
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Polymer Science and Engineering Department 
Faculty Publication Series Polymer Science and Engineering 

2022 

Medial packing and elastic asymmetry stabilize the double-gyroid Medial packing and elastic asymmetry stabilize the double-gyroid 

in block copolymers in block copolymers 

Abhiram Reddy 

Michael S. Dimitriyev 

Gregory M. Grason 

Follow this and additional works at: https://scholarworks.umass.edu/pse_faculty_pubs 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/pse_faculty_pubs
https://scholarworks.umass.edu/pse_faculty_pubs
https://scholarworks.umass.edu/pse
https://scholarworks.umass.edu/pse_faculty_pubs?utm_source=scholarworks.umass.edu%2Fpse_faculty_pubs%2F1163&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTICLE

Medial packing and elastic asymmetry stabilize the
double-gyroid in block copolymers
Abhiram Reddy1, Michael S. Dimitriyev 1 & Gregory M. Grason 1✉

Triply-periodic networks are among the most complex and functionally valuable self-

assembled morphologies, yet they form in nearly every class of biological and synthetic soft

matter building blocks. In contrast to simpler assembly motifs – spheres, cylinders, layers –

networks require molecules to occupy variable local environments, confounding attempts to

understand their formation. Here, we examine the double-gyroid network phase by using a

geometric formulation of the strong stretching theory of block copolymer melts, a proto-

typical soft self-assembly system. The theory establishes the direct link between molecular

packing, assembly thermodynamics and the medial map, a generic measure of the geometric

center of complex shapes. We show that “medial packing” is essential for stability of double-

gyroid in strongly-segregated melts, reconciling a long-standing contradiction between infi-

nite- and finite-segregation theories. Additionally, we find a previously unrecognized non-

monotonic dependence of network stability on the relative entropic elastic stiffness of matrix-

forming to tubular-network forming blocks. The composition window of stable double-gyroid

widens for both large and small elastic asymmetry, contradicting intuitive notions that

packing frustration is localized to the tubular domains. This study demonstrates the utility of

optimized medial tessellations for understanding soft-molecular assembly and packing

frustration via an approach that is readily generalizable far beyond gyroids in neat block

copolymers.
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Triply-periodic network morphologies constitute “natural
forms” of self-assembled soft matter. Forming in nearly
every class of amphiphilic molecular building blocks, from

surfactants1–3 and lyotropic liquid crystals4 to complex shape
amphiphiles5,6, network domain structures most typically occur
under conditions intermediate to those where cylindrical and
layered morphologies, two other canonical forms of soft matter
organization7, form. By far the most commonly observed network
structures are the cubic domain networks: the double-gyroid
(DG), double-diamond (DD) and double-primitive (DP). Heur-
istically, the local structure of these “in-between” phases is often
characterized by the shape of the intermaterial dividing surface
(IMDS) that separates unlike components8, which is effectively
more curved than planar layers, but less-so than cylinders.
Likewise, their global structure reflects a hybridization between
cylinders and layers9, with one domain forming a double network
of interconnected tubes (e.g. meeting at 3-, 4-, and 6-valent con-
nections for DG, DD, and DP respectively), interspersed with a
slab-like matrix layer, whose undulating shape approximates a
triply-periodic minimal surface (e.g. the Gyroid, Diamond, Pri-
mitive surfaces). The combination of intercatenated, poly-
continuous domain structures with complex (3D crystallographic)
symmetries make triply-periodic network morphologies among the
most sought after self-assembly architectures for functional
nanostructured materials10,11 and their robust formation pathways
make them ideal naturally-occurring photonic structures, endow-
ing organisms from butterflies and beetles to birds with structural
coloration12,13.

Despite their formation by diverse molecular systems, universal
explanations for why various network structures form under
equilibrium assembly remain elusive. A common theme in most
rationalizations of network formation is the concept of packing
frustration14–18, which loosely refers to the incompatibility
between a preferred local geometry for constituents and con-
straints of space filling. Unlike cylinders or layers, which have
uniform shape and thickness, IMDSs of tubular networks have
variable curvature and molecules extending from this surface to
the “center” of the domain have to reach variable distances, yet
need to do so at nearly constant density. While this heuristic
picture is widely held, a basic gap remains between specific
geometric measures of packing and IMDS shape, molecular
configurations of constituents, and the thermodynamic selection
of network structures that form in equilibrium.

In this paper, we revisit the theory of self-assembly of network
morphologies based on the so-called strong-segregation theory
(SST) of AB block copolymer melts. Block copolymer melt
assembly is an ideal system for understanding complex mor-
phology formation, owing to the fact that equilibrium behavior of
variable chemical and architectural compositions are well cap-
tured by a self-consistent field (SCF) model19, dependent on only
a few parameters: the composition fractions f of component
blocks; the χ parameter describing immiscibility between unlike
components; and chain length N (χN controls the effective degree
of segregation in assembled morphologies). Nonetheless, the
understanding of the stable network phases of block copolymer
melts has a complex and unsettled history20.

While initial experimental observations, based on AB star-
blocks, pointed to a DD (symmetry group Pn�3m) network21,
subsequent studies of linear AB diblocks22 identified the DG
(Ia�3d) as the stable network phase (see Fig. 1a) at compositions
intermediate to stable hexagonal cylinders (Hex) and lamellar
(Lam) morphologies. This was confirmed by computational SCF
studies of triply-periodic morphologies23, showing that DG was
the equilibrium phase between Hex and Lam phases at low-to-
moderate χN. Extrapolations of phase boundaries to higher seg-
regation first suggested that the stability window of DG would

pinch off at sufficiently high χN24. A parallel set of studies con-
sidered the stable network morphologies in the asymptotic limit
χN→∞ based on SST25–28, which computes the free energies
directly from space-filling configurations of alternating, brush-
like domains of block copolymers in competing arrangements.
Within SST, the thermodynamics become almost a purely geo-
metric balance between entropic costs of chain extension and
enthalpic cost proportional to the IMDS area16. From this per-
spective, those stable phases in the SST limit might be viewed as
“natural forms” of assembly, emerging from generic, geometric
considerations. Early SST calculations predicted that DG had the
lowest free energy among competitor networks, but was never-
theless not stable relative to Hex and Lam as χN→∞26,28,
excepting for experimentally extreme conditions where matrix-
forming blocks are nearly an order of magnitude more stiff than
tubular blocks. However, more recent experiments29 and SCF
calculations30 that push to much higher χN show that equilibrium
DGs, for equal or nearly symmetric block stiffness, nevertheless
persist to very high degrees of segregation. Whether DG belongs
to those natural forms stable in the χN→∞ limit, or otherwise
relies on specific entropic corrections at finite segregation, has
remained an open question31.

Here, we show that the resolution of this long-standing puzzle
derives from a close connection between packing frustration of
constituent chains and medial geometry of complex IMDS shapes.
Specifically, we generalize the SST approach to network
morphologies to incorporate degrees of freedom associated with
the so-called terminal boundaries20 between brush-like domains
and show that entropic considerations favor spreading of termini
over the medial sets of tubular network domains. This medial
packing not only leads to thermodynamic stability of the DG in
the SST phase diagram, but further predicts a DG stability win-
dow that depends non-monotonically on the elastic asymmetry
between blocks that compose the tubular and matrix domains.
We further demonstrate the features of medial packing of sub-
domain chains that persist to finite degrees of segregation. While
we restrict our focus to the stability of one network morphology
(DG) for a particular class of soft molecular assembly (AB diblock
melts), we posit that the basic paradigm and specific methodology
for evaluating the thermodynamic costs of packing frustration
extend to other complex morphologies assembled from a much
broader class of soft matter building blocks.

Results
Medial anatomy of network morphologies. To understand the
thermodynamic costs of packing in network morphologies, it is
necessary to measure how far chains must extend from the IMDS
into the “center” of complex domains. In block copolymer melts,
these centers, defined as terminal boundaries20, are locally 2D sets
of contact points between opposing brush-like domains from
distinct regions of the the IMDS. The length h of the molecular
extension from the IMDS to the terminal boundary defines a local
thickness.

Historically, the focus on packing frustration in network
morphologies of neat (solvent-free) amphiphiles like block
copolymers, as well as “Type I” lyotropic network phases32, has
been on the tubular, double-network domains (e.g. the red A
domain in Fig. 1a). Prior theories of network thermodynamics in
melts associated the centers of tubular domains with their skeletal
graphs26,28,33, 1D graphs that thread between adjacent Z-valent
junctions, or nodes. Figure 1b shows the skeletal graph within one
of the two single-gyroid domains in the DG morphology, which
connects the node centers located at 8 of the 16bWyckoff positions
of Ia�3d. Focusing on a single 3-valent nodal region in Fig. 1c, the
largest distance from the IMDS (gray) to the skeletal graph (the
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maximal skeletal thickness) is associated with points from the
saddle-like regions between struts that have to extend towards the
center of the node.

Following an argument proposed by Schröder-Turk, Fogden and
Hyde for lyotropic morphologies and block copolymers32,34,35, it was
shown20 that a more natural definition of local thickness is provided
by the medial map, the set of points closest to a given point on a
generating surface (or set of surfaces). Points on the generating
surface are mapped to medial sets by following the local surface
normal until it intersects with another, remote surface normal at an
equidistant point; the distance to those points h is the medial
thickness20,34. This construction rigorously minimizes the distance
map of all points enclosed within the volume bounded by the
generating surface to that surface. Thus, the medial map can be
viewed as a generalization of centroidal Voronoi cells36, in which
distances to a set of generating points are minimized, to the case of
generating surfaces. Figure 1b, c also shows the medial sets for both
the outer (matrix) and inner (tubular) domains for a level set model
for DG. The outer medial surface, which divides the DG into two
enantiomeric single-gyroid domains, closely resembles the Gyroid
(G) minimal surface, while the inner medial set is composed of a
web-like surface that locally spreads out in the plane of the threefold
junctions, and twists by 70. 5∘ from one node to the next.

Figure 1d plots a spatial map of the medial thickness of the (inner)
tubular domain on the nodal region of the IMDS of the DG model.
In the Fig. 1e “band diagram,” we compare domain thickness
measures along a closed path passing through symmetry points of the
nodal region. Notably, the magnitude and variation of skeletal
thickness is not only greater than medial thickness, but the spatial
pattern of thickness variation is nearly opposite between these
measures. While the quasi-planar, three-fold points A± correspond to
minimal skeletal thickness, these are points of maximal medial
thickness. This contrast is even greater at the saddle-like “elbows” at
twofold points K, where the maximal skeletal thickness is nearly
double the medial thickness, which is at a local minimum. Contrary

to the standard heuristic that the cost of packing frustration in
network phases is confined to tubular domains, the medial thickness
in the matrix domain (also shown in Fig. 1e) exhibits variability
comparable to the tubular domain. These geometric observations
strongly imply that theories based on the assumption of skeletal
packing (i.e. terminal boundaries lie along the 1D skeleton)
dramatically overestimate the costs of chain stretching in the tubular
block relative to medial packing (i.e. terminal boundaries lie along the
medial set). As medial geometry encodes the shortest distance to the
“center” of a complex morphology, previous studies have proposed
that medial thickness can be used as a heuristic measure of packing
frustration17,20,35 or otherwise as an ingredient in phenomenological
models of its costs37 in network morphologies. We next exploit a
fully molecular description of network assembly, the SST of block
copolymer melts, to test and establish the direct connections between
the medial geometry of complex networks, the underlying config-
urations of molecular constituents and the thermodynamic stability
of the DG phase.

Thermodynamics of medial packing in double-gyroid. To
assess the importance of terminal spreading along medial sets, we
turn to the SST of DG (and its competitor phases Hex and
Lam)26,27,38. Each block copolymer consists of N segments, a
fraction f of which are A-type, with segment lengths aA and aB. As
shown schematically in Fig. 2, microphase segregation partitions
space into A and B domains, delineated by an IMDS, from which
extended blocks form brushes up to a thickness defined by the
terminal boundary. Critically, as a solvent-free melt, volumes
occupied by chains must obey a local volume balance constraint:
the ratio occupied by A:B blocks extending from each point on
the IMDS is f: (1− f). Given a volume-balanced space partition
for morphology X, the free energy per chain (in units of kBT) is

FðXÞ ¼ Nρ�1

VðXÞ γAðXÞ þ κA
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Fig. 1 Geometric measures of local thickness in double-gyroids. Schematic of chain packing in tubular and matrix domains of self-assembled diblock
copolymer double-gyroid (DG) morphology with cubic unit cell length D is shown in (a), where red and blue regions show domains of A and B segments.
b Shows only a single-gyroid domain of the structure shown in (a) with red and blue surfaces corresponding to medial sets of single tubular and matrix
domains and the skeletal graph shown as light red, with the highlighted nodal region shown in detail in (c). The spatial map of the tubular domain medial
thickness is plotted on the nodal IMDS in (d), with a path bounding an asymmetric unit of the DG: 3- and twofold axes pass through points A± and K.
e shows a “band diagram” of local domain thickness h as measured by distance to medial surface or skeletal graph.
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where ρV(X)/N is the number of chains in the assembly with total
volume V(X) and volume per segment ρ−1 (see Supplementary
Note 1). Remarkably, SST samples the relevant conformational
fluctuations of underlying chains in the χN→∞ limit39, and yet
the free energy reduces to purely geometric measures of com-
peting morphologies16. The first term in Eq. (1) encodes the
surface energy of AB contact, where A(X) is the total area of the
IMDS and γ / ffiffiffi

χ
p

is effective surface tension. The second and
third terms encode the respective entropic costs of stretching
Gaussian chains27 within the parabolic brush theory (PBT),

Iα ¼
Z

Vα

dV z2 ; with α ¼ A;B ð2Þ

where z is the chain extension from the IMDS (see Fig. 2a).
Coefficients κα (Supplementary Eq. (4)) describe molecular and
architectural features of the blocks that control the effective
entropic stiffness of the domains. While the PBT assumes free
ends to be distributed throughout brush, this is violated for
convex brush curvatures40 resulting in an end-exclusion zone. We
show (Supplementary Note 10) that corrections to PBT for the
variable convex domain shapes involved41 have negligible impact
on the stability of network phases.

Per Eq. (2), maximizing entropy of component blocks is
equivalent to minimizing second-moments of volume measured
relative to the IMDS. Chain packing is, in this sense, a variant of
the quantizer problem36, which seeks tessellations that minimize
the second-moment of distance from a set of generating points,
generalized to measure distance with respect to generating
surfaces. Given an IMDS shape, the medial map would provide
the optimal Iα for each domain considered in isolation. However,
as shown in Supplementary Note 3, the medial map generically
fails to satisfy the local volume balance constraint. Moreover,

stable morphologies also optimize the competition between IMDS
area minimization and block stretching.

To model this thermodynamic competition and test how
closely physical assemblies come to realizing medial packing, we
apply the following medial SST approach to DG morphologies
(see Methods, Supplementary Note 3–4). In brief, our approach,
summarized in Supplementary Fig. 7, uses the medial map of
gyroidal surfaces to generate terminal sets (both A and B ends)
from which a set of space filling chain trajectories are derived
along with an IMDS consistent with the volume balance
constraint for each chain trajectory, resulting in mutually
compatible terminal boundaries, IMDS, and trajectories, as
shown in Fig. 2b. We then optimize the computed free energies
over the variational family of generating gyroidal surfaces –
corresponding to variable shapes and sizes of the terminal
surfaces as shown Fig. 2c—to determine and analyze thermo-
dynamically preferred DG chain packing. Notably, local volume
balance generally requires some measure of tilt between
trajectories and the IMDS, a signature of the deviation from
strictly medial packing which we return to below.

In Fig. 3 we compare the free energy of DG to its competitor
phases (Lam and Hex) for conformationally symmetric (i.e.
chains of equal segment lengths aA and aB) linear AB diblocks,
using a variable-IMDS shape SST for Hex42. We also compare the
medial SST construction of DG (medial-DG) to a skeletal
construction (skeletal-DG) that is based on and closely
approximates Milner and Olmsted’s skeletal SST26 for network
phases (see Supplementary Note 5), showing that the free energy
per chain in medial packing is significantly lower ( ≈ 2− 4%)
than skeletal packing. In the inset of Fig. 3, we plot

SαðXÞ ¼ IαðXÞA2ðXÞ=V3ðXÞ; ð3Þ
a dimensionless measure of entropic stretching that compares
block entropies at an equal IMDS area per chain (i.e. fixed
interfacial cost, see Supplementary Note 2). This shows that the
free energy drop of medial-DG relative to skeletal-DG primarily
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Fig. 3 Medial versus skeletal chain packing thermodynamics. Free energy
comparison of medial-DG (mDG) and skeletal-DG (sDG) to competitor
hexagonal cylinder (Hex) and lamellar (Lam) phases, for conformationally
symmetric linear diblocks. Inset shows scaled entropic cost of stretching for
both blocks (compared at equal IMDS area per chain).
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zzzz
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Fig. 2 Subdomain tessellations for strong-segregation chain packing.
Schematic of chain packing within a variably-shaped morphology is shown
in (a) where z labels local extension of blocks from the IMDS. b Shows a
(volume balanced) tessellation of the nodal region of DG, generated via the
medial SST construction. c Shows a sequence of medial SST geometries (at
fixed composition f= 0.3) highlighting lateral spreading of terminal webs
achieved via parametric variation of DG generating surfaces (as described
in the text).
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derives from the reduced stretching in the tubular block,
consistent with the reduced stretching of A blocks near point K
defined in Fig. 1d, e. The entropic gain due to medial packing
brings DG into near-degeneracy (to within free energy 0.02%
excess) with its competitors at the boundary between Lam and
Hex at f≃ 0.29. Next, we consider how elastic asymmetry between
the domains lifts that degeneracy.

Elastic asymmetry and double-gyroid stability. Beyond the
volume fraction f of tubular blocks, stability of block copolymer
phases is known to be critically dependent on chain architecture
and conformational rigidity. The elastic asymmetry parameter
ϵ≡ (nBaA)/(nAaB), as defined by Milner for AnA

BnB
miktoarm

stars43 and illustrated in Fig. 4b, encodes the relative stiffness
between blocks of unequal segment length aA ≠ aB (conforma-
tional asymmetry) and number of branches nA ≠ nB (architectural
asymmetry). In terms of Eq. (1), κB/κA ∝ ϵ, so that when ϵ > 1, the
B matrix domains are stiffer compared to the A tubular
domains16,42. Notably, elastic asymmetry in sphere phases has
been understood to unlock a host of “self-alloying” Frank–Kasper
crystal structures through the amplification of packing frustration
in the coronal blocks16,44–46.

Figure 4a shows the phase boundaries between Lam, Hex and
DG based on the medial SST, in the f-ϵ plane. Surprisingly, the
thermodynamic stability of DG exhibits a non-monotonic
dependence on elastic asymmetry. For intermediate values of
asymmetry 0.98 < ϵ < 1.96 there is no stable DG phase, and only a
line of direct order-order transitions between Hex and Lam.
However, for sufficiently high or low values of asymmetry (i.e. ϵ ≥
1.95 and ϵ ≤ 0.98) stable windows of DG open up intermediate to
Hex and Lam (SST based on skeletal ansatz26 showed previously
that DG becomes stable for the especially large elastic asymmetry
ϵ≳ 9.5.).

For comparison, we show in Fig. 4a phase boundaries at finite
segregation (χN= 75) from SCF calculations47. Aside from a
slight offset to larger f (attributed to finite-χN effects), the skewing
of phase boundaries to larger f with increasing ϵ agrees with
medial SST predictions. Notably, the width (Δf)DG of stable DG
compositions exhibits a non-monotonic dependence on ϵ,
widening for large and small asymmetry values, as shown in
the inset of Fig. 4a. This suggests that the coupling between elastic
asymmetry and packing frustration captured by medial SST
persists even at finite χN.

We consider the mechanism underlying the non-trivial
dependence of DG on elastic asymmetry, based on the
dimensionless entropic costs SαðXÞ of competing phases plotted
along the line F(Lam)= F(Hex) for variable ϵ in Fig. 4c. The
stability of DG for ϵ > 1.96 is consistent with the long-held notion
that packing in the tubular block is problematic15, so that
discounting its thermodynamic cost relative to the matrix should
increase its stability. There is a more subtle scenario in the Hex
phase, where the coronal domain is increasingly frustrated with
increasing ϵ, causing the IMDS to warp hexagonally42, which in
turn deforms the core domain, as shown in the relative increase of
entropic costs of the A block with ϵ (see Supplementary Note 6).
In contrast, terminal spreading in the tubular block of DG leads
to a relative decrease of those entropic costs with ϵ, allowing this
phase to overtake Hex for sufficiently stiff matrices.

The “reentrant” stability of DG for ϵ≲ 0.98 is more
confounding, as the increased cost of packing frustration in the
tubular block would seemingly destabilize the DG, according to
the prevailing notion that suggests packing frustration is
concentrated within the tubular block15. Instead we observe that
the favorable A block stretching of DG relative to Hex is
maintained and the nominal thickness of the tubular domain
shrinks with composition along the F(Lam)= F(Hex) line. This
suggests the optimal DG morphology is able to redistribute the
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cost of packing frustration from the tubular domain to the matrix
domain, in which thermodynamic costs are relatively less costly
for ϵ < 1. This is consistent with comparisons of the r.m.s.
variance of block thickness in the A and B domains, plotted in
Fig. 4d. While DG exhibits a lower thickness variation in the
matrix blocks for ϵ≳ 2, as ϵ is decreased, the optimal DG
morphology reorganizes to reduce the thickness variation in
stiffer, tubular domain. Taken together, medial SST predicts a
nuanced picture of packing frustration in DG, in which terminal
spreading along medial sets facilities a remarkable degree of
adaptability to a broad range of molecular structure.

Fingerprints of medial packing at finite segregation. Medial
SST predicts that optimal arrangements of DG assemblies rely on
a variable spreading of chain termini along medial sets interior to
the domains. Here, we consider morphological features of DG
assemblies and their variation with elastic asymmetry that derive
from medial packing in the χN→∞ limit, but persist at finite
segregation. In Figure 5 we compare DG morphologies modeled
by SCF at χN= 75 along the points (ϵ, f) where F(Lam)= F(Hex)
according to medial SST calculations. Notably, SCF calculations
include chain fluctuation effects associated with finite IMDS
widths and contact zones between opposing brushes, without a
priori assumptions about the underlying chain configurations. In
Fig. 5a, we compare “band diagrams” of the spatial map of IMDS
mean curvature H (along the path introduced in Fig. 1d) for a
range of elastic asymmetry, 0.5 < ϵ < 2.25. These show qualita-
tively similar spatial patterns between medial SST and SCF, with
characteristically flatter regions along the threefold directions (A
±) and maximal curvature at the elbows (K), although magnitudes
and fine features differ between infinite- and finite-segregation
models (analogous comparisons are shown for Gaussian curva-
ture in Supplementary Fig. 10A, B). More significantly, the var-
iance of mean curvature is shown to decrease systematically with
increasing elastic asymmetry (see Supplementary Fig. 10C), sug-
gesting that IMDS shapes tend more towards area-
minimizing14,20 (i.e. constant mean curvature) shapes as the
ratio of matrix to tubular block stiffness grows.

Underlying the adaptation of the DG geometry is the
increasing lateral spread of the terminal webs of the tubular
blocks with increasing elastic asymmetry, shown in Supplemen-
tary Fig. 6. This trend might suggest a discernible measure of
displacement of free A block ends from the skeletal graph for
increasing ϵ. In Supplementary Fig. 14, we compare the distance
distributions of free A block ends from the skeletal graphs for
three values of ϵ. While there is indeed a systematic shift of end
distributions away from the skeleton observed for increasing ϵ in

both SCF and SST results, free ends are always well-distributed
throughout brushes that any signal of medial spreading in chain
ends is rather diffuse.

For an alternative molecular fingerprint of the underlying
terminal boundaries, we turn to chain orientation. As noted
above, in the medial SST construction, local volume balance
extending away from the same points on the IMDS requires some
measure of chain tilting from the local IMDS normal, a signature
of deviation from strictly medial packing. Using the polar order
parameter extracted from SCF48 and the direct trajectories from
optimal medial SST configurations, we compare the map of the
local tilt angle θ relative to the IMDS at finite-χN and χN→∞ in
Fig. 5b. Both show strikingly similar spatial patterns of tilted and
normal regions. Although finite-χN results show a smaller
magnitude of tilt, both SCF and medial SST show near-identical
patterns of normal packing (θ= 0). This occurs for the quasi-
planar threefold points (A±) along the elbow (extending from N
to K) and also at a satellite spot along the strut (between L and
M). More careful analysis (Supplementary Fig. 13) shows that this
satellite spot is located precisely along the ray that is co-normal to
the underlying terminal web (a line of 2-fold symmetry), and
hence the rotation of that normal zone reflects (half of) the 70. 5∘

twist between nodes in DG. In this way, we observe the non-
trivial pattern of tilt at the IMDS as an indirect image of the
terminal packing within the domain.

Figure 5c shows the magnitude and variation of the tilt
distribution as function of elastic asymmetry. While magnitudes
of tilt are larger for infinite- compared to finite-segregation
theories, both show a consistent trend decreasing from relatively
high tilt for ϵ < 1 to approach a more normal (i.e. θ→ 0) packing
for ϵ > 1. This latter tendency towards normal orientation implies
that chain packing approaches closer to the medial limit as matrix
domains stiffen and stable DG morphologies shift to larger
A-block compositions, ultimately, becoming majority tubular
structures for ϵ≳ 2.25.

Discussion
In summary we have developed an approach to the SST limit of
AB block copolymer melts which constructs space-filling pack-
ings of chains from medial sets, and applied it to reassess the
thermodynamic stability of the DG phase. In contrast to the prior
packing ansatz26,28, which assumed that chain termini are loca-
lized to the 1D skeletons within the tubular networks, we consider
molecular configurations that span from medial sets of DG
generating surfaces, accounting for a substantially lower entropic
cost for occupying the complex domain shapes at constant den-
sity. Our variational framework considers, explicitly, the free
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energy dependence of DG morphologies as terminal ends in the
tubular blocks vary their degree of localization towards or away
from the 1D skeleton, with optimal structures exhibiting a broad
degree of spreading over twisted web-like surfaces through tub-
ular domains. This lower packing frustration cost qualitatively
alters the thermodynamic picture for DG stability, and notably its
dependence on elastic asymmetry. The SST based on skeletal
packing predicts that DG only becomes increasingly stable rela-
tive to its Hex and Lam competitors as the matrix block is stif-
fened, and ultimately only becomes an equilibrium phase at
experimentally exotic conditions, for ϵ≳ 9 (the equivalent of a
AB9 miktoarm star of equal A and B segment lengths)26. In
contrast, the lower free energy achieved by medial packing
implies that DG becomes an equilibrium phase under the much
more typical experimental range of ϵ ≈ 1. Moreover, the ther-
modynamics of the DG is shown to have a far more complex,
non-monotonic dependence on elastic asymmetry, counter-
intuitively increasing in stability as the tube-forming block
becomes relatively stiff, as well as in the opposite regime of stiffer
matrix.

Notably, our predictions suggest that complex networks, with
suitably low elastic asymmetry, can be formed in equilibrium
down to surprisingly low tubular volume fractions (at least as low
as 15%). In addition to confirmation by SCF computations at
even higher segregation strength, the stability of these “narrow
tube” networks, as well as the strong dependence of the stability
window in the range 0.5≲ ϵ≲ 2.5, should be experimentally
accessible via carefully adjusted combinations of branch and
segment length asymmetry, along the lines of recent experiments
on the effects of elastic asymmetry on complex sphere phase
formation49,50. These thermodynamic predictions are predicated
on a revised picture of the underlying subdomain packing of
chains. We have highlighted how the medial packing motif
impacts detailed distributions of IMDS curvature (Fig. 5) and
their sharp contrast with skeletal packing motifs Supplementary
Fig. 11. Combined with recent advances in spatial mapping of
subdomain IMDS shape via 3D tomography (i.e. slice and view
scanning electron microscopy)51, these curvature distributions
and their variation with elastic asymmetry and composition
would provide at least an indirect fingerprint of medial packing.
More direct confirmation of the detailed subdomain packing
distribution requires reconstruction of the terminal geometry
itself, or if not, spatial maps of the area per chain at the IMDS,
both of which motivate experimental approaches to characterize
3D geometry of specifically labeled subregions of complex
morphology20.

Our results establish the relevance of medial geometry to the
molecular degrees of freedom of network assembly of block
copolymer melts. While constraints of local volume balance in
this neat system frustrate perfect medial packing (i.e. normal to
IMDS) of chains, variable spreading of terminal ends of blocks
along the medial sets is nonetheless essential to the stability of DG
in the χN→∞ limit. Moreover, we observe that the degree of
conformity with perfect medial packing for DG itself varies with
molecular parameters controlling the ratio of domain stiffnesses.
In this light, the medial SST reformulates the notion of packing
frustration for block copolymer assembly, and we anticipate
implications well beyond the stability of DG in melt assembly.

First, the medial SST approach extends straightforwardly to
other network morphologies, such as the cubic cousins of DG—
DD and DP. Indeed, it can be shown that medial SST variants of
DD and DP exhibit lower free energies than the prior skeletal
ansatz. However, over the range of conditions presented here for
AB block copolymer melts, the free energies of DD and DP
always exceed that of DG. As we will describe elsewhere, we
expect that the stability of DG over these competitors derives

largely from the uniquely smooth geometry of the terminal webs
of DG. Notably, there is reason to suspect from SCF calculations
that equilibrium stability of cubic networks (i.e. DG) could give
way to stable “layer networks” in the form of perforated lamellar
morphologies at particularly low values of elastic asymmetry in
AB mitkoarms52 or more complex architectures53, although the
physical mechanism for such a transition is not yet clear.

Beyond network phases, it can be expected that medial packing
motifs play a key role in other complex morphologies, notably the
Frank–Kasper (FK) phases of sphere-like domains that are sta-
bilized at high elastic asymmetry46. It is well appreciated that
phases “self-alloy” into multiple symmetry- and volume-
inequivalent domains. Crudely speaking, the terminal bound-
aries between coronal blocks are polyhedral cells, similar to
Voronoi cells. However, medial analysis of FK-forming domains
suggests that the terminal packing in core domains is more
subtle20. These FK structures (e.g. A15 and C15) are composed of
populations of more isotropic domains, with inner medial sets
localized around points, mixed with another population of more
anisotropic domains possessing planar, disk-like medial sets.
Prior SST models for explaining FK phase formation are based on
the evidently oversimplified assumption that core termini are
localized to the centroids of domains16,45, and hence likely con-
siderably overestimate the entropic costs in these anisotropic
domains, whose local packings include quasi-lamellar regions.
We anticipate that properly accounting for terminal spreading via
an extension of medial SST may be critical for understanding
open questions in FK formation. For example, what controls the
sequence of stable sphere phases (BCC→ σ→A15) found when
increasing elastic asymmetry and core block fraction44,46? Addi-
tionally, end-exclusion zone corrections to parabolic brush the-
ory, while seemingly unimportant for the network phases
(Supplementary Note 10), are expected to yield substantial free
energy corrections for sphere phases41 and may therefore have a
significant effect on predicting which sphere phases are stable.

Lastly, we briefly comment on likely effects of medial packing
beyond neat (i.e. melt) systems. In blends, adding low-molecular
weight species that dissolve in either one or both blocks (i.e. the
so-called wet brush regime) will certainly have the effect of
introducing compressibility to those solvated domains. In the
context of medial packing specifically, compressibility has the
effect of relaxing the local volume balance constraint, and thereby
should reduce the frustration of medial packing. Hence, we
speculate that a direct consequence of blending with low-
molecular weight solvent species should be a progression
toward un-tilted (i.e. medial) packing, which may establish a
convenient conceptual link between medial packing frustration in
neat (thermotropic) and concentrated (lyotropic) phases. Mix-
tures of block copolymers with high-molecular weight species
(e.g. homopolymer of A or B type) are generally expected to lead
to local segregation of additives from the molten brushes com-
prising each domain15,54, in effect sequestering them into inter-
stitial “hot spots” between those brushes, in turn relaxing the free
energy cost of filling space for those local regions. SCF
results54–56, and experiments57, show that the stable network
morphology can be altered upon blending homopolymer to the
tubular domain, from DG to DD, and potentially to DP upon
further increased homopolymer fraction. Analogous effects
altering the symmetry of the stable morphology have been
observed and studied theoretically in FK-forming sphere phases
of block copolymer and homopolymer blends58–60. While it is
arguably intuitive that homopolymer blends relax packing frus-
tration in complex phases, it remains to be understood what
geometric features of these morphologies lead a complex “host” to
gain or lose stability over another upon loading with a “guest”
species. We anticipate that hot spots can themselves be directly
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related to the medial geometry of a complex morphology, and
moreover, the medial SST construction may be readily extended
to provide a direct map of the location and thermodynamics of
these hot spots upon blending.

Methods
Medial strong segregation theory for double gyroid. The medial strong segre-
gation theory calculation optimizes the SST free energy, Supplementary Eq. (11),
over the variational family of generating gyroidal surfaces to determine and analyze
thermodynamically preferred DG chain packing. Complete details on the con-
struction of tessellating chain configurations and the variational algorithm are
given in Supplementary Note 3–4.

We begin with a broad set of generating surfaces G with Ia�3d symmetry; here
we have chosen G as level sets of a three Fourier-mode expansion of the gyroid
symmetry. From the medial map of G (for the double network) we generate the
terminal boundaries of both domains, TA and TB, referring to the tubular and
matrix domains respectively. The induced map between TA and TB approximates
the mean trajectories of domain-spanning chains, which occupy local volumes
approximated by triangular prismatic wedges, thus providing a complete
tessellation of the DG structure. The location of the IMDS is then determined along
each trajectory according to the constraints of volume balance and chain
composition, resulting in mutually compatible terminal boundaries, IMDS, and
trajectories, as shown in Fig. 2b, from which we compute the geometric
contribution to the free energy in Eq. (1). Notably, local volume balance generally
requires some measure of tilt between trajectories and the IMDS, such that the
terminal surfaces of the ultimate volume-balanced packing deviate at least slightly
from the medial surfaces of the final IMDS. As shown in Fig. 2c, variation of the
generating surface leads to variation in compatible IMDS shapes and variable
spreading of the terminal boundaries for fixed block composition f, which we then
optimize over (see Supplementary Note 4).

Skeletal strong segregation theory ansatz for double gyroid. We employ a
variant of the medial SST approach to model the DG assemblies whose terminal
sets are constrained to lie along the skeletal graphs of the double network, in a
effort to closely recapitulate and compare to prior results from ref. 26. Complete
details are provided in Supplementary Note 5. In brief, we construct a variational
set of skeletal tessellations via projection of the terminal positions in the tubular
domains from the “web-like” medial surfaces of double-gyroids to the nearby
positions along the skeletal graph. Finally, we optimize the free energy over the free
parameters of the map that takes points on the tubular domain medial surface to
points on the skeletal graph.

Strong segregation theory of the hexagonal columnar phase. To compute the
SST free energy of the competitor Hex phase we use the method of ref. 42, which
considers a variable class of IMDS shapes—intermediate to circular and hexagonal
shapes—and corresponding space-filling (so-called kinked-path) chain trajectories
chain trajectories within domains. Complete details and subdomain packing ana-
lysis provided in Supplementary Note 6.

Finite segregation strength self-consistent field calculations. Self-consistent
field (SCF) calculations of Lam, Hex and DG phases are done using the PSCF code
as described in ref 47. Distributions of the free end junctions are computed from the
SCF segment distribution functions as detailed in Supplementary Note 9. As
detailed in Supplementary Note 8, the tilt of the chain trajectories is computed
from the (polar) order parameter at the IMDS (i.e. regions composed equally of
equal parts A and B segments), which is computed from spatial gradients of
segment distribution functions as described in ref. 48.

IDMS shape analysis. For the IMDS shape analysis, we adapted methods for
calculating smooth approximations to curvature on a discrete meshes based on
least-squares fitting of well-behaved quadric surfaces to small surface patches. The
quadric surface fits provide for smooth evaluations of curvature that are local to
each surface patch. We obtain a global curvature distribution by stitching together
the collection of surface patches, averaging over individual patch curvature eva-
luations at the intersection of multiple patches. This algorithm also provides a
route to smoothing over rough meshes, such as those that appear in the skeletal
SST construction. This algorithm is described in detail in Supplementary Note 7A.
To construct the “band diagrams,” we specify a set of cutting planes and find their
intersections with a given meshed surface, yielding curved paths on the surface. We
then identify the mesh edges that intersect each plane and use linear interpolation
to evaluate vertex- or face-addressed data at the location where each edge intersects
with a plane. This method is outlined in Supplementary Note 7B.

End-exclusion zone corrected free energies. End-exclusion zone (EEZ) correc-
tions to the parabolic brush theory calculations of chain stretching free energy,
which are described in Supplementary Note 10, were found using the results of41.

We incorporated a look-up table and interpolation tool available in the supple-
mentary code of that reference (available at https://doi.org/10.7275/rtvx-h237) to
adjust the stretching free energy for each wedge in our medial SST calculations.

Data availability
Computational results are available at https://doi.org/10.7275/s98r-sb17.

Code availability
Supporting software codes for medial SST model of DG are available at https://doi.org/
10.7275/s98r-sb17.
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