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ABSTRACT

COLLECTIVE MOTION AND PHASE DIAGRAM
OF SELF-PROPELLED VIBRATED HARD SQUARES

MAY 2022

ZHEJUN SHEN

B.Sc., TONGJI UNIVERSITY

M.Sc., FUDAN UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Narayanan Menon

In equilibrium, matter condenses into ordered phases due to the combined ef-

fects of inter-particle interactions and entropy. In this dissertation we explore self-

propulsion of particles as an additional nonequilibrium consideration in the mecha-

nisms for ordering. Our experiments employ square-shaped hard particles; in equi-

librium, when particle motions are randomly directed, squares form entropically-

stabilized phases in which first their orientations, and then their positions, get locked

in relative to each other, depending on the density of coverage. When the square

tiles are modified to have a small propulsion along some body-fixed axis we find that

their tendency to order is profoundly altered. Adding such ’activity’(quantified by

the persistence length of motion along the mobility direction) to particles can produce

new ‘phases’ and mechanisms for ordering not seen in equilibrium materials.

In the first study, we study a system of vibrated self-propelled granular particles

with high persistence length on a horizontal plane within a circular boundary. The

vi



particles are square and designed to have polar motion along one body diagonal.

When they hit the boundary they align along the boundary but also ’walk’ along the

boundary. Given a large enough initial density in the plane, particles spontaneously

migrate to the boundary, form a ring and perform a stable 1D rotational gear-like

motion with a direction chosen by their net polarization. For a fully polarized single

ring we find that the collective velocity surpasses the free single-particle velocity.

This collective velocity increases as the density of particles in the ring increases,

which is counterintuitive for a normal traffic problem. The spatial correlations of

particle velocity fluctuations decay exponentially with a length scale that increases

with density. There is thus increased cooperativity in the system. However, the

temporal correlation shows that velocity fluctuations are very short-lived.

In a second project, we study the effect of varying the persistence length of indi-

vidual particle motion in an ensemble of squares held at fixed density. We find that

adding activity to the particles qualitatively modifies their phase diagram relative

to that of passive squares. At large enough activity (just as in the previous study),

particles always migrate to the boundary and form a high-density ordered state. At

smaller values of activity, different phases are seen as a function of density. At low

density, the particles form an isotropic fluid. As the density increased, particles sep-

arate into a high-density ordered region while the remaining particles remain in the

fluid state. Above a finite density, the phase coexistence curve terminates and all

particles freeze into an ordered state. The start and end density of the coexistence

region is found to be a function of activity. The coexistence region emerges purely

due to the effect of activity in the system. We also discuss dynamics within the dense,

ordered state.

In the final project in this thesis, we studied by simulation the effect on collective

behavior of changing the symmetry of single particle activity. In addition to passive

squares (that is, squares with isotropic mobility), we study polar, bipolar and chiral
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mobilities. For each of these choices of symmetry we also choose different axes for the

activity relative to the particle shape. We thus have six different kinds of particle and

compare their corresponding phase behavior. We find that different symmetries of

activity have quite different phase states. For a fixed symmetry of activity, changing

the direction of symmetry leads to much smaller changes in phase behavior.
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CHAPTER 1

INTRODUCTION

Active systems are made up of agents who are able to harvest energy from their

environment and propel themselves along a preferred direction in a body-fixed frame.

The direction of motion is decided by the orientation of the agent instead of external

fields.

There are both living and non-living examples of active matter. Examples of

active agents in biological system range from flocks of birds and schools of fish to the

cytoskeleton of living cells.[1, 4, 5, 6, 7].This field was first motivated by collective

effects such as flocking and swarming in living agents , but scientists have also worked

on analogues of living system in condensed matter systems. Examples of nonliving

active matter include layers of vibrated granular particles, collections of robots and

colloidal or nanoscale particles propelled through a fluid by catalytic activity at their

surface [8, 9, 10].

Researchers often categorize active systems by (i) mobility symmetry of the agent

and (ii) momentum conservation as shown in table 1.1.

Momentum-conserving systems like colloids are called wet active system s. Vis-

cosity damps the relative motion of agents and environment, but with the fluid and

the agent taken together, momentum is dissipated only slowly and can be treated

as a hydrodynamic variable. However, if the fluid can absorb momentum locally,

agents can transfer momentum with no momentum conservation[1]. Systems that do

not conserve momentum refers to dry active systems. In addition to the inert fluid

example, another case is active agents contact with with substrate which serves as
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Nematic Polar

Dry
Melanocytes[11]
Vibrated granular rods[8]

Migrating animal herds[12]
Migrating cell layers[13]
Vibrated asymmetric granular particles
Films of cytoskeletal extracts[14]

Wet
Suspension of catalytic
colloids rods[10]

Cell cytoskeleton and cytoskeletal
extracts in bulk suspensions[15]
Swimming bacteria in bulk[16]
Pt catalytic colloids[17]

Table 1.1: Example of how active matter systems are classified. The table is from a
review article entitled Hydrodynamics of Soft Active Matter [1].

a momentum sink. In this thesis, we focus on 2D vibrated granular matter as an

example of a dry active system. Here objects can collide and transfer momentum to

each other, but they can also locally lose momentum to the substrate

In most of this thesis, we work with systems that have a polar symmetry of

mobility. As we will explain, one advantage of working with a dry system is that we

have greater freedom to control and design the activity and shape of the agent.

In this dissertation, we focus on a 2-dimensional vibrated granular system and

the individual agents in our system are hard squares. Granular particles enable us

to have more freedom to control the interaction between particles and the direction

of mobility. Here, the steric interaction between particles have four-fold rotational

symmetry due to the particle shape we chose, however, clearly other symmetries

are possible to design. On the other hand, we select the activity of the particle

by different means than its 2D contour. We are thus able to create hard squares

with different symmetries of activity with no change in the four-fold interaction.

Primarily, we worked with squares that have polar mobility. In most active-matter

research, direction of activity aligns with the direction of interaction axis[8]. The

ability to independently break two kinds of symmetry in a single particle: the steric

interaction and direction of self-propulsion allows us to study the competing effects

of these considerations in packing and ordering of system. The asymmetry caused by
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self-propulsion could break or enhance the structure. The combination of these two

could lead to interesting effects on the dynamics and nonequilibrium phases of active

matter.

One important point is to clarify the terms: Brownian particle, passive particle

and active matter that are commonly used in the thesis. Brownian particle refers

to particles in thermal equilibrium. Therefore the particle is heated by a thermal

bath, and all degrees of freedom get the same amount of energy due to Equipartition

theorem. Active particles are subject to nonequilibrium bath with isotropic noise as

well as preferential noise in the mobility direction. But not all nonequilibrium system

is called active matter. A distinctive and defining feature of active system is that the

energy input that drives the system out of equilibrium is local, for example, at the level

of each particle[1]. Note that these active systems differ from other nonequilibrium

systems that are driven at a large scale, such as driving at the boundaries as in a

shear flow or by a uniform potential field. The driving direction of active particle may

follow some locally defined field, which may range from simply the particle orientation

to something more complex such as the connectivity among cells[18]. Particles with

only isotropic noise but no self-propulsion will be referred to as passive particles, or

isotropic particles; terms that will be used in this thesis interchangeably.

Most of the previous research work we refer to in this introductory chapter is

directed towards studying the generic MIPS phenomenon i.e. clustering due to ac-

tivity, in the absence of attractive interactions between particles. However, what my

thesis studies is systems that even in the absence of activity have some ordering. The

four-fold interactions symmetry of square leads to ordering in passive particles[3, 18].

Our contribution will be to show how the ordering can be changed by activity.
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1.1 Outline

In this dissertation, we study the dynamics and collective structure formed by

active hard particles in 2-dimensions. The example used in the thesis is that of

granular hard squares that under vibration can have biased propulsion in desired

directions to render them into an active system. Our goal is to test whether adding

designed activity creates new phase behavior or new collective effects.

We manufacture the particles by 3D printing and drive them by placing them on

a horizontal plane that is subjected to vertical vibration. We can artificially create

mobility by designing in geometrical asymmetry. On a single particle level, we are able

to change both the symmetry of the mobility and also change quantitative parameters

of its dynamics and fluctuations. We then use the designed particle to investigate the

effects on collective effects at finite densities.

I will describe the basic setups for the experiment in Chapter 2. My discussion

includes experimental apparatus, vibration parameters, design of the granular hard

squares, particle detection, tracking techniques and data analysis methods. Most

of these techniques are shared by the experiments experiments described later in

the thesis. Particles in two experiments have same design but with different size

and corresponding detection methods. Details of each project will remain in the

appropriate chapters.

In Chapter 3, I introduce a project that studies spontaneous one-dimensional

collective motion of hard squares when they move along a circular boundary. I started

my research from designing a square rigid particle with preferential velocity along one

of the diagonal. Such particles in the long-term end up migrating to the boundary of

an experimental system. This specific type of activity leads to interesting behavior

when particles approach the boundary of a confining cell. We find that a particles

form a single layer or ’ring’ and perform a stable global rotation along the boundary.

If the particle are oriented in a fully polarized manner, the collective velocity exceeds
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the velocity of a single particle in the bulk. We further investigate the relation between

collective velocity and density as well as the spatial and temporal correlation function.

We also run the experiment at different vibrating amplitude and frequency. To study

the interaction between rings, we study two rings of particles and their dynamics.

In Chapter 4, I describe work in which we present what we believe is the first ex-

perimental phase diagram of self-propelled particles, with hard squares. This project

target is to study how non-equilibrium activity changes the ordering and structure

of passive squares[3]. We explore two axes of the system: activity and density. For

selected values of activity, we move along the density axis and investigate the phase

formed by particles. Before proceed to the details of this work, I first describe the

biggest challenge in dealing with an experimental active matter system – boundary

clumping – and how we solve it by increasing the rotational diffusion, a different

strategy than other researchers have used. With this method, we can also change

the activity effectively. We find introducing non-equilibrium activity causes phase

coexistence that is not observed in the equilibrium counterpart. The single-particle

dynamics in each phase could be used to effectively distinguish the phases. We also

study the local orientational molecular order and bond order in detail. As a comple-

ment to the experiment we also performed simulations with period boundary condi-

tion. The results quantitatively agree with the experiment. This indicate the phase

coexistence observed in experiment is not caused by boundary effects but by the in-

trinsic properties of self-propelled particles. It also enriches our abilities to explore

other non-equilibrium activity that are not easily achieved in experiment.

In Chapter 5, we further explore the symmetry of activity by simulation. Activi-

ties can have various symmetries and the symmetry need not be the same as that of

the interaction potential. For the cases I study here, this amount to saying that the

interaction potential has a four-fold symmetry, but the mobility may have different

symmetry.Here we study particles with three different symmetries for their mobility:
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polar, bipolar and chiral activity. For each symmetry, we also study two different

choices for the orientation of activity relative to the orientation of the particles. We

find that different symmetries of activity lead to substantially different phase behav-

ior. However, for a given symmetry of activity, changing the direction of symmetry

leads to much smaller changes in phase behavior.

In the last chapter, I summarize the results of all my three projects and propose

ideas for exploration based on our system. Currently, we have both self-propelled

hard squares as well as passive ones. One tempting experiment is studying a system

of passive-active mixtures. In this system, we can control the ratio of active particle

and thus further extend a third axis on the phase diagram. One potential challenge in

this experiment is how to effectively control the dynamical fluctuation of two different

particles within the same system so that they are comparable except for the activity.

Another future project is to manufacture particles with different symmetry and study

the phase diagram experimentally. Finally, we can greatly improve the simulation

efficiency and increase the number of particles by GPU parallel computation.
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CHAPTER 2

EXPERIMENTS AND METHODS

This chapter describes the experiment setup for creating and characterizing the

motion of self-propelled granular particles in two dimensions, the technique to detect

positions and orientations of particles as well as the methods to analyze the motion

of particles. All of my research was conducted in the same setup but with different

particle sizes, particle design and material.

2.1 Experiment Setup

The experimental system is composed of a circular cell that confines the particles

to a horizontal plane(Fig 2.1). The circular cell has a radius of 101.6mm and is

composed of an aluminium substrate and scratch-resistant acrylic top case. The

upper plate is transparent so that we can set up a fast camera to record the motion

of particles from a top view. The gap, ranging from 4.318mm to 6.35mm, between

the cover and base is determined by quasi-two-dimensional spacers (details will be

discussed in section 2.6). We attach the base, top case and spacers with twelve bolts

that uniformly distributed around the rim of the cell. The uniformity of the gap

is crucial to ensure spatially homogeneous dynamics; to prevent the gap from being

unevenly squeezed by the bolts, we used a torque wrench that could controllably

apply the same torque on the bolts.

Particle are confined to the horizontal substrate of the cell. The particles are

energized by vibrating them in the vertical direction, and allowing them to move in

the horizontal plane. As discussed later, they can be designed to have a preference
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for any direction of motion. Some examples are squares that have isotropic motion

[18, 3], and polar squares that move preferentially towards one of the edge[18, 19].

However, in most of what I discuss, the particles are designed to have polar activity

– that is, a preferred direction of propulsion – along a body diagonal.

20.32cm = 40a

θ
r

a = 5.08mm

γ

a = 5.08mmf = 50 Hz

Figure 2.1: Experimental setup. (a) Side view of the vertically vibrated cell. (b)
Top view of the cell defining lab-fixed coordinates(r, θ), as well as the particle body
coordinates. The white dots help determine the x− y location of the particle and the
orientation angle, γ relative to a lab-fixed axis. The mobility direction is defined by
the vector ~Vo along one of the diagonals of the square.

2.1.1 Vibration

Particles gain activity by interaction with the vibrating aluminium substrate as

well as the acrylic upper plate. The cell oscillates sinusoidally in the vertical (y)

direction:

y(t) = A sin(ω0t+ θ) (2.1)

The displacement y(t) of cell is controlled by amplifying the AC signal from a func-

tion generator (Agilent 33250A) to drive a permanent magnet electrodynamic shaker

system (Ling Dynamic Systems V456 shaker and PA1000L amplifier). As in previous
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work from our lab[18], the amplitude and frequency of oscillation are controlled by the

amplitude Vin and frequency f → ω0 = 2πf of the AC signal from the function gen-

erator. As the gain on the power amplifier was not calibrated for intermediate values,

this was set to the maximum value, and the amplitude was controlled purely at the

function generator. The sinusoidal oscillation y(t) gives peak acceleration Γ = Aω2
0

in unit of acceleration of gravity g.

The frequency affects the time-step of particle dynamics. We find that velocity

and diffusion is proportional to vibration frequency[18]. Thus we report times in units

of the vibration period 1/f. In this dissertation, I typically used frequency f = 50HZ

and signal amplitude Vin = 100mV . The response of PA1000L amplifier is linear with

A = 1.071 × 10−6Vin/mV and the relative uncertainty is 4%[18]. These parameters

lead to an acceleration amplitude

Γ = Aω2
0 = 1.071× 10−4 × 4π2 × 2500 ≈ 10.57g (2.2)

All the experiments are implemented under these parameters, unless otherwise noted.

In order to mitigate the undesired effects of off-vertical or asymmetric vibrations,

a stiff linear air bearing (New Way Air Bearings S40-03050-025152) is used to rectify

the motion of the shaker, transmitting only the vertical component of vibration to

the substrate[18]. This setup is implemented by rigidly mounting the substrate to

the linear air bearing, which is coupled via a flexible rod to the shaker. In detail,

the particle dish is bolted directly to the upper end of the square rail of the bearing,

which glides vertically through the bearing carriage. Pressurized air (lab supply) is

filtered, dried, and regulated (SMC Pneumatics AWD30-N02DE-Z) and supplied to

the carriage at 410 kPa. This allows only vertical motion to be transmitted through

the bearing, while any transverse or rotational motion is dissipated through the flexing

of the rod.
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2.1.2 Vibration Testing

One big concern of the experiment is whether the cell oscillates as a rigid object.

In other words, we determine whether all points on the plane vibrate with the same

displacement amplitude and phase. In order to check that, I took a high speed video

of the side-view of the vibrating cell. I painted half of the bolts to white and mounted

on the circular cell. To determine the location of marked bolts from digital images,

I convolved the image with a Gaussian kernel[20] using the same method that I will

describe for particle detection Section 2.3. The kernel is similar to the Fig 2.3 but with

negative pixel value since we want to find white location on dark background. The

contrast of white painted bolts to the background enable us to identify the location

of bolts. I determined the motion of the bolts in the y-direction with time(Fig 2.2).

The curves are expected be to sinusoidal. I used the curvefit function from Scipy

modules to fit the curve to get the amplitude A, frequency ω0 and offset phase θ of

the bolts. The results are illustrated in Table 2.1.
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Figure 2.2: Displacement of 6 bolts in y-direction in 500 frames. I used the position
to fit the parameters: A, ω0, θ.
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Since distances between all bolts to camera are different, the amplitude A is

different. However, ω0 and θ have the same time-dependence indicates that the cell

plane vibrates in-phase as a rigid object.

1 2 3 4 5 6
A 2.79921 2.90071 3.16954 3.41863 3.75766 3.92718
ω0 79.99959 79.99909 79.99922 79.99905 79.99790 79.99952
θ -1.06309 -1.06183 -1.07385 -1.06673 -1.07697 -1.07511

Table 2.1: Fitting parameters of 6 bolts. Amplitude is different due to depth of field.
Frequency and offset phase are consist for all bolts.

2.2 Particles

I designed the particles within a CAD program called Solidworks and manufac-

tured them by 3D printing. The particles are designed to have preferred motion along

one of the diagonals, so they have a 14◦ wedge along that diagonal and rest on two

short round legs on the wedge sides.

For the project on collective motion of self-propelled particles in one-dimensional

ring (I will call them black large particles in the following sections) described in

Chapter 3, particles are printed from ABS thermosetting resin by uPrint SE Plus 3D

printer with a manufacturer-specified layer thickness of 0.254mm. The particle has

a square cross-section with side a = 7.62mm and maximum height of 5.4mm. We

choose black ABS material as it gives good contrast with white markers for detection.

It also has good resistance to stains brought by long term vibration. One big issue

with the ABS material is that the printing resolution constrains our ability to have

smaller particles. Based on the size of the particle, the maximum possible number

of particles could be placed in the cell is 559. This number limits the area fraction

choice for my second project on active phase diagrams, and therefore we developed

smaller particles as well.
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For phase diagram of granular self-propelled particles (white small particles) de-

scribed in Chapter 4, the particles are 3D printed on a EOS Formiga P110 printer

in white colored nylon-12 PA2200, with a square projection of side a= 5.08mm and

maximum height of 3.6mm (2/3 size of the black particle). The most significant ad-

vantage of this printer is its 0.1mm layer resolution that enables us to have smaller

particles. The maximum possible number in the cell with this particle size is 1256

(2.25 times more than the black larger ones). Since the marker size scales with par-

ticle size, smaller particles cause greater difficulty in detection. The other challenge

is that particles are white in color, which was the only option when I manufactured

them. The particles easily get stained as we keep repeating the experiments. The

stains leads to larger detection noise in locating particle position and orientation.

Therefore, we used two different kinds of detection method for black large particles

and white small particles respectively.

2.3 Particle Detection and Tracking

To analyze the dynamic behavior of particles, we are required to get not only the

position but also the orientation of particles. Since our polar particles are designed to

move along one diagonal, we need to track this direction. We painted high contrast

marks on the particles for detection. For large particles, I used Sakura 42180 Blister

Card Pentouch Metallic Extra Fine ink white marker. For small particles, I painted

with Uni-ball Signo Gel black ink Pen with width 0.38mm. We had one big central

marker to get the positions and three small makers to get the orientations. To ensure

the position of all markers is consistent, I designed four shallow circular holes on

top of the particles when I printed them. After particles are manufactured, I simply

located the holes and painted them with the appropriate marker pen.

As mentioned in the previous section, I used two different detection techniques

for particles, and these are described below.
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2.3.1 Mean Vectors Method

The first technique is identical to our previous work [18]. The idea is to find the

positions of both the central marker and the three corner markers on each particle

by standard methods which I describe in the next paragraph. We then calculated

vectors from the central marker to each of the corner markers. We used the mean of

these three vectors to indicate the orientation of that particle.

In order to determine positions of the markers, I constructed a Gaussian kernel to

convolve with the output digital image of recorded videos[20]. The two-dimensional

kernel is symmetric in all directions as shown in Fig 2.3. The integral over the kernel

equals to zero. Therefore the convolution with background pixels of uniform intensity

returns zero. If there exists contrast in pixel values due to a feature in the image,

and the size of the feature is comparable to the Gaussian kernel, the convolution

returns a local patch with a non-zero value. By filtering the eccentricity and the area

of the nonzero region, we get the position of markers by calculating the center of

mass(Fig 2.4(c) and (d)). We could detect both the central and corner markers by

using Gaussian kernels of different width, to match the sizes of these two different

features.

Figure 2.3: Gaussian kernel that is designed to convolve with black marker and white
particle. The kernel is symmetric in all direction and the integral over the kernel
equals to zero. The white pixel value is negative and close to -1. The highest pixel
value or darkest is around 1.3
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(a) (b)

(c) (d)

Figure 2.4: (a) An example frame consists of 950 particles in gray scale. (b) The
output image after applying the Gaussian kernel(Fig 2.3) (c) I picked a threshold
of normalized pixel intensity κ = 0.52, then I found all pixels in (b) that are larger
in intensity than κ and set them to 1; other pixels were set to 0. (d) I checked all
connected single-valued regions in (c), if the area of connected region is larger than
40, smaller than 180 and eccentricity is smaller than 0.9, I identified the center of
mass of connected region as the position of central marker.
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To detect the orientation of particle, we construct k-d tree[21] finding all corner

markers within a certain radius (in pixel units) given the location of a central marker.

We feed positions of both central and corner markers to k-dimensional tree package

in scipy[22]. The k-d tree is a space-partitioning binary tree in which every leaf

node is a K-dimensional point, in our case k equals to two. Every non-leaf node

can be thought of as the splitting hyperplane that divides the space into two parts.

Points to the left of this hyperplane are represented by the left subtree of that node

and points to the right of the hyperplane are represented by the right subtree. The

hyperplane direction is chosen in order of each k dimensions alternatively. In our

case, we split the space based on the position of x-axis first then y-axis and then go

back to x-axis. K-d tree is useful for its efficiency in nearest neighbor searches and

range searches with time complexity O(log(n)) We make a range query on the tree

based on position of central marker and pixel radius to locate the corner markers. We

also add a minimum distance requirement. If the number of corners found by this

algorithm does not equal to three, we drop the result of the central position, that is,

we discard this as an identified particle.

This method works robustly on the large black particles. Both central and corner

markers could be correctly detected with error rate . 0.1%. If we miss position or

orientation of a single particle in one frame, we can easily solve it interpolation of

data from previous and next frame where the particle is detected.

However, this mean vector method returns a lot of errors when working on the

small white particles due to their small size and their white color which degrades with

time.Some drawbacks of the method are

1. The markers scale with the size of particles. Although the central markers

can be detected, some of the corner markers are too small to be detected. Since

markers are painted manually, it is hard to control the size of marker. Therefore,

I cannot easily set a simple rule of area and eccentricity to filter out erroneous
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Figure 2.5: Small markers caused a lot trouble in detection when density is high. The
stains on particles would be falsely identified as corner markers. If the kernel width
is inappropriate, corner markers would merge with the background so that they were
not detected.

detections and identify the corner marker correctly. As showed in Fig 2.5, the

lower bound of area is set to 5 pixels to include as many as corners as possible.

The side-effect is that many smudges are identified as corners as well.

2. Particle are white. As I keep doing the experiment, they become dirtier and

stained. Some smudges are identified as corner markers. This introduces noise

in the identification and caused trouble when trying to link corners to central

marker.

3. At high area fraction φ, particles are closed packed with their neighbors(Fig 2.6).

Some corners from different particles are very close to each other, if the width
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of Gaussian kernel is set inappropriately, the convolved result would identify

them as one big dot.

Figure 2.5 shows the errors. To summarize, with manually chosen area and eccen-

tricity, we cannot effectively distinguish error and real markers when particle is small

and white. The high error number also means the K-DTree is large so that the time

complexity of the query function to group particles greatly increases.

2.3.2 Convolutional Neural Networks

In order to overcome the drawbacks of the direct detection method, I developed

a hybrid method for detection: Gaussian kernel for positions, and deep learning

networks for orientations.

I used Convolution Neural Networks(CNN) for their power in computer vision

tasks[23]. For my purposes, I decided that accuracy of orientation of particles with 1◦

resolution is acceptable. Therefore we defined orientation detection as a classification

problem instead of a regression problem. Given a particle, the network should return

the orientation in unit of one degree. There are total 360 different classes(one category

corresponds to one degree). The details of hybrid methods are listed as follow:

1. Used a Gaussian kernel to find positions of central marker.

2. Cropped a 32× 32 pixel sized image that is centered at result of previous step.

3. Feed it into a one-layer CNN. This layer identifies whether this image contains

type of particle. If it is not a particle, then the image is dropped from con-

siderations. Otherwise, it is used as an input to the orientation classification

networks. We find that the network has 100% prediction accuracy in this step.

4. Feed the correct images of particles to a three-layer CNN. The details of the net-

works is shown in Table 2.2. To understand the functionality of each layer(batch
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normalization and dropout), please refer to Neural Network lecture note[24].

The final output is the predicted orientation.

Layer Structure

CNN {c:64, k:(3,3), s:(1,1), p:(1,1)}, BatchNormalization, Dropout, ReLU
CNN {c:64, k:(3,3), s:(1,1), p:(1,1)}, BatchNormalization, Dropout, ReLU

CNN {c:256, k:(3,3), s:(1,1), p:(1,1)}, BatchNormalization, Dropout, ReLU, MaxPooling

Table 2.2: Structure of three layer Convolutional Neural Networks. In each CNN, ’c’
stands for channel size, ’k’ stands for kernel size, ’s’ stands for stride and ’p’ stands
for padding size.

I wrote a script to build the training data of the CNN. First, I cropped 32 × 32

pixel size images based on all the detected central marker position (Fig 2.6) and then

transformed them to 128 × 128 pixel so that I could achieve a higher orientation

accuracy. Second, I assigned each image to either be a particle or an error. If it is

a particle, I used a mouse to manually click two points on the image to calculate

orientation. Finally, I rotated the cropped images and changed the corresponding

orientation γ to γ + 90◦, γ + 180◦ and γ + 270◦. Therefore I could quadruple the

number of original training images. In this project, I used around 12000 training

images in total.

In this method, we don’t need to detect positions of corner markers. Instead, they

are used as features for the network to find the orientation. Running the network

on GPU Nvidia RTX 2080, the time efficiency of detection of 10000 frames of 1000

particles is 8 times faster than the previous method.

One example of our detection results is shown in Fig 2.7. If the predicted ori-

entation is within the range of ±2◦ of the real one γ, then we treat is as a correct

prediction. The average accuracy is higher than 99%. The wrong prediction hap-

pened to predict orientation as γ + 90◦, γ − 90◦, γ + 180◦. Based on this interesting
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(a) (b) (c)

Figure 2.6: Cropped image centered at position detected by the convolution kernel.
(a) Images of an actual particle. The orientation of the mobility axis of this particle
is 348◦. (b) and (c) are false positive identifications. The reason for the error in (b) is
that particles are so tightly packed that the kernel width is larger than the distance
between corners belong to different particles. The reason for the error in (c) is that
the corner marker merges with the background so that it is mistakenly treated as an
central marker.

observation, the results can be easily fixed at the tracking step that is described in

the next section.

2.3.3 Particle Tracking

In one vibration period, the displacement of particle(normalized by particle size

a) is limited(≤ 0.2a). For each particle, we queried a K-DTree constructed by all

particles in next frame, if there is only one possible position that is located within

0.2a, then this would be the position of particle in next frame. With this linking

method, we can quickly track the path of all particles due to the fact that we can

get particle position in all frames with 100% accuracy. With these datasets, we could

further analyze the dynamics of particles.

We could also effectively fix errors caused by the CNN method. If we plot the

orientation of particle as a function of time, the curve looks like blue dots in Fig 2.8.

In order to fix the errors, I first found the outliers . Then I check its neighbors value

to figure out the offset value I should fix.
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Figure 2.7: Example detection of Convolutional Neural Network method. All particles
are correctly identified. The red arrows indicate orientation of each particle.

2.4 Particle Dynamics

From numerical derivatives of the observed position and orientation of parti-

cles(explained in Section 2.4.1), we calculate velocities vl in the longitudinal direction

(along the propulsion axis), vτ , in the transverse direction along the other diago-

nal, and the rotational velocity vω about the body axis. Further, we can calculate

persistence length lp, a measurement of activity of particles in our research.
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Figure 2.8: Example of orientation of particle as a function of time. y-axis is orien-
tation in units of radians. x-axis represents time in units of video frames. The blue
dots are results of predicted orientation. The orange dots are orientations after fixing
the errors, as discussed in the text.

2.4.1 Dynamic calculation

In order to get velocities, we calculate the numerical time derivatives of observed

quantities Q: positions or orientations. We get Q from a high-resolution video, or

thousands of digital images. This indicates all Q are discrete. To smooth the result,

we convolve Q with Gaussian kernel g(t) = 1√
2πσ

e−t
2/2σ2

.

d

dt
(Q ∗ g) =

dQ

dt
∗ g = Q ∗ dg

dt
(2.3)

This equation shows that smoothed time derivative of Q with kernel g equals to

smoothing Q with time derivative of kernel g. This greatly simplified the complexity

since the time derivative of dg/dt is straightforward and we can easily implement the

convolution.

21



v¿
vω

vl

Figure 2.9: Definitions of velocity components: Longitudinal velocity vl, transverse
velocity vτ and rotational velocity vω

To calculate velocities of particle along certain direction, we first get time deriva-

tive of position along x and y direction in unit of pixel. Then we project ẋ, ẏ to our

desired direction β

vβ = ẋ sin(β) + ẏ (2.4)

2.4.2 Persistence Length

In experimental systems as well as in simulations, activity is often quantified by

the nondimensional Péclet number, defined as PeT = voa/DT or as PeR = vo/(a.DR)

where v0 is a characteristic velocity along a body-fixed axis, a is the size of the active

particle, and DR, DT are rotational and translational diffusion coefficients. In systems

where the diffusion constants DR and DT stem from thermal noise, PeR and PeT are

equivalent. However, in a granular system, the noise source is intrinsically nonthermal,

and DR and DT are, in general, unrelated to each other and can vary independently.

For the systems we discuss here, the latter definition, i.e. lP = PeR = vo/(a.DR) is

more relevant[19]. The acronym for Péclet number also fortuitously stands for the

persistence length, lP , which represents the characteristic distance travelled along
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a preferred direction before the body-fixed axis changes orientation, normalized by

particle size a. We use lP as a measure of single-particle polar activity.

We can get diffusion constant from the velocities due to the fact that they are

equivalent to rotational and translational displacements of particles in units of par-

ticle size in one vibration period. From the velocity distribution, we extract the

three parameters that characterize the dynamics in the Active Brownian Particle

model [25, 26, 19]. The mean value of displacement along the diagonal propulsion

axis, 〈vl〉, is non-zero and gives the propulsion speed, vo. The orientation displace-

ments vω and translation in the transverse direction, vτ , are zero-centered and are

normally-distributed. The variances of the translational and rotational displacement

histograms yield the diffusion constants, DT and DR, respectively.

In our experiment, we can vary persistence length lp effectively by changing the

ratio between particle height to gap height of the cell λ = hp/h. Specifically, DR

increases with λ. We will explore the details of each parameter in the following

chapters.

2.5 Dilute Behavior

In this section, we study behavior of dilute particles when lp = 2.29 and N = 12

or φ = 0.01 in two different region: dynamics in the bulk of system and diffusion near

the boundary.

2.5.1 Dynamics In The Bulk

To get sing-particle dynamics in the bulk, we distribute a small number of particles

randomly in the bulk of the system with random orientation(Fig 2.10). We exclude

data when particles are close to the boundary to remove the interaction between walls

and particles. When distance between center of particle to the wall is smaller than

specific threshold 1.25a(particle size), the corresponding data are dropped.
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Figure 2.10: Snapshot of initial configuration of dilute particles when N = 12 and
φ = 0.01. Dynamics of single-particle motion are captured from video at 250 frames
per sec (fps).

We compare our results to the Active Brownian Particle (ABP) model[27]. In the

simplest version of ABP model, the center of mass velocity of particle is composed

of two parts, a constant velocity v0 along certain body-fixed direction ~n0, and a

translational noise ~η(t):

ṙ(t) = v0 ~n0 + ~η(t) (2.5)

The rotational velocity of ~n0 is determined by a noise term ζ(t):

θ̇(t) = ζ(t) (2.6)
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Within the ABP model, translational and rotational noise are normal distributed,

zero-centered and with variance 2DT and 2DR. There is no spatial or temporal

correlation in the noise terms. The short-term dynamics are fully captured by v0, DR

and DT . As discussed earlier, these are not necessarily true in a system, such as ours,

with nonequilibrium noise sources. Thus, these assumptions must be tested within

experiment, as we have previously done in our research group[19].
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Figure 2.11: Single particle dynamics captured by imaging particles at low density,
φ = 0.01. Histograms of (a) orientational velocity vω , and (b) translational veloc-
ity, vl, along the mobility direction, and vτ , along the transverse direction. vω is
computed from ∆γ.f , the change in orientation angle in one vibration period, while
the translational velocities are computed from the displacement components ∆d in
the two directions, normalized to the square side a.The solid vertical lines are the
corresponding mean values, showing that vω and vτ have zero-centred distributions
while vl has a positive mean value vo.

Histograms of vl, vτ and vω are shown in Fig 2.11. vω and vτ are zero-centered

Gaussian distributions which match the basic ABP model. v0 has a clear deviation

from 0 which indicate the preferential velocity along the diagonal direction. The

velocities are equivalent to rotational and translational displacements of particles in

units of particle size in one vibration period. From these distributions, we extract

the three parameters v0 = 0.063, DT = 0.005 and DR = 0.283.

25



2.6 Controlling Activity

In this experiment, we are able to vary lp most conveniently by tuning the vertical

gap in the cell which affects DR strongly, and vo more weakly(Table 2.3). As we will

show, with high enough DR, we can effectively solve the problem of irreversible trap-

ping of particles at the boundary that is often seen in similar experimental systems.

Table 2.3: Particles dynamic details of different experimental environments

hp h Height Ratio λ = hp/h v0(a/s) DR(rad/s) lp

3.725 5.143 0.724 0.114 0.184 0.75
3.725 5.00 0.782 0.124 0.129 1.25
3.725 4.318 0.863 0.066 0.041 2.29
5.588 6.35 0.88 0.134 0.026 5.70

To change the height we use three annular spacers with different heights (1.5875mm,

3.175mm and 6.35mm) at the boundary that confines the particles. We also have

two washers (0.381mm and 0.762mm) to adjust cell gap h. With different com-

binations, we achieve persistence length lp and height relation in Table 2.3. We

report the dynamics and ordering in the system at four different values of activity:

lp = 0.75, 1.25, 2.29, 5.70, and at several values of area fraction φ.
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CHAPTER 3

COLLECTIVE GEAR-LIKE MOTION IN AN ACTIVE
GRANULAR SYSTEM

In this chapter, we report a system of vibrated self-propelled granular particles on

a horizontal plate within a circular boundary. This is a simple model system in which

to consider how transport of active particles is affected by interactions. Because the

system is 1-dimensional, it forms an interesting parallel to traffic models. As with

real traffic, nontrivial correlations develop in velocity fluctuations, even though the

interactions here are hard-core, nearest neighbor interactions, and do not include the

memory or long-range signalling that is built into traffic models.

The square particles in our experiment have a preferential velocity along the di-

agonal, so that when they hit a boundary in any confining geometry they align along

the boundary but also ”walk” along the boundary. In the experiments we show in

this chapter, particles initially distributed in the entire 2D space end up migrating to

a boundary, form part of a ring or a whole ring along the boundary, and perform a

stable 1D rotational gear-like motion with a direction chosen by their net polarization.

For a fully polarized single ring we find that the collective velocity surpasses the free

single-particle velocity. This collective velocity increases as the density of particles in

the ring increases, which is counterintuitive for a normal traffic problem. The spa-

tial correlations of particle velocity decays exponentially . The temporal correlation

shows that velocity fluctuations are anticorrelated in time.
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3.1 Ring Motion

An example of the kind of collective motion observed in this system is shown in

the figure below, where we start at an area fraction φ = 56%. The initial position

and orientation of particles are randomly distributed(Fig.3.1a). After starting the

shaker, particles quickly migrate to the boundary due to their high persistence length

lp and form rings of particles(Fig.3.1b) along the wall. If the polarity of motion

was perpendicular to the boundary, the particle would be stuck at the wall and

immobile. However, the mobility along the diagonal brings interesting behavior to

the wall particles. Particles try to reorganize themselves until one edge component

is along the r direction(Fig 2.1). The component of motion along the wall for a

given particle is either clockwise or counterclockwise. A ring of particles has a global

rotation along the wall and the overall direction of the motion(clockwise or counter-

clockwise) depending on the net polarization of all the particles within the ring. The

directions of global rotation of each of the rings is independently determined by the

net polarization of each individual ring.
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(a) (b)

Figure 3.1: (a) Random initial configuration when area fraction φ = 0.56. Particles
are initially distributed uniformly and oriented randomly. (b) All particles migrate
to the boundary and form stable rings of particles. Each ring moves either clockwise
or counter-clockwise depending on the polarization, that is, the net orientation of all
the particles within a ring.

We then reduce the initial number of particles in the system to be just enough

to form a single ring (75 particles in this case). Surprisingly, the ring that forms

at the boundary undergoes stable motion along the wall. Particles rarely leave this

single layer of particle. However, once the ring breaks due to an escaped particle, it

is unlikely for it to find its way back to the vacancy in the ring.

3.2 One Dimensional Fully Polarized Ring

To explore the dynamics of the ring with a simpler initial condition than the one

formed from random initial positions and orientations. Here we start with a fully
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polarized configuration as shown in Fig3.2a to study the relation between the ring

velocity and number of particles.

Our first observation is that the average ring velocity vθ was larger than that of

a single particle
√

2
2
v0. This counter-intuitive observation led us to further study the

effects of particle number in the ring. We use vacancy fraction to quantify the empty

space in the ring, which is defined as φV = (Nmax − N)/Nmax. N is the number of

particle and Nmax is maximum number of particle that can be accommodated in the

ring(Nmax = 75 in our case).

(a)

(b)

Figure 3.2: (a) Snapshot of a fully polarized ring composed of maximum possible
number of particles Nmax = 75 that can fit along the boundary. This ring rotates
clockwise and the motion is stable. Rotation velocity vθ is larger than single particle√

2
2
v0. (b) Snapshot of the ring when φV = 0.2 and number of particle is 60. We add

a inner wall to make the ring stable when φV is large. We start with the particles
equally spaced initially but in steady state, the particles finally form one cluster. We
further explore how dynamics of the ring change with φV .
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We create a channel by an inner wall(Fig 3.2b) to prevent particles to escape the

ring when φV is high. The ring is relatively stable, but the retaining wall allows us

to study the ring indefinitely. The inner wall is 3D-printed with the same material as

particle and fixed to the base with double-stick adhesive. The distance between inner

wall and boundary, or channel width is set to d = 1.3a <
√

2a to prevent the particle

rotating in plane and changing its polarization. We also 3D-printed three supports

to stabilize the inner wall and to make sure d is constant in all places.

We initially distribute particles uniformly with equal spacing in the one-dimensional

channel. Though the particles are designed to be identical, there are small, random

variations on the particles that cause their mobilities to be slightly different. When

the particles are vibrated, this velocity difference makes particles form clusters. Faster

particles can catch up to particles in front of them, while the slower particle obstruct

those behind it. While the kinetics of cluster formation is an interesting process, in

this thesis our focus is on the steady state, so that we take data only after particles

have largely clustered, as shown in Fig 3.2b. Currently, my colleague Jacob McConley

is working on the simulation of formation of clustering of one-dimensional points.

3.2.1 Velocity

Before changing φV We first investigate the dynamics of a single ring of particles.

The activity of every particle can be decomposed in two components: one along ~r

and one along ~θ (Fig 2.1). We characterize how particles are aligned the wall by a

parameter

ε =
~r × ~vl

sin(π/2)|r||vl|
. (3.1)

When ε = 1, the particle is perfectly aligned along the boundary. We take N = 75 for

example. The distribution of ε is plotted in Fig 3.3(a). Individual particle velocity

vθ is normally distributed with nonzero mean as shown in Fig 3.3(b). The radial
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velocity vr has zero mean but is suppressed by the channel Fig 3.3(b). As expected,

rotational velocity vω is normally distributed.

ε(a)

(c)

(b)

(d)

Figure 3.3: Velocity distributions of particles confined to a ring.

Our basic result is that the azimuthal velocity, vθ, of the particles decreases as

vacancy fraction φV increases as shown in Fig 3.4a. vθ is normalized to velocity of

a single particle (vθ)single moving in the channel. We first pack in as many particles

as we can, and then perform experiments with varying N , first by removing parti-

cles out of the channel one by one until φV = 0.07 or N = 70 and beyond that in

larger increments. A fully filled ring has the largest velocity and the smallest fluctua-

tion(Fig 3.4b) in velocity. As the vacancy fraction increases, the normalized velocity

drops sharply, however the fluctuation increases quickly. At larger vacancy fraction,

the normalized velocity and standard deviation change more slowly as we approach
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the dilute limit. This counter-intuitive observation shows that contrary to traditional

traffic problem, the particles move faster as the channel get more crowded.

0.0 0.2 0.4 0.6 0.8
Vacancy

1.05

1.10

1.15

1.20

1.25

1.30

V
/(V

) si
ng

le

V /(V )single as a function of vacancy
6
12
24
48
60
65

70
71
72
73
74
75

(a)

0.0 0.2 0.4 0.6 0.8

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060
Std of V  as a function of vacancy

6
12
24
48
60
65

70
71
72
73
74
75

(b)

Figure 3.4: (a) Normalized velocity decreases with vacancy fraction φV . (b) Standard
deviation of vθ increases with φV .

3.2.2 Correlation Function

Our results indicate that our one-dimensional layer of particles show collective

dynamics. We further explore the mechanism of the collective dynamics through the
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correlation function. With the time-dependent data in the steady state, we can get

both the spatial and temporal correlation function of particle velocities.

The equal-time spatial correlation function of vθ is defined as:

f(j) =
〈〈(vi(t)− 〈vi(t)〉)(vi+j(t)− 〈vi+j(t)〉)〉i〉t
〈〈
√
|vi(t)− 〈vi(t)〉||vi+j(t)− 〈vi+j(t)〉|〉i〉t

(3.2)

where i and j are particle indexes. The denominator normalizes f(j) to 1. In order

to get correlation at separation j, we average over N/2 particles for a maximum j of

N/2 and then average over time. The spatial correlation f(j) is shown in Fig 3.5 at

a range of particle numbers.
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Figure 3.5: Spatial correlation function of particle velocities at different values of
particle number, N, where maximum filling corresponds to N=75.

At j = 0, self-correlation equals to 1. f(j) decays to zero and then converges to

a constant negative value. The result shows that the correlations increase in spatial
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range as more particles are added in the channel. The range of correlation is quantified

by correlation length lc. We choose two different definitions to quantify lc. The first

definition is based on the exponential decay ratio of correlation function f(j). We fit

the curves to function

f(j) = 1− c+ c exp(−j/lc) (3.3)

where it starts from 1 and decay to 1 − c exponentially. Here lc is the correlation

length. We fit lc for each density and plot them in Fig 3.6
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Figure 3.6: Correlation length lc defined by exponential fit to two-point spatial ve-
locity correlation function.

The second definition of lc is the length at which f(j) equals to zero. lc can be

extracted by interpolating each correlation curve. We plot the results in Fig 3.7.

The correlation length lc increases sharply towards maximum density. At a vacancy

concentration φC = 0, lc ≈ 11, which corresponds to nearly 1/3 of the particles. These

two definitions qualitatively agree with each other. We also tested these results with a
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smaller system size where Nmax = 29 as shown in Fig 3.7.The result shows nontrivial

dependence on system size.

Figure 3.7: Correlation length defined by the distance at which the correlation drops
to zero, i.e. fj = 0. The figure shows two fully-filled rings of different size.

To understand whether these correlated spatial fluctuations are associated with

slow dynamics, we also calculate the temporal correlation function g(τ) defined as:

g(τ) =
〈〈(vi(t)− 〈vi(t)〉)(vi(t+ τ)− 〈vi(t+ τ)〉)〉i〉t
〈〈
√
|vi(t)− 〈vi(t)〉||vi(t+ τ)− 〈vi(t+ τ)〉|〉i〉t

(3.4)

where time is in units of the inverse vibration frequency. The correlation at fixed time

gap τ is averaged over all particle index i and then average over staring time t ranges

from 0 to tmax − τ . The curves(Fig 3.8) shows that the correlation is rapidly lost at

the time scale corresponding to one shake. There is dip at two shakes corresponding

to anti-correlated velocities. Then particles quickly converges to zero which indicates
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that at all vacancy densities the particles lose their velocity memory within a short

time scale.
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Figure 3.8: Average time correlation of velocity of single particle. The autocorrelation
is shown for different levels of filling in a ring with maximum N=75.

We plot a velocity color-map at φV = 0 or Nmax = 75 to further investigate the

spatial and temporal correlation (Fig 3.9). X-axis is particle index and Y-axis is time

that goes to 200 shakes. Colors indicate the speed of particle as shown in legend.

We also mark the color of single particle velocity
√

2
2
v0 when it ’walk’ along the wall.

Horizontal long lines with same color occupies around quarter of index axis shows

the correlation length lc ≈ 10. The color map along the time axis (vertical direction)

switches quickly proves the anti-correlation and absence of long-term memory along

the time axis.
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Figure 3.9: Velocity colormap when N = Nmax = 75. The value of velocity is
represented by the colorbar on the right. x-axis is particle index ranges from 0 to 75.
y-axis is time in units of shaking frequency.
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We have further results on the effects of varying vibration parameters such as

frequency and amplitude, as well as results on the effect of two co-rotating or counter-

rotating rings of particles which we will report in the thesis.

To summarize, the system develops long spatial correlations but not a long time

scale. This is distinct from most traffic problems, and in general from other problems

where slow kinetics develop due to interactions and disorder. The picture we have is

of fluctuations arising from local noise in the shaking direction that get transmitted

by long chains of collisions more or less within one collision period.

In addition, this is an illustrative toy example of activity and boundary-interactions

being used to generate long-range transport from random initial conditions. One can

easily imagine generalizations of this example where objects placed in a mechanically

noisy environment are able to rectify this noise to move to a boundary or a guide

structure, and spontaneously organize to move coherently along the boundary. One

of the lessons learned from our example is that such a process might scale favorably.

That is, a larger number of particles may indeed work more efficiently together.
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CHAPTER 4

PHASE DIAGRAM OF SELF-PROPELLED SQUARES

In this chapter, we experimentally explore the 2-dimensional phase diagram of

self-propelled hard squares by varying the activity of particles, lP , and the occupied

area fraction, φ, of the system. There is no other experimental phase diagram we

are aware of. Therefore this is the first experiment to explore this field. The other

significant feature of our work is that most work in active matter studies mobility

induced phase separation[4] where clumping or condensation of particles occurs in

regions of phase space where equilibrium particles do not condense. However, our

work is focused on studying the effect of activity in regions of phase space where

there is condensed matter even in equilibrium.

We first introduce one of the biggest challenges in experimental active matter

system and how we solve it successfully by changing the dynamic behavior of particles.

Then we report how we vary the persistence length lp of our particles. At fixed lp, we

explore how the phase behavior of system changes with area fraction φ and how we

characterize different phases.

By controlling the rotational noise of particles, we first solve a traditional hur-

dle in experimental probes of active phase diagrams, where particles that escape to

boundaries are not able to return to the bulk. We find qualitatively new phenomena

at finite lP : a coexistence regime opens up between ordered state and fluid state;

the phase boundaries of the coexistence regime evolve smoothly as a function of ac-

tivity. Finally, at high enough lP an ordered state appears at all area fractions. To

supplement the experimental observations, and in particular, to assess the role of the
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boundaries in the experimental geometry, we also perform simulations in the same

parameter regime. The simulations agree qualitatively with the experiments, and

further reveal new features of the ordered state.

4.1 Boundary Clumping

In experimental active matter research, one of the biggest challenge is boundary

clumping. It is difficult to form a homogeneous long-term steady state with polar

activity as polar particles approach the boundary of the system, and then get irre-

versibly trapped there. One example is the collective motion described in previous

chapter where particles walking along the cell boundary. Similar observations have

been found in other studies.

Kudrolli’s work [14] found self-propelled polar rods with non-symmetrical mass

distribution migrate and aggregate at the boundary of container. They found ge-

ometry of particles plays an important role. By changing the aspect ratio, system

have a uniform distribution. My previous colleague Lee mainly focused on the noise

and diffusion of dilute self-propelled particles[19] and melting process of well-ordered

crystallite of granular particles[18]. The boundary limits the further exploration of

steady state phase. Deblais [28] found inertial self-propelled robots have boundary

clustering.

Researchers try to solve the boundary clumping by two strategies. The first is

modifying the geometry of particles such aspect-ratio[29] and the other is by modify-

ing the geometry of the boundary, Experiments [30, 31, 2, 32] have used flower-shaped

walls[2] as a mechanism to inject wall-trapped particles back into the flow. When par-

ticles crawled along a ’petal’ (Fig4.1), they are likely to be injected in the bulk when

reaching the cusp point.

The flower-shaped walls successfully bring particles into the bulk. However, the

cusp cause discontinuity in the boundary shape with possibly unknown effects on the
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spatial heterogeneity of the system. Therefore, we are seeking another possible ways

to avoid this kind of discontinuity. We achieve this effect by tuning the particle prop-

erties rather than the boundary conditions: in particular, we can tune the rotational

diffusion constant so that DR is large enough for particles arriving at the wall to have

an appreciable probability of rotating and re-entering the bulk. (Another difference

in our system is that the mobility axis of squares trapped at the boundary is not

normal to the wall, as a result, the component of the mobility aligned with the wall

enables particles to drift, rather than diffuse, along the wall.)

Figure 4.1: Flower-shaped boundary introduced in group of Dauchot[2]. The ’petals’
enable particles to movebe injected back into the bulk of system.

4.2 Phases Of Isotropic Squares

Before we dive into how activity alter the order of particles, I present a brief review

of work on hard square isotropic particles. There is a limited number of studies on

the phases of squares and most of them are simulations.

Frenkel and Wojciechowski implemented Monte Carlo simulation on equilibrium

hard squares suggesting a four fold tetratic orientational as well as translational

order[33]. The orientational order shows a longer range than translational order.
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Another simulation by Escobedo et al. indicate the importance of details of the par-

ticle shape[34]. They found with that squares with rounded-enough corners form

hexagonal bond order, however sharper corners shows a tetratic order phase.

Experiments on square-shaped colloids shows isotropic liquid at low area fraction[9].

At higher φ the system assumes a ”hexagonal rotator” phase where particles form

hexagonal orientational bond order but no molecular order. This is caused by the

rounded corners suggested by Escobedo et al. Beyond a threshold of φ, system forms

a square lattice. This sensitivity to shape encourages us to use square shapes in our

studies.

Experiments were performed to study phases of vibrated hard squares by my

colleague Lee[18, 3]. The squares had cylindrical knobs on their top surface, which

led to isotropic noise from collisions with the confining surface. The experiment shows

a progression from an isotropic disordered fluid at low area fraction, to a fluid with

orientational order, to a solid state with both translational and orientational order.

At low φ, particles are positionally and orientationally isotropic. As φ increased,

quasi-long-range four-fold tetratic orientational order and short-range translational

order is observed in the fluid when 0.72 . φ . 0.78. When φ & 0.77, system turns to

a quasi-long-range translational ordered solid state. This is consistent with the hard

square phase diagram observed in the Monte Carlo simulations of Frenkel. NM]

4.3 Phase of Self-propelled Squares

In this section, we explore the phases of self-propelled particles as increasing φ.

System develops from isotropic fluid to phase coexistence between fluid and ordered

state and finally to a fully ordered state. The phase coexistence region is absent in

the passive hard squares, which is caused by introducing non-equilibrium activity.
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4.3.1 Isotropic Fluid

At low area fraction φ, particles form isotropic fluid due to high rotational diffusion

DR. One example of lp is shown in Fig 4.2a . We calculated the radial distribution

of center of particles in Fig 4.2b. Particles area fraction are uniform in all radius

range which is a strong proof that high DR successfully solve the boundary clumping

problem.

(a) (b)

Figure 4.2: (a) Snapshot of isotropic fluid when lp = 2.29 and N = 438 or φ = 0.35.
(b) Particles spatial distribution along the radial direction. X-axis is the distance
from center position. Y-axis is area fraction that particles fall in the radius range
where rin = (x − 1)a, rout = xa. Area fraction is averaged over time and normalized
by the area of each channel π(r2

out − r2
in). The result shows that the fluid state is

spatially homogeneous in the system.

4.3.2 Phase Coexistence

Beyond a threshold value of φ, some particles assemble into a high density region,

usually nucleated at the boundary of the cell, while the rest of particles remain uni-

formly distributed in central area as shown in Fig 4.3. One of the most significant

consequences of finite activity is the development of such a coexistence regime, where
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none existed in the equilibrium phase diagram, as also observed in simulations of soft

squares [35]. As the average area fraction, φ is increased, there are fewer and fewer

particles in the low-density ’fluid’ phase, until finally, the system is entirely in the

ordered phase.

Figure 4.3: Phase coexistence between high-density ordered phase near the wall and
isotropic liquid in the bulk when N = 900, φ = 0.72. Red lines marks the Voronoi
cell of each particle.

For the coexistence regime, we show in the lower panel of Fig 4.4 four measures

of the contrast between the fluid phase and the ordered phase, via the rotational ve-

locity, the radial velocity ,the local density, and the orientational molecular ordering,

respectively. In Fig 4.4(a), we contrast the lower rotational mobility of particles in

the ordered phase compared to those in fluid phase. We characterize this mobility
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by plotting vΩ = vω − vθ/R where vω is the short-time rotational velocity described

earlier, and the latter term removes the azimuthal linear velocity associated with slow

global rotation of the ordered phase along the boundary wall (θ direction is defined

in Fig 2.1). Fig 4.4(a) indicates that rotation in the high density region freezes, while

particles in the fluid phase rotate freely. Fig 4.4(b) suggests that ordered particles not

only has low rotational mobility but also low translational mobility. System is sym-

metric to the center of cell so that the average radial velocity of all particles is close

to zero. The third figure, Fig 4.4(c), shows a measure of local density, with a Voronoi

tessellation overlaid on the particles, colour-coded by the magnitude of the Voronoi

cell area, normalized by the cell area of a close-packed set of particles. Here, the high-

density region has a normalized local area fraction close to 1, and the other region

remains homogeneous with a fraction close to 0.5. Finally, in Fig 4.4(d), we plot the

local tetratic orientational order of the particles defined through Φ4 (Fig 4.4(d)),

Φ4
k = | < ei4γj >j, j ∈ Vk ∪ k| (4.1)

where k is a particle index, and Vk is the set of its Voronoi neighbours. Once again,

there is a large contrast in tetratic order, Φ4, between the particles in the fluid and

the ordered phases.
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(a) Rotational Velocity |vΩ| (b) Radial Velocity vr

(c) Normalized Voronoi Density (d) Local Molecular Order Φ4
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Figure 4.4: (a)-(d) Absolute value of rotational velocity, radial velocity, normalized
Voronoi density and local tetratic orientational order of the configuration in Fig 4.3

4.3.3 Detection of Phase of Particles

From these data, we infer that local density, local tetratic orientational order, and

single-particle mobility all serve to distinguish two phases. In what follows, we use

single-particle mobility as a convenient criterion to identify particles that are fluid,

ordered, or at the interface.

To get information on short-time dynamics of particles, we record the motion of

particles at 125frames/s in bursts of 20 vibration periods. To get good statistical
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averages of the steady-state behaviour, we take 200 statistically independent config-

urations of the system, by spacing these bursts of data with a gap of 250 vibration

periods between each configuration.

We check the position and orientation series of each particle. Due to the fact that

position of each particle is 100% correctly detected, if orientation of a single particle

is missing in all the 20 vibration periods that particle would be discarded. In the

next step, we calculate the mean value of 〈vr〉t and absolute value of 〈|vΩ|〉t within

20 vibration periods in each configuration. To be in ordered states, particles need to

satisfy the following criteria:

1. There are at least two neighbor particles within 1.5a radius.

2. 〈|vΩ|〉t must be smaller than a threshold where we choose 0.12rad/shake

3. 〈vr〉t < 1.5std(〈vr〉t). System is symmetric so that average over all particles

indicate
∑N

i=1(〈vr〉t)i ≈ 0.

4. Three of neighbor particles need to satisfy previous requirement.

The dynamical and structural requirements are sometimes too strict so that we

manually introduce false negative examples. In order to fix the errors, we loop over

non-ordered particles. If more than 5/6 nearest neighbor particle are ordered, we set

it to ordered particles. We run this loop twice to eliminate consecutive false negative

examples. The detected ordered particles are shown in .

We also identify interfacial particles between ordered and fluid particles. The

interfacial particles are identified by studying neighbor particles: if more than a

quarter the neighbours of a fluid particle are ordered particles, then it is relabelled

as an interfacial particle, and if an ordered particle has more than 2 fluid neighbors,

it is labelled as an interfacial particle. The detected phases are plotted in Fig 4.5.

Green particles are in fluid state, brown ones are in solid state and yellow ones are

interfacial particles.
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Figure 4.5: Detected phases in Fig 4.3 based on dynamic behavior and neighbor par-
ticles: green-fluid, yellow-interfacial particles, brown-ordered particles. The detected
ordered state matches perfectly with the molecular order in Fig 4.4(d).

4.3.4 Fully Ordered State

As area fraction φ keeps increasing, more particles freeze into ordered state and less

particles move freely. At certain φ, only few particle(< 0.01) could move in the limited

open area. Those particles would be identified as interfacial particles(Fig 4.6(c)) due

to our detection algorithm. One example of configuration and it’s corresponding

orientational tetratic order Φ4 when N = 1150, φ = .92 and lp = 1.25 is plot in

Fig 4.6. At high area fraction, there is defect in the ordered state due to limitation

of free space. The tetratic orientational order correctly identified the defect in the

ordered states.

The maximum φ we can reach is 0.92 due to constraints of geometry and size of

particles as well as boundary. When φ & 0.7, we are no longer able to distribute
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particles uniformly with random orientation. We have to manually make particles

close packed so that we introduce certain order to the system. If there is enough

space in the system(φ . 0.85), particles could reorganize both their positions and

orientations. Otherwise, only some particles could fill defects in the ordered states.

(a)Snapshot of Configuration
(b) Local Molecular Order Φ4

(c) Phase Detection
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Figure 4.6: (a)Snapshot of stable fully ordered state when N = 1150, φ = 0.92 and
lp = 1.25. There are defects in the ordered state at the left middle and bottom part.
(b) Tetratic orientational order Φ4 shows the defects and indicates the system has
frozen into a fully ordered state. (c) Identification of particle phases. All but a few
particles are identified as solid (brown) with a few interfacial particles (yellow), one
of which There is one interfacial particle on the top area due to wrong orientation
detection(as shown in (b) by Φ4 ). Since this particle is identified as interfacial, it
does not affect the computed statistical behavior of ordered particles.
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4.4 Phase Diagram of Self-propelled Squares

Previous work on hard equilibrium squares [34, 33, 3], show fluid, orientationally

ordered, and translationally ordered phases. Experiments [9] and simulations [34]

indicate squares with sufficiently rounded corners additionally form a hexagonal ro-

tator phase, whereas squares with sharper corners show indications of a tetratic-like

phase before crystallization. However, the appearance of phase coexistence between

a mobile, fluid phase and a dense, low-mobility, ordered phase is an effect purely due

to nonequilibrium activity.

These nonequilibrium phase boundaries vary with lp: in (Fig. 4.7), we construct

a phase diagram by varying the activity of our self-propelled squares and the area

fraction φ. Equilibrium squares [3] form an isotropic fluid when φ ≤ 0.72, then

develop tetratic orientational order for 0.72 ≤ φ ≤ 0.77, and finally, make a transition

to translational order for φ ≥ 0.77. We explore phase behaviour as a function of

area fraction, for four different values of lp = 0.75, 1.25, 2.29 and 5.7a. Regions of

phase space are identified as fully ordered (blue), or fluid (red), with an intermediate

coexistence region (green) based on the number of particles in the ordered phase

(NO), as a fraction of the total particle number, N : nO = NO/N(Fig. 4.9(a)). We

indicate a fluid state (red) when nO < 0.05, and an ordered phase when nO > 0.95.

Realizing that this is a criterion-dependent definition, we leave the phase boundaries

blurred. We note the tendency to order increases, as does the width of coexistence

region, when activity increases. For our largest activity, lp = 5.7, activity dominates

the ordering and particles always condense into an ordered state at even the lowest

density that we explore.
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Figure 4.7: Phase diagram in the lp vs φ plane. The phases at zero activity cor-
respond to Ref. [3]. The crosses are our results with four different lp. Red region
indicates isotropic fluid, green region is the phase coexistence region and the blue
region indicates fully ordered state. Three snapshots when lp = 2.29 and φ = 0.79
demonstrate that considerable global rearrangements can occur over time, and the
pocket of fluid phase can migrate away from the centre of the system and approach
the boundary.
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We do not have sufficient statistics to study the nature of these transitions. But

the number of particles in different phases may give some hints to further study when

fluid turns into coexistence. We investigate the number variance of fluid particles

normalized by total number as a function of φ in the 200 configurations(Fig 4.8).

When phase coexistence starts, the fluctuation has a sharp increase. However, we

do not have enough data to predict the exact transition point. When lp = 1.25 and

φ = 0.75 the number fluctuation also has a peak. The data video shows the peak

comes from the transition between ordered particles and fluid particles. This is clearly

not a critical point but with a high fluctuation.
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Figure 4.8: Normalized fluid number variance σ2(NF )/N as a function of area fraction
φ

Qualitatively, we find reasonable agreement with the simulations of Prymidis etal .

[35]; their particles are soft squares with effectively rounded corners in the interaction

and therefore may correspond to a different equilibrium phase [34]. And yet, they
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discover coexistence in a system with four-fold interactions. The trends of the phase

boundary are similar in our experiment though quantitative details are different: the

density of our ordered phase is higher and the fluid phase lower, however, this is not

surprising given the difference in the interaction potential. Perhaps because we are

able to go to higher total volume fractions, we are additionally able to find the end of

the coexistence region, where the entire system is in the ordered phase. Importantly,

this suggests the high-lp solid phase is smoothly connected to the equilibrium and

low-lp phase. The phenomenon of oscillation between the solid and fluid phases was

not observed in our system, serving as a reminder that some nonequilibrium effects

can be closely linked to the type of activity.

It is natural to ask whether the coexistence regime is due to the presence of

boundaries. Indeed, it is true that the ordered state more easily nucleates near the

boundary. However, we argue that phase coexistence phenomenon is not purely a

boundary effect since it is not always true that the ordered state is at the walls and

the fluid state is in the interior of the cell; this in illustrated in the insets of Fig 4.7,

which show states of the system at different instants in time over a period of one

hour. (We later revisit the role of the boundary via simulations.) The ordered state

is not locked in time, and there are slow global drifts of radial layers of particles.

These layers do not move in registry, so defects can collect or can escape, enabling

the system to rearrange.

To map out the coexistence region, we track the fractions of particles in the fluid,

nF , and ordered states, nO, as a function of φ (Fig. 4.9) (a). nF +nO +nI = 1, where

nI is the fraction of interfacial particles. As is evident in Fig 4.9), the starting point

of phase coexistence changes with activity: nO becomes nonzero at φ ≈ 0.4, 0.55, 0.65

for lp = 2.29, 1.25, 0.75, respectively. The terminal area fraction of the coexistence

region varies with activity as well. At the highest activity of lp = 5.7, particles always

migrate to the wall and form layers of ordered particles so that nF ≈ 1 at all values
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Figure 4.9: (a) Number fraction of ordered and fluid particles as function of area
fraction φ. Phase coexistence starts where the ordered number fraction, nO, becomes
nonzero or the fluid number fraction, nF , departs from one. The onset of phase coex-
istence moves steadily to lower density with increasing activity. (b) Phase densities
of ordered and fluid states. The fluid density φF increases linearly with φ then fluc-
tuates around a constant value when phase coexistence starts. Higher activity leads
to lower coexistence φF .

of φ. We emphasize that all these data are taken in steady state, and nF and nO have

been tracked for periods of thirty minutes (i.e. 1.5× 104 vibration periods).

In Fig. 4.9 (b) we display the densities of the phases defined through φS =∑
i∈S a

2/
∑

i∈S AV oronoi, where the sum is over all particles in phase S ∈ O or F ,

the ordered or fluid phases. Once the ordered state appears, the density of the phase

remains high, with (φO ≈ 0.9). At a given activity, φO in the fully ordered state is

slightly higher than φO in phase coexistence. The fluid density φF increases linearly

with φ before phase coexistence, then becomes nearly constant. At fixed φ, increase

in activity leads to a lower fluid density.

In Fig. ?? we display measures of orientational ordering. In addition to the tetratic

orientational order, we also calculate a bond-orientational order

Ψm
k = | < eimθjk >j |, j ∈ Vk (4.2)
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where θjk is the bond angle between particles j and k, and Vk represent the m nearest

Voronoi neighbours of particle k. In Fig. ??(a) we show that the ’molecular’ orienta-

tional order Φ4 is well-developed at the onset of coexistence and remains high, with a

slight decline at the very highest densities due to the appearance of defects when the

cell is nearly filled with the ordered phase. In principle, bond-orientational order de-

pends purely on translation degrees of freedom, and is insensitive to the orientations

of particles, however, as previously observed in passive squares [3], molecular orienta-

tional order is accompanied by bond-orientational order at high densities, likely due

to steric constraints. Both four-fold and six-fold bond order are appreciably large in

the ordered state, but Ψ4 increases with φ (Fig 4.10(a)) whereas Ψ6 decreases with

φ (Fig 4.10(b)). In general, Ψ4 and Φ4 follow the same trends as they do in passive

squares, but show higher levels of ordering [3]. The influence of the circular boundary

in causing layering of the ordered, high-density state, makes it difficult to ascertain

whether the orientationally ordered state makes a transition to a translationally or-

dered state.
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Figure 4.10: (a) Tetratic orientational order Φ4 and tetratic bond order Ψ4 of ordered
state. Φ4 decreases at high φ due the appearance of defect. Ψ4 increases gradually
with φ(b) Hexatic bond order Ψ6 of ordered states. Ordered phase has both Ψ4 and
Ψ6.
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4.5 Kinetics of Phase Formation

In addition to the new phases caused by non-equilibrium activity, we find the

process of formation of ordered state is interesting. When the area fraction φ is

higher than 0.6, particles quickly (within 6000 vibrations or 2 minutes) migrate to the

boundary and form ordered state characterized by high Φ4 and Ψ4. However, it takes

relative long (from 45,000 vibrations/15 minutes to 180,000 vibrations/60 minutes)

to form a final stable ordered state when φ is high. In this asymptotic state almost all

particle within ordered state maintain their relative position and neighborhood. We

show four snapshots of ordered particles Fig 4.11 to illustrate the kinetics of evolution

when lp = 1.25 and φ = 0.67. Particles in the ordered phase that are polarized with

a velocity component pointing toward the fluid interface, escape the solid and return

to the fluid, while new particles from the fluid attach to the solid. This process of

increasing polarization in the ordered phase is extremely slow, as incorrectly oriented

particles in the solid phase cannot escape if they are surrounded by particles oriented

away from the fluid.
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(a)

(d)(c)

(b)

Inner

Outer

Figure 4.11: Evolution of ordered state. We label ordered particles close to the cell
boundary ’inner’ particles and the ordered particles in contact with the fluid as ’outer’
particles. (a) The red box shows inner particles have polarization component along
the −~r direction when the ordered state is not stable. (b) After 10 vibration periods,
misaligned outer particles tend to escape from the ordered state. The gap could be
filled by correctly oriented fluid particles or enable the inner trapped ordered particles
to leave. (c) The ordered state is stable if there are more particles aligned along ~r
direction than along the −~r direction. Particles in red box are likely to escape and
reorganize themselves. (d) Snapshot of stable ordered state. Even if inner particles
in red box try to escape, they are surrounded by particles aligned along ~r direction.
Therefore the configuration is stable.

Therefore, we need another order parameter to quantify the polarization along

radial direction in addition to Φ4 and Ψ4. We define p to quantify whether one

component of particle’s mobility is aligned with radial outward or inward direction:
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p = sign(~r · ~vl) (4.3)

~r is position vector of particle, ~vl is longitudinal velocity. We used the fraction of

positive p (outward-pointing) among the ordered particles to evaluate how ordered

particles are aligned.

π =

∑NO

i=1 δpi=1

NO

(4.4)

The evolution of pi and ordered fraction when φ = 0.69 and lp = 2.29 are plotted in

Fig 4.12. Particles are uniformly distributed with random initial orientation. These

curves indicate that the polarized fraction increases gradually while the ordered num-

ber fraction quickly converges and fluctuates. We cannot capture the saturation of

polarization due to the limitation of memory size of camera.
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Figure 4.12: (a) Time evolution of polarized fraction when φ = 0.69 and lp = 2.29.
The initial value is not close to 0.5 since data is taken a few seconds after vibration
starts. It increases sharply in a short period then gradually until converges. (b) Time
evolution of ordered particle fraction. It increases sharply when vibration starts then
fluctuates. The results show that ordered state forms very quickly but internal ordered
particles rearrange themselves to form a polarized ordered state.

The other interesting observation is there are some large, fully polarized clusters

within the ordered state. These are only observed when lp >= 2.29 as well as φ ≥ 0.89.

Therefore, these observations were only accessible at two points in our experimental
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phase diagram. However, a similar phenomenon is observed in simulation; the relevant

details are explained section 4.6. Particles in fully polarized cluster are similarly

oriented and are spatially connected as shown in Fig 4.13.

We used the depth-first search(DFS) algorithm [36] to identify the polarized clus-

ters and group particles by their orientations. We first constructed a Voronoi neighbor

dictionary where key is the index of particle and values are indexes of neighboring par-

ticles. The DFS algorithm starts from any unvisited particle (pi) and checks whether

its neighbor (pj) is also unvisited and have similar orientation (absolute difference

smaller than a threshold αt). If this condition is satisfied, pi and pj belong to the

same cluster and we repeat the previous process from pj. Otherwise, we assign pj

to a new cluster. assigning all particles, we sort the clusters by thAftere number of

contained within them and find the four largest clusters. (Our choice of four clusters

matches the tetratic symmetry of square). As shown in Fig 4.13, the orientations of

the largest four clusters match the four-fold symmetry.

However, the size of the detected cluster is criterion-dependent. In Fig 4.13,

each column has different orientation threshold, αt = 0.08 and αt = 0.12. The result

shows that same configuration has different cluster assignment with different αt. In

Fig 4.13(c), blue and red are two separate clusters when αt = 0.08 while they merge

into one cluster when αt = 0.12. Therefore, the cluster size can depend strongly on αt

in some instances. Fluctuation of orientation of a single particle can lead to different

cluster assignment especially if the particle joins two parts of a cluster connected by

a thin region.
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(a) φ = 0.92, lp = 2.29, αt = 0.08 (b) φ = 0.92, lp = 2.29, αt = 0.12

(c) φ = 0.89, lp = 5.70, αt = 0.08 (d) φ = 0.89, lp = 5.70, αt = 0.12

Figure 4.13: The four largest clusters observed in two different scenarios. (a) and (b)
are identical snapshots when φ = 0.92 and lp = 2.29. The only difference between
them are the orientation threshold αt used to identify whether adjacent particles
belong in the same cluster. Particles assigned in the same cluster are labelled by the
same color. (a) and (b) show that cluster assignment depends on αt. (c) and (d) are
identical snapshots when φ = 0.89 and lp = 5.70.

4.6 Simulation

In order to test whether the phase coexistence observed in our experiments is

purely due to the boundary and in order to more broadly complement our experi-
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ments, we performed simulations on polar hard squares that share the same dynamical

parameters as those in the experiment.

To eliminate potential effects of the wall, we worked with periodic boundary con-

ditions. We place squares with unit side length in a virtual square box. The total

number of particles in the simulation box is fixed at 2000. The side length of the box

is adjusted to produce the desired area fraction l =
√

2000/φ. The code is written in

c++. Details of the simulation are described in the following subsections.

4.6.1 Initialization

At area fractions φ ≤ 0.5, we add particles sequentially in the simulation box

with random positions and orientations, rejecting choices that overlap with squares

already in the box. When the total number of particles reaches 2000, we stop the

initialization.

When φ > 0.5, this process becomes prohibitively slow. Therefore, we initialize

particles on a square lattice. The number of particles on each column is 1/
√
φ. We add

Gaussian noise to the positions of particles and impose a uniform random orientation

on each particle. We iterate this process until we reach an initial condition with no

overlap. With this method, though the orientations are random we introduce tetratic

bond order in the initial condition. We find as long as the mean value of longitudinal

displacement v0δt in a single step is smaller than average spacing between particles,

the system will not locked by initial condition when φ ≤ 0.7. We haven’t further

explored it with φ > 0.7.

4.6.2 Simulation Model

We define a loop as an iteration through all 2000 particles in the box, sampled

in random order, in which we attempt a step of the stochastic dynamics described

below. After initializing the system, we run Nsim = 120, 000 ∼ 200, 000 loops. In each
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loop, the dynamics of a single particle and the interaction between particles follow

the rules described in this section.

We artificially make the model as if the trial particle has much smaller mass

and momentum than any other particle. The momentum is not conserved in the

interaction and there is momentum transfer between particles.

4.6.2.1 Dynamics

The time evolution of a single square located at ~r(t) with orientation γ(t) at time

t follows the Active Brownian Particle (ABP) model


ṙ(t) = v0n̂+ ~η(t)

γ̇(t) = ξ(t)

(4.5)

that we introduced in Chapter2. η(t) and ξ(t) are both Gaussian distributed random

variables with zero mean, and no spatial or temporal correlations. We need to specify

four dynamic parameters for the model: v0, DR, DT and D0. D0 is the transla-

tional diffusion along longitudinal direction (i.e. the active diagonal along which v0 is

aligned) and DT is the translational diffusion along transverse direction. DT = 0.005

and D0 = 0.00424 in the simulation, as in the experiment. The variance of ξ(t) is

2DR, the variance of ~η(t) in the longitudinal direction is 2D0 and in the transverse

direction is 2DT .

At time-step t, we first update the position along the orientation direction γ(t)

according to the ABP model: r(t+1) = r(t)+ṙ(t)n̂(t) and then update the orientation

with γ(t+1) = γ(t)+γ̇(t). Whether this update is accepted depends on the interaction

between particles.
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4.6.2.2 Interaction

Since our system is composed of hard squares, the potential between two particles

is 
∞, if squares overlap

0, if there is no overlap

(4.6)

Therefore, a square can move freely until it gets blocked by another particle. When we

propose a move (ṙ, γ̇) for a test particle, we check whether the new position and new

orientation would cause overlap with other existing particles. If the attempted motion

does not cause any overlap, we accept the move and update the corresponding position

and orientation. If it leads to overlap, we do not reject the movement immediately

but rather propose other two possibilities. In light of the fact that the particles in

the experiment can slide past each other along their faces, if our model square is

blocked in the first attempt we try to mimic the behavior in experiment. Therefore,

we project the motion on γ + π/4 and γ − π/4 axis. The projected component is

proposed with equal probability to prevent introducing chirality artificially. If the

motion along the chosen component does not cause an overlap, we accept it and

update the corresponding parameters. Otherwise, we try the other component. If all

three possibilities are rejected, we give up the trial and leave the particle unchanged

in this loop. One example of attempted motion is illustrated in Fig 4.14.

4.6.3 Implementation

In this section, we describe the engineering logic behind the physics of simulation.

We define a square object to simplify the updating process, implement a computa-

tional geometry algorithm for overlap detection, and adopt Axis-Aligned Bounding

Box tree to improve the efficiency of overlap query.
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Figure 4.14: Example of attempted motion. The transparent yellow particle tries to
move. The particle is located at xo, yo with orientation γo. The attempted motion is
xi, yi and γi. We check the square located new position xo+xi, yo+yi with orientation
γo + γi(dashed square). It overlaps with both the green and red particles so that we
reject it. Then the particle try to move along the two edge components(pink arrow
along γo + π/4 or orange arrow along γo − π/4) with equal probability. If we start
with orange arrow, it does not overlap with any existing ones. Therefore we accept
the motion along orange arrow with orientation γo + γi. If we start with pink arrow,
this leads to overlap with green particle. Then the motion is rejected and has a final
trial along orange arrow.

4.6.3.1 Define Square

We create a square class that describes a single square with unit side length by

three parameters : position (x0, y0) and orientation θ0 relative to the preferred mobil-

ity direction. When a particle moves or rotates, we simply update the corresponding

parameters and do not need to change the vertices of each square. The square class

has vertices vector and a method called get vertices. We define two different types of

square, one is diagonal-based and the other is edge-based. The vertices vector of diag-

onal based square vertices are (1/
√

2, 0), (0, 1/
√

2), (−1/
√

2, 0) and (0,−1/
√

2). The
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coordinate of edge based square vertices are (0.5, 0.5), (−0.5, 0.5), (−0.5,−0.5) and

(0.5,−0.5). When we call get vertices method, we rotate the vertices vector by the

2D rotational matrix:

cos θ0 − sin θ0

sin θ0 cos θ0

 and add it to the center position (x0, y0).

This method is only called for overlap detection.

4.6.3.2 Square Overlap

We used a general method to detect whether two squares overlap. FOr future

studies, this method i very general and works for any two different types of polygon

of variable size. In the present work, we limited ourselves to squares of one size. The

idea and the detailed implementation of overlap detection is listed below:

1. Pick one of the two polygons, check whether each edge has any intersection

with any edge of the other polygon. If any two edges has intersection, these

two polygons overlap. Identification of intersection of two edges was simplified

to a line-intersection problem in computational geometry. Specifically, we pick

one line-segment (l1 with end node a and b) and check whether the two nodes

of the other line-segment (l2 with end node c and d) are on different sides of l1.

Mathematically, if the cross product ~ba × ~ac has a different sign than ~ba × ~ad,

then node c and d are on two different sides of l1. We also need to check ~dc× ~ca

and ~dc× ~cb. If the end nodes of either line-segment are on different side of the

other line, then the two lines intersect.

2. If no edge intersection is detected, we further check whether one polygon con-

tains or is contained by the other. We pick every node of one polygon and

check whether it is inside of other polygon. We do the same thing on the other

polygon. If the node is inside of the other polygon, these two polygons overlap.

This is a 2-dimensional computational geometry problem as well. Suppose we

have a node with coordinate (x0, y0) and a polygon P , then we find the number
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of intersection points (xpi , y
p
i ) between P and line y = y0 where ypi < y0 or in

other words, all the intersections on left side of the node. If the number of qual-

ified intersections is odd, the node is inside of the polygon. More mathematical

details are available at ’Point in polygon’ in Wikipedia.

This is a general method for polygon overlap detection. In our specific case, all the

squares are identical therefore we can skip the second enclosure test.

4.6.3.3 Overlap Query

Rather than testing whether a test particle overlaps all other particles, we use the

Axis-Aligned Bounding Box Tree(AABB-Tree), a tree data structure that is efficient

for overlap query[37].In our case, we used a 2-D AABB-Tree. As indicated by the

name, axis-aligned bounding boxes are rectangles whose sides are parallel to the

coordinate axes and enclose any complex shape within it. Specifically, the bounding

box of a single square centered at (x, y) with unknown orientation is also a square

centred at (x, y) but with side-length
√

2 and sides aligned with x-axis and y-axis.

Every node of the tree is a bounding box that contains all particles or shapes in the

daughter nodes. Therefore, the root of the AABB-Tree encompasses all the particles

in the simulation box.

Given a bounding box of any shape, the AABB-Tree quickly returns the potential

bounding box that may lead to overlap. Suppose the given box has intersection with a

certain node, then we check whether it intersects with left or right sub-tree and further

query with that sub-tree. Therefore, the best time-complexity of the query is T (n) =

2T (n/2) + O(1) → T (n) = O(log n). It is possible that the given box intersects

with both sub-trees. The worst case leads to O(n). Whether there is intersection

between two axis-aligned rectangles can be easily checked by corner coordinates with

time complexity O(1). Intersection between bounding boxes does not indicate the

particles within them overlap. Once the potential intersecting bounding boxes are
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identified, we apply the overlap algorithm described in the previous section to check

whether particles have intersection. One example is illustrated in Fig 4.15.

Figure 4.15: Example of AABB-Tree. All bounding boxes are plotted in dashed
lines. We try to place the blue particle into the existing system. It’s bounding box
has overlap with the largest red bounding box so that we need to check both the
left(green) and right(blue) subnodes. Since green bounding box has no overlap with
the particle’s bounding box, we only check the blue bounding box. We keep checking
until the leaf of the tree. There are three bounding boxes having overlap with the
blue particle. Then we apply the overlap algorithm on each particle, which would
return the index of red particle that overlaps with the blue particle.

Another advantage of AABB-Tree is that it is efficient for particles with different

size. However, it is not true in our case so that we don’t have the most efficient

algorithm. For fixed size system, cell list algorithm is a better option than the AABB-

Tree method. We refer interested readers to Wikipedia.

To implement the 2D AABB-Tree we used code available at lohedge’s Github.

The detailed explanations of AABB-Tree are available at post[38] .
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4.6.3.4 Periodic Boundary Condition

One difference between experiment and simulation is that we use periodic bound-

ary condition in simulation. This leads to extra computation when we try to find the

Voronoi cellss and Voronoi neighbors of particles. Particles near the boundary have

neighbors crossing the boundary so that we need to create extra boxes.We create a

3× 3 grids and put copies of the simulation box into each cell of this grid. Therefore,

there are 18,000 particles in total and each particle has a unique index. The central

cell contains particles indexed from 0 to 1999 and we identify Voronoi neighbors of

boundary particle including the surrounding 8 cells. The indices of these neighbors

are calculated as by finding the index-modulo-2000, the total number of particles in

the original simulation box. This is a brute force method to handle the boundary

condition and it is possible that more efficient methods exist.

4.6.4 Data storage

When we initialize the system, we give each particle an unique ID ranging from

0 to 1999. The IDs are kept unchanged in the simulation. To save a snapshot of

the system, we save the position (x, y) and orientation γ of each particle ordered by

their ID. If we save configurations at all time-steps, the data will be quite big(∼ GB).

Therefore, we save the data separated by time gap tg, which follows the rule:

tg =



10, t < 1000

20, t < 10, 000

100, t < 50, 000

250, t < 100, 000

500, t <= 200, 000

(4.7)

As a result, the saved data is around 60MB per run.
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4.6.5 Results and Analysis

We run simulations in which the persistence length lp of the particle, and the area

fraction φ are varied. Simulations enable more ways to control the value of lp. As

lp = v0a/DR, we can tune it independently by v0, DR or both of them. We find that

with fixed lp if we scale both v0 and DR with a constant factor they have different

phase behavior. We explore these results at the end of this section. However, in the

first part of this section, to compare better with the phase diagram in the experiment,

we choose to vary lp by fixing v0 and changing DR. This is because DR is dominant

factor in controlling the activity in our experiment. We set v0 = 0.063, DR = 0.283

and explore six different values of lp i.e. 10DR → 0.1lp, 2DR → 0.5lp, DR → lp,

0.5DR → 2lp, 0.25DR → 4lp and 0.1DR → 10lp.

In the simulation, we know the orientation of each particle with high precision.

Therefore, we identify particles in the ordered phase by their degree of local orienta-

tional order (Φ4 ≥ 0.85) instead of relying on the dynamics as the identifier of phase

as in the experiment. The definition of interfacial particles is identical to that in

experiment.

Snapshots of several configurations placed in a grid of lp versus area fraction, φ, are

shown in Fig 4.16. The simulation shows the same qualitative progression of phases

as in the experiment. For fixed lp = 2.29 (as in one of our experiments and y-axis

= 1 in Fig 4.16), as the area fraction is increased phase coexistence develops beyond

around φ = 0.28. Likewise, for a fixed area fraction, phase coexistence appears when

lp is increased.
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Figure 4.16: Steady state configurations from the simulation. The axis are not on a
linear scale, but each snapshot is connected to the φ by a vertical dashed line. The
vertical axis is the persistence length relative ratio to a baseline value of lp = 2.29.
The inset shows part of ordered state when φ = 0.6. The ordered state is composed
of large polarized domains whose boundaries are marked by the dark curve.
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A further qualitative feature is illustrated in the inset of Fig 4.16 and Fig 4.17

where it can be seen that the ordered phase nucleates around linear chains of counter-

posed particles of opposite mobility that kinetically trap each other. Once a few

extended structures of these ”antiferromagnetic” structures are created, they form a

backbone on which large ferromagnetically polarized domains grow. The size of these

fully polarized grains increases with activity. The resultant multidomain droplet of the

ordered phase has nearly net zero polarization. To our knowledge, this phenomenon

has not previously been noted.

Each phase is defined by the ratio of number of ordered particles to total number

of particles nO = N0/N . We use lines to indicate the likely phase boundaries in

Fig 4.16. Solid lines separate configurations in different states and indicate a possible

phase boundary. Dashed lines indicate the existence of a phase boundary but that

we are not sure of the location of the boundary. One challenge is how to effectively

define a fully ordered state since we adopt criterion-dependent definition. Examples

are shown in Fig 4.17(b),(c) and (d). We choose n0 > 0.95 as an ordered state which

makes (b) and (c) phase coexistence state and (d) fully ordered state. One distinction

brought about by the absence of bounding walls, is that unlike in the experiment we

did not observe a jammed system with immobile particles .

We explore phase density, phase number fraction, molecular orientational order

Φ4 and bond order Ψ4 along two different cuts of the phase diagram: (i) We fix the

activity at lp = 2.29 and vary area fraction φ; and (ii) we fix the area fraction at

φ = 0.5 and vary the activity lp. The results are plotted in Fig 4.18 and Fig 4.19,

respectively.

For fixed lp = 2.29 (as in one of our experiments), as the area fraction is increased,

phase coexistence develops beyond around φ = 0.28. While the partial fractions of

the ordered and fluid phase both change with φ, the fluid and ordered phase den-

sity fluctuate about fixed values. The density of the ordered state is similar to that
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(a) (b)

(c) (d)

Figure 4.17: Zoomed-in snapshots of phase coexistence and fully ordered state. All
four snapshots indicate that there are polarized regions inside the ordered state. The
net polarization of a cluster is close to zero. As persistence length increased, area of
polarized region also increases. The defects in the ordered state are also observed in
experiment. (a) Phase coexistence state with lp and φ = 0.5. Fully polarized region
is observed in the ordered state. (b) Phase coexistence state with 10lp and φ = 0.15.
We define state of particles based on the number fraction of ordered state particles
no. When no > 0.95, system is in fully ordered state. The number dependent criteria
makes this case(no ≈ 0.92) phase coexistence. (c) Phase coexistence when lp and
φ = 0.7. (d) Fully ordered state with 10lp and φ = 0.5. Not all 2000 particles are
part of the cluster since a few particles(< 100) can move freely. However, there are
big fully polarized chunks in the ordered state when compared to lower lp (a) and (c).
The boundary shape of ordered state in this fully ordered state is rough.
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in experiment. However, the fluid density is lower than that in experiment which

is consistent with the earlier starting point of phase coexistence in the simulation.

Orientational order Φ4 and bond order Ψ4 have big fluctuations at the onset of phase

coexistence (φ = 0.28), then quickly jump to 1.0 and 0.8 respectively and finally fluc-

tuate about those values. The value of bond order is higher than that in experiment.

One possible reason that the circular boundary of experiment is incompatible with

global four-fold order.
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Figure 4.18: Phase number fraction, phase density and order parameters when lp =
2.29. These curves qualitatively agree with our experiment.

For fixed φ = 0.25, when scaled lp ≤ 1, the whole system is fluid. As the persis-

tence length is increased, phase coexistence starts at scaled lp = 2 and finally develops

to a fully ordered state when scaled lp = 10. The orientational order φ4 and ordered

density are small and noisy at lp ≤ 1, which indicate there is no stable ordered state.

The ordered state is not found in all 200 configurations and the ordered state contains

very few particles(≤ 10) in this case. φ4 is close to 1 when phase coexistence starts,

and saturates at that value. The tetratic bond order Ψ4 increases at first (2 to 4)

and then decreases(4 to 10). The trend of Ψ4 is different from what we observed in

74



0 2 4 6 8 10

Normalized Persistence Length lp

0.0

0.2

0.4

0.6

0.8

1.0

Fluid Density

Fluid Fraction

Ordered Fraction

Ordered Density

Ordered Φ4

Ordered Ψ4

Figure 4.19: Phase number fraction, phase density and order parameter when φ = 0.5.
The scale base activity 1 is lp = 2.29.

experiment Fig 4.10 where Ψ4 gradually increases with lp. The possible reason is that

simulation realizes high activity that is not achievable in experiment. When activity

gradually increases, particles get more closed packed so that Ψ4 also increases. When

activity is high enough(only achievable in simulation), particles get trapped by the

nearby particles before they can reorganize themselves to fit into free space. Therefore

more defects exist when compared to lower activity particles which leads to lower Ψ4.

Our qualitative conclusion is that all significant experimentally observed phenom-

ena can be seen in the absence of a hard boundary. However, the absence of a circular

boundary makes some additional features much more evident in the simulation: the

morphology of the condensed droplets vary substantially over the phase diagram.

Drops formed at low φ are rounder and have smooth boundaries, whereas at higher

φ, these regions are rougher and more ramified.

As mentioned earlier, fully polarized clusters are clearly observed in simulation(Fig 4.17),

and are more easily identified than in the experiment, where close-packed clusters have
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to curve along circular boundaries. We investigated the size of the four largest fully

polarized region in the ordered state as we did in experiment. (Again, the choice of

four regions is motivated by the four-fold symmetry of the particles). In experiment,

we cannot capture the evolution from random initial configuration to stable state

due to the competing constraints of capturing dynamics at a high frame rate and

the limitations placed on long-time runs by the finite on-board memory in the high

speed camera. However, this is not a problem in simulation where we can save all the

needed data. We implemented the same depth-first search algorithm as in section 4.5.

The only difference is that we need to construct neighbor dictionary with periodic

boundary condition. Some snapshots of detected clusters are plotted in Fig 4.20.

Comparing to experiment, polarized clusters are more easily seen in most ordered

states. We argue that in addition to orientational order Φ4, and bond order Ψ4, there

also exists polar order in ordered state. This is only observed in experiment under

some limited conditions at the high density and high activity limit of our experiments.

This is possibly due to the circular boundary of experiment.

We investigated the size of the largest four clusters to understand the growth and

emergence of polar order in the system. We plot their evolution in Fig 4.21 when

φ = 0.5, lp = 2.23 and φ = 0.5, lp = 4.46. Clusters grow gradually at early times,

and then saturates at long times, following which the size of cluster fluctuates. The

saturation time varies but it usually takes more than half the total simulation time

( 160000 steps).

In Fig 4.21(b), there are large fluctuations in a single curve. This comes from the

time-independent detection algorithm that is sensitive to the fluctuation of orientation

of a single or a few particle. We illustrate the idea in Fig 4.22. Both (a) and (b) are

detected with same orientation threshold αt = 0.08 in different time step when φ = 0.5

and lp = 8.92. The top four clusters are quite different between the two snapshots.

The largest blue cluster at t = 106000 separates into two different clusters(blue and
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(a)φ = 0.5, lp = 2.23 (b)φ = 0.5, lp = 4.46

Figure 4.20: Illustration of clusters. Blue central dots represent largest cluster, fol-
lowed by orange central dots and green dots, red central dots are the smallest cluster.
(a) Top four clusters when φ = 0.5 and lp = 2.23. Particles with same color belong to
the same cluster. (b) Top four clusters when φ = 0.5 and lp = 4.46. Fully polarized
clusters are observed in lower area fraction and lower persistence length as in the
experiment.
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Figure 4.21: Size of top four cluster as function of simulation time steps. (a) φ = 0.5
and lp = 2.23 (b) φ = 0.5 and lp = 4.46. There are big fluctuations in blue and orange
curves after t = 50000. This comes from the detection inconsistency in the detection
algorithm as shown in Fig 4.22.

77



(a)t = 106000, αt = 0.08 (b)t = 106500, αt = 0.08

Figure 4.22: Snapshots of the four largest clusters at two different time steps when
φ = 0.5 and lp = 8.92. Particles within the same cluster have same color. (a)
The largest cluster has 550 particles and is colored in blue. (b) The largest cluster
separate into two clusters in blue(300) and orange(250). Fluctuations of orientation
of interfacial particle cause the separation.

orange) at t = 106500. The reason is there only exists two interfacial particles between

the blue and orange clusters at t = 106500. Both of them have a larger orientation

difference between their neighbors than threshold αt. However they are within the

threshold at t = 106000. Therefore, tiny orientation fluctuation leads could lead to

quite different cluster assignment result. The origin of big cluster size fluctuations in

a short time period is due to splitting and merging of a big cluster at a small neck.

Since our detection algorithm is time-independent, this kind of detection noise is

inevitable. One possibility for future improvement is to dynamically track the cluster

size and check for consistency in consecutive time steps.

We further compare evolution of quantities, at fixed area fraction φ = 0.5 and

different activity, like ordered fraction nO, tetratic bond order Ψ4, the largest cluster

size Nlargest and average of top four cluster size 〈Ncluster〉 in Fig 4.23. We didn’t use

orientational order Φ4 since ordered particles are defined based on it(≥ 0.85). Once
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there exist Φ4 larger than the threshold, the curve jumps to a high value and keep

unchanged which leads to identical curves in all five different persistence lengths.

Fig 4.23 shows the evolution of various indicators of ordering developing as a

function of time for many values of activity, at a fixed area fraction of φ =??. The

data indicate that the system develops into an ordered state (high orientational order

and bond order) within ∼ 30000 steps. Surprisingly, the time scale over which order

develops does not show a marked dependence on activity. The lower two panels,

which show different markers of polarization, show that they take much longer to form

polar order (∼ 100000 steps). Ordered fraction nO increase quickly and converges to

a constant value. The curves of nO don’t show a strong systematic dependence with

lp (4lp and 5lp are counter-example). We argue that stable system with high activity

has a larger proportion of ordered particles. Tetratic bond order Ψ4 has same trend

as nO. It jumps to 0.6 once particle form ordered state. Before it converges, particle

with higher activity has larger Ψ4. After converges, the magnitude is independent of

the activity. Size of largest polarized cluster is independent of particle’s activity. We

have ran simulation of particles with 4lp in two different ensembles(one is labeled as

4lp new in Fig 4.23). The size of largest polarized cluster is quiet different. Other

quantities are similar in these two different simulations. Finally, we study the mean

value of largest four clusters 〈Ncluster〉. This value is also independent of particle’s

activity. We argue that the size of cluster is not predictable given area fraction φ and

persistence length of single particle lp.

4.7 Conclusion

In this chapter we have for the first time experimentally explored the phase dia-

gram of self-propelled particles in the density-activity (φ vs lp plane. We also have

simulations in the same regime that qualitatively agree with the experiment. The ex-

ample we have explored is that of hard squares with polar activity along the diagonal.
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Figure 4.23: Time-evolution of order parameters for various values of persistence
length. The systems quickly form an ordered state based on ordered fraction and
tetratic bond order order. However the development of large polarized regions grows
much slower.
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In order to study the phase diagram, we have successfully tuned rotational diffusion

of particles, so that they are not trapped on arrival at a boundary. Our results show

that nonequilibrium activity profoundly alters the equilibrium phase diagram, in this

case leading to the opening of a phase coexistence region between ordered phase and

isotropic fluid. More generically, our work is an example of how the interplay between

the symmetry of the interaction and the symmetry of the particle mobility can alter

the onset of ordered phases. Granular systems are especially amenable to separating

these two local symmetries, as the projected 2D particle shape dictates interactions

while features in the other dimension can be tuned to change mobility.
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CHAPTER 5

SYMMETRY OF ACTIVITY

In previous chapter, we show that adding activity to isotropic squares brings new

phase behavior by both experiment and simulation. We study the phase diagram

by changing the magnitude of activity or persistence length lp. In this chapter, we

further explore the effects of activity beyond merely tuning the magnitude of the

mobility via the Peclet number. Here, we study by simulation how the symmetry of

activity changes the phase behavior.

Activities can have various symmetries: in previous parts of this thesis we worked

with polar symmetry, however, as discussed in this chapter, other types of mobility are

possible. Furthermore, these symmetries need not be the same as the symmetry of the

interaction potential between particles. In this work, we maintain the four-fold hard

square interactions between particles. However, we study three different symmetries

of activity, which are sketched in Fig 5.1. Each row corresponds to one symmetry of

activity: polar, bipolar and chiral. Furthermore, the symmetry axes of the mobility

need not to align with the axes of the interaction potential. This is distinct from the

biological case where mobility axes align with interaction. This also differs from wet

system where interactions are hydrodynamics.If particle moves in certain direction,

it doesn’t matter what the shape is, it induce flows that interact with other objects

in the the direction of motion. This makes granular systems different.

Indeed, for a given symmetry of activity and a given symmetry of interaction,

there can be any angle between the symmetry axes. With each class of symmetry,

we choose two different activity directions relative to the square shape of particle.
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Therefore we have six different kinds of particle: polar along diagonal, polar along

edge, bipolar along diagonal, bipolar along edge, left chiral and right chiral.

In this work, we explore phase behavior by simulation. Experimental realizations

of some of these types of particle mobility have previously been successfully achieved

by my colleague Lee Walsh. The idea was to once again modify surface features of

squares to impart the desired mobility.The experimental challenge here is to quantita-

tively control the activity efficiently and to explore what activity can bring interesting

phase behavior. These difficulties can be more easily addressed in simulation, and

suitable choices may then guide future experiments. For each kind of activity, we

change the magnitude of activity lp at certain fixed area fraction φ and vary the area

fraction φ at fixed activity lp.

5.1 Activity Model

In this section, we introduce the detailed realization of each kind of activity in

simulation.

5.1.1 Polar Symmetry

Polar symmetry of activity indicate particle tends to move along one certain body

axis. Based on the square shape, the polar activity has four-fold tetratic symmetry.

We pick two activity axes, one perpendicular to the edge, and the other along diagonal.

These are inclined at 0 and π/4 angle, respectively, to the body axis of square.

The polar diagonal particle is identical to what we have in Chapter 4. We simply

adjust the parameters to compare it with other activity symmetry. As we intro-

duced in section 4.6.3.1, vertices of edge particle are located at (0.5, 0.5), (0.5,−0.5),

(−0.5, 0.5) and (−0.5,−0.5). The algorithm of overlap checking is same as that of

polar diagonal ones. However, this is some difference in dynamic model. When we

propose a possible move of an polar edge particle, if it causes overlaps with any
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Polar along diagonal

Bipolar along diagonal

Polar along edge

Bipolar along edge

Left Chiral Right Chiral

Figure 5.1: Illustrations of particles with different types of activity. Each row cor-
responds to one kind of symmetry and contains two types of particles with different
directions.

other particles, we reject the move, and do not attempt moves decomposed into two

independent components along edges.

5.1.2 Bipolar Symmetry

Bipolar, or nematic, symmetry of activity indicates that the particle tends to

move along a body axis without a preferred sign of motion. To make a comparison

to polar particle, here too, we choose motion perpendicular to the edge and along

the diagonal direction. The bipolar particles have 0.5 probability moving along either

longitudinal direction ~vl or inverse longitudinal direction −~vl direction. We keep
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Figure 5.2: Illustration of longitudinal velocity distribution of bipolar particles. Please
note that the curves are not normalized. (a) Using the same parameters that we found
in experiment for a polar particle leads to a Gaussian distribution without distinct
peaks, so the particle effectively becomes isotropic. (b) We increase the mobility to
v0 = 0.252 as 2|v0| >

√
2D0, which makes a double peak Gaussian distribution that

more accurately represents a bipolar particle.

the rotational velocity vω subject to symmetric noise as we did previously. The

probability distribution of longitudinal velocity equals to p(vl) = 0.5×N (v0, 2D0) +

0.5×N (−v0, 2D0). Here N is Gaussian distribution with mean value v0 and variance

2D0. To achieve noticeable effects of bipolar activity, p(vl) needs to be a double-

peaked Gaussian distribution. The magnitude of |v0| and D0 controls the shape of

distribution. If we keep the same parameters as we had for polar particles in the

experiment(v0 = 0.063, D0 = 0.005), p(vl) the two gaussian peaks overlap strongly,

Fig 5.2(a) so that particle dynamics are indistinguishable from an isotropic particle.

In order to separate these peaks, we keep D0 unchanged and make v0 = 0.252 to

make particle bipolar as shown in Fig 5.2(b). Here, bipolar diagonal particles still

have three potential moving directions and bipolar edge particles have one potential

moving direction.
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5.1.3 Chiral

In the ABP model for polar particles, rotational velocity vω follows a Gaussian

distribution N (0, 2DR) with zero mean. For chiral particles, we simply shift the mean

value of vω to a non-zero value. We tested |vω| from π/3/step and decrease to 0 grad-

ually with smaller gaps. We study chiral particles on both passive particle with v0 = 0

as well as particles with translational activity v0 = 0.01575, 0.0315, 0.063, 0.126 and 0.252.

We won’t report all results here but only show

5.2 Results and Analysis

We ran the simulation in a square simulation box. The simulation box contains

2000 identical particles with the same symmetry and direction of activity . Instead

of getting a full phase diagram, we hold activity fixed and vary area fraction, or hold

area fraction fixed and vary activity, to study the phase behavior. This gives us two

orthogonal cuts along the phase diagram. The statistical results presented here are

taken from 200 configurations collected after the system has reached steady state.

We compare the results with different types of activity in the following section.

5.2.1 Changing density at fixed activity

We first study the phase behavior when we move along the area fraction axis.

The results are shown in Fig 5.3. In each row, we illustrate type of activity, show

a snapshot of the steady state of simulation box and plot statistical quantities. We

calculated fluid density, fluid number fraction, ordered state density, ordered number

fraction, ordered tetratic orientational Φ4 and ordered tetratic bond order Ψ4 for

each type of particle as we did in last chapter on polar squares. All x-axes in the 3rd

column in Fig 5.3 are area fractions φ.

We start by comparing polar diagonal and polar edge particles. The transition

from a fluid state to phase coexistence are both observed in these two type of particles.
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The snapshots(Fig 5.3) are taken when lp = 2.23 and φ = 0.5. These snapshots

indicate that the ordered state in diagonal particles is more close packed than that

in edge particles, possibly due to the difference of dynamic model. Specifically, the

polar diagonal particle has more options when an attempt motion leads to overlap

with other ones. In the polar edge particle system, there are more defects and voids

within the ordered state. As a result, edge ordered state has lower density(∼ 0.8)

than diagonal ordered state(∼ 0.9). Comparing the curves, the trends are similar

between diagonal particles and edge particles, but the details are different. Edge

particles start phase coexistence at a lower area fraction(φ ∼ 0.2) than diagonal

particles(φ ∼ 0.28). The fraction of ordered and fluid edge particles changes smoothly

with volume fraction. Once phase coexistence starts, they increase/decrease linearly.

On the contrary, for diagonal polar particles there is a kink when phase coexistence

starts and then the curves change in a nonlinear pattern. The observation of a greater

number of voids and defects from the snapshot of lower density ordered state in edge

particle is borne out by the data for the density of the ordered state. When the

ordered state forms, fluid and ordered phase density remain constant for the polar

diagonal system. However, for the edge particle they both increase slowly with area

fraction. To summarize, both diagonal and edge particles have qualitatively similar

phase behavior but there are quantitative differences in details. The interesting fully

polarized region in diagonal particle is not clearly observed in edge particle. It is

because a pair of particles is enough to block each other. For the diagonals, it needs

four vectors to add up to zero to block displacements.

By contrast, as we show below, bipolar (nematic) activity has only a modest effect

on activity, regardless of how it is oriented relative to the axes of the square.

The double peak Gaussian velocity distribution of bipolar particle is decided by

two parameters, mean value v0(= 0.063 in experiment) and variance 2D0(= 0.005 in
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Figure 5.3: Snapshots (left column) and order parameters of polar and bipolar activ-
ities with fixed lp = 2.23 as a function of area fraction, φ
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experiment). To ensure 2|v0| > 2
√

2D0, we could either increase v0 or decrease D0.

We test both options and make the ratio |v0|/
√
D0 constant.

In the scenario of decreasing D0 , we keep lp constant and decrease D0 by a factor

of 16, D0 = 0.005/16 ≈= 0.0003. We plot the results in Fig 5.3 as we can compare

different type of activity with same magnitude lp. The snapshots and curves show

that bipolar symmetry significantly reduce the effect of activity. Bipolar diagonal

particles do not show a sign of phase coexistence until a very area fraction of φ = 0.6.

At φ = 0.6, edge bipolar particles remain in a fluid state with hardly any evidence of

an ordered state. The fluid state density keeps increasing linearly with area fraction.

Although there is the onset of an ordered state at φ = 0.7, the continued increase in

the fluid state density indicates that the whole system still remains in a fluid state.

Since we initialize particles on a square lattice when φ > 0.5, our initial condition

introduces some degree of bond order. We need to test at high φ that if the ordered

state comes from the activity or just caused by the high area fraction. We plot the

results of isotropic particles in Figure 5.4. It shows that isotropic particles keep fluid

state until φ = 0.6 and having orientational order at φ = 0.7.These data demonstrate

that bipolar edge particles are similar in phase behavior to the isotropic particles.

In increasing mean value scenario, We choose v0 = 0.252 which makes lp = 8.92

and keep D0 = 0.005 unchanged. We plot the results in Fig 5.4. Bipolar symmetry

significantly reduces the effect of activity on the phase behavior.

5.2.2 Changing Activity at fixed density

In this section, we discuss the data obtained from fixing the area fraction and

varying persistence length. For polar activity, we increase lp by decreasing DR. For

bipolar activity, we increase lp by increasing v0 since decreasing DR make us change

two parameters DT and DR. Increasing v0 also causes another issue. When φ ≤
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Figure 5.4: Phases of bipolar and isotropic particles as a function of area fraction
for fixed activity lp = 8.92. Here we decreased the diffusion constant D0 to realize
the double peak Gaussian velocity distribution. We also show isotropic particles as a
baseline. Since the isotropic particle have no preferential mobility direction we don’t
add the red arrow on it.
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0.7 and v0δt in a single simulation step is larger than the average spacing between

particles, the system got frozen whatever the state is.

The two sets of data with differently oriented polar symmetry have similar trends,

but with differences in detail. We keep the area fraction φ = 0.25 fixed for both

diagonal- and edge-polarity and study how phases change with persistence length

lp. We show the results in Fig 5.5. When activity is low, all particles are in fluid

state. The system enters phase coexistence as lp increases. We have not yet observed

a fully ordered state at the maximum activity that we explored, lp = 22.3. Polar

edge particles starts phase coexistence at a lower lp compared to polar diagonal ones.

The ordered state in polar diagonal particles are more close-packed so that their

ordered state density is higher, as is the tetratic bond order Ψ4. Polarized clusters

are observed in both diagonal and edge particles at highest lp. The characteristics

sizes of polarized cluster of diagonal particles is larger than that of edge ones.

We study bipolar symmetry particles at fixed area fraction φ = 0.5. We choose

a higher φ for bipolar particles than we did for the polar particles, as our previous

observations showed that they do not condense as strongly, and will stay in the fluid

state at low area fraction. A higher φ is more likely to show interesting phenomena.

However, we found that the results at large enough v0 are affected by an issue due

to the interaction model we implemented. Bipolar edge particles got jammed at

all interesting values of activity at this density. The spacing between particles is

smaller than the velocity so that the majority of particle update attempts are blocked.

Therefore, the orientational order φ4 is low and particles remain in a fluid state.

Bipolar diagonal particles show the sign of phase coexistence lp = 17.8.
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Figure 5.5: Two groups of snapshots and order parameters for particles with different
symmetry of activity at fixed lp and φ. All snapshots (second column) are the last
data point with highest lp at the third column. The result of last row does not make
sense since the system got forzen at initial configuration.
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5.2.3 Chiral Particles

In this section, we study how chiral activity affect the phase state. We have tested

both left and right chiral activity. The results show that left and right chiralities are

symmetric so that the phase behavior are similar. We study chirality on both active

and passive particles.

We add chirality on polar diagonal particles when φ = 0.5, lp = 2.23, v0 = 0.063

and D0 = 0.005. We vary the mean rotational velocity ω0 and plot the results in

Fig 5.6. When ω0 = 0 particles are in the phase coexistence state described earlier.

When we increase the rotational mobility, this ordered state melts and turns into fluid

state whose density is 0.5. Therefore, chiral activity cancels out the effect brought by

translation activity.
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Figure 5.6: Order parameters against the mean value of rotational velocity ω0 when
lp = 2.23 and φ = 0.5. With increasing ω0, system melts from phase coexistence state
to isotropic fluid.

We also add chiral mobility on passive particles. The curves are almost identical

to the isotropic one in Fig 5.4. Therefore it shows that chiral rotation has no effect

on passive particles so that they have identical phase behavior.
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The results are opposite to what we expected. We were expecting particles get

locked since particles rotating along opposite direction would block each other so

that they form a pair. This may come from the limitation of simulation model.

In experiment, all particles can spin at the same time. However in one simulation

step, we only sequentially propose motion of a single particle. This particle does

not realize how its neighboring particles rotate. And thus, the simulation does not

produce gear-like motions of particles spinning simultaneously. In other parallel-

update simulations[39], this problem also exists. They split the simulation box into

subgrids and propose motion of single particle within each subgrid to realize parallel

computing. Therefore, it is impossible to achieve simultaneous motion of all particles

in simulation. In the absence of a good simulation model, it may be best to test the

chiral particles in experiment and then develop better interaction models.

5.3 Conclusion

We realize three different symmetries of activity: polar, bipolar and chiral in

simulation and study how the symmetry and orientation of the mobility affect the

phase behavior. The results show that various symmetry activities have quite different

phase behaviors. Polar particles evolves from isotropic fluid state to phase coexistence

between fluid and ordered state and finally to fully ordered state with increasing

persistence length lp. Bipolar activity also shows phase coexistence but this sets in

only at nearly the large activity we used in the simulation. Our simulations do not

reveal what happens after phase coexistence, as we are not able to reach extremely

high lp with our simulation model. Particles with chiral activity show phase behavior

that is similar to isotropic particles. By itself, chiral symmetry does not bring any

new phase behavior.

Furthermore, for each choice of symmetry of activity , we test also two orientations

of the mobility axis. Our data shows that for a given symmetry, particles with different
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mobiity orientation have similar trends in their phase behavior, and the differences

are largely quantitative and not qualitative.
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CHAPTER 6

FUTURE DIRECTIONS

The system of vibrated self-propelled polar hard squares are just a start pointing

in the study of active phase diagrams. There are many possible areas to further

explore of which I discuss some in this section.

6.1 Mixture of Passive and Active Particles

With currently available particles, we can explore systems of active and passive

mixtures. Passive particles would have identical design used in our group’s previous

work[18] - these particles have a cylindrical knob on the top like Lego squares, so

that their motion is isotropic even though they are square in their 2D projection. In

this system, we can control the number ratio of active to passive particles and thus

further extend a third axis on the phase diagram. This allows a different way to

tuning a system from completely passive to completely active. At one limit, you can

see how a dilute set of active particles moves in a passive background, and at the other

limit, you can study how a small set of passive particles might disrupt activity-driven

ordering.

The potential challenges are controlling the dynamic parameters of two different

types of particles in the same cell. Ideally, we would wish to design particles with all

the same diffusion parameters, but make only the mobility non-zero. There are prac-

tical hurdles to this, as adding features that confer mobility, also change the diffusion

constants. Then, the first question is what is a good ratio of DR(active)/DR(passive).

If we change this ratio, will we have same result? Secondly, if we pick a particular
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value of the DR ratio to work with, how can we work particles with different per-

sistence length? The rotational diffusion DR of our particle is highly dependent on

the ratio of particle height to gap between the upper plate and substrate of cell. If

we increase the gap and try to keep the same DR ratio, this might also affect the

diffusion constants of passive particles. This idea could also be easily investigated in

simulation as we just need to change the dynamical parameters in our code.

There is another possible practical challenge to solve in detection. If we use larger

passive square particles (e.g. with sidelength 7.62mm, as in this thesis), it means we

are able to use convolution detection techniques, rather than the CNN. As shown in

Fig 4.2 [NM which figure are you citing here??], active and passive particles have the

same design. Sizes of central dots have some difference so that it is difficult to use one

parameter(width of Gaussian kernel) to find all the central points. One possibility is

manufacturing new particles with same-sized central dots. Detection of corner dots

do not have this issue since the corner sizes are similar in these two type of particles.

Even if we find out all the position, we need to design a mechanism to differentiate the

particles. One possible solution is printing one of the particles in white material and

marked in black paint so that we can have two separate data. If we use particles with

smaller particles, we could solve the detection issue with machine learning algorithm.

One main drawback of the current algorithm is that it only works for square with

fixed design. If we have a new particle shape, for example triangle, or have new

marker design, we will need to reconstruct the training data set from scratch.

6.2 Phase Diagram of Other Possible Particles

We can change the property of single passive or active particles and explore phase

diagram of that particle. There are several options in the types of new particles that

are motivated by the results of our simulations.
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1. Realization of all particles experimentally in what we described Chapter 5 and

study the phase diagram. It will be a big project to design active particles that

have nontrivial phase behavior. We could compare the results of experiments

and simulations.

2. Change the footprint of particle. Possible options include triangle, pentagon and

hexagon. The square, triangle and hexagon have ordered phases; the pentagon

(or other shapes that do not tile the plane) might be particularly interesting.

We could start from passive particles and compare how geometric shape affects

the phase behavior of isotropic system. Ideally, the rotational noise, controlled

by the gap height, should be consistent in all shapes of particles considered.

Once we have studied the phase diagram of passive versions of these particles,

we could further add activity to particles as we have done in this thesis with

square shapes.

6.3 High Performance Simulation

Currently, all simulations are executed in a single core CPU. We could significantly

improve the speed by parallelism using GPU. This work requires expertise in GPU

calculation and high performance calculation. A good example and reference is the

work by Anderson[39]. They provide an interface to work on passive hard particles.
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