not support more flexibility. See Figure 8 for a

graphical visualization of our conceptual model for this analysis.

Yv;t ~NegBinðE½Yv;t �;nÞ

logðE½Yv;t�Þ ¼ logð�v;t �Pop
seek
v;t Þ ¼ logð�v;tÞþ logðPopv;t � �vÞ

logð�v;tÞ ¼
X

i

bi � f ðXi
v;tÞþ f ðtÞþ f ðLat;LongÞþbv

(2)

with bv ~Nð0;sbÞ.

We ran 15 models separately in the north and the south, each varying the buffer radius (1, 10,

and 30 km) and temporal scale for deforestation (previous 1, 2, 3, 4, and 5 years). The coefficients of

the linear effect for deforestation were extracted and exponentiated to get the incidence rate ratio
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(IRR) associated with a 0.1% increase in the percent area that experienced forest loss around

villages.

Secondary analyses
As secondary analyses, we ran the same models, separately by malaria species (P. falciparum and P.

vivax), leveraging the large amount of data and co-endemicity in the south. We also used our alter-

native definitions for deforestation, restricted to areas that both experienced forest loss and had a

tree crown cover density above 68% and 87%, to explore the interaction between deforestation and

the amount of forest cover.

To further strengthen the robustness of our analysis, we conducted a sensitivity analysis where vil-

lages’ populations in the surveillance system registries were not adjusted for the probability of seek-

ing treatment. See Appendix 1 - S3.

Details on covariates
To prevent collinearity in the final model, for each of the three monthly climatic variables (precipita-

tion, day and night temperature), we first selected the one of its seven ‘short-term’ variations (in cur-

rent month, in previous 1, 2, or 3 months and aggregated over current and previous 1, 2, or 3

months) that provided the best AIC fit in an univariate model, solely adjusted for the spatio-temporal

structure of the data (f ðtÞ, f ðLat; LongÞ and village random intercepts). See Appendix 1 - S6.

Malaria incidence in the previous 1 and 2 months were included in the model. Results in Appen-

dix 1 - S4 show this was necessary to fully address temporal autocorrelation and led to a better AIC

fit. Different shape of the temporal trend f(t) were also explored (up to 25 spline knots, auto-regres-

sive, cyclic cubic spline) but none accounted for temporal autocorrelation better.

In a preliminary analysis, before including the deforestation variable, we ran our model in Equa-

tion 2 with forest cover as the primary exposure. We ran 12 models separately in the north and the

south, each varying the buffer radius (1, 10, and 30 km) and temporal scale (0, 1, 2, and 3 year lag)

for the forest cover variable. The coefficients of the linear effect for forest cover were extracted and

exponentiated to get the incidence rate ratio (IRR) associated with a 1% increase in the average tree

crown cover density around villages (Appendix 1—table 3). The model including average tree crown

cover density within 30 km of villages with no temporal lag provided the smallest AIC value. In the

final models with the deforestation variables we therefore included the average tree crown cover

density within 30 km of villages in the starting year of the temporal scale for the deforestation vari-

able considered (e.g. 3-year lag in the model with percent area that experienced forest loss in previ-

ous 3 years as the deforestation variable) to adjust for baseline forest cover.
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Appendix 1

S1: Travel times methods
To calculate the travel time along a path linking any two points of the map, we defined a transition

matrix that gives the speed at which one may travel between two adjacents pixels. We followed the

parameterization suggested by Alegana et al., 2012 and demonstrated by Sturrock et al., 2014

(see Appendix 1—table 1), which first uses Toblers’ hiking function to specify the travel speed

between two points of different altitudes. Intuitively, it is faster to travel downhill than uphill. Sec-

ond, the speed is adjusted based on the type of landcover traveled through: a forested or a flooded

area for instance slows you down. Last, the network of roads and major rivers may be used to catch

a bus or a boat and therefore increases the travel speed. Altitude (SRTM 90 m, Jarvis et al., 2008)

was aggregated and resampled at the land cover (ESA GlobCover 2009 Project European space

agency, 2009) 300m-resolution and roads and waterways from Open Street Map (Open street

map, 2020) were rasterized to calculate the transition matrix all across Lao PDR. The ‘raster’ pack-

age in R (R Development Core Team, 2020) was used.

Appendix 1—table 1. Data used to parameterized the transition matrix with the travel speed

between any two adjacent pixels of the map.

Data layer Category Speed (km/h)

Digital elevation (slope) 0˚(flat) 5

5˚(uphill) 3.71

�5˚(downhill) 5.27

Land cover Cropland No adjustment

Artificial and bare areas No adjustment

Open deciduous forest 0.8 * Hiking speed

Sparse herbaceous 0.8 * Hiking speed

Closed deciduous forest 0.6 * Hiking speed

Herbaceous 0.6 * Hiking speed

Flooded 0.5 * Hiking speed

Other forest cover 0.4 * Hiking speed

Water 0.2 * Hiking speed

Roads and rivers Motorway/trunk 80

Primary/secondary 60

Tertiary/unclassified 10

Major rivers 5

We then used the Djisktra’s algorithm from the R-package igraph (Csardi and Nepusz, 2006) and

the gdistance package (van Etten, 2017) to find the fastest route between every village (or every

household in the cross-sectional surveys) and its closest health facility. Coordinates of health facilities

across Lao PDR came from the 2017 stratification exercise and were provided by CMPE. We autho-

rized travel through non-study districts but not across international borders.

S2: Travel times and treatment-seeking results
Appendix 1—figure 1a shows how the travel time to closest health facility varies across Champasak

province in southern Lao PDR, influenced by both distance and road connectivity. Appendix 1—fig-

ure 1c presents a right-skewed distribution of travel time from study villages to the closest health

facility. Most villages are within 2 hr of the closest health facility but some are as far as 6 hr away.

The distribution is similar for villages in the northern and southern study districts.
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Appendix 1—figure 1. Treatment-seeking modeling plots. Note that treatment-seeking at public

health facilities is implied all along the manuscript.

In the southern household survey, 243 individuals reported fever in the past 2 weeks. 225 (92.6%)

of them, from 156 households, answered whether or not they sought treatment and were included

in the treatment-seeking model. 219 (97.3%) reported seeking treatment and they all reported

where they did so: 154 (70.3%) of them sought treatment at a public health facility (Village malaria

worker (VMW), health center, district hospital or provincial hospital) and would therefore appear in

the malaria registries collected.

In the northern household survey, 378 individuals reported fever in the past 2 weeks. 360 (95.2%)

of them, from 297 households, answered whether or not they sought treatment and were included

in the treatment-seeking model. A total of 283 (78.6%) reported seeking treatment. Only 40 (14.1%)

of them reported where they did so but all of them sought treatment at a public health facility and

we therefore upweighted the population that sought treatment at a public health facility

accordingly.

Most surveyed households included in the treatment-seeking model were within 2 hr of travel

time to the closest health facility but some were almost 5 hr away (Appendix 1—figure 12). Appen-

dix 1—figure 1b shows the modeled relationship between the probability of seeking treatment (at a

public health facility, implied from now on) and distance to the closest health facility. For villages

within the same 300 m2 pixel as a health facility (estimated travel time of 0 hr), the predicted proba-

bility of seeking treatment was 0.87 (95% CI: [0.79; 0.92]) in the north and 0.78 (95% CI: [0.63; 0.89])
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in the south. A 1 hr increase in travel time to the closest health facility was associated with a similar

0.79 (95% CI: [0.55; 1.13]) reduction in the odds of seeking treatment in the north and 0.76 (95% CI:

[0.43; 1.34]) in the south, almost reaching statistical significance when pooling data from both

regions: 0.77 (95% CI: [0.56; 1.04]). Appendix 1—figure 1d shows the resulting distribution for the

probability of seeking treatment for all villages in study’s districts. Monthly village-level malaria inci-

dence was adjusted accordingly.

S3: Sensitivity analysis
We conducted a sensitivity analysis where village population at risk of appearing in the surveillance

system registries were not adjusted for the probability of seeking treatment. The effect estimates

and confidence intervals were virtually unchanged, strengthening the robustness of our primary anal-

ysis (Appendix 1—table 2 below).

Appendix 1—table 2. IRR associated with a 0.1% increase in forest loss.

Adjusted for the spatio-temporal structure of the data, the environmental covariates selected in the

model and forest cover within 30 km in the year before the deforestation temporal scale considered

and malaria incidence in the previous 1 and 2 months. See Materials and methods for details. Sensi-

tivity analysis: village population unadjusted for probability of seeking treatment.

South North

Time lag Buffer radius Buffer radius

1 km 10 km 30 km 1 km 10 km 30 km

Previous 1 1.01 1.16 1 1.03 1.01

1 year [0.99; 1.01] [0.99; 1.04] [1.10; 1.22] [1; 1.01] [1; 1.07] [0.94; 1.08]

Previous 1 1 1.09 1 1.01 0.98

2 years [0.99; 1.01] [0.98; 1.01] [1.04; 1.13] [1; 1.01] [0.99; 1.04] [0.94; 1.01]

Previous 0.99 0.98 0.93 1 1.01 0.96

3 years [0.99; 1] [0.97; 1] [0.90; 0.97] [1; 1.01] [0.99; 1.02] [0.93; 0.99]

Previous 0.99 0.98 0.94 1 1 0.97

4 years [0.99; 1] [0.97; 0.99] [0.92; 0.97] [1; 1.01] [0.99; 1.02] [0.94; 0.99]

Previous 1 0.97 0.94 1 1.01 0.95

5 years [0.99; 1] [0.96; 0.99] [0.91; 0.97] [1; 1.01] [0.99; 1.02] [0.93; 0.98]

S4: Inclusion of malaria cases in previous months
Appendix 1—figure 2 shows residual temporal auto-correlation plots in models from equation 2,

when malaria incidence in previous 1 and 2 months are included or not. These plots show that

including covariates for malaria incidence in the previous 1 and 2 months is necessary to address

residual temporal autocorrelation and keep each lag-wise individual autocorrelation estimate below

5%. The plots presented here are for the model in the south with a 30 km buffer radius and a 1-year

temporal lag but similar results were observed across all 15 models both in the north and in the

south.
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Appendix 1—figure 2. Residual temporal autocorrelation when malaria incidence in previous 1 and

2 months are included or not.

The AIC fit also substantially improved from 18,667 when no malaria incidence is included to

18,152 when malaria incidence in previous month is included and to 17687 when both malaria in the

previous 1 and 2 months are included.

S5: Additional results
Environmental covariates

Appendix 1—figure 3 shows the relationship – via their individual contribution b � f ðXÞ in equation

2 – between malaria incidence and the environmental covariates included in the model (30 km radius

and 1-year temporal lag). Thses plots show that relationships differ slightly by region although the

range covered by the environmental variables also differs by region. We also see the effect of regu-

larization, that penalized some covariates to zero, like our long-term precipitation covariates. This

penalization happened more frequently in the north, where we had much less data. Note that 95%

confidence intervals (see Appendix 1—figure 13) have been hidden for better visualization. The

larger amount of data in the south also allowed the identification of more precise relationships than

in the north.

Rerolle et al. eLife 2021;10:e56974. DOI: https://doi.org/10.7554/eLife.56974 28 of 45

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.56974


Temperature
(2008−2012 average, °C)

Temperature seasonality
(2008−2012 standard deviation, °C)

Altitude (m)

Precipitation
(Monthly total, mm) − See Methods

Annual precipitation
(2008−2012 average, mm)

Annual precipitation seasonality
(2008−2012 standard deviation, mm)

Day temperature
(Monthly average, °C) − See Methods

Night temperature
(Previous 3 months average, °C)

Time to nearest HF (hours)

20 25 30 0.5 1.0 1.5 2.0 2.5 500 1000

0 500 1000 1500 2000 3000 3500 4000 4500 5000 400 600 800 1000

20 30 40 12 16 20 24 28 0 2 4 6

−2

−1

0

−2

−1

0

−2

−1

0

β
 *

 f
(X

)

Region North South

Appendix 1—figure 3. Relationships between malaria incidence and the environmental covariates in

the multivariable model described in equation 2 (30 km radius and 1-year temporal lag), additionally

adjusted for the probability of seeking treatment, the spatio-temporal structure of the data (f ðtÞ,

f ðLat; LongÞ and village random intercepts) and malaria incidence in the previous 1 and 2 months.

See Materials and methods for details. Note that 95% confidence intervals (see Appendix 1—figure

13) have been hidden for better visualization.

Temporal trend

Appendix 1—figure 4 shows the relationship – via its individual contribution b � f ðtÞ in equation 2 –

between malaria incidence and the temporal trend included in the model (30 km radius and 1-year

temporal lag). These plots show that relationships are quite similar in both regions with an increase

in 2014, followed by a plateau in 2015 and a decrease in 2016. The larger amount of data in the

south also allowed the identification of a more precise relationship than in the north.
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Appendix 1—figure 4. Relationships between malaria incidence and the temporal trend in the multi-

variable model described in equation 2 (30 km radius and - year temporal lag), additionally adjusted

for the probability of seeking treatment, the spatial structure of the data (f ðLat; LongÞ and village ran-

dom intercepts) and malaria incidence in the previous 1 and 2 months. See Materials and methods

for details.

Forest cover

Appendix 1—table 3 shows the incidence rate ratio (IRR) associated with forest cover, measured by

a 1% increase in the average tree crown density, in current and previous 3 years within 1, 10, and 30

km of villages. Forest cover within 1 km of a village was not associated with malaria incidence rate in

either the south or the north, regardless of the temporal lag. However within 10 and 30 km of a vil-

lage, increased forest cover tended to be associated with higher malaria incidence rates both in the

north and the south (e.g. 30 km buffer, 1-year lag, IRR = 1.09, 95% CI: [1.03; 1.15] in the south;

IRR = 1.12, 95% CI: [0.99; 1.26] in the north). The associations were higher when considering a larger

spatial scale (30 km) but were already statistically significant for a 10 km buffer radius in the south.

None of the associations reached statistical significance in the north, where the sample size is small.

The temporal scale considered did not affect the associations much. Statistical significance wasn’t

necessarily reached for all the associations highlighted, but the trends observed suggest forest cover

around villages but not in the immediate vicinity (1 km) leads to higher risk of malaria both in the

north and in the south. The model including average tree crown cover density within 30 km of vil-

lages with no temporal lag provided the best AIC. In the final models with the deforestation varia-

bles we therefore included the average tree crown cover density within 30 km of villages in the

starting year of the temporal scale for the deforestation variable considered (e.g. 3-year lag in the
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model with percent area that experienced forest loss in previous 3 years as the deforestation

variable).

Appendix 1—table 3. IRR [95% CI] associated with a 1% increase in average tree crown density.

Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the envi-

ronmental covariates selected in the model and malaria incidence in the previous 1 and 2 months.

See Materials and methods for details.

South North

Time lag Buffer radius Buffer radius

1 km 10 km 30 km 1 km 10 km 30 km

Current 1 1.07 1.06 0.99 1.01 1.10

year [0.99; 1.01] [1.04; 1.10] [1; 1.12] [0.97; 1.02] [0.96; 1.05] [0.99; 1.23]

Previous 1 1.07 1.09 1 1.01 1.12

1 year [0.99; 1.02] [1.05; 1.10] [1.03; 1.15] [0.97; 1.02] [0.97; 1.06] [0.99; 1.26]

Previous 1 1.07 1.09 1 1.02 1.10

2 years [0.99; 1.02] [1.05; 1.10] [1.03; 1.16] [0.98; 1.03] [0.97; 1.06] [0.98; 1.25]

Previous 1 1.07 1.10 1.01 1.02 1.10

3 years [0.99; 1.02] [1.04; 1.10] [1.04; 1.16] [0.98; 1.03] [0.97; 1.07] [0.98; 1.24]

Deforestation - non-linearities

The IRR effect estimates in Table 1 and Figure 3 in the main manuscript assume a linear relationship

between deforestation and malaria. Appendix 1—figure 5 shows a few of these relationships – via

their individual contribution b � f ðXÞ in equation 2 – when such linearity is not imposed in the GAM

models. Although the AIC fit is slightly better when modeling non-linearities, these plots show that

the linearity assumption is mostly warranted.
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Appendix 1—figure 5. Adjusted relationship between deforestation and malaria incidence. All

models were adjusted for environmental covariates and forest cover on top of the probability of

seeking treatment, the spatio-temporal structure of the data (f ðtÞ, f ðLat; LongÞ and village random

intercepts) and malaria incidence in the previous 1 and 2 months. See Materials and methods for

details. Note that scales are different between buffer radius for better visualization. Appendix 1—

figure 14 shows the raw scatterplot between monthly village malaria incidence rate and

deforestation. Appendix 1—figure 15 and Appendix 1—figure 16 show the raw time series of

malaria incidence, forest cover and percent area that experienced forest loss.

S6: AIC fit of the seven monthly climatic variables variations
To avoid collinearity, we have selected (based on the best AIC fit – see Appendix 1—table 4) the 1

of the 7 variations (In current month, in previous 1, 2, or 3 months and aggregated over previous 1,

2, or 3 months) of the three monthly climatic variables (Precipitation, Day temperature and Night

temperature) to be included in the final model. This was done independently for each of the four

outcome models (South, North, South Pf, and South Pv). For South P. falciparum, the second best

fitting AIC day temperature (in current month) was selected (rather than in previous month) because
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of very similar AIC fits and to ensure better comparability with the overall South and South P. vivax

models.

Appendix 1—table 4. AIC fit of univariate models when including each of the seven monthly

climatic variation one at a time as unique covariate in equation 2, solely adjusted for the probability

of seeking treatment, the spatio-temporal structure of the data (f ðtÞ, f ðLat; LongÞ and village random

intercepts).

AIC selected are in bold.

Outcome model

South North South P. falciparum South P. vivax

Day temperature

Current month 18,546 1671 13,226 14,575

Previous month 18,556 1702 13,224 14,590

2 months ago 18,578 1669 13,249 14,594

3 months ago 18,559 1672 13,232 14,593

Over current and previous month 18,556 1670 13,231 14,583

Over current and previous 2 months 18,570 1670 13,248 14,588

Over current and previous 3 months 18,573 1680 13,249 14,592

Night temperature

Current month 18,413 1669 13,120 14,474

Previous month 18,453 1670 13,155 14,520

2 months ago 18,547 1673 13,231 14,576

3 months ago 18,581 1672 13,251 14,596

Over current and previous month 18,296 1664 13,044 14,397

Over current and previous 2 months 18,263 1669 13,014 14,385

Over current and previous 3 months 18,262 1663 13,007 14,385

Precipitation

Current month 18,532 1693 13,198 14,593

Previous month 18,520 1669 13,181 14,575

2 months ago 18,538 1658 13,207 14,594

3 months ago 18,579 1664 13,243 14,596

Over current and previous month 18,570 1672 13,239 14,596

Over current and previous 2 months 18,543 1670 13,187 14,590

Over current and previous 3 months 18,555 1674 13,212 14,591

S7: Additional figures
This section presents additional figures mentioned in the text and in the additional results section of

appendix 1.
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Forest and environmental variables

Appendix 1—figures 6, Appendix 1—figure 7 and Appendix 1—figure 8.
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Appendix 1—figure 6. Distribution of average tree crown cover density within 1, 10, and 30 km of

villages.
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Appendix 1—figure 7. Distribution of percent area within 1, 10, and 30 km of villages that experi-

enced forest loss between 2011 and 2016. Note that the scales are different for every panel for

better visualization of the distributions.
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Appendix 1—figure 8. Distribution and time series of environmental covariates (population, alti-

tude, monthly day temperature and monthly total precipitation) at study’s villages.
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Malaria registries – malaria infections

Appendix 1—figure 9.
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Appendix 1—figure 9. Additional figures from malaria registries: malaria infections.
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Malaria registries - SES

Appendix 1—figure 10.
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Appendix 1—figure 10. Distributions of socio-economomical variables of all patients recorded in

the malaria registries.
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Malaria registries – matched vs unmatched

Appendix 1—figure 11.
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Appendix 1—figure 11. Additional figures from malaria registries: matched vs unmatched SES

variables.
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Treatment-seeking

Appendix 1—figure 12.
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Appendix 1—figure 12. Distribution of travel time (in hours) from surveyed households to closest

health facilities.
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Statistical analysis – environmental covariates

Appendix 1—figure 13.
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Appendix 1—figure 13. Relationships between malaria incidence and the environmental covariates

in the multivariable model described in equation 2 (30 km radius and 1-year temporal lag), addition-

ally adjusted for the probability of seeking treatment, the spatio-temporal structure of the data (f ðtÞ,

f ðLat; LongÞ and village random intercepts) and malaria incidence in the previous 1 and 2 months.

Dashed lines are for 95% confidence intervals. Note that the y scale has been trimmed a bit for

better visualization.
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Raw association between malaria incidence and deforestation

Appendix 1—figure 14.

Appendix 1—figure 14. Raw scatterplot between monthly village malaria incidence rate and the

percent area within 30 km of villages that experienced forest loss in the previous 1, 3, and 5 years.

Note that scales are different between regions for better visualization.
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Raw time series of malaria incidence, forest cover, and deforestation

Appendix 1—figure 15 and Appendix 1—figure 16.
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Appendix 1—figure 15. Time series of deforestation (percent area that experienced forest loss

around villages), forest cover (average tree crow cover around villages) and malaria incidence, aver-

aged over study’s villages and for varying buffer radius around villages (1, 10, and 30 km).

Rerolle et al. eLife 2021;10:e56974. DOI: https://doi.org/10.7554/eLife.56974 43 of 45

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.56974


North South

A
re

a
 (%

) w
ith

 fo
re

s
t lo

s
s

A
v
e

ra
g

e
 fo

re
s
t c

o
v
e

r (%
)

A
pr

 2
00

8

A
pr

 2
00

9

A
pr

 2
01

0

A
pr

 2
01

1

A
pr

 2
01

2

A
pr

 2
01

3

A
pr

 2
01

4

A
pr

 2
01

5

A
pr

 2
01

6

A
pr

 2
00

8

A
pr

 2
00

9

A
pr

 2
01

0

A
pr

 2
01

1

A
pr

 2
01

2

A
pr

 2
01

3

A
pr

 2
01

4

A
pr

 2
01

5

A
pr

 2
01

6

0

1

2

3

4

0

20

40

60

Time

Appendix 1—figure 16. Time series of deforestation (percent area that experienced forest loss

within 30 km of villages) and forest cover (average tree crow cover within 30 km of villages), for a

few randomly sampled study’s villages. Each color represents one village.
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Statistical analysis – P. falciparum and P. vivax

Appendix 1—figure 17.
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Appendix 1—figure 17. Adjusted relationship between deforestation and species-specific malaria

incidence in southern Lao PDR. All models were adjusted for environmental covariates and forest

cover on top of the probability of seeking treatment, the spatio-temporal structure of the data (f ðtÞ,

f ðLat; LongÞ and village random intercepts) and malaria incidence in the previous 1 and 2 months.
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