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ABSTRACT

PRACTICAL METHODS FOR HIGH-DIMENSIONAL
DATA PUBLICATION WITH DIFFERENTIAL PRIVACY

MAY 2022

RYAN MCKENNA

B.Sc., UNIVERSITY OF DELAWARE

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau

In recent years, differential privacy has seen significant growth, and has been

widely embraced as the dominant privacy definition by the research community. Much

progress has been made on designing theoretically principled and practically sound

privacy mechanisms. There have even been some real-world deployments of differential

privacy, although it has not yet seen widespread adoption. One challenge is that

for some problems, there is a gap between the privacy budget required to have a

meaningful privacy guarantee and to retain data utility. A second challenge is that

many privacy mechanisms have trouble scaling to high-dimensional data, limiting

their applicability to real world data.

In this work, we take significant steps towards addressing these challenges, by

designing mechanisms and tools that mitigate this gap and scale effectively to high-

dimensional settings. This thesis consists of three high-level contributions. In Chap-

ter 3, we present HDMM, a mechanism for linear query answering under differential

vi



privacy that scales effectively to large multi-dimensional domains while providing

more utility than a large body of prior work. In Chapter 4, we present PrivatePGM,

a general-purpose post-processing tool that can estimate a discrete data distribu-

tion from noisy observations, improving the utility and scalability of many existing

mechanisms at no cost to privacy. In Chapter 5, we present AIM, a mechanism for

differentially private synthetic data generation, that leverages PrivatePGM to scale

to high-dimensional settings, while introducing a number of novel components to

overcome the utility limitations of prior work.
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CHAPTER 1

INTRODUCTION

In an increasingly digital world, nearly every aspect of our online presence is

tracked and recorded, ranging from our social network, our location history, our search

history, the messages we send, the apps we use, the links we click, the videos and

movies we watch, and the amount of time we spend on different web pages. This data

clearly has immense value to both businesses and research institutions to personalize

products and learn about human behavior, but it also contains sensitive information

that some people would prefer not to share. Due to regulatory and ethical constraints,

these privacy concerns can prevent access to the data for analysis, which in turn slows

down research progress and business insights.

Differential privacy [30] offers an appealing solution to this problem: it allows for

the analysis of sensitive data, while providing formal guarantees about data privacy. It

is a mathematical privacy definition with a quantifiable notion of privacy. Informally,

the guarantee to individuals is that the output of a differentially private mechanism

will be roughly the same (in distribution) whether or not that individual’s data was

used. The level of closeness required by the definition is determined by the parameter

ε, which is simply called the “privacy budget”. Lower values of ε provide a stronger

level of privacy protection, where ε = 1 is viewed as an acceptable level of privacy

protection, ε = 0.1 is considered strong privacy protection, and ε = 10 is considered

weak privacy protection [31].

For individuals, differential privacy is a compelling guarantee, as it provides

assurance that they will not face too much additional harm if their data is used in a
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differentially private computation. For data curators, differential privacy is appealing

because it inoculates them from risk stemming from a data release. Differential privacy

has seen increased real-world adoption in recent years, being embraced by the U.S.

Census [65, 2], Google [33], Apple [90], Microsoft [25], LinkedIn [87], Uber [49], and

Meta [76]. While these real-world deployments are certainly encouraging, there are

several challenges preventing differential privacy from gaining wider-spread adoption,

enumerated and discussed below.

Requires specialization Differential privacy is simply a definition that specifies

what it means for a given mechanism to be private, but it does not specify how to

design such a mechanism. As a result, in order to use differential privacy in a real world

application, experts familiar with the field have to carefully understand the domain

and problem setting and develop a mechanism for the task at hand. The research

community has developed mechanisms for some of the most commonly encountered

problems, and the space is constantly expanding as the community develops new

techniques. Nevertheless, identifying the right techniques to use and translating

research into application requires specialized expertise in differential privacy to get

right.

Poor privacy/utility trade-off The privacy budget used in the real-world deploy-

ments listed above varied across applications, with Apple using ε = 8, LinkedIn using

ε = 34.9, and the U.S. Census Bureau using ε = 19.6 [23]. These large privacy budgets

provide weak privacy protection, but were needed to ensure the released data met

utility requirements. This problem can be partially alleviated through the development

of new and better mechanisms, that provide more utility for the same level of privacy.

Indeed, there is a constant effort from the community to push the privacy/utility

frontier forward with new techniques. Despite this research, for some problems the
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best mechanisms available may not be able to simultaneously provide a level of privacy

and utility that is acceptable in real-world applications.

Difficulty scaling to high-dimensional settings In additional to privacy and

utility, scalability is an important consideration when applying differential privacy in

practice. High-dimensional datasets present unique challenges and as a result many

mechanisms are limited to low-dimensional settings. This can be a severe hindrance

to real-world tasks which often involve high-dimensional data.

1.1 Problem scope and prior work

In this thesis, we focus on two related problems: linear query answering and

synthetic data generation under differential privacy. There has been substantial work

on both of these problems, with a variety of mechanisms available for them. Central

to both of these problems is the concept of a query workload.

1.1.1 Query workloads

At a high level, a workload is simply a specification of all queries an analyst

is interested in, and possibly their relative importance. In this thesis, we focus

our attention on the class of linear queries, an expressive query class that includes

queries that count the number of records in a dataset satisfying a given predicate

(e.g., “how many individuals in the dataset have salary ≥ 50K”). Linear query

workloads are expressive enough to encode collections of such queries, and can be

used to directly compute a wide variety of useful statistical summaries, including

histograms, marginals, range queries, and means. Moreover, these statistics can be

used to fit a variety of probabilistic models, including Bernoulli distributions, binomial

distributions, Poisson distributions, normal distributions, as well as more complex

models like Bayesian networks [110] and Markov random fields [20, 8]. Additionally,

the statistics needed to train popular machine learning models for classification like

3



logistic regression [77], linear support vector machines [77], naive bayes [77], decision

trees [77], random forests [77], xgboost [21], and lightgbm [51] can be approximated

well by linear query workloads. These examples demonstrate the expressive capacity

of linear query workloads, and highlight their applicability to a wide variety of data

analytics tasks.

1.1.2 Mechanisms for linear query answering

In the linear query answering problem, we are given a workload of linear queries,

and our goal is to design a mechanism that answers all queries in the workload as

accurately as possible while preserving differential privacy. This is a fundamental

problem in the field and its study dates back to the invention of differential privacy

itself in the seminal work of Dwork et al. [30], and it is still one of the most well-studied

problems in the field [9, 44, 80, 59, 14, 28, 29, 11, 79, 12, 32, 43, 40, 112, 107, 60, 114,

101, 84, 56, 106, 105, 83, 82, 108, 104, 58, 22, 3, 100, 26, 57, 47, 6, 84, 111].

One simple way to privately answer a linear query is to use a noise-addition

mechanism, such as the Laplace or Gaussian mechanism. There, we compute the true

answer to the query, and add carefully calibrated Laplace or Gaussian noise to this

quantity, releasing only the noisy answer. For a single linear query this is in some

sense the best possible mechanism, and this approach can be easily extended to answer

a workload of linear queries by invoking a noise addition mechanism for each query

in the workload, and by increasing the noise magnitude with the number of queries

in the workload. While it is easy to show that this mechanism satisfies differential

privacy, it generally has suboptimal utility because it does not exploit correlation

between workload queries, as it simply treats each query independently.

A better approach that has been widely adopted and thoroughly studied is based

on the select-measure-reconstruct paradigm [112, 107, 60, 114, 101, 84, 56, 106,

105, 83, 82, 108, 104, 58, 22, 3, 100, 26, 57, 47, 60]. Mechanisms in this class work
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by first selecting a new set of queries to measure (different from the workload),

then privately measuring those queries using a noise addition mechanism, and

finally reconstructing answers to the workload queries from the noisy measurements.

The select-measure-reconstruct paradigm generalizes the simple noise-addition

mechanism described above, which can be defined by simply selecting the workload

queries within this framework. More intelligent query selection and reconstruction

procedures can lead to orders-of-magnitude improvement in utility, with no cost to

privacy.

This class of mechanisms can be naturally partitioned into two groups: data-

independent mechanisms and data-dependent mechanisms, which we discuss separately

in the paragraphs below. Data-independent mechanisms select queries based only

the workload, while data-dependent mechanisms may select queries based on both

the workload and the data. Generally, data-independent mechanisms provide unbiased

answers to the workload queries while data-dependent mechanisms do not. This is a

useful statistical property and it allows us to reason about the error distribution of

the mechanism independently of the underlying dataset. However, it can often be a

worthwhile trade-off to introduce a small amount of bias for reductions in variance, as

data-dependent mechanisms do. Empirical studies have found that the best class of

techniques to use depends on the privacy budget and amount of data available, with

data-independent mechanisms performing best when these are sufficiently large [46].

Theoretical work also supports these findings [80, 79].

Data-independent mechanisms In 2007, Barak et al. [6] proposed the Fourier

mechanism for answering workloads containing low-dimensional marginal queries. This

mechanism selects and measures a set of “Fourier basis“ queries that have the property

that the answer to every marginal query in the workload can be expressed as a linear

combination of answers to the selected Fourier queries. These Fourier queries provide

a compact and non-redundant encoding of the marginal queries in the workload, and
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require less noise to answer privately than the workload itself, while allowing the

workload queries to be reconstructed without magnifying the noise too much. As a

result this mechanism provides lower error than a direct application of the Laplace

mechanism, as well as other natural baselines.

In 2010, Hay et al. [47] proposed the Hierarchical mechanism for range query

workloads. Like the Fourier mechanism, the Hierarchical mechanism is also based

on the select-measure-reconstruct paradigm. However, this mechanism instead

selects hierarchically-structured interval queries which are better tailored for answering

range query workloads. As before, this mechanism offers substantially lower error than

a direct application of the Laplace mechanism, since the selected hierarchical queries

can be answered with much less noise than the workload queries, and any range query

in the workload can be reconstructed via a linear combination of a small number of

answers to the measured queries. In concurrent work Xiao et al. proposed the Privelet

mechanism, which is based on similar principles and offers comparable error rates to

the Hierarchical mechanism [57, 46].

While these mechanisms offer significant improvements over a direct application

of the Laplace mechanism, they leave room for improvement. In 2010, Li et al.

proposed the Matrix Mechanism to generalize and improve other mechanisms in the

select-measure-reconstruct paradigm. The Matrix Mechanism utilizes a matrix

representation for the workload queries and the selected “strategy” queries. For

any workload and strategy matrices, the expected total squared error of the Matrix

Mechanism can be computed in closed form in terms of elementary matrix operations.

As a result, the strategy that minimizes expected error can be selected by solving a

numerical optimization problem. By solving this optimization problem, we obtain

a set of queries that minimizes the expected error of the mechanism. This clearly

improves existing mechanisms using fixed query strategies in principle, but it can
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be quite expensive to solve this optimization exactly in real-world settings, and as a

result the Matrix Mechanism often fails to run in practice.

Follow-up work carefully studied the optimization problem underlying the Matrix

Mechanism and proposed various gradient-based algorithms to approximately solve the

underlying optimization problem, including LRM [108], EigenDesign [58], GreedyH [56],

and COA [107]. These techniques do not necessarily globally optimize the expected

error, although they do produce approximately optimal solutions and scale more

favorably than the Matrix Mechanism. However, the scalability of these techniques is

still limited by the need to represent the workload queries in matrix form, which can

be prohibitively expensive in many real-world settings. For example, one of the U.S.

Census workloads we study in Chapter 3 would require 22 TB to represent in matrix

form, and it is hopelessly infeasible to run these mechanisms on workloads this large.

The special-purpose mechanisms like Fourier, Hierarchical, Privelet and many others

[26, 83, 82] avoid the matrix representation of the workload by imposing restrictions on

the workload or workload class. Consequently, these mechanisms scale more favorably

than the Matrix Mechanism, although this increased scalability comes at the cost of

reduced generality, as these mechanisms are limited in the class of workloads they can

support. In short there are a lack of methods that simultaneously provide generality

to a wide class of input workloads and scalability to large domains, which are both

essential in real-world applications.

Data-dependent mechanisms One of the most notable data-dependent mech-

anisms is MWEM [41], which is an iterative, greedy mechanism for linear query

answering. MWEM iteratively selects a small subset of “hard” queries in the workload,

one at at time, which it measures privately via the Laplace mechanism. Specifically,

MWEM maintains an estimate of the data distribution, and in each round it identifies

a single query in the workload that is poorly approximated under the current estimate

of the data distribution. By selecting these worst approximated queries MWEM

7



adaptively learns where the estimated data distribution is under-performing, and it

makes corrections to improve accuracy on those queries. When the amount of data

or privacy budget is small, MWEM can outperform even the best data-independent

mechanisms, because it measures a much smaller set of queries, which require less

noise to privatize.

Other notable mechanisms inspired by MWEM include DualQuery [36] and FEM [95].

These mechanisms are based on the same underlying principles as MWEM, but are

intended to scale more favorably to high-dimensional settings. While these mechanisms

do indeed scale better than MWEM, this typically comes at the cost of decreased utility

in low-dimensional settings; i.e., DualQuery and FEM are outperformed by MWEM

when MWEM is able to run [36].

1.1.3 Mechanisms for synthetic data generation

In the synthetic data generation problem, our goal is to design a mechanism that

produces synthetic data that preserves important statistical properties of the original

dataset, while exactly matching the domain of the original dataset. The important

statistical properties can be most naturally specified through a query workload, and

the quality of the underlying synthetic data is evaluated with respect to the query

workload. From this perspective, the synthetic data generation problem is closely

related to the linear query answering problem, and indeed any mechanism for synthetic

data generation can immediately be used for linear query answering, although the

reverse is not true in general. For data analysts, synthetic data is a more convenient

modality than noisy workload query answers, since they are likely already familiar

with the dataset and domain, and have analytics pipelines in place to work with

it. Moreover, synthetic data can be used to answer any downstream query, even

those that were not specified in the original workload, including complex non-linear
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queries.1 Differentially private synthetic data has been identified as an important open

problem facing the privacy community, and has been the basis of multiple competitions

sponsored by the National Institute of Standards and Technology (NIST) [98, 70, 74].

Tools for synthetic data generation that preserve privacy and utility are highly sought

after, as evidence by the large (and growing) list of startup companies offering such

services [24].

Many mechanisms for synthetic data generation also follow the select-measure-

reconstruct paradigm, although in the last step we reconstruct synthetic data

rather than workload query answers. With some simple modifications to this step,

many of the mechanisms described in Section 1.1.2 can be used to generate differentially

private synthetic data. However, these mechanisms rely on a vector representation of

the dataset, which prevents them from scaling to high-dimensional settings. Indeed,

one of the central challenges to the problem of differentially private synthetic data

generation is scalability.

One of the first scalable mechanisms for differentially private synthetic data,

PrivBayes [110], works by carefully selecting a set of low-dimensional marginal queries

to measure, then uses the noisy marginals to fit the parameters of a Bayesian network

that is used to sample synthetic records. The Bayesian network provides a compact

representation for the data distribution, allowing this mechanism to scale effectively

to high-dimensional settings.

Since the first NIST competition in 2019, there has been renewed interest in this

problem, and a number of new mechanisms have been proposed [70, 116, 5, 64, 63, 71,

16]. Like PrivBayes, these other mechanisms also scale by selecting low-dimensional

marginal queries, although they differ in their methodology for selecting these marginal

queries, and they utilize different representations for the underlying data distribution

1While synthetic data can be used to answer essentially any query, it will generally provide the
best accuracy for queries in the workload.
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as well. Among these mechanisms, FEM [95], RAP [5], and GEM [64] select queries

based on the workload, while mechanisms like PrivBayes [110], PrivSyn [116], PrivMRF

[16], and MST [70] ignore the workload, and instead try to learn the data distribution

holistically. Interestingly, the utility of the workload-aware mechanisms is often less

than the best workload-agnostic mechanisms, even when utility is measured by the

workload [71]. This is a clear suboptimality in existing work and highlights a need for

more research in this space.

1.2 Gaps in the literature and thesis contributions

In this section, we reiterate the gaps in existing work and summarize how we

overcome them in this thesis.

1.2.1 Lack of general, scalable, and accurate mechanisms for linear queries

Real-world workloads often involve multi-dimensional data and contain complex,

customized queries. For example, the U.S. Census publishes demographic statistics

about the U.S. population every ten years in the “Summary File 1”. While the queries

needed to compute these statistics are all linear, there are 215,852 total queries that

are defined over a domain with six attributes. Existing special-purpose methods do

not support this type of customized workload well, while general-purpose methods

do not scale well to these large multi-dimensional domains. Simple baselines like the

Laplace mechanism may be able to handle these complex workloads and large domains,

but they usually offer suboptimal accuracy.

In Chapter 3, we present the High-Dimensional Matrix Mechanism (HDMM), a

new mechanism for linear query answering that offers generality to a wide class of

workloads, scalability to large multi-dimensional domains, and state-of-the-art accuracy

in a variety of settings. HDMM can be seen as a practical instantiation of the Matrix

Mechanism, and is inspired by the same principles that underlie it. HDMM overcomes
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the main scalability limitations of the Matrix Mechanism by utilizing novel implicit

matrix representations for the query workload, and developing new optimization

routines that exploit these representations. As a result of these innovations, HDMM

enjoys the scalability of special-purpose mechanisms, while also retaining much of

the generality and utility of the Matrix Mechanism. In Section 3.10, we show that

HDMM consistently outperforms all existing data-independent mechanism on a variety

of single- and multi-dimensional domains and workloads, while scaling much better

than other general-purpose mechanisms.

1.2.2 No unified method for the reconstruct sub-problem

Often, real-world datasets contain even more than six attributes, and many differ-

entially private mechanisms, including HDMM, are unable to scale to these settings.

The primary bottleneck of these mechanisms is in the reconstruct step, where they

estimate the underlying data distribution from the noisy measurements. These meth-

ods represent the data distribution in vector form, which is often intractably large for

high-dimensional domains.

Moreover, within the select-measure-reconstruct paradigm, many mechanisms

propose their own techniques for the reconstruct subproblem, although they are often

based on similar principles. For example, H2 [47], HB [83], Privelet [100], DataCube

[26], the Matrix Mechanism [57], and HDMM [69] all solve an ordinary least squares

problem to estimate the underlying data distribution, but utilize different customized

algorithms to solve this problem tailored to the measured queries. In contrast, Fourier

[6], PriView [84], MWEM [41], and DualQuery [36] propose other procedures which

are unique to their mechanisms. In addition to these special-purpose approaches to

the reconstruct subproblem, several general-purpose solutions have been proposed

[55, 60, 109]. These existing general-purpose approaches, as well as many special

purpose approaches rely on the vector representation of the data, and hence fail to
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scale to high-dimensional settings. There are a few notable exceptions of techniques

that can scale to high-dimensional settings by avoiding the data vector representation,

but they have limited applicability [36, 84, 110].

In Chapter 4, we present PrivatePGM, a general and scalable solution to the

reconstruct subproblem that can replace existing reconstruct methods in virtually

any mechanism in the select-measure-reconstruct paradigm. PrivatePGM is appli-

cable to both the linear query answering problem and the synthetic data generation

problem, and can be used for either task. PrivatePGM is most effective when the noisy

measurements only depend on the data through its low-dimensional marginals, as this

allows it to avoid the intractable vector representation of the data distribution in favor

of a more compact representation as a probabilistic graphical model. The assumption

that the noisy measurements only depend on the data through its low-dimensional

marginals is natural when working with high-dimensional data, and indeed many

mechanisms for both linear query answering and synthetic data generation satisfy this

assumption [110, 84, 26, 116, 70, 71, 64, 5].

The scalability of PrivatePGM depends on the noisy measurements, and it is capable

of scaling up to arbitrarily large domains if the measurements allow it. In Section 4.6,

we scale PrivatePGM up to 1000-dimensional domains, far beyond the domains prior

work could handle. We also integrate PrivatePGM into existing mechanisms, and

show that it consistently boosts both the scalability and utility of these mechanisms.

Additionally, because it provides a general and scalable solution to the reconstruct

subproblem, PrivatePGM can also be used as a component of future mechanisms in

the select-measure-reconstruct paradigm, allowing future research to think more

carefully about the equally important select sub-problem. Indeed, in follow-up work,

PrivatePGM has been used in exactly this way by MST [70], PrivMRF [16], and AIM

[71], the latter of which is presented in Chapter 5.
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1.2.3 Lack of workload-aware synthetic data mechanisms

Synthetic data generation is an important open problem facing the community

and there has been significant progress on this problem in recent years, with a

variety of mechanisms being proposed [110, 116, 16, 70, 95, 5, 64]. However, a careful

survey of the field reveals obvious suboptimalities in existing work [71]. In real-world

deployments of differential privacy, these suboptimalities hurt utility and lead to an

inefficient use of the privacy budget, which is unacceptable in practice, where the

privacy budget is considered a precious resource that must be used judiciously.

One common suboptimality of existing mechanisms is workload-awareness. Several

mechanisms, including PrivBayes [110], PrivSyn [116], PrivMRF [16], and MST [70], do

not consider the workload to be part of a problem statement, and instead attempt

generate synthetic data that provides utility on all possible workloads. While this

sounds appealing, any mechanism that tries to provide utility for all possible workloads

will inevitably have suboptimal utility on the workload that actually matters. Recently,

workload-aware synthetic data generation mechanisms have been proposed, including

DualQuery [36], FEM [95], RAP [5], and GEM [64]. However, despite the clear drawback

of workload-agnostic mechanisms, our experiments in Section 5.6 reveal that they

consistently outperform workload-aware mechanisms, even when utility is measured

by the workload, a surprising result that highlights a need for more work in this space.

In Chapter 5, we present AIM [71], a new mechanism for workload-aware synthetic

data generation, designed by carefully surveying the field and identifying the best

elements of existing mechanisms, while also identifying and overcoming the limitations

of prior approaches. As a result of these carefully thought out design decisions, AIM

consistently outperforms all prior work by significant margins in a wide variety of

experimental settings, as we show in Section 5.6. These improvements over prior work

are welcomed and needed in real-world deployments of differential privacy in order to

achieve better privacy/utility trade-offs.
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1.3 Impact

Some of the work presented in this thesis has had real-world impact. For example,

HDMM (Chapter 3) was licensed by Tumult Labs, a startup company offering differen-

tial privacy consulting and contracting services, and was considered for use by the U.S.

Census Bureau in the 2020 decennial census. My expertise on differentially private

linear query answering has been recognized by the broader community in various

ways. In 2019, I gave a tutorial on linear query answering alongside two other experts

in the field, Gerome Miklau and Sasho Nikolov, at the “Data Privacy: Foundations

and Applications” seminar at the Simons institute (UC Berkeley). In addition, I

contributed a blog post on linear query answering to the NIST Differential Privacy

Blog Series [67] in order to make some of the key ideas behind HDMM accessible to a

broad audience.

In 2019, I participated in the NIST differential privacy synthetic data competition

and developed a new mechanism using PrivatePGM that won first place in this

competition [70]. In 2021, I competed in the follow-up temporal map competition

on team minutemen, and we finished in second place with another new mechanism

built on top of PrivatePGM [74]. Although our team did not win the follow-up

competition, the winning team (N-CRiPT) also used PrivatePGM in their solution

[16], which is perhaps even better evidence of the impact that PrivatePGM is having

on the field. Additionally, I contributed a blog post to differentialprivacy.org

to provide a high level accessible overview of PrivatePGM and other general-purpose

and scalable approaches to the reconstruct problem [68], and to encourage synthetic

data enthusiasts to use our open source repository. Our open source repository was

designed not just to allow researchers to replicate the experiments in our paper, but

to easily integrate PrivatePGM (as well as other general-purpose approaches for the

reconstruct problem) into their own work. It is thoroughly documented, includes

a variety of examples and unit tests, and requires minimal dependencies to install.
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This effort appears to have been successful, as the repository has been forked and

starred dozens of times. My expertise on differentially private synthetic data has been

recognized by the community, and I have been invited to give talks on the topic at a

variety of venues including the Joint Statistical Meetings, the NIST PSCR Differential

Privacy Workshop, the Google Differential Privacy Seminar Series, and several others.

1.4 Additional published work

This thesis draws on work from three papers [69, 73, 71]. Below is a list of

additional published research that is not presented in this thesis.

1. R. McKenna, S. Pradhan, D. Sheldon, G. Miklau, “Relaxed Marginal Consistency
for Differentially Private Query Answering” in Proceedings of 35th International
Conference on Neural Information Processing Systems (NeurIPS), 2021.

2. R. McKenna, G. Miklau, D. Sheldon, “Winning the NIST Contest: A scalable and
general approach to differentially private synthetic data” in Proceedings of the Journal
of Privacy and Confidentiality (JPC) special issue on data challenges, 2021.

3. R. McKenna, D. Sheldon, “Permute-and-Flip: A new mechanism for differentially
private selection” in Proceedings of 34th International Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2020.

4. R. McKenna, R.K. Maity, A. Mazumdar, G. Miklau, “A workload-adaptive mech-
anism for linear queries under local differential privacy” in Proceedings of 46th
International Conference on Very Large Data Bases (VLDB), 2020.

5. D. Pujol, R. McKenna, S. Kuppam, M. Hay, A. Machanavajjhala, G. Miklau, “Fair
Decision Making using Privacy-Protected Data” in Proceedings of 3rd International
Conference on Fairness, Accountability, and Transparency (FAT*), 2020.

6. D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanavajjhala, G. Mik-
lau, “Ektelo: A Framework for Defining Differentially-Private Computations,” in
Proceedings of Special Interest Group on Management of Data (SIGMOD), 2018.

7. G. Bernstein, R. McKenna, T. Sun, M. Hay, G. Miklau, D. Sheldon, “Differentially
Private Learning of Undirected Graphical Models using CGMs,” in Proceedings of
34th International Conference on Machine Learning (ICML), 2017.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the requisite background and notation needed to

understand the remainder of this thesis. Below, we provide definitions and background

on discrete data, linear queries, and differential privacy.

2.1 Discrete data

A dataset D is a multiset of N records, each containing potentially sensitive

information about one individual. Each record x ∈ D is a d-tuple (x1, . . . , xd). The

domain of possible values for xi is denoted by Ωi, which we assume is finite and has

size |Ωi| = ni. The full domain of possible values for x is thus Ω = Ω1 × · · · × Ωd

which has size
∏

i ni = n. We use D to denote the set of all possible datasets, which

is simply ∪∞N=0ΩN . It is often convenient to work with the data vector representation

of D, which we define below.

Definition 1 (Data vector). The data vector representation of D, denoted p, is a

vector indexed by tuples t ∈ Ω, such that p(t) =
∑

x∈D I[x = t].

Informally, p(t) counts the number of occurrences of t in D. It is an unnormalized

probability distribution. In high-dimensional domains, representing the data vector

in this form is infeasible, as the size of p grows exponentially with dimensionality.

In those settings, it is common to instead work with different marginals of the data.

A marginal for a set of attributes r is essentially a data vector of a low-dimensional

projection of D. That is, it is a table that counts the number of occurrences of each

t ∈ Ωr.
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Definition 2 (Marginal vector). Let r ⊆ [d], Ωr =
∏

i∈r Ωi, nr = |Ωr|, and xr =

(xi)i∈r. The marginal on r is a vector µr ∈ Rnr , indexed by domain elements t ∈ Ωr,

such that each entry is a count, i.e., µr(t) =
∑

x∈D 1[xr = t]. We let Mr : D → Rnr

denote the function that computes the marginal on r, i.e., µr = Mr(D).

Note that the marginal on r = [d] is simply the data vector p. In this thesis, we

use the term clique to refer to the attribute subset r, marginal query to denote the

function Mr, and marginal to denote the vector of counts µr = Mr(D).

2.2 Linear queries

In this thesis, we work extensively with the class of linear queries.

Definition 3 (Linear query). A linear query qφ : D → R is a function that can be

expressed as:

qφ(D) =
∑
x∈D

φ(x),

where φ : Ω→ R.

When φ is an indicator function, e.g., φ(x) = 1[xIncome ≥ 50K], qφ is a predicate

counting query. Predicate counting queries are a special-but-common case of linear

queries that demonstrate the expressiveness of the query class. A workload is simply

a collection of m such linear queries, or equivalently a function W : D → Rm. Linear

query workloads can express queries to compute histograms, range queries, empirical

CDFs, marginals, averages, and many more statistical summaries. Linear queries have

a natural vector representation, which can often be more convenient to work with.

Proposition 1 (Query vector). The linear query qφ can be expressed as a vector

q ∈ Rn, indexed by domain elements x ∈ Ω, where q(x) = φ(x). The answer to

the linear query can be evaluated as qφ(D) = q>p, where p is the data vector of D.

Moreover, if φ only depends on x through xr for some clique r ⊆ [d], then φ(x) = ψ(xr)
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and the linear query can be expressed as a vector q ∈ Rnr , indexed by domain elements

t ∈ Ωr, where q(t) = ψ(t). The answer can be evaluated as qφ(D) = q>µr, where

µr = Mr(D).

Since linear queries can be naturally represented as vectors, linear query workloads

can also be naturally represented as matrices, where each row is a query vector. We will

use W ∈ Rm×n to denote a workload matrix, and can evaluate the query answers by

computing the matrix-vector product W (D) = Wp. Similarly, if W only depends on D

through some of it’s attributes, we can instead compute W (D) = Wµr = WMr(D).

2.3 Differential privacy

Differential privacy is mathematical privacy definition that requires the output

distribution of a randomized algorithm to not differ too much between a dataset D

and a neighboring dataset D′ ∼ D. Two datasets D,D′ ∈ D are neighbors if D′ can

be obtained from D by adding or removing a single record.

Definition 4 (Differential Privacy [30]). A randomized mechanism A is (ε, δ)-differentially

private if for any dataset D, any D′ ∼ D, and any subset of possible outputs

S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ exp(ε)× Pr[A(D′) ∈ S] + δ.

When δ = 0, we say that A is ε-differentially private. One celebrated property

of differential privacy is the post-processing principle, which says that differentially

private mechanisms are robust to post-processing in the sense that post-processing

does not affect the privacy guarantee.

Theorem 1 (Postprocessing [31]). Let A be an (ε, δ)-differentially private mechanism,

and let f be an arbitrary function, then the mechanism A′ = f ◦ A is also (ε, δ)-

differentially private.
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A key quantity needed to reason about the privacy of common randomized mecha-

nisms is the sensitivity, defined below.

Definition 5 (Sensitivity). Let f : D → Rk be a vector-valued function of the input

data. The Lp sensitivity of f is ∆p(f) = maxD∼D′ ‖f(D)− f(D′)‖p.

Note that when f is scalar-valued, the Lp sensitivity is the same for all p. It is

common to use p ∈ {1, 2}, with the L1 sensitivity being more common when targeting

ε-DP and the L2 sensitivity being more common when targeting (ε, δ)-DP. It is easy

to verify that both the L1 and L2 sensitivity of any marginal query Mr are equal to 1,

regardless of the attributes in r. This is because one individual can only contribute a

count of one to a single cell of the output vector. The proposition below demonstrates

that the sensitivity of any linear query matrix Q can be readily computed as the

maximum norm of the columns of Q.

Proposition 2 (Sensitivity of a Linear Query Matrix [60]). Let r ⊆ [d] be a clique,

Q ∈ Rm×nr be a linear query matrix, and fQ(D) = QMr(D). The sensitivity of fQ is:

∆p(fQ) = max
x∈Ωr

[ m∑
z=1

Q(z, x)p
]1/p

,

where Q(z, x) is the entry of Q located at row z and column x.

For reasons that will be clear below, we use ‖Q‖L and ‖Q‖G to denote the L1 and

L2 sensitivity of fQ, respectively. We can use the Laplace mechanism to approximate

f(D) in a differentially private manner. We achieve this by adding carefully calibrated

Laplace noise to the true answer, where the magnitude of the noise is determined by

the privacy parameter ε and the L1 sensitivity ∆1(f).
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Definition 6 (Laplace Mechanism). Let f : D → Rk be a vector-valued function of

the input data. The Laplace Mechanism L adds zero-centered i.i.d. Laplace noise with

scale b∆1(f) to each entry of f(D). That is,

Lf (D) = f(D) + Lap(b ·∆1(f))k.

We can also use the Gaussian mechanism to answer f(D) in a differentially private

manner, by adding carefully calibrated Gaussian noise instead of Laplace noise. The

magnitude of noise is calibrated to the L2 sensitivity ∆2(f), which can be much lower

than ∆1(f) in some cases.

Definition 7 (Gaussian Mechanism). Let f : D → Rk be a vector-valued function of

the input data. The Gaussian Mechanism G adds zero-centered i.i.d. Gaussian noise

with scale σ∆2(f) to each entry of f(D). That is,

Gf (D) = f(D) + Gaus(σ ·∆2(f))k.

While the Laplace and Gaussian mechanism can be used to privately answer a

real- or vector-valued function, the Exponential mechanism is another useful primitive

that can be used to select a candidate from a finite set that maximizes some objective

function with bounded sensitivity.

Definition 8 (Exponential Mechanism). Let qr : D → R be quality score function

defined for all r ∈ R and let ε ≥ 0 be a real number. Then the exponential mechanism

outputs a candidate r ∈ R according to the following distribution:

Pr[A(D) = r] ∝ exp
( ε

2∆
· qr(D)

)
,

where ∆ = maxr∈R∆1(qr).
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To reason about the privacy properties of the mechanisms above, it can be useful

to work with an intermediate privacy definition, zero-Concentrated Differential Pri-

vacy (zCDP). zCDP offers a clean framework for analyzing the composition of the

mechanisms above tightly, while allowing for simple conversions to (ε, δ)-DP when

needed.

Definition 9 (zero-Concentrated Differential Privacy (zCDP) [13]). A randomized

mechanism A is ρ-zCDP if for any two neighboring datasets D and D′, and all

α ∈ (1,∞), we have:

Dα(A(D) || A(D′)) ≤ ρ · α,

where Dα(· || ·) is the Rényi divergence of order α between two probability distributions.

The three propositions below state the privacy properties of the Laplace, Gaussian,

and Exponential mechanisms.

Proposition 3 (Privacy of the Laplace Mechanism [30]). The Laplace Mechanism

satisfies ε-DP for ε = 1/b, and ρ-ZCDP for ρ = 1/2b2.

Proposition 4 (Privacy of the Gaussian Mechanism [13]). The Gaussian Mechanism

satisfies ρ-zCDP for ρ = 1/2σ2.

Proposition 5 (Privacy of the Exponential Mechanism [18]). The Exponential Mech-

anism satisfies ε-DP and ρ-zCDP for ρ = ε2/8.

Proposition 6 provides a useful guarantee pertaining to multiple adaptive invo-

cations of zCDP mechanisms. While the proposition below covers 2-fold adaptive

composition, it can be inductively applied to obtain analogous k-fold guarantees.

Proposition 6 (Adaptive Composition of zCDP Mechanisms [13]). Let A1 : D →

R1 be ρ1-zCDP and A2 : D × R1 → R2 be ρ2-zCDP. Then the mechanism A =

A2(D,A1(D)) is (ρ1 + ρ2)-zCDP.
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Finally, to obtain (ε, δ)-DP guarantees from ρ-zCDP guarantees, we can invoke

Proposition 7 below.

Proposition 7 (zCDP to DP [17]). If a mechanism A satisfies ρ-zCDP, it also

satisfies (ε, δ)-differential privacy for all ε ≥ 0 and

δ = min
α>1

exp
(
(α− 1)(αρ− ε)

)
α− 1

(
1− 1

α

)α
.
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CHAPTER 3

HDMM: OPTIMIZING ERROR OF CONJUNCTIVE
LINEAR QUERIES UNDER DIFFERENTIAL PRIVACY

3.1 Motivation

In this chapter, we consider the problem of linear query answering under differential

privacy. That is, our goal is to release answers to a given workload of linear queries

while satisfying differential privacy. In particular, we study the Matrix Mechanism

[57], a mechanism in the select-measure-reconstruct paradigm that generalizes

many existing mechanisms for this task [112, 107, 60, 114, 101, 84, 56, 106, 105, 83,

82, 108, 104, 58, 22, 3, 100, 26, 57, 47, 60]. Just like all methods in this paradigm, the

Matrix Mechanism consists of three steps: select a set of strategy queries, measure

the strategy queries privately with the Laplace or Gaussian mechanism, and finally

reconstruct workload query answers via post-processing.

The Matrix Mechanism represents the workload and strategy in matrix form, and the

data in vector form. With this representation, the select, measure, and reconstruct

steps can be completely defined in the language of linear algebra. In addition, there

is a simple formula for the expected error of any selected strategy matrix in terms

of elementary matrix operations. This enables the Matrix Mechanism to select the

optimal strategy (i.e., the one that offers least expected error) by solving a numerical

optimization problem.

Using a matrix to represent a workload is appealing because the representation

is expressive enough to capture an arbitrary collection of linear queries queries, and

it reveals any structure that may exist between the workload queries. However, the
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size of the workload matrix is equal to the number of queries times the size of the

domain, and it is infeasible to represent large workloads defined over multi-dimensional

domains as a matrix. Moreover, solving the optimization problem underlying strategy

selection is nontrivial and expensive. As a result, the Matrix Mechanism is not very

scalable.

Overview of approach and contributions

This chapter describes the High Dimensional Matrix Mechanism (HDMM), which

is a practical instantiation of the Matrix Mechanism, capable of scaling to large multi-

dimensional domains. HDMM offers the flexibility and workload-adaptivity of the

Matrix Mechanism, while offering the scalability of simpler mechanisms. The three

items listed below distinguish HDMM from the Matrix Mechanism:

• The Matrix Mechanism represents query workloads explicitly, as fully materialized

matrices, while HDMM uses a compact implicit matrix representation. This

permits a lossless representation of a particular class of queries that avoids a

representation exponential in the number of attributes. The implicit represen-

tation consists of sub-workload matrices (usually one per attribute) which are

used as factors of a Kronecker product. Further, we allow the workload to be

expressed as unions of such Kronecker terms. This allows us to represent large

multi-dimensional workloads efficiently while maintaining the key benefits that

the explicit matrix representation offers.

• The numerical optimization problem at the heart of the Matrix Mechanism

is practically infeasible, even for a single attribute with a domain of size 10.

HDMM introduces four optimization routines for strategy selection: OPT0,

OPT⊗, OPT+, and OPTM. OPT0 is designed for explicitly represented workloads,

and can scale to domains as large as 8192. OPT⊗, OPT+, and OPTM are

three different techniques for optimizing implicitly represented workloads (with
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implicitly represented strategies), and can scale to significantly larger domains.

These optimization routines differ in the space of strategies they consider. In all

cases, the strategy search space is chosen so that is expressive enough to encode

high-quality strategies, while also enabling tractable optimization.

• We also propose efficient algorithms for the measure and reconstruct steps of

HDMM. In the Matrix Mechanism, these steps are implemented by performing

matrix operations with the explicit workload and strategy matrices and the data

vector. HDMM exploits the implicit representation of the selected strategies to

significantly speed up these steps.

As a result of these distinguishing items, HDMM overcomes the main scalability

limitations of the Matrix Mechanism, and runs effectively on both low- and high-

dimensional workloads. In fact, in our experiments, we find it has higher accuracy

than all prior select-measure-reconstruct techniques, even on input workloads for which

the prior techniques were specifically designed. It also achieves reasonable runtime

and scales more effectively than prior work that performs non-trivial optimization (see

Section 3.10 for a detailed scalability evaluation). The main bottleneck of HDMM is

representing the data in vector form, which requires space proportional to the domain

size; HDMM can scale to domains as large as 109.

Organization

This chapter is organized as follows. In Section 3.2 we setup the problem and

introduce the Matrix Mechanism. In Section 3.3, we describe OPT0, an optimization

routine that approximately solves the Matrix Mechanism optimization problem for

explicitly represented workloads. In Section 3.4, we show how many common workloads

over high-dimensional domains can be implicitly represented in terms of Kronecker

products. In Section 3.5, we describe OPT⊗ and OPT+: two optimization routines

that can effectively optimize implicitly represented workloads. In Section 3.6, we
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show how marginal query workloads can be represented implicitly, using an even more

compact representation than the one given in Section 3.4. In Section 3.7, we describe

OPTM, an optimization routine that can efficiently optimize implicitly represented

workloads with marginal query strategies. In Section 3.9, we describe the remaining

steps of HDMM, including how to exploit the implicit representations to efficiently

measure the strategy queries and reconstruct the answers to the workload queries.

We perform an experimental evaluation of HDMM in Section 3.10.

3.2 Problem setup

Our goal is to design a differentially-private mechanism A : D → Rm that answers

a given workload W of m linear queries with low expected total squared error (TSE).

Definition 10 (Expected Error [57]). Given a workload W of m linear queries and a

differentially-private mechanism A, the expected total squared error is:

TSE(W,A) = max
D∈D

E[‖W (D)−A(D)‖2
2]

where the expectation is taken over the randomness in the privacy mechanism A.

In this chapter, our focus will be on unbiased mechanisms which produce correct

answers in expectation. For this class of mechanisms, the TSE is the same for all

datasets D, making it easy to reason about. As TSE is our main focus in this chapter,

we will simply use the term “expected error” when referring to it. We can directly

apply the Laplace mechanism (Definition 6) or Gaussian mechanism (Definition 7) to

privately answer the query workload. As we show below, we can readily reason about

the expected error of both these mechanisms.
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Proposition 8 (Error of Laplace and Gaussian mechanisms). Given a workload W ,

the Laplace and Gaussian mechanisms are unbiased and have the following expected

error:

TSE(W,L) = 2mb2∆1(W )2, TSE(W,G) = mσ2∆2(W )2,

The proof of this statement follows directly from the definition of the Laplace

and Gaussian mechanism, by analyzing the variance of the noise added. As evident

by Proposition 8, the expected error of these mechanisms depends crucially on the

sensitivity of the query workload W , and if this is large then the TSE will also be

large. We now introduce a generalization of these mechanisms that often has better

expected error.

3.2.1 The Matrix Mechanism

The core idea of the Matrix Mechanism is to apply either the Laplace of Gaussian

mechanism A on a new query strategy Q, then use the noisy answers to the queries in

Q : D → Rp to estimate answers to the queries in W . The benefits of this approach

will become clear when we reason about the expected error. As the name implies, the

Matrix Mechanism relies heavily on the matrix representation of the query workload

and query strategy (Proposition 1), denoted W and Q respectively.

Definition 11 (Matrix mechanism [57]). Given a workload W : D → Rm and a

strategy Q : D → Rp, and a privacy mechanism AQ that answers Q (either Laplace or

Gaussian), the Matrix Mechanism is defined as:

MW,Q,A(D) = WQ+AQ(D),

where W and Q are the workload matrix and strategy matrix, and Q+ is the pseudo-

inverse of Q.
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The privacy of the Matrix Mechanism follows from the privacy of A, since that

is the only part of the mechanism that has access to the true data. Under some

mild conditions stated below, the Matrix Mechanism is unbiased and the error can be

expressed analytically as shown below:

Proposition 9 (Error of the Matrix Mechanism [57]). The Matrix Mechanism is

unbiased, i.e., E[MW,Q,A(D)] = W (D), and has the following expected error:

TSE(W,MW,Q,A) = TSE(Q,A)
∥∥WQ+

∥∥2

F

∝ ‖Q‖2
A

∥∥WQ+
∥∥2

F

as long as WQ+Q = W and A adds i.i.d. noise with mean 0. Here, ‖Q‖A is the Lp

sensitivity of the query matrix Q (Proposition 2), where p = 1 if A = L and p = 2 if

A = G.

When invoked with Q = W , the Matrix Mechanism is very similar to base mechanism

A, but the error is typically lower. The term ‖WW+‖2
F in the error formula is equal

to the rank of W , which is bounded above by m. This implies that the error of the

Matrix Mechanism can never be higher than the error of A, when using the workload

as the strategy. Further, there are often much better strategies to select than Q = W .

Finding the best strategy Q for a given workload W is the main technical challenge

of the Matrix Mechanism. This strategy selection problem can be formulated as a

constrained optimization problem, and in fact we can immediately map the analytic

error formula from Proposition 9 into a numerical optimization problem as follows:

Problem 1 (Matrix Mechanism Optimization [60]). Given an m×n workload matrix

W :

minimize
Q

‖Q‖2
A

∥∥WQ+
∥∥2

F

subject to WQ+Q = W

(3.1)
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For a number of reasons, this optimization problem is difficult to solve exactly: it

has many variables, it is not convex, and both the objective function and constraints

involve Q+, which can be slow to compute. In addition, ‖WQ+‖2
F has points of

discontinuity near the boundary of the constraint WQ+Q = W . This problem was

originally formulated as a rank-constrained semi-definite program [57], and, while

algorithms exist to find the global optimum, they require O(m4(m4 +n4)) time, making

it infeasible in practice.

3.2.2 Lower bounds on error

An important theoretical question is to identify, or bound, how low the error of

the Matrix Mechanism can be for a given workload W . This is useful because finding

the strategy with minimum error is a difficult (and often intractable) problem, but

computing a lower bound on error can be done efficiently. Knowing how low the

error can be allows one to compare the error of a concrete strategy to the lower

bound to see how close to optimal it is. Additionally, the lower bound can be used to

make important policy decisions, such as setting the privacy budget, or whether it is

worth investing the resources to find a good strategy (as opposed to using other types

of mechanisms like data-dependent ones). Li and Miklau studied this problem and

derived the SVD bound [59].

Definition 12 (SVD Bound [59]). Given a m× n workload matrix W , the singular

value bound is:

SV DB(W ) =
1

n

(
λ1 + · · ·+ λn

)2

where λ1, . . . , λn are the singular values of W .

The SVD bound gives a lower bound on the error achievable by the Matrix

Mechanism.
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Proposition 10 (SVD Bound [59]). Given a m× n workload matrix W and a p× n

strategy matrix Q that supports W :

SV DB(W ) ≤ ‖Q‖2
A

∥∥WQ+
∥∥2

F

The SVD Bound is known to be tight for the Gaussian mechanism (i.e., when

A = G) and some conditions on W are satisfied, meaning there is some strategy Q

that achieves the equality. When A = L the bound may not be tight however. We

will later use the SVD Bound to evaluate the quality of the strategies found by our

optimization routines. We also derive expressions for efficiently computing the SVD

Bound for implicitly represented workloads, and use this analysis to theoretically

justify our optimization routines.

3.3 Optimizing explicit workloads

In this section, we investigate the main optimization problem that underlies the

Matrix Mechanism, and describe OPT0, our algorithm for approximately solving it.

We assume for now that the workload is represented explicitly as a dense matrix.

The methods we describe are useful by themselves for workloads defined over modest

domains (namely, those smaller than about n = 104), and they are an essential building

block for the more scalable methods we describe in Section 3.5.

Instead of formulating and solving the intractable SDP as originally proposed, we

will attack this problem directly with gradient-based numerical optimization techniques.

While these methods do not guarantee convergence to a global optimum of Problem 1,

they can be used heuristically to find locally optimal solutions. These techniques

begin by guessing a solution Q0 and then iteratively improve it using the gradient

of the objective function to guide the search. The process ends after a number of

iterations are performed, controlled by a stopping condition based on improvement of

the objective function.
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In the next sections, we provide algorithms for efficiently solving Problem 1. We

separately consider the two cases of Gaussian noise and Laplace noise, as the required

techniques are quite different.

3.3.1 Strategy optimization with Gaussian noise

While Problem 1 with A = G is not convex in its current form, it can be reformu-

lated into an equivalent problem that is convex [60, 107]. The key idea is that the objec-

tive function can be expressed in terms of X = Q>Q, since ‖Q‖2
G = max(diag(Q>Q))

and ‖WQ+‖2
F = tr[(Q>Q)+(W>W )]. This allows us to optimize X instead of Q,

and then we can recover Q by performing Cholesky decomposition on X. Remarkably,

the resulting problem is convex with respect to X.

Definition 13 (Convex Reformulation [107]). Given a workload matrix W of rank n,

let OPT0(W ) = Q where Q>Q is a Cholesky decomposition of X∗ and:

X∗ =minimize
X

tr[X−1(W>W )]

subject to diag(X) = 1

X � 0

(3.2)

While the above problem is convex, it is still nontrivial to solve due to the depen-

dence on the matrix inverse and the constraint X � 0 (X is positive definite). The

equality constraint diag(X) = 1 and corresponding optimization variables diag(X)

can easily be eliminated from the problem since they must always equal 1. Additionally

X must be a symmetric matrix so we can optimize over the lower triangular entries,

essentially reducing the number of optimization variables by a factor of two. The

full details of a conjugate gradient algorithm for solving this problem are available in

[107]. The per-iteration runtime of their “COA” algorithm is O(n3), and by default

it runs for 50 iterations. In practice it is able to scale up to about n ≈ 104. The

algorithm works well in practice when n is small, but is not particularly robust for
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some workloads when n is larger, which we observe empirically in Section 3.10 (e.g.,

COA on prefix workload in Table 3.3).

We thus design our own algorithm to solve the same optimization problem, which

is based on the same principles as the COA technique, but is more robust in practice.

There are two key differences in our implementation. First, we initialize the optimiza-

tion intelligently by setting X = P
√

ΛP> where PΛP> is the eigen-decomposition of

W>W . This an approximation to the optimal strategy based on the SVD bound [59],

and acts as a very good initialization. Second, instead of using the custom-designed

conjugate gradient algorithm proposed in [107], we simply use the L-BFGS algorithm

implemented in scipy.optimize, an off-the-shelf optimizer. We heuristically ignore

the constraint X � 0 during optimization, using a large loss value when it is not satis-

fied. This makes the problem unconstrained, and readily solvable by scipy.optimize.

The constraint is verified to hold at the end of the optimization. These changes lead

to more robust optimization that produce strategies nearly matching the SVD bound,

as we show experimentally in Section 3.10.

3.3.2 Strategy optimization with Laplace noise

Unfortunately, the techniques used in the previous section do not apply to the

Laplace noise setting, as the sensitivity norm ‖Q‖L cannot be expressed in terms

of Q>Q. In this section, we describe an alternate approach to approximately solve

Problem 1: parameterized strategies. Our key idea is to judiciously restrict the

search space of the optimization problem to simplify the optimization while retaining

expressivity of the search space. While our approach does not necessarily produce a

globally optimal solution to Problem 1, with good parameterizations it can still find

state of the art strategies. Below we describe the idea of parameterized strategies in

its full generality. Then we propose a specific parameterization that works well for a

variety of input workloads.
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A parameterization is a function Q(θ) mapping a real-valued parameter vector θ

to a strategy Q. Optimizing over a parameterized strategy space can be performed by

optimizing θ rather than Q. In the extreme case, there may be one entry in θ for every

entry in Q, but a more careful design of the parameterization with fewer parameters

and a smart mapping between the entries of the parameter vector and the entries of

the strategy matrix can lead to more effective optimization. There are several design

considerations for setting up a good parameterization. First, the parameterization

must be expressive enough to encode high-quality strategies (this may depend on

the workload). Second, the parameterization should have structure that makes the

optimization problem more computationally tractable (such as eliminating constraints).

Third, the parameterization may encode domain expertise about what a good strategy

should look like, which could make it easier to find high-quality local minima.

We now present a new general-purpose parameterization, called p-Identity, which

handles these considerations without making strict assumptions about the structure

of the workload. It also out-performs all of the existing parameterizations, even on

the workloads for which they were designed. The parameters of a p-Identity strategy

are more naturally interpreted as a matrix Θ rather than a vector θ so we instead use

the notation Q(Θ).

Definition 14 (p-Identity strategies). Given a p× n matrix of non-negative values

Θ, the p-Identity strategy matrix Q(Θ) is defined as follows:

Q(Θ) =

I
Θ

D

where I is the identity matrix and D = diag(1 + 1>Θ)−1.

Intuitively, p-Identity strategies encode n+p queries, including n weighted identity

queries that count the number of records in the database for each domain element, as
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well as p arbitrary linear queries determined by Θ. The diagonal matrix D is used to

re-weight the strategy so that ‖Q‖L = 1 and each column of Q has the same L1 norm.

This is an example of domain knowledge incorporated into the parameterization, as it

has been shown that optimal strategies have uniform column norm [60]. 1

Example 1. For p = 2 and n = 3, we illustrate below how Q(Θ) is related to its
parameter matrix, Θ.

Θ =

[
1 2 3
1 1 1

]
Q(Θ) =


0.33 0 0

0 0.25 0
0 0 0.2

0.33 0.5 0.6
0.33 0.25 0.2


For this class of parameterized strategies, the resulting optimization problem

requires optimizing Θ instead of Q and is stated below; we use OPT0 to denote the

operator that solves this problem.

Definition 15 (parameterized optimization). Given a workload matrix W and hyper-

parameter p, let OPT0(W ) = Q(Θ∗) where:

Θ∗ = argmin
Θ∈Rp×n

+

∥∥WQ(Θ)+
∥∥2

F

This parameterization was carefully designed to simplify optimization. Because

Q(Θ) is full rank, the constraints are satisfied by construction, and as a result the only

constraint we need to handle is non-negativity of Θ. Furthermore, ‖Q(Θ)‖1 = 1 for

all Θ, so that term can be removed from the objective. Additionally, due to the special

structure of Q(Θ) we can efficiently evaluate the objective and its gradient in O(pn2)

time instead of O(n3) time. For example, when n = 8192 it requires > 6 minutes to

evaluate the objective for a general strategy Q, while it takes only 1.5 seconds for a

p-Identity strategy (with p = n
16

), which is a 240× improvement. Despite this imposed

1If a strategy did not, a query could be added to it without increasing sensitivity and addition of
that query would result in error less than or equal to that of the original strategy.
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Figure 3.1: Visualization of three different strategies for answering the workload of all
range queries on a domain of size 256. Figures (a) and (b) show strategies optimized
by HDMM, and Figure (c) shows a hierarchical strategy with branching factor 16, a
previously state-of-the-art strategy for this workload [47, 83]. Each row is a query, and
cells are color coded according to their value in the strategy matrix. Figure (a) plots
each query as one very thin row, while Figure (b) and (c) only plot the non-trivial
queries as thicker rows. The diagonal queries are plotted separately as a single row
above the main plot, but it actually represents 256 different queries.

structure, Q(Θ) is still expressive enough to encode high-quality strategies. Moreover,

p can always be tuned to balance expressivity with efficiency.

3.3.3 Strategy visualization

An interested reader may wonder what the optimized strategies actually look like

for some common workloads. In Figure 3.1, we plot three strategies designed for the

workload of all range queries. For an ordered domain Ω = {1, . . . , n}, this workload

contains n(n+ 1)/2 queries that count the number of records in the interval [i, j] for

all 1 ≤ i ≤ j ≤ n. Figures 3.1a and 3.1b show the strategies produced by HDMM

for Gaussian and Laplace noise, respectively, and Figure 3.1c shows a previously

state-of-the-art strategy for range queries. These visualizations provide interesting

insight into the nature of the solution, and reveal why HDMM succeeds in reducing

error.
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In Figure 3.1a, the strategy is an upper triangular square matrix; this is by

construction as it is obtained through a Cholesky decomposition.2 In each row,

weights are largest near the main diagonal, and quickly decreases the further away it

gets. This can be observed from the smooth transition from yellow to green to blue in

Figure 3.1a, and noting that the colors appear on a logarithmic scale.

In Figure 3.1b, the strategy was optimized with p = 16, but only 13 non-zero

queries were found. Each query has varying width, ranging between about 16 and 64,

and has greatest weight towards the middle of the query, with gradually decreasing

weights away from the center. In most cases, the queries overlap with half of the two

neighboring queries. The weights on the identity queries are approximately uniform

throughout at around 0.5, with higher weights near the edges. There is a very natural

reason why this structure works well for range queries. Summing up adjacent queries

leads to a bigger query which looks approximately like a range query. It will have a

long uniform center, and decaying weights on the edges. These decaying weights can

be increased to match the uniform center by drawing on the answers from the identity

queries. Thus, any range query can be answered by summing up a relatively small

number of strategy query answers.

This same intuition was used in the derivation of the hierarchical strategy in

Figure 3.1c. However, this strategy answers some range queries more effectively than

others. It struggles for queries that require summing up many identity queries. For

example, it can answer the range [0, 16) using one strategy query, but it requires

summing up 16 strategy queries to answer the range [8, 24).

2There may be equally good strategies that do not have this upper triangular structure, but
HDMM will always find one with this structure.
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3.4 Implicit representations for conjunctive linear queries

The optimization methods we described in the previous section work well for small

and modest domain sizes; we were able to run them on domains as large as n = 8192

(see Section 3.10 for a scalability analysis). However, these methods are fundamentally

limited by the need to represent the workload and strategy explicitly in matrix form.

It requires 0.5 gigabytes just to store a square matrix of size 8192 using 4 byte floats,

and it is time consuming to perform nontrivial matrix operations on objects of this

size. This limitation is not unique to our mechanism, but is shared by all possible

methods that rely on explicitly represented workload matrices.

To overcome this scalability limitation, we propose implicit query matrices, which

exploit structure in conjunctive linear query sets and offer a far more concise represen-

tation than materialized explicit matrices, while still being able to encode query sets

containing an arbitrary collection of conjunctive linear queries. These representations

are lossless; they save space by avoiding significant redundancy, rather than making

approximations. As we will show later in this section, many important matrix oper-

ations can be performed efficiently using the implicit representation. This property

of the representation will be essential for solving the strategy optimization problem

efficiently on large domains.

3.4.1 Implicitly vectorized conjunctive linear queries

We begin by defining a conjunctive linear query, and then show how we will

represent it implicitly.

Definition 16 (Conjunctive Linear Query). A linear query qφ : D → R is said to be

conjunctive, iff for all x ∈ Ω,

φ(x) =
d∏
i=1

ψi(xi)

The term “conjunctive” above stems from the observation that if ψi are all indicator

functions, then multiplication and “logical-and” are equivalent. As we demonstrate
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below, conjunctive linear queries can be naturally represented in vector form in terms

of an outer product.

Definition 17 (Outer product). Let qi ∈ Rni for i = 1, . . . , d. The outer product

q = q1 ⊗ · · · ⊗ qd is an n-length vector indexed by tuples x = (x1, . . . , xd) such that:

q(x) =
d∏
i=1

qi(xi)

The correspondence between conjunctive linear queries and outer products is

immediate, as both are defined by the same exact formula. While the explicit vector

representation of qφ has size
∏

i ni, the implicit representation only requires storing

d smaller query vectors, which in total have size
∑

i ni. We can represent workloads

that contain a Cartesian product of conjunctive linear queries even more efficiently

using Kronecker products.

Definition 18 (Kronecker product). Let Qi ∈ Rmi×ni for i = 1, . . . , d. The Kronecker

product, denoted Q = Q1⊗· · ·⊗Qd is an m×n matrix where m =
∏

imi and n =
∏

i ni,

indexed by d-tuples z = (z1, . . . , zd) and x = (x1, . . . , xd) with entries defined by:

Q(z, x) =
d∏
i=1

Qi(zi, xi)

The Kronecker product is a generalization of the outer product, and hence we

use the same symbol ⊗ for both operations. In particular, each row of Q is an outer

product between one row from each of Q1, . . . ,Qd. The table below summarizes the

cost of different representational choices. All workloads of conjunctive linear queries

can be represented as a list of outer products, and this is far more efficient than an

explicit representation. When applicable, the Kronecker product provides an even

more compact representation for these workloads.

Explicit Representation List of Outer Products Kronecker Product

(
∏

imi)(
∏

i ni) (
∏

imi)(
∑

i ni)
∑

imini
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3.4.2 Operations on vectorized objects

Reducing the size of the workload representation is only useful if critical compu-

tations can be performed without expanding them to their explicit representations.

Standard properties of the Kronecker product [94] accelerate strategy selection and

reconstruction. The following properties allow us to perform useful operations on

Kronecker products without materializing their full matrices.

Proposition 11 (Kronecker identities). Kronecker products satisfy the following

identities [94]:

Transpose: (A⊗B)T = AT ⊗BT

Pseudo Inverse: (A⊗B)+ = A+ ⊗B+

Associativity: (A⊗B)⊗C = A⊗ (B ⊗C)

Mixed Product: (A⊗B)(C ⊗D) = (AC)⊗ (BD)

In addition to the standard properties of Kronecker product above, various matrix

norms of a Kronecker product can be readily computed from the norms of its factors.

Proposition 12 (Norm of a Kronecker product [54]). The following matrix norms

decompose over the factors of the Kronecker product Q1 ⊗ · · · ⊗Qd.

‖Q1 ⊗ · · · ⊗Qd‖L =
d∏
i=1

‖Qi‖L

‖Q1 ⊗ · · · ⊗Qd‖G =
d∏
i=1

‖Qi‖G

‖Q1 ⊗ · · · ⊗Qd‖F =
d∏
i=1

‖Qi‖F

We will later use these identities to efficiently evaluate TSE for workloads and

strategies built with Kronecker products.
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3.5 Optimizing conjunctive linear query workloads

We now turn our attention to optimizing implicitly-represented conjunctive linear

query workloads. We assume the workload is a union of Kronecker products, and that

it takes the form shown in Equation (3.3):

W =


w1W1

...

wkWk

 =


w1(W

(1)
1 ⊗ . . . ⊗W (1)

d )

...
. . .

...

wk(W
(k)
1 ⊗ . . . ⊗W (k)

d )

 (3.3)

Workloads of this form are expressive enough to encode an arbitrary collection

of conjunctive linear queries. For notational convenience, we will often write W =

w1W1 + · · ·+wkWk, where Wi = W
(i)
1 ⊗· · ·⊗W (i)

d and ‘+’ serves the role of stacking

matrices vertically. The methods described in this section will exploit the special

structure of this class of workloads to scale more effectively than techniques described

in Section 3.3.

3.5.1 A special case: Kronecker product workloads

We begin by considering a special case of the workload in Equation (3.3) that is

a single Kronecker product. For workloads of this form, we propose optimizing the

subworkloads on each attribute individually and then take the Kronecker product of

the optimized substrategies to form a strategy for the original workload. We optimize

the subworkloads using OPT0.

Definition 19 (OPT⊗). Given a Kronecker product workload W = W1⊗· · ·⊗Wd and

an optimization oracle OPT0, let OPT⊗(W) = Q1 ⊗ · · · ⊗Qd where Qi = OPT0(Wi).

Above, OPT0 may be any strategy optimization routine that consumes an explicitly

represented workload and returns a strategy matrix, such as the techniques discussed

in the Section 3.3. Since OPT⊗ requires solving d small subproblems rather than one

large problem, it can be far more efficient than OPT0 for this class of workloads. This
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decomposition of the objective function has a well-founded theoretical justification.

Namely, if we restrict the solution space to a (single) Kronecker product strategy of

the form Q = Q1⊗ · · · ⊗Qd, then the error of the workload under Q decomposes over

the factors of the Kronecker products as shown in the following theorem:

Theorem 2 (Error decomposition). Given a workload W = W1 ⊗ · · · ⊗Wd and a

strategy Q = Q1 ⊗ · · · ⊗Qd, the error is:

‖Q‖2
A

∥∥WQ+
∥∥2

F
=

d∏
i=1

‖Qi‖2
A

∥∥WiQ
+
i

∥∥2

F

The overall error is minimized when Qi optimizes Wi for each i, thus it makes

sense to optimize each Qi separately. If we expect the optimal strategy to be a single

Kronecker product, then this approach seems quite appealing. However it is possible

that there exists a strategy that is not a single Kronecker product that offers lower

error than the best Kronecker product strategy. The following theorem shows that

this is not the case, and gives further justification for the above method, showing that

the SVD bound also decomposes over the factors of the Kronecker product.

Theorem 3 (SVD bound decomposition). Given a workload W = W1 ⊗ · · · ⊗Wd,

the SVD bound is:

SV DB(W) =
d∏
i=1

SV DB(Wi)

If there exist strategies Q1, . . . ,Qd that achieve the SVD bound for W1, . . . ,Wd

and we can find them, then we can construct a Kronecker product strategy Q =

Q1 ⊗ · · · ⊗Qd that achieves the SVD bound for W = W1 ⊗ · · · ⊗Wd. Since no other

strategy can have lower error than the SVD bound, in these situations the optimal

strategy is a Kronecker product. This gives excellent justification for optimizing over

the space of Kronecker products, especially when the SVD bound is tight.
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3.5.2 The general case: union of Kronecker product workloads

The approach just described is principled and effective when the workload is a

single Kronecker product. We now turn our attention to the more general case where

the workload is a union of Kronecker products. Here, the right approach is less

clear. We define three approaches for optimizing implicit workloads in the form of

Equation (3.3). Each approach restricts the strategy to a different region of the full

strategy space for which optimization is tractable. The first computes a strategy

consisting of a single Kronecker product; it generalizes OPT⊗. The second, OPT+,

can generate strategies consisting of unions of Kronecker products. The third, OPTM,

generates a strategy of weighted marginal queries. The best approach to use will

generally depend on the workload, and we will provide some practical guidance and

intuition to understand the situations in which each method works best.

Single-product output strategy For a workload in the form of Equation (3.3), if

we restrict the optimization problem to a single Kronecker product strategy, then the

objective function decomposes as follows:

Theorem 4. Given workload W = w1W1+ . . .+wkWk and strategy Q = Q1⊗· · ·⊗Qd,

workload error is:

‖Q‖2
A

∥∥WQ+
∥∥2

F
= ‖Q‖2

A

k∑
j=1

w2
j

∥∥WjQ+
∥∥2

F

=
k∑
j=1

w2
j

d∏
i=1

‖Qi‖2
A

∥∥∥W (j)
i Q+

i

∥∥∥2

F

(3.4)

This leads to the following optimization problem:

Definition 20 (Generalized OPT⊗). Given a workload W = w1W1+ . . .+wkWk, let

OPT⊗(W) = Q1 ⊗ · · · ⊗Qd where:

(Q1, . . . ,Qd) = minimize
Q1,...,Qd

k∑
j=1

w2
j

d∏
i=1

‖Qi‖2
A

∥∥∥W (j)
i Q+

i

∥∥∥2

F
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When k = 1, the solution to the problem in Definition 20 is given in Definition 19, so

we use matching notation and allow the OPT⊗ operator to accept a single product or

a union of products.

We can attempt to solve this problem by building on the optimization oracles

designed in the previous section. In particular, suppose we have a black box optimiza-

tion oracle OPT0(W ) that accepts an explicitly represented workload and gives back

an explicitly represented strategy with low (ideally minimal) error on that workload.

Then we use a block method that cyclically optimizes Q1, . . . ,Qd until convergence.

We begin by initializing Qi = I for all i. We then optimize one Qi at a time, fixing

the other Qi′ 6= Qi using OPT0 on a carefully constructed surrogate workload Ŵ

(Equation (3.5)) that has the property that the error of any strategy Qi on Ŵ is the

same as the error of Q on W. Hence, the correct objective is being minimized.

Ŵi =


c1W

(1)
i

...

ckW
(k)
i

 cj = wj
∏
i′ 6=i

‖Qi′‖A
∥∥∥W (j)

i′ Q
+
i′

∥∥∥
F

(3.5)

The cost of running this optimization procedure is determined by the cost of

computing Ŵ T
i Ŵi and the cost of optimizing it, which takes O(n2

i (pi + k)) and

O(n2
i pi ·#iter) time respectively, assuming each (W TW )

(j)
i has been precomputed.

As before, this method scales to arbitrarily large domains as long as the domain size

of the subproblems allows OPT0 to be efficient.

Union-of-Kronecker output strategy For certain workloads, restricting to

solutions consisting of a single Kronecker product, as OPT⊗ does, excludes good

strategies, as demonstrated in Example 2.

Example 2. Consider the workload W = W1+W2 where W1 = P⊗T and W2 = T⊗P

on a 2-dimensional domain of size 100× 100. Running OPT⊗ on this workload leads

to an optimized strategy of the form Q = Q1 ⊗Q2. The expected error of this strategy
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is 33385, which is much higher than it should be for such a simple workload. The

poor expected error can be explained by the fact that to support the workload, both Q1

and Q2 have to be full rank. This means Q has to include at least 1002 queries, even

though W only contains 200 queries.

A better alternative would be to optimize W1 and W2 separately using OPT⊗.

Doing this we would end up with a strategy Q = Q1 + Q2, where Q1 optimizes W1

and Q2 optimizes W2. The resulting strategy is much smaller because OPT⊗(Q1) =

OPT0(P )⊗ OPT0(T ), and OPT0(T ) = T . In fact, it only contains 212 queries and

attains an expected error of 14252, which is a 2.34× improvement.

Based on this example, we would like a principled approach to optimize over the

space of strategies that are a union of Kronecker products. Unfortunately, computing

the workload error exactly for a strategy of this form is intractable, as the pseudo

inverse may not be a union of Kronecker products. This makes optimization over this

space of strategies challenging. We thus propose the following heuristic optimization

routine inspired by Example 2. This optimization routine individually optimizes each

subworkload Wj using OPT⊗, and then combines the strategies all together to form a

single strategy. It simply requires calling OPT⊗ a number of times and computing

appropriate weights for each optimized strategy.

Definition 21 (OPT+). Given a workload W = w1W1 + · · ·+wkWk, let OPT+(W) =

c1Q1 + · · ·+ ckQk where Qj = OPT⊗(Wj) and

cj ∝
1

‖Qj‖A


3
√

2Ej if A = L

4
√
Ej if A = G

for Ej = w2
j ‖Qj‖2

A

∥∥WjQ+
j

∥∥2

F
.

Above, we assume that Qj will be used to answer Wj, and cj is the weight on Qj:

it corresponds the portion of the privacy budget that will be spent to answer those
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queries. It is chosen to minimize total workload error. Specifically, if we allocate cj

budget to answer Qj, then the error will be Ej/c
2
j . Thus, the choice of cj above is

based on minimizing
∑
Ej/c

2
j subject to the constraint

∑ |cj| = 1 (for Laplace noise)

and
∑
c2
j = 1 (for Gaussian noise). We can solve this minimization problem exactly,

in closed from, using the method of Lagrange multipliers.

We remark that in the definition above, W is split up into k subworkloads

W1, . . . ,Wk. Each subworkload Wj is assumed to be a single Kronecker product,

but the optimization routine is still well defined even if Wj is a union of Kronecker

products. This opens up a nice opportunity: to group the subworkloads into clusters

which will be optimized together with OPT⊗. Intuitively, if two subworkloads are

similar, it may make sense to group them together to optimize collectively. We do not

provide an automated way to group subworkloads in this thesis. This is a nontrivial

problem in general, and is out of scope for this thesis. A domain expert can work out

good clusterings on a case-by-case basis, or they can simply use the default clustering

(one Kronecker product per cluster).

3.6 Implicit representations for marginal queries

In the previous section we described OPT⊗ and OPT+, two methods for optimizing

implicitly represented conjunctive linear query workloads. These methods differ

primarily in the space of strategies they search over. Our final optimization method,

OPTM, optimizes over the space of marginal query matrices, and offers a preferable

alternative to OPT⊗ and OPT+ in some settings. In order to develop these ideas

formally, we must introduce substantial new notation to enable us to work with

marginal query matrices and related objects. In this section, we propose an implicit

representation for marginal query sets that is even more compact than our other

representation for general conjunctive linear query sets. We further show that these
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matrices can be operated on efficiently, allowing us to solve the strategy optimization

problem for large multi-dimensional domains.

A marginal query matrix is a special case of a union of Kronecker products, where

each Kronecker product encodes the queries to compute a single marginal. Specifically,

all the factors of a marginal query matrix are either I or T , where I is an ni × ni
identity matrix and T is a 1 × ni matrix of ones. First note that a marginal on a

d-dimensional domain can be specified by a subset of elements of {1, . . . , d}. Hence,

there are a total of 2d possible marginals, and each one can be specified by an element

of the set [2d] = {0, . . . , 2d − 1}. The most natural correspondence between these

integers and the associated marginals is based on the binary representation of the

integer. The query set required to compute the ath marginal would be represented by

Q1 ⊗ · · · ⊗Qd where Qi = I if the ith bit of the binary representation of a is 1 and

Qi = T otherwise. A collection of weighted marginal queries can thus be represented

as a vector u containing a weight for each marginal. We refer to this marginal query

matrix as M(u), which is defined below.

Definition 22 (Marginal query matrix). A marginal query matrix M(u) is defined

by a vector of weights u ∈ R2d and is a special case of the query matrix shown in

Equation (3.3) where k = 2d, wa+1 = u(a), and

W
(a+1)
i =


I ai = 1

T ai = 0

where a ∈ {0, . . . , 2d−1},i ∈ {1, . . . , d},and ai is the ith bit of the binary representation

of a.

For a marginal query matrix, the weight u(a) can be interpreted as the relative

importance of the ath marginal. The example below provides further clarification on

this implicit representation.
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Example 3. The workoad of all 2-way marginals on a 3-dimensional domain can be

expressed as M(w) for w =

[
0 0 0 1 0 1 1 0

]
. The three non-zero entries of

w appear at indices 3, 5, and 6, which in binary is 0112, 1012 and 1102. Written in

expanded form, this workload is:

M(w) =



0 (T ⊗ T ⊗ T )

0 (T ⊗ T ⊗ I)

0 (T ⊗ I ⊗ T )

1 (T ⊗ I ⊗ I)

0 (I ⊗ T ⊗ T )

1 (I ⊗ T ⊗ I)

1 (I ⊗ I ⊗ T )

0 (I ⊗ I ⊗ I)



≡


T ⊗ I ⊗ I

I ⊗ T ⊗ I

I ⊗ I ⊗ T



As shown in Proposition 13, it is particularly simple to reason about the sensitivity

of a marginal query matrix.

Proposition 13. The sensitivity of a marginal query matrix M(u) is:

‖M(u)‖L = ‖u‖1 ‖M(u)‖G = ‖u‖2

Moving forward, it is convenient to work with the Gram matrix representation of

the marginal query matrix instead. As shown below, there is a simple correspondence

between the two:

Proposition 14 (Marginal Gram matrix). Let Q = M(u) be a marginal query matrix.

Then the correpsonding marginal Gram matrix is Q>Q = G(u2), where u2 is the

element-wise square of u, and:

G(v) =
2d−1∑
a=0

v(a)C(a), C(a) =
d⊗
i=1

[1(ai = 0) + I(ai = 1)],
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In the proposition above, the term 1(ai = 0) + I(ai = 1) is shorthand notation

for 1 if ai = 0 and I if ai = 1. Both 1 and I are ni × ni matrices, corresponding to

the matrix of all ones, and the identity matrix respectively. We will use this notation

frequently in the section, so it is important to understand the exact meaning. Another

important object that will appear repeatedly throughout this section is the so-called

characteristic vector3, which is defined below:

Definition 23 (Characteristic Vector). The characteristic vector c ∈ R2d is defined

so that each entry c(a) equals the number of entries in the (¬a)th marginal

c(a) =
d∏
i=1

ni(ai = 0) + 1(ai = 1)

The term ¬a in the definition above is the bitwise negation of a, and it is obtained

by flipping each of the d bits of the integer a. We will rely heavily on this type of

bitwise manipulation in this section to reason about the behavior of marginal Gram

matrices.

Now that we have introduced the necessary notation for marginal query and Gram

matrices, we are ready to show how to perform important matrix operations while

respecting the implicit representation. We begin with Theorem 5, which shows that

marginal Gram matrices interact nicely under matrix multiplication.

Theorem 5 (Multiplication of Marginal Gram Matrices). For any a, b ∈ [2d],

C(a)C(b) = c(a|b)C(a&b)

where a|b denotes “bitwise or”, a&b denotes “bitwise and”, and c is the characteristic

vector. Moreover, for any u,v ∈ R2d

3this is not to be confused with the eigenvector.
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G(u)G(v) = G(X(u)v)

whereX(u) is a 2d×2d triangular matrix with entriesX(u)(k, b) =
∑

a:a&b=k u(a)c(a|b).

Proof. First observe how the matrices I and 1 interact under matrix multiplication:

II = I I1 = 1 1I = 1 11 = ni1

Now consider the product C(a)C(b) which is simplified using Kronecker product

identities, logical rules, and bitwise manipulation.

=
d⊗
i=1

[1(ai = 0) + I(ai = 1)][1(bi = 0) + I(bi = 1)]

=
d∏
i=1

[ni(ai = 0 and bi = 0) + 1(ai = 1 or bi = 1)]

d⊗
i=1

[1(ai = 0 or bi = 0) + I(ai = 1 and bi = 1)]

=
d∏
i=1

[ni((a|b)i = 0) + 1((a|b)i = 1)]
d⊗
i=1

[1((a&b)i = 0) + I((a&b)i = 1)]

=c(a|b)C(a&b)

Now let u,v ∈ R2d and consider the following product:

G(u)G(v) =
(∑

a

u(a)C(a)
)(∑

b

v(b)C(b)
)

=
∑
a,b

u(a)v(b)C(a)C(b)

=
∑
a,b

u(a)v(b)c(a|b)C(a&b)
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Observe that G(u)G(v) = G(w) where

w(k) =
∑
a&b=k

u(a)v(b)c(a|b)

The relationship between w and v is clearly linear, and by carefully inspecting the

expression one can see that w = X(u)v where X(u)(k, b) =
∑

a:a&b=k u(a)c(a|b).

X(u) is an upper triangular matrix because k = a&b, and a&b ≤ b for all a.

Theorem 5 allows us to efficiently multiply two matrices while maintaining the

compact implicit representation. Additionally, it follows immediately from the proof of

Theorem 5 that G(u)G(v) = G(v)G(u) — i.e., matrix multiplication is commutative.

We can apply Theorem 5 to efficiently find the inverse or generalized inverse of G(u)

as well.

Theorem 6 (Inverse of Marginal Gram Matrices). Let X(u) be the matrix defined in

Theorem 5. If X(u) is invertible, then G(u) is invertible with inverse:

G−1(u) = G(X−1(u)z)

where z(2d − 1) = 1 and z(a) = 0 for all other a. Moreover, if Xg(u) is a generalized

inverse of X(u), then a generalized inverse of G(u) is given by:

Gg(u) = G(Xg(u)Xg(u)u)

.

Proof. First note that G(z) = I (the identity matrix). By Theorem 5,

G(u)G−1(u) = G(u)G(X−1(u)z)

= G(X(u)X−1(u)z)

= G(Iz) = G(z) = I
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This proves the first part of the theorem statement. For the second part, note

that if G(u)G(v)G(u) = G(u), then G(v) is a generalized inverse of G(u). Using

v = Xg(u)Xg(u)u, we have

G(u)G(v)G(u) = G(u)G(u)G(v)

= G(u)G(u)G(Xg(u)Xg(u)u)

= G(X(u)X(u)Xg(u)Xg(u)u)

= G(X(u)Xg(u)X(u)Xg(u)u)

= G(IX(u)Xg(u)u)

= G(Iu) = G(u)

Thus, G(v) is a generalized inverse as desired. This completes the proof.

Because X(u) is a triangular matrix, we can compute X−1(u)z efficiently in

O(4d) time using back-substitution (quadratic in the size of z). Note that G(u) and

X(u) are invertible if and only if u(2d − 1) > 0. The generalized inverse result holds

even for non-invertible matrices. This result is slightly more complicated, but is

important because in the most common case where the underlying workload contains

low-dimensional marginal queries, G will be singular.

As we show in Theorem 7, we can readily obtain the eigenvectors and eigenvalues of

marginal Gram matrices, which will be useful for efficiently computing the SVD Bound

for marginal query workloads. Recall that v is an eigenvector with corresponding

eigenvalue λ if G(w)v = λv for some real-valued λ. We use the term eigenmatrix to

refer to a matrix where each column is an eigenvector that shares the same eigenvalue.

Theorem 7 (Eigenvectors and Eigenvalues of Marginal Gram Matrices). Let a ∈ [2d]

and let

V(a) =
d⊗
i=1

(ai = 0)T + (ai = 1)(1− niI)
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For any b ∈ [2d], V(a) is an eigenmatrix of C(b) with corresponding eigenvalue

λ(a) = c(b) if a&b = a and λ(a) = 0 otherwise. Moreover, for any w ∈ R2d, V(a)

is an eigenmatrix of G(w) with corresponding eigenvalue κ(a) =
∑

b:a&b=aw(b)c(b).

That is,

C(b)V(a) = λ(a)V(a) G(w)V(a) = κ(a)V(a)

Proof. Recall that C(b) =
⊗d

i=1[1(bi = 0) + I(bi = 1)] and c(k) =
∏d

i=1[ni(ki =

0) + 1(ki = 1)]. The proof follows from direct calculation:

C(b)V(a) =
d⊗
i=1

[(bi = 0)1 + (bi = 1)I]
d⊗
i=1

[(ai = 0)T + (ai = 1)(1− niI)]

=
d⊗
i=1

[(bi = 0)1 + (bi = 1)I][(ai = 0)T + (ai = 1)(1− niI)]

=
d⊗
i=1

[(ai = 0 and bi = 0)niT + (ai = 0 and bi = 1)T

+ (ai = 1 and bi = 0)0 + (ai = 1 and bi = 1)(1− niI)]

=


∏d

i=1 ni(bi = 0) + 1(bi = 1)
⊗d

i=1[(ai = 0)T + (ai = 1)(1− niI)] a&b = a

0 otherwise

=


c(b)V(a) a&b = a

0V(a) otherwise

= λ(a)V(a)

This completes the first part of the proof. For the second part, we have:
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G(w)V(a) =
∑
b

w(b)C(b)V(a)

=
∑
b

w(b)λ(a)V(a)

=
∑

b:a&b=a

w(b)C(b)V(a)

= κ(a)V(a)

Interestingly, the eigenmatrices (and hence the eigenvectors) are the same for all

marginal Gram matrices G(w). Furthermore, the corresponding eigenvalues have a

very simple (linear) dependence on the weights w, and as a result, there is a triangular

matrix Y such that κ = Y w.

3.7 Optimizing conjunctive linear query workloads with

marginal query strategies

In this section, we describe OPTM, an optimization operator that consumes a

conjunctive linear query workload W and returns a marginal query strategy Q = M(θ).4

Theorem 8 is the first key to our derivation of OPTM. Intuitively, it states that for

any conjunctive linear query workload W, there is a marginal Gram matrix G(w) that

is equivalent to W>W for the purposes of optimization.

Theorem 8 (Marginal approximation of conjunctive linear query workload). For any

conjunctive linear query workload W = w1W1 + · · ·+wkWk, there is a marginal Gram

matrix G(w) 5 such that tr[G(u)W>W] = tr[G(u)G(w)] for all u.

4We reserve the symbol θ for strategies, and use u,v and w to refer to other marginal Gram
matrices.

5w is related to, but not equal to w1, . . . , wk; w has size 2d 6= k.
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Proof. Let V = WTW be the Gram matrix of W: V =
∑k

j=1w
2
j

⊗d
i=1 V

(j)
i where

V
(j)
i = (W TW )

(j)
i . Now consider the following quantity:

tr[G(u)V] = tr
[( 2d−1∑

a=0

u(a)
d⊗
i=1

[1(ai = 0) + I(ai = 1)]
)( k∑

j=1

w2
j

d⊗
i=1

V
(j)
i

)]

= tr
[ 2d−1∑
a=0

u(a)
k∑
j=1

w2
j

d⊗
i=1

[1(ai = 0) + I(ai = 1)]V
(j)
i

]

=
2d−1∑
a=0

u(a)
k∑
j=1

w2
j

d∏
i=1

tr[1V
(j)
i ](ai = 0) + tr[IV

(j)
i ](ai = 1)

=
2d−1∑
a=0

u(a)
k∑
j=1

w2
j

d∏
i=1

sum[V
(j)
i ](ai = 0) + tr[V

(j)
i ](ai = 1)

And observe that it only depends on V
(j)
i through its sum and trace. Thus, we

could replace V
(j)
i with any matrix that has the same sum and trace. In particular,

we could use V̂
(j)
i = bI + c1, where b and c are chosen to satisfy the following linear

system:

ni ni

ni n2
i


b
c

 =

 tr[V
(j)
i ]

sum[V
(j)
i ]


The matrix V̂j = w2

j (V̂
(j)

1 ⊗ · · · ⊗ V̂ (j)
d ) is nothing more than the Gram matrix

for a collection of weighted marginals, or G(wj). This is because each factor in the

Kronecker product is a weighted sum of I and 1, and by using the distributive property

it can be converted into the canonical representation.

Thus, the matrix
∑

j G(wj) = G(
∑

jwj) = G(w) satisfies tr[G(u)V] = tr[G(u)G(w)]

as desired.

G(u) in Theorem 8 represents (Q>Q)+ in the expected error formula. We know

this is a marginal Gram matrix by Proposition 14 and Theorem 6. Theorem 8 allows

54



us to reduce the problem of optimizing an arbitrary conjunctive linear query workload

to simply optimizing a marginal query workload, which we can do efficiently. In fact,

as we show in Theorem 9, we can efficiently evaluate the matrix mechanism objective

for marginal query strategies, which is essential for efficient optimization.

Theorem 9 (Marginal parameterization objective function). Let W = w1W1 + · · ·+

wkWk be a conjunctive linear query workload and let G(w) be the marginal approxi-

mation of W>W (as in Theorem 8). For any marginal query strategy Q = M(θ), the

matrix mechanism objective function can be expressed as:

‖Q‖2
A

∥∥WQ+
∥∥2

F
= ‖θ‖2

A [1>X+(θ2)w]

where ‖θ‖A is the sensitivity norm defined in Proposition 13, and X is the matrix

defined in Theorem 5.

Proof.

‖M(θ)‖2
A

∥∥WM(θ)+
∥∥2

F
= ‖θ‖2

∥∥WM(θ)+
∥∥2

F
by Proposition 13

= ‖θ‖2 tr[G+(θ2)WTW]

= ‖θ‖2 tr[G+(θ2)G(w)] by Theorem 8

= ‖θ‖2 tr[G(X+(θ2)X+(θ2)θ2)G(w)] by Theorem 6

= ‖θ‖2 tr[G(X(w)X+(θ2)X+(θ2)θ2)] by Theorem 5

= ‖θ‖2 tr[G(X+(θ2)X+(θ2)X(θ2)w)] by commutativity

= ‖θ‖2 tr[G(X+(θ2)w)] by constraint

= ‖θ‖2 [1TX+(θ2)w]
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Theorem 9 shows that we can efficiently calculate the objective function in terms

of w and θ, without ever explicitly materializing G(w) or M(θ). This key idea will

allow us to solve the strategy selection problem efficiently. Problem 24 states the

main optimization problem that underlies OPTM, which immediately follows from

Theorem 9.

Definition 24 (Marginals parameterization). Given a conjunctive linear query work-

load W = w1W1 + · · ·+ wkWk, let OPTM(W) = M(θ∗) where

θ∗ = arg min
θ

‖θ‖2
A [1>X+(θ2)w]

subject to X+(θ2)X(θ2)w = w

and G(w) is the marginal approximation of W>W (as in Theorem 8).

Above, the constraint ensures that the strategy supports the workload. In practice,

this constraint can usually be ignored, and the resulting unconstrained optimization

problem can be solved instead. The constraint can then be verified to hold at the

end of the optimization. Intuitively, this is because strategies that move closer to

the boundary of the constraint will have higher error, so the optimization will never

approach it as long as sufficiently small step sizes are taken. We use scipy.optimize

to solve this problem in practice.

We note that the number of parameters in the above optimization problem is 2d

and that we can evaluate the objective in O(4d) time (quadratic in the number of

parameters). Thus, it is feasible to solve this problem as long as d ≤ 15. Importantly,

this means that the runtime complexity is independent of the domain size of each

attribute, so it will take the same amount of time for ni = 2 (binary features), ni = 10,

or any other values of ni.

In addition to being able to efficiently optimize over the space of marginal query

strategies, we can also efficiently compute the SVD bound for marginal query workloads.
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Theorem 10 gives a simple formula for computing the SVD bound for marginal query

workloads.

Theorem 10 (SVD Bound for Marginal Query Workloads). The SVD bound for a

marginal query workload W with Gram matrix G(w) is:

SV DB(W) =
1

n

(∑
a

c(¬a)

√ ∑
b:a&b=a

w(b)c(b)
)2

Proof. From Theorem 7 we know all 2d unique eigenvalues and corresponding eigen-

matrices. The number of rows in each eigenmatrix corresponds to the number of

eigenvectors with that eigenvalue. To compute the SVD bound, we need to take the

square root of each unique eigenvalue (which is a singular value of W) and multiply that

by it’s multiplicity, then sum across all unique eigenvalues. Note that the eigenmatrix

V(a) has c(¬a) rows. Hence, the SVD bound is:

SV DB(W) =
1

n

(∑
a

c(¬a)
√
κ(a)

)2

=
1

n

(∑
a

c(¬a)

√ ∑
b:a&b=a

w(b)c(b)
)2

Additionally, as a byproduct of this analysis, we give a similarly simple formula to

find the optimal marginal query strategy in closed form in Theorem 11, allowing us to

bypass the need for numerical optimization in some settings.

Theorem 11 (Closed form solution to Problem 24). Let W be a workload with Gram

matrix G(w) and let θ =
√
Y −1
√
Y w (element-wise square root), where Y is the

2d × 2d matrix:
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Y (a, b) =


c(b) a&b = a

0 otherwise

If θ contains real-valued entries then the strategy Q = M(θ) attains the SVDB

bound when A = G, and is thus an optimal strategy. That is, ‖Q‖2
G ‖WQ+‖2

F =

SV DB(W).

Proof. We will prove optimality by showing that Q = M(θ) matches the SVD bound.

Li et al. showed that the SVD bound is satisfied with equality if Q and W share

the same singular vectors and the singular values of Q are the square root of the

singular values of W, at least in the case of Gaussian noise. Recall from Theorem 7

we know that all marginal Gram matrices share the same eigenvectors. The unique

eigenvalues of G(w) are κ = Y w. The gram matrix of Q = M(θ) is QTQ = G(θ2).

The eigenvalues of this are Y θ2 = Y (Y −1
√
Y w) =

√
Y w. Thus, the eigenvalues

are exactly the square root of the eigenvalues of G(w), as desired. This certifies that

Q = M(θ) matches the SVD bound and is optimal.

While θ may sometimes contain imaginary entries, we can always fall back on

numerical optimization to solve Problem 24. The formula in Theorem 11 can still be

used to initialize the optimization if the imaginary entries of θ are replaced with zeros.

Li and Miklau derived sufficient conditions for the SVD bound to be realizable [59],

and marginal query workloads satisfy those sufficient conditions. This implies that the

SVD bound should always be attainable for workloads of this form. If the parameters

in Theorem 11 contain imaginary entries, this suggests that the optimal strategy is

not a marginal query strategy. It is an interesting open question to determine what

the structure of the optimal strategy is when Theorem 11 does not apply. In practice,

even when the SVD bound is not attained exactly by OPTM, we get very close to it

for marginal query workloads, as we show empirically in Table 3.5 of the experiments.
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3.8 The OPTHDMM strategy selection algorithm

Definition Operator Input workload Output strategy Complexity

§3.3 Definitions 13 and 15 OPT0 Explicit matrix W Explicit matrix Q O(n3)

§3.5.1 Definition 19 OPT⊗ Kronecker Product Kronecker product O(
∑d

i=1 n
3
i )

§3.5.2 Definition 20 OPT⊗ Union of Kronecker Products Kronecker Product O(k
∑d

i=1 n
3
i )

§3.5.2 Definition 21 OPT+ Union of Kronecker Products Union of Kronecker Products O(k
∑d

i=1 n
3
i )

§3.7 Definition 24 OPTM Union of Kronecker Products Marginal Query Strategy O(4d)

Table 3.1: Summary of optimization operators: input and output types, and the
time complexity of objective/gradient calculations. n = n1 × · · · × nd refers to the
domain size, and k (where applicable) refers to the number of Kronecker products in
the workload.

In this chapter, we proposed four optimization routines: OPT0, OPT⊗, OPT+, and

OPTM. In this section, we summarize these different approaches, discuss the pros

and cons of each one, and propose a meta-optimization algorithm OPTHDMM that

automatically chooses the best one based on the workload. Table 3.1 summarizes

the basic inputs and outputs of each operator. OPT0 is designed to optimize an

explicitly represented workload, and returns an explicitly represented strategy. The

other optimization operators all operate in an implicit space however.

The time complexity of OPT0 is O(n3) (where n is the domain size), and it

generally feasible to run as long as n ≤ 104. The time complexity of OPT⊗ and OPT+

is O(k
∑
n3
i ), where k is the number of union terms in the workload, and ni is the

domain size of attribute i. It is generally feasible to run as long as OPT0 is feasible

on each of the individual attributes (i.e., ni ≤ 104). In contrast to OPT0, the total

domain size for these operators can be arbitrarily large. The time complexity of

OPTM is O(4d), which interestingly does not depend on the domain size of individual

attributes, only the number of attributes. It is generally feasible to run as long as

d ≤ 15.

Each of the operators searches over a different space of strategies, and the best

one to use will ultimately depend on the workload. We illustrate the behavior of each

optimization operator on the simple workload of all 2-way marginals in Example 4.
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This example highlights and summarizes the key differences between OPT⊗, OPT+,

and OPTM. In this case, OPTM is the best, which is not surprising because it is the

most suitable for marginal workloads. It achieves this by placing more weight on the

queries for larger marginals, and less weight on other queries. When compared to the

baseline of using W as the strategy, OPTM achieves lower error on the larger marginals

but has higher error on the smaller marginals. As a result, OPTM enjoys lower overall

error than the simple baseline, but suffers higher max error. The expected errors

reported in Example 4 pertain to TSE from Definition 26.

In general predicting which optimization operator will yield the lowest error

strategy requires domain expertise and may be challenging for complex workloads.

Since strategy selection is independent of the input data and does not consume the

privacy budget, we can just run each optimization operator, keeping the output

strategy that offers the smallest expected error. Additionally, since the strategies

found by each optimization operator may depend on the initialization, we recommend

running several random restarts of each optimization operator, returning the best one.

By default, OPTHDMM invokes all three high-dimensional optimization operators

OPT⊗, OPT+, and OPTM. (OPT0 may also be included for lower-dimensional work-

loads). For OPT⊗ and OPT+ invoked with the p-Identity strategy we use the following

convention for setting the p parameters: if an attribute’s subworkload is completely

defined in terms of T and I, we set p = 1 (this is a fairly common case where more

expressive strategies do not help), otherwise we set p = ni/16 for each attribute Ai

with size ni.
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Example 4 (Optimizing Marginal Query Workload). Consider the workload contain-

ing queries to compute all 2-way marginals on a domain of size (2, 5, 50, 100). This

workload can be represented as a union of
(

4
2

)
= 6 Kronecker products. The table below

gives the precise representation of this workload, together with the optimized strategies

found by OPT⊗, OPT+, and OPTM. All optimized strategies can be expressed in terms

of the “Identity” (I) and “Total” (T ) building blocks.

Query Matrix TSE

W

T ⊗ T ⊗ I ⊗ I

206, 964

T ⊗ I ⊗ T ⊗ I

T ⊗ I ⊗ I ⊗ T

I ⊗ T ⊗ T ⊗ I

I ⊗ T ⊗ I ⊗ T

I ⊗ I ⊗ T ⊗ T

I I ⊗ I ⊗ I ⊗ I 300, 000

OPT⊗(W) I ⊗ I ⊗

0.80 I

0.20 T

⊗
0.82 I

0.18 T

 213, 270

OPT+(W)

0.39 T ⊗ T ⊗ I ⊗ I

85, 070

0.18 T ⊗ I ⊗ T ⊗ I

0.14 T ⊗ I ⊗ I ⊗ T

0.13 I ⊗ T ⊗ T ⊗ I

0.11 I ⊗ T ⊗ I ⊗ T

0.05 I ⊗ I ⊗ T ⊗ T

OPTM(W)

0.44 T ⊗ T ⊗ I ⊗ I

62,8860.31 I ⊗ I ⊗ T ⊗ I

0.25 I ⊗ I ⊗ I ⊗ T
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3.9 Efficient measure and reconstruct

Now that we have fully described how HDMM solves the select subproblem, we

are ready to discuss how to run the remainder of the mechanism. To measure the

selected strategy queries, we must compute the matrix vector product y = Qp+ ξ,

and to reconstruct the workload query answers, we must compute WQ+y. With

explicitly represented matrices, these computations can be done directly without

problem. However, when W and Q are too large to represent explicitly, it is no

longer obvious how to run the mechanism. A necessary key subroutine to solve these

problems is to compute matrix-vector products where the matrix is a Kronecker

product, without ever materializing the matrix explicitly.

Algorithm 1 Kronecker Matrix-Vector Product

1: Input: Matrices Q1, . . . ,Qd, vector p
2: Output: Vector (Q1 ⊗ · · · ⊗Qd)p
3: mi, ni = shape(Qi)
4: r = n
5: fd+1 = p
6: for i = d, . . . , 1 do
7: Z = reshape(fi+1, ni, r/ni)
8: r = r ·mi/ni
9: fi = reshape(QiZ, r, 1)

10: end for
11: return f1

Theorem 12 (Efficient matrix-vector multiplication). Let Q = Q1 ⊗ · · · ⊗Qd and

let p be a data vector of compatible shape. Then Algorithm 1 computes the matrix-

vector product Qp. Furthermore, if Qi ∈ Rni×ni and n =
∏
ni is the size of p then

Algorithm 1 runs in O(n
∑
ni) time.

Proof. Let y = Qp. Then
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y(z) =
∑
x∈Ω

Q(z, x)p(x)

=
∑
x∈Ω

Q1(z1, x1) . . .Qd(zd, xd)p(x)

=
∑
x1∈Ω1

Q1(z1, x1) · · ·
∑
xd∈Ωd

Qd(zd, xd)p(x1, . . . , xd)

Now define fi to be the vector indexed by tuples (x1, . . . , xi−1, zi, . . . , zd) such that

fd+1 = p and:

fi(x1:i−1, zi:d) =
∑
xi∈Ωi

Qi(zi, xi)fi+1(x1:i, zi+1:d)

and observe that y = f1. We can efficiently compute fi from fi+1 by observing

that it is essentially computing a matrix-matrix product between the ni × ni matrix

Qi and the ni×n/ni matrix obtained by reorganizing the entries of fi+1 into a matrix

where rows are indexed by xi. This can be computed in O(nni) time. Thus, the total

time required to compute y is O(n
∑
ni) as stated.

Algorithm 1 is correct even if the factors of Q are not square, although the time

complexity is not as clean when written down. Since all of the strategies found by our

optimization routines are either Kronecker products or unions thereof, we can directly

apply Algorithm 1 to efficiently implement the measure step of HDMM. Note that

computing the matrix-vector product for a union of Kronecker products is a trivial

extension of Algorithm 1: it simply requires calling Algorithm 1 for each Kronecker

product and concatenating the results into a single vector.

We can also use Algorithm 1 to efficiently implement the reconstruct step of

HDMM. The main challenge is to compute Q+y, or a pseudoinverse of Q together with

a matrix-vector product. This is done slightly differently for each type of strategy:
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1. Q = OPT⊗(W) = Q1⊗· · ·×Qd. From Proposition 11 we know that Q+ = Q+
1 ⊗

· · · ⊗Q+
d . That is, the pseudoinverse of a Kronecker product is still a Kronecker

product. Thus, we can compute p̂ = Q+y efficiently using Algorithm 1.

2. Q = OPTM(W) = M(θ). From basic linear algebra, we know that Q+ =

(Q>Q)+Q> for any matrix Q. Applied to this setting, we have M+(θ) =

G+(θ2)M>(θ), since we know M>M(θ) = G(θ2) by Proposition 14. From

Theorem 6 we know how to compute G+(θ2) efficiently, and we know that it

equals G(η) for some η. We aim to compute M+(θ)y = G+(θ2)M>(θ)y. We

can easily compute v = M>(θ)y using a sequence of calls to Algorithm 1 by

observing that M>(θ) is a just a bunch of Kronecker products horizontally

stacked together. In a similar fashion, we can compute p̂ = G+(θ2)v because

G+(θ2) is just the sum of a bunch of Kronecker products, which we can handle

efficiently with repeated calls to Algorithm 1.

3. Q = OPT+(W) = c1Q1 + · · · + ckQk. Unfortunately, for a strategy of this

form, we do not have a way to efficiently compute Q+y. While Q is a union of

Kronecker products, the pseudoinverse is not necessarily, and we are not aware of

a simple formula for the pseudoinverse of Q at all. However, we can still produce

an unbiased estimate of Wp by using local least squares. To do this, we will

compute WjQ+
j yj for each j = 1, . . . , k, where yj is the answers produced for

sub-strategy Q+
j . Since Wj and Q+

j are both assumed to be Kronecker products,

this can be easily achieved using Algorithm 1. While WjQ+
j yj is an unbiased

estimator for Wjp, the workload query answers will not necessarily be consistent

between different j.
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3.10 Experimental evaluation

In this section we evaluate the accuracy and scalability of HDMM. We perform a

comprehensive comparison of HDMM with a variety of other mechanisms on single-

and multi-dimensional workloads, showing that it consistently offers lower error than

competitors and works in a broader range of settings than other algorithms. We also

evaluate the scalability of key components of HDMM, showing that it is capable of

scaling effectively to high-dimensional settings.

In accuracy experiments, we report the Root Mean Squared Error (RMSE), which

is defined as RMSE =
√

1
m

TSE(W,A) for an algorithm A. We compute this value

analytically using the formulas from Proposition 9 whenever possible. We separately

report results for pure differential privacy with Laplace noise and approximate differ-

ential privacy with Gaussian noise. We use ε = 1.0 and δ = 10−6 in all experiments,

but note that the ratio of errors between two data-independent algorithms remains

the same for all values of ε and δ.

These experiments are meant to demonstrate that HDMM offers the best accuracy in

the data-independent regime. It is possible that some data-dependent mechanisms will

outperform even the best data-independent mechanism, and this will typically depend

on the amount of data available and the privacy budget [46, 95]. Data-independent

mechanisms (like HDMM) are generally preferable when there is an abundance of data

and/or the privacy budget is not too small, such as the U.S. Census decennial data

release [2].

3.10.1 Evaluating OPT0 on low-dimensional workloads

We begin by studying the effectiveness of OPT0 in the one-dimensional setting.

Specifically, we evaluate the quality of the strategies found by our optimization oracle

compared with other data-independent mechanisms designed for this setting. It is

important to understand the accuracy in the one-dimensional setting well, because
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ε-differential privacy (Laplace noise)
Workload Domain Identity H2 Privelet HB GreedyH LRM OPT0 SVDB

All Range

64 6.63 11.28 10.11 6.63 6.34 7.02 5.55 3.22
256 13.11 16.27 14.87 8.90 9.72 15.73 8.07 4.07
1024 26.15 21.83 20.26 12.82 14.70 - 11.08 4.94
4096 52.27 27.90 26.18 16.19 22.21 - 14.38 5.82

Prefix

64 8.06 9.42 9.37 8.06 6.04 7.67 5.32 2.89
256 16.03 13.16 13.09 8.97 9.13 12.64 7.35 3.50
1024 32.02 17.29 17.20 12.87 14.32 15.43 9.58 4.11
4096 64.01 21.77 21.67 14.91 22.40 - 12.20 4.74

Width 32 Range

64 8.00 12.02 11.09 8.00 7.32 9.44 5.88 2.75
256 8.00 15.50 13.57 7.41 8.00 25.81 6.34 3.26
1024 8.00 18.98 16.56 9.50 8.00 16.98 6.41 3.36
4096 8.00 22.45 19.58 10.96 8.00 - 6.46 3.38

Permuted Range

64 6.63 25.02 18.97 6.63 6.83 7.02 5.55 3.22
256 13.11 66.25 49.09 18.48 13.02 15.73 8.06 4.07
1024 26.15 157.50 117.06 37.07 23.94 - 11.08 4.94
4096 52.27 374.29 277.42 107.83 45.77 - 14.37 5.82

Table 3.2: Error of strategies for 1D workloads with ε = 1.0.

(ε, δ)-differential privacy (Gaussian noise)
Workload Domain Identity H2 Privelet HB GreedyH COA OPT0 SVDB

All Range

64 19.82 12.74 11.42 19.82 14.64 9.73 9.73 9.62
256 39.18 16.20 14.81 18.80 23.34 12.26 12.26 12.15
1024 78.13 19.66 18.24 27.07 36.20 14.89 14.85 14.75
4096 156.14 23.12 21.69 27.92 56.21 17.92 17.46 17.38

Prefix

64 24.08 10.64 10.58 24.08 14.04 8.87 8.87 8.62
256 47.89 13.11 13.03 18.95 22.11 10.70 10.66 10.44
1024 95.64 15.57 15.49 27.18 35.59 16.29 12.49 12.29
4096 191.21 18.03 17.95 25.72 56.70 26.50 14.32 14.15

Width 32 Range

64 23.90 13.57 12.52 23.90 17.30 8.79 8.74 8.23
256 23.90 15.44 13.52 15.65 23.90 12.24 9.93 9.73
1024 23.90 17.10 14.92 20.08 23.90 16.00 10.08 10.02
4096 23.90 18.60 16.22 18.90 23.90 18.38 10.11 10.09

Permuted Range

64 19.82 28.26 21.42 19.82 16.13 9.73 9.73 9.62
256 39.18 65.97 48.88 39.04 35.22 12.26 12.26 12.15
1024 78.13 141.86 105.44 78.30 60.60 14.89 14.85 14.75
4096 156.14 310.11 229.85 185.98 118.03 17.92 17.45 17.38

Table 3.3: Error of strategies for 1D workloads with ε = 1.0 and δ = 10−6.
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OPT0 is used as a sub-routine for the higher-dimensional optimization operators OPT⊗

and OPT+.

Workloads We consider four different workloads: All Range, Prefix, Width

32 Range, and Permuted Range, each defined over domain sizes ranging from 64

to 4096. All Range contains every possible range query over the specified domain;

Prefix contains range queries defining an empirical CDF; Width 32 Range contains

all range queries of width 32. While the first three workloads are subsets of range

queries, the last workload, Permuted Range, is the result of right-multiplying

the workload of all range queries by a random permutation matrix. Many proposed

strategies have targeted workloads of range queries and tend to work fairly well on

subsets of range queries. Permuted Range poses a challenge because the structure

of the workload is hidden by the permutation, requiring a truly adaptive method to

find a good strategy. Note the large size of some of these workloads: All Range

and Permuted Range have n(n+1)
2

queries. For large n it is infeasible to write down

W in matrix form, but we can still compute the expected error since it only depends

on the workload through its Gram matrix, W>W , which is n × n and has special

structure, allowing it to be computed directly without materializing W .

Mechanisms We consider 8 competing mechanisms: Identity, Laplace, Gaussian,

LRM [108], COA [107], H2 [47], HB [83], Privelet [100], and GreedyH [56]. The first

five mechanisms are general purpose mechanisms, designed to support virtually any

workload. The last four mechanisms were specifically designed to offer low error on

range query workloads. We also report SVDB to understand the gap between the error

of the computed strategies and the best lower bound on error we have (via the SVD

bound).

Results and Findings Table 3.2 and Table 3.3 report the error of various mecha-

nisms in each setting, for both Laplace and Gaussian noise respectively. We remind the
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reader that these values do not depend on the true data p, and thus they hold for all

p. We report numbers for fixed ε = 1.0 and δ = 10−6, but we note that these privacy

parameters only impact the error by a constant factor, and hence the relationship

between the errors of every pair of mechanisms remains the same for all (ε, δ). We

have four main findings from these results, enumerated below:

1. OPT0 offers lower error than all competitors in all settings, and the magnitude

of the improvement offered by HDMM (over the next best competitor) is as large

as 3.18 for Laplace noise (on Permuted Range) and 1.61 for Gaussian noise (on

Width 32 Range). Interestingly, OPT0 offers lower error than H2, HB, Privelet,

and GreedyH on range query workloads, even though these four mechanisms were

designed specifically for range queries. In additional, the second best method

after OPT0 differs in each setting, which shows that some competing algorithms

have specialized capabilities that allow them to perform well in some settings,

while HDMM performs well in a variety of settings as it does not make strict

assumptions about the workload.

2. OPT0 gets within a factor of 2.57 of the SVD bound for Laplace noise and 1.01 of

the SVD bound for Gaussian noise on every tested workload. The gap between

OPT0 and SVDB is quite small for Gaussian noise, suggesting that OPT0 is

finding the best possible strategy. Note that COA also finds a optimal strategy

in many of the settings, but it fails on the Prefix and Width 32 Range

workloads when n ≥ 1024. Thus, even though it is solving the same problem

underlying OPT0 in theory, the implementation is not as robust as ours. The gap

between OPT0 and SVDB is larger for Laplace noise, however, and it is unclear

if this gap is primarily due to looseness of the SVD bound or suboptimality of

the strategy. Nevertheless, even with Laplace noise the ratio between OPT0 and

SVDB is at most 2.57.
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Figure 3.2: Time required to run OPT0 for 100 iterations on the AllRange workload
for increasing domain sizes.

3. The error of OPT0 (and COA for (ε, δ) privacy) is the same on the All Range and

Permuted Range workloads. Permuting the workload doesn’t impact achievable

error or our optimization algorithm in any meaningful way. However, many of

the methods we compared against perform well on All Range but poorly on

Permuted Range because they were specifically designed for range queries. This

shows that they exploit specific structure of the input workload and have limited

adaptivity.

4. On these workloads, Laplace noise offers better error than Gaussian noise (for

appropriately conservative settings of δ). This is because with Gaussian noise

there is an additional ≈
√

log(1/δ) term in the standard deviation of the noise,

and this outweighs the benefit using the L2 sensitivity norm instead of the L1

sensitivity norm, despite the fact that we may be finding strategies that are

further from optimal in the L1 case.

Scalability We now demonstrate the scalability of OPT0. Note that optimiza-

tion time dominates in the low-dimensional setting, and the time for measure and

reconstruct is small in comparison to that. The per-iteration time complexity only

depends on the domain size, and not the contents of the workload. While the number
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ε-differential privacy (Laplace noise)
Dataset Workload Identity Laplace DataCube OPT⊗ OPT+ OPTM HDMM SVDB

CPH (5D)
SF1 23.20 70.71 - 7.30 30.55 9.56 7.30 -
SF1+ 32.50 141.42 - 10.23 42.31 12.88 10.23 -

CPS (5D)
All Marginals 5.38 45.25 18.49 4.85 4.85 4.84 4.84 2.63

All Prefix-Marginals 98.06 56568.54 - 40.59 40.59 69.38 40.59 9.32

Adult (14D)
≤ 3D Marginals 5352117.26 664.68 494.06 872.58 306.33 225.35 225.35 15.08

2D Prefix-Marginals 475602516.60 138602.83 - 1119.16 484.07 553.56 484.07 -

Loans (12D)
Small Marginals 3330650.46 265.87 113.98 654.35 204.17 100.92 100.92 11.61

Small Prefix-Marginals 15340082.96 11013.90 - 1707.67 485.67 288.29 288.29 -

Table 3.4: RMSE of HDMM strategies and baseline strategies on multi-
dimensional workloads (ranging from 5D to 14D) for ε = 1.0 with Laplace
noise.

of iterations required for convergence may differ slightly based on the queries in the

workload, for simplicity we measure the time required to run the optimization for 100

iterations on the All Range workload.

Figure 3.2 shows the amount of time required to run OPT0 for various domain sizes.

It shows that OPT0 scales up to n = 8192, and runs for n = 1024 in under 10 seconds

for Laplace noise and 1 minute for Gaussian noise. This difference occurs because

the per-iteration time complexity is O(pn2) under Laplace noise but O(n3) under

Gaussian noise. For n = 8192 it takes considerably longer, but is still feasible to run.

We remark that trading a few hours of computation time for a meaningful reduction

in error is typically a welcome trade-off in practice, especially since workloads can be

optimized once and the resulting strategies reused many times. Additionally, we have

a prototype implementation that uses GPUs and PyTorch, and we found that it is

possible (although very time consuming) to scale up to n = 16384. Beyond this point,

it quickly becomes infeasible to even represent the workload (or its Gram matrix) in

matrix form, let alone optimize it.

3.10.2 Evaluating OPT⊗, OPT+, and OPTM on multi-dimensional work-

loads

We now shift our attention to the multi-dimensional setting.
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(ε, δ)-differential privacy (Gaussian noise)
Dataset Workload Identity Gaussian DataCube OPT⊗ OPT+ OPTM HDMM SVDB

CPH (5D)
SF1 69.33 29.87 - 9.80 75.66 14.31 9.80 -
SF1+ 97.08 42.25 - 10.90 84.16 15.88 10.90 -

CPS (5D)
All Marginals 16.08 23.90 19.53 7.85 7.85 7.86 7.85 7.85

All Prefix-Marginals 292.93 844.94 - 29.48 29.49 104.09 29.48 27.85

Adult (14D)
≤ 3D Marginals 15988375.02 91.59 77.36 82.42 899.04 46.44 46.44 45.06

2D Prefix-Marginals 1420766966.19 1322.58 - 126.17 639.43 296.12 126.17 -

Loans (12D)
Small Marginals 9949649.11 57.92 37.37 81.51 631.40 34.91 34.91 34.67

Small Prefix-Marginals 45825415.90 372.83 - 132.43 994.04 99.72 99.72 -

Table 3.5: RMSE of HDMM strategies and baseline strategies on multi-
dimensional workloads (ranging from 5D to 14D) for ε = 1.0 and δ = 10−6

with Gaussian noise.

Workloads We consider four multi-dimensional schemas and two workloads for

each schema. The first two schemas are both census products, namely the Census of

Population and Housing (CPH) and the Current Population Survey (CPS). These

schemas each have 5 attributes each and domain sizes of about 1 million. The last two

schemas, adult and loans are much higher-dimensional, having 15 and 12 attributes

respectively.

For the CPH schema, we use two workloads, SF1 and SF1+ workloads, which

include queries necessary to compute the statistics that appear in the Census’ “Sum-

mary File 1” data releases at different geographic granularities. For the other schemas,

we use workloads based on marginals and prefix-marginals. A prefix marginal is

a query matrix of the form Q = ⊗di=1Qi where Qi ∈ {T ,P } if i is a discretized

numerical attribute, and Qi =∈ {T , I} otherwise, where T , I, and P are the “total”,

“identity”, and “prefix” matrices, respectively. For CPS we use the workload of All

Marginals and All Prefix-Marginals. For adult, we use All ≤ 3D marginals

and all 2D Prefix-Marginals. For loans, we use All Small Marginals and All

Small Prefix-Marginals. A “Small” Marginal can be any k-way Marginal with

less than 5000 cells. This means the workload will be an interesting combination of

0, 1, 2, . . . , k-way marginals.

We note that for the Adult and Loans schema, the domain is far too large to allow

p to be represented in vector form. As a result, running HDMM as described in this
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paper would not be feasible. However, we remind the reader that in this section we

are simply reporting expected errors, which we can compute efficiently without ever

materializing p.

Mechanisms In the high-dimensional setting, there are far fewer data-independent

mechanisms to choose from. We thus compare against Identity, Laplace, and Gaussian,

which are the only methods from the previous section which are applicable and scalable

to high-dimensional settings. In addition to these simple baselines, we also compare

against DataCube, which is applicable in this setting, but only for (unweighted)

marginal query workloads.

Results and Findings Table 3.4 and Table 3.5 report the RMSE of the baselines

as well as each optimization operator. We compute the SVD bound when possible

(i.e., the workload is either a single Kronecker product or a marginal query workload).

We have four main findings which we enumerate below:

1. HDMM is better than all competitors on all tasks, and the magnitude of the

improvement is as large as 38 for Laplace noise and 29 for Gaussian noise.

2. HDMM gets within a factor 1.06 of the SVD bound when it is possible to compute

it for Gaussian noise. This is consistent with the theoretical result in Section 3.5

which justifies the defintion of OPT⊗. For Laplace noise, the ratio is as high as

14, however.

3. Gaussian noise offers lower error than Laplace noise for the two highest dimen-

sional schemas, and comparable error for the two five-dimensional schemas. In

contrast to the one-dimensional setting, this occurs because the savings from

using the L2 sensitivity norm outweighs the cost of ≈
√

log(1/δ) to use Gaussian

noise with (ε, δ)-differential privacy.
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Figure 3.3: Scalability of different components of HDMM when run on multi-
dimensional domains of varying size and shape.

4. The parameterization that offers the lowest error differs based on the workload

and the type of noise added. For example, OPTM is always the best for workloads

consisting of Marginals, but it is also sometimes the best for other workloads

too. OPT⊗ is the best for the CPH and CPS workloads, but not as good for

the adult and loans workloads. OPT+ is best for the low-dimensional Prefix

Marginals workloads.

Scalability We now evaluate the scalability HDMM. The main factor that influences

the scalability of HDMM is the domain. The optimization time primarily depends

on the number of dimensions and the size of each dimension, while reconstruction

time primarily depends on the total domain size. Thus, the bottleneck of HDMM

depends on all of these factors in a nuanced way, and for some domains optimization

will be the bottleneck, while for others reconstruction will be. We show how the key

components scale with respect to these properties of the domain in Figure 3.3.

In Figure 3.3a, we fix the number of dimensions of the domain at d = 5 and vary

the size of each dimension from ni = 2 to ni = 1024. We measure and report the

optimization time for OPT⊗,OPT+, and OPTM. We run OPT⊗ for 100 inner iterations

(in calls to OPT0) and 5 outer iterations. We use a workload consisting of a union of 10
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Kronecker products, where each subworkload is All Range queries. In Figure 3.3b, we

fix the domain size of each dimension at ni = 10 and vary the number of dimensions

from d = 2 to d = 15. We again use the same workload as before. In Figure 3.3c,

we use the strategies produced from Figure 3.3a, and measure the time required to

perform the reconstruct step of HDMM.

From the figure we can see that the optimization time of OPT⊗ and OPT+ primarily

depends on the size of each dimension, rather than the number of dimensions. In con-

trast, the optimization time of OPTM primarily depends on the number of dimensions

and not the size of each dimension. This confirms the theoretical complexity results.

All three optimization operators are capable of running in settings where the total

domain size is far too large to allow p to be represented in vector form. The figure

also shows that we can solve the reconstruct step up to domains as large as 109.

Beyond this point, it is infeasible to even represent p in vector form on the machine

used for experiments.

3.11 Discussion and limitations

In this chapter, we presented HDMM, a general and scalable method for privately

answering workloads of conjunctive linear queries. HDMM overcomes the main bottle-

neck of the Matrix Mechanism via implicit query matrix representations, and specialized

optimized routines that exploit these implicit representations. In experiments, we ran

HDMM on domains as large as n = 109. There are three main limitations to HDMM,

which will motivate the work in Chapters 4 and 5.

First, HDMM represents the data vector explicitly, and while it scales very well

with respect to the dimensionality of this object, it can be prohibitively expensive

to instantiate the data vector explicitly for high-dimensional datasets which could

have dozens of attributes and domain sizes much larger than 109. At the surface it is
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easy to misinterpret the name “high-dimensional” matrix mechanism, as HDMM is

not actually able to run on datasets with more than a few attributes.

Second, like the matrix mechanism, HDMM solves an ordinary least squares problem

to reconstruct the underlying data vector and estimate the workload query answers.

While this produces unbiased estimates to the workload queries, it does not account

for the non-negativity that we know holds in the true data vector. As a result, the

reconstructed data vector could have negative counts, which is a consistency problem.

Third, HDMM provides unbiased answers to all workload queries. Mechanisms

in this class are known to perform well in the big data/low privacy regime, but are

often outperformed by biased mechanisms in the small data/high privacy regime

[46]. When the workload is large, and there is a limited amount of data and privacy

budget available, it can be better to privately answer a small subset of the workload

(obtaining unbiased answers to those queries), and infer unanswered queries through

post-processing. While these estimates will inevitably be biased, the reduced variance

on the answered queries can be a worthwhile trade-off.
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CHAPTER 4

PRIVATEPGM: ESTIMATING HIGH-DIMENSIONAL
DATA DISTRIBUTIONS FROM NOISY MARGINALS

4.1 Motivation

Differentially private mechanisms are inherently random, as required by Defini-

tion 4. This randomness sometimes leads to inconsistencies in the private observations.

Resolving these inconsistencies intelligently by post-processing can often improve

the utility of the privacy mechanism [47]. A common approach is to estimate the

underlying data vector from the noisy evidence [47, 57, 55], and then use this to give

consistent estimates to the original queries. The estimated data distribution can also

be used in place of the true data to answer new queries. This reconstruct step is a

critical component of many mechanisms, as it improves utility at no cost to privacy.

Existing methods for solving this reconstruct problem typically rely on an explicit

representation of the data vector, so they do not scale effectively to high-dimensional

settings. There are a few notable exceptions [41, 110, 37], but they are tailored to

specific settings and/or are based on simple heuristics and do not provide as much

utility as the other methods [57, 55]. In this work we show that graphical models

provide a natural solution to this problem that is general, principled, and scalable.

Contributions In this section, we present PrivatePGM, a general-purpose algorithm

for post-processing the output of an arbitrary privacy mechanism defined over discrete

data that estimates a data vector that maximizes the likelihood of the observed output.

This estimate can be converted into synthetic tabular data and used in downstream

tasks in place of the true data. PrivatePGM avoids materializing the data vector
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explicitly, and instead uses a compact factored representation. It is highly effective

in high-dimensional settings, as long as all of the measurements are defined with

respect to the low-dimensional marginals. Furthermore, because PrivatePGM is based

on the principle of maximum likelihood, it consistently improves the utility of existing

privacy mechanisms by extracting more useful information from the same randomized

output. Moreover, PrivatePGM can be used to enable algorithms like HDMM to scale

to higher-dimensional settings than what was previously possible.

Organization In Section 4.2, we setup the notation and state the main problem we

consider. In Section 4.3, we present two algorithms for estimating the data vector (in

factored form) from noisy observations of its marginals. In Section 4.4, we present

algorithms for answering downstream queries efficiently by exploiting the factored

form of the data vector. In Section 4.5, we show how PrivatePGM can be integrated

into existing mechanisms. In Section 4.6, we empirically evaluate our approach, by

integrating it with existing differentially private mechanisms, and evaluating scalability

and utility.

4.2 Problem Setup

Suppose we ran an arbitrary (ε, δ)-DP mechanism A on a discrete dataset D and

observed the output y ∼ A(D). The observations or measurements y reveal noisy

high-level aggregate information about the underlying data. Our goal is to use this

information to solve two related problems: (1) recover an estimate of the underlying

dataset D, for the purposes of (2) estimating the answers to new queries about D.

We can formulate the first problem as an optimization problem, as shown below:

Problem 2. Let L : D → R be a loss function that measures how well a dataset D

explains the randomized output y. Our goal is to solve:
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D̂ ∈ arg min
D∈D

L(D)

The loss function can be any measure of well a dataset D “explains” the noisy obser-

vations y. A natural choice that is universally applicable is the negative log-likelihood,

that is L(D) = − log Pr[A(D) = y], although other choices are certainly possible and

may be preferable in specific settings. From D̂, we can derive consistent estimates

for measured queries, and also infer answers to unmeasured queries. Unfortunately,

for high-dimensional domains, solving this problem in its full generality is hopelessly

intractable, as D is an intractably large discrete set. We will therefore seek to solve

the continuous relaxation of this problem instead, and optimize over the space of

distributions p:

Problem 3. Let L : Rn → R be a loss function that measures how well a distribution

p explains the randomized output y. Our goal is to solve:

p̂ ∈ arg min
p∈S

L(p)

Above, S is the set of all possible (normalized) data vectors, or non-negative vectors

that sum to 1. In this chapter, we will assume that the number of records N is known,

so we can easily convert back and forth between the normalized and unnormalized

data vector representations. If N is not known, we can usually estimate it from

the noisy observations [73]. Problem 3 is a simple generalization of prior problem

formulations [47, 57, 80], which have primarily focused on the setting where A answers

linear queries, and the loss function simplifies to L(p) = ‖Qp− y‖ for some matrix

Q. If n is sufficiently small, this is a simple problem to solve using gradient-based

techniques. However, in high-dimensional settings, we often have n� 109, and as a

result p is far too large to work with directly.

To make this problem tractable, we will require that the mechanism A and therefore

the loss function L only depends on D through some collection of its low-dimensional
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marginals µr = Mr(D) for r ∈ C. Let µ = (µr)r∈C denote the concatenated vector

of marginals, or simply the clique marginals. Many published mechanisms for high-

dimensional data satisfy this assumption, so the requirement is not overly restrictive

[110, 41, 69, 37, 84, 16, 116, 70, 71, 20, 8]. Moreover, by setting C = {r} where r = [d],

the mechanism can depend on the entire data vector p, so there is no loss in generality

in this problem formulation. However, when the set C contains lower-dimensional

marginals, we wish to exploit this fact to solve this problem more efficiently.

To facilitate this problem formulation, it is helpful to introduce the function

MC : D → Rk where k =
∑

r∈C nr, which computes the concatenated vector of

marginals for a given set of cliques C, i.e., µ = MC(D) = (Mr(D))r∈C = (µr)r∈C.

We will also let MC denote the corresponding linear transformation, i.e., µ = MCp.

To make the problem setting more concrete, it is useful to consider the canonical

mechanism defined by A(D) = QMC(D) + ξ where C is a set of cliques, Q is a query

matrix, and ξ is a vector of zero-centered noise. A natural loss function for this

mechanism is L(p) = ‖QMCp− y‖2
2. Indeed, this loss function is proportional to the

negative log likelihood when ξ is normally distributed, although the loss function is a

natural choice for other zero-centered noise distributions as well. While the techniques

we present in this paper apply to more general mechanisms, the canonical mechanism

above is helpful to gain more intuition about the problem setup and applications.

4.3 Estimating the data distribution

We take a two-step approach to estimating p. In the first step, we solve for the

best-fitting µ by solving the optimization problem stated below. In the second step,

we identify a distribution pθ that has marginals µ.

Problem 4 (Marginal-based Optimization). Given a loss function L(µ), find

µ̂ ∈ arg min
µ∈M(C)

L(µ)
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where M(C) = {MCp | p ∈ S} is the marginal polytope, or the set of vectors that are

the marginals of some data vector.

The main benefit of this problem reformulation is that the marginal vector µ will

often be much smaller than p, so the new problem can be more efficiently solved.

However, there are three main technical challenges to overcome. First, Problem 4

is an optimization problem over the marginal polytope, which is nontrivial to solve

because the constraint set has complex combinatorial structure. Second, the solution

to Problem 4 only gives us µ̂, but we are ultimately interested in the full joint

distribution p̂, and there are infinitely many data vectors p that are compatible

with a given marginal vector µ. Third, in the high-dimensional setting we cannot

afford to represent p explicitly, as n � 109. To overcome these challenges, we will

use undirected graphical models. A graphical model provides a compact factored

representation of a joint distribution, and is defined formally below:

Definition 25 (Graphical model). Let

pθ(x) =
1

Z
exp

(∑
r∈C

θr(xr)
)

where Z is a normalization constant and θr ∈ Rnr . This distribution is a graphical

model that factors over a collection of cliques C. The real numbers θr(xr) are known

as the log-potentials, or simply the parameters of the model.

The distribution pθ is completely defined by the parameter vector θ = (θr)r∈C,

which matches the marginal vector µ in size and indexing. The relationship between

these two vectors is central to graphical models [97]:

• A parameter vector θ determines a unique marginal vector µθ ∈M(C), defined

as µθ = MCpθ, the marginals of pθ. Marginal inference is the problem of

(efficiently) computing µθ from θ. It can be solved exactly by algorithms such
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as variable elimination or belief propagation with a junction tree [53]. We denote

by MARGINAL-ORACLE an algorithm that outputs µθ on input θ.

• For every µ ∈M(C) with positive entries, there is a unique distribution pθ in

the family of graphical models with cliques C that has marginals µ. Moreover,

pθ has maximum entropy among all distributions with marginals µ.

4.3.1 Solving Problem 4 with proximal algorithms

Now that we have outlined out high-level approach, we are now ready to present

two algorithms for actually finding µ̂ and θ̂. Both are proximal algorithms for solving

convex problems with “simple” constraints [81]. The first and simpler of the two is

shown in Algorithm 2. It is an T -step procedure that finds both the marginals µ,

as well as the parameter vector θ of the corresponding graphical model. If run until

convergence, the returned vector µ solves Problem 4, and pθ solves Problem 3. Each

step of the procedure invokes MARGINAL-ORACLE, which is a black-box algorithm for

computing the clique marginals µ of the graphical model from the parameters θ. This

is the problem of marginal inference in a graphical model. MARGINAL-ORACLE may

be any marginal inference routine — we use belief propagation on a junction tree,

which is the standard algorithm used for this problem [53]. As we will discuss below,

this algorithm is an instance of mirror descent, and hence inherits its convergence

guarantees. It will converge for any convex loss function L at a O(1/
√
t) rate,1 even

ones that are not smooth, such as the L1 loss.

The complexity of Algorithm 2 is closely tied to the complexity of MARGINAL-ORACLE,

or belief propagation in the underlying graphical model. Belief propagation exploits

the factored representation of pθ to calculate the marginals µ more efficiently than

the näıve approach which simply materializes pθ explicitly as a vector, then computes

1That is, L(µt)− L(µ∗) ∈ O(1/
√
t).
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Algorithm 2 Proximal Estimation Algorithm

Input: Convex loss function L(µ)
Output: Estimated marginals µ and parameters θ
θ = 0
for t = 1, . . . , T do
µ = MARGINAL-ORACLE(θ)
θ = θ − ηt∇L(µ)

end for
return µ,θ

µ = MCpθ. In fact, belief propagation avoids enumerating the entries of pθ one-by-one

all-together. Instead, all computations are done directly in terms of the parameters

θ and intermediate objects called “messages”. The complexity of belief propagation

does not depend directly on n, and therefore it can handle our target case n� 109.

The main factor that influences the complexity of belief propagation is the structure

of the underlying graphical model. For “nice” graphical models, belief propagation

is exponentially faster than the näıve approach, and is tractable in high-dimensional

settings. In the worst case, however, belief propagation is no better than the näıve

approach. We study the scalability of Algorithm 2 in Section 4.6.

4.3.2 Derivation of the update equations

Algorithm 2 is inspired by the entropic mirror descent algorithm for solving convex

optimization problems over the probability simplex [7]. The iterates of the optimization

are obtained by solving simpler optimization problems of the form:

µt+1 = arg min
µ∈M(C)

µ>∇L(µt) +
1

ηt
D(µ,µt) (4.1)

where D is a Bregman divergence, which has the form D(µ,µt) = ψ(µ) − ψ(µt) −

(µ− µt)>∇ψ(µt) for a strongly convex and continuously differentiable function ψ. ψ

should be chosen to reflect the geometry of the constraint set, so that the subproblem

above can be solved efficiently. Here we use ψ = −H, the negative Shannon entropy

of the graphical model pθ with marginals µ. This choice was inspired by Vilnis et al.,
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who considered a similar optimization problem [96]. Since we assumed above that µ

are marginals of the cliques of a junction tree, the Shannon entropy is convex and

easily computed as a function of µ alone [97]. We show below that the subproblem

can be efficiently solved with a call to MARGINAL-ORACLE.

µt+1 = arg min
µ∈M(C)

µ>∇L(µt) +
1

ηt
D(µ,µt)

= arg min
µ∈M(C)

µ>∇L(µt) +
1

ηt

(
−H(µ) + µ>∇H(µt)

)
(substitution)

= arg min
µ∈M(C)

µ>
(
ηt∇L(µt) +∇H(µt)

)
−H(µ) (algebraic manipulation)

= arg min
µ∈M(C)

µ>
(
ηt∇L(µt)− θt

)
−H(µ) (∇H(µt) = −θt [97])

= MARGINAL-ORACLE
(
θt − ηt∇L(µt)

)
(inference ↔ energy minimization [97])

The first three steps are simple algebraic manipulation of the mirror descent up-

date equation. The final two steps use the observation that ∇H(µt) = −θt and

that marginal inference can be cast as the following optimization problem: [97, 96]

MARGINAL-ORACLE(θ) = arg minµ∈M(C)−µ>θ −H(µ).

4.3.3 Accelerated proximal algorithm

We now present a related algorithm which is based on the same principles as

Algorithm 2 but has an improved O(1/t2) convergence rate for convex loss functions

with Lipschitz continuous gradients. Algorithm 3 is based on Nesterov’s accelerated

dual averaging approach [78, 99, 96]. The per-iteration complexity is the same as

Algorithm 2 as it requires calling the MARGINAL-ORACLE once, but this algorithm will

converge in fewer iterations. Algorithm 3 has the advantage of not requiring a step

size to be set, but it requires knowledge of the Lipschitz constant of ∇L. For the

standard L2 loss with linear measurements, this is equal to the largest eigenvalue of

Q>Q. The derivation of this algorithm is similar to the derivation of Algorithm 2.
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Algorithm 3 Accelerated Proximal Estimation Algorithm

Input: Loss function L(µ) between µ and y
Output: Estimated data distribution p̂θ
K = Lipschitz constant of ∇L
ḡ = 0
ν,µ = MARGINAL-ORACLE(0)
for t = 1, . . . , T do
c = 2

t+1

ω = (1− c)µ+ cν
ḡ = (1− c)ḡ + c∇L(ω)

θ = −t(t+1)
4K

ḡ
ν = MARGINAL-ORACLE(θ)
µ = (1− c)µ+ cν

end for
return graphical model p̂θ with marginals µ

Remark 1. The complexity of Algorithms 2 and 3 is closely related to the complexity of

MARGINAL-ORACLE, which in turn depends on the structure of the underlying graphical

model, which in turn depends on the cliques that were measured by the mechanism.

When these cliques form a tree, MARGINAL-ORACLE and PrivatePGM are highly scalable.

In general, the complexity of these techniques depends on a quantity known as the

junction tree size. While it requires some expertise in graphical models to understand

these nuances, we can easily compute this quantity as a function of the measured cliques

using a function JT-SIZE(r1, . . . , rt). In this chapter, we only consider cliques which

lead to tractable graphical models, and implicitly assume JT-SIZE is sufficiently small.

In Chapter 5, we will use this function explicitly to ensure the cliques we measure lead

to tractable models.

4.4 Estimating new query answers

Now that we have shown how to estimate pθ, we will show how to use it to

efficiently estimate the answers to new queries, without materializing pθ explicitly.

We will describe two approaches that can compute linear transformations of marginals.
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Algorithm 4 Inference for conjunctive linear queries

Input: Parameters θ, query matrix Q = Q1 ⊗ · · · ⊗Qd

Output: Query answers Qpθ
ψ = {exp(θr) | r ∈ C} ∪ {Qi | i ∈ [d]}
Z = NORMALIZATION-CONSTANT(θ)
return VARIABLE-ELIM(ψ,Ω)/Z

Additionally, we will show that we can generate synthetic tabular data from pθ which

we can use to estimate answers to virtually any new query.

4.4.1 Marginal queries

Given a clique r we would like to compute µr = Mrpθ, which will serve as an

estimate for Mr(D). However, we cannot afford to compute µr directly using the

formula above. If r ∈ C+, where C+ is the downward closure of C, then we can

immediately calculate µr from the concatenated vector of marginals µ returned by

Algorithm 2. Alternatively, if r 6∈ C+, then we instead use the variable elimination

algorithm [53], which is similar in spirit to belief propagation for computing µ, but is

able to compute marginals that are not in the C.

4.4.2 Conjunctive linear queries

Algorithm 4 gives an efficient algorithm for answering conjunctive linear queries,

represented as a Kronecker product Q = Q1 ⊗ · · · ⊗Qd (Definition 18). It can be

understood as follows: for a particular query index z = (z1, . . . , zd), write f(z, x) =

Q(z, x)pθ(x) = pθ(x)
∏

iQi(zi, xi) . This can be viewed as an augmented graphical

model on the variables z and x where we have introduced new pairwise factors between

each (xi, zi) pair defined by the query matrix Qi. Unlike a regular graphical model,

the new factors can contain negative values. The query answers are obtained by

multiplying Q and p, which sums over x. The zth answer is given by:
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(Qpθ)(z) =
∑
x∈Ω

Q(z, x)pθ(x)

=
1

Z

∑
x∈Ω

d∏
i=1

Qi(zi, xi)
∏
r∈C

exp[θr(xr)]

This can be understood as marginalizing over the x variables in the augmented

model f(z, x), leaving us with only the variables z. The resulting marginal in the

augmented graphical model contains the desired query answers. The VARIABLE-ELIM

routine referenced in the algorithm is standard variable elimination to perform this

marginalization; it can handle negative values with no modification. The term Z is

the normalization constant, which can be computed using an algorithm similar to

MARGINAL-ORACLE.

4.4.3 Synthetic data

One approach to estimate answers to more exotic queries is to simply generate

synthetic data D̂ from p̂θ. This synthetic dataset D̂ can then be used as a drop-in

replacement for D to estimate the answer to any query. A näıve method to generate

synthetic data is to simply sample from p̂θ. It is well-known how to efficiently sample

from a graphical model [97], and the complexity of sampling is roughly comparable to

that of MARGINAL-ORACLE. The basic idea is to iterate through the attributes 1, . . . , d

in a carefully chosen order, and sample data for one attribute at a time, conditioned on

the data generated during previous iterations. This major drawback of this approach

is the introduction of additional randomness due to sampling, which introduces error

to D̂ that was not present in p̂θ. We thus propose a different procedure that replaces

the sampling step with a randomized rounding step [70]. While this new procedure

still has some randomness, it has far smaller variance than the sampling scheme. Some

deviation between D̂ and p̂θ is inevitable as D̂ is a discrete approximation of p̂.
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4.5 Integrating PrivatePGM into existing mechanisms

Next we describe how PrivatePGM can improve the accuracy and/or scalability of

four state-of-the-art mechanisms: MWEM, PrivBayes, HDMM, and DualQuery. Table 4.1

provides a high-level summary of the impact of PrivatePGM on the accuracy and

scalability of four mechanisms. More details on how PrivatePGM is integrated into

these mechanisms are provided in the paragraphs below.

Table 4.1: Breakdown of how PrivatePGM improves the accuracy and scalability of
existing mechanisms.

Mechanism Accuracy Scalability
MWEM [73] 3

PrivBayes [110] 3

HDMM [73] 3 3

DualQuery [37] 3

MWEM The multiplicative weights exponential mechanism [41] is an active-learning

style algorithm that is designed to answer a workload of linear queries. MWEM

maintains an approximation of the data distribution and at each time step selects

the worst approximated query from the workload via the exponential mechanism

[75]. It then measures the query using the Laplace mechanism and then updates the

approximate data distribution by incorporating the measured information using the

multiplicative weights update rule.

It is infeasible to represent p explicitly for high-dimensional data, so this version

of MWEM is only applicable to relatively low-dimensional data. Hardt et al. describe

an enhanced version of MWEM, which we call factored MWEM, that is able to avoid

materializing this vector explicitly, in the special case when the measured queries

decompose over disjoint subsets of attributes. In that case, p is represented implicitly as

a product of independent distributions over smaller domains, i.e., p(x) =
∏

r∈C µr(xr),

and the update is done on one group at a time. However, this enhancement breaks
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down for measurements on overlapping subsets of attributes in high-dimensional data,

so MWEM is still generally infeasible to run except on simple workloads.

We can construct a new algorithm, MWEM+PGM, by incorporating PrivatePGM to

this this procedure. Specifically, we can replace the multiplicative weights update step

with a call to Algorithm 2 using the standard L2 loss function (on all measurements

up to that point in the algorithm). By doing so, we learn a compact graphical

model representation of p̂, which avoids materializing the full p vector even when

the measured queries overlap in complicated ways. MWEM+PGM scales better than

factored MWEM and runs in settings where it was previously infeasible. Interestingly,

in settings where both MWEM and MWEM+PGM run, they produce identical results,

even though they appear to use different procedures for estimating p on the surface.

Upon closer inspection, this can be explained by the fact that the MWEM update

is closely related to the entropic mirror descent update [7], and, if iterated until

convergence (as is done in practice), solves the same L2 minimization problem that

we use[73].

PrivBayes PrivBayes [110] is a differentially private mechanism that generates syn-

thetic data. It first spends half the privacy budget to learn a Bayesian network

structure that captures the dependencies in the data, and then uses the remaining

privacy budget to measure the statistics—which are marginals—necessary to learn

the Bayesian network parameters. PrivBayes uses a heuristic of truncating negative

entries of the noisy marginals and normalizing to get conditional probability tables.

It then samples a synthetic dataset of N records from the Bayesian network from

which consistent answers to workload queries can be derived. While this is simple and

efficient, the heuristic does not properly account for measurement noise and sampling

may introduce unnecessary error.

We can incorporate PrivatePGM into PrivBayes by replacing it’s model estimation

step with a call to Algorithm 2 to create the new mechanism PrivBayes+PGM.Then
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we can answer new queries directly with the learned model pθ, or generate synthetic

data as PrivBayes does.

HDMM The high-dimensional matrix mechanism [69] was described in detail in

Chapter 3. The main bottleneck of HDMM is representing p, which it must estimate

during the reconstruct step via least squares problem: p̂ = arg minp ‖Qp− y‖2. We

can replace the HDMM estimation procedure with Algorithm 2, using the same L2 loss

function to create HDMM+PGM. If the workload contains queries over low-dimensional

marginals, then the strategy Q will also contain queries over the low-dimensional

marginals (when using OPT+ and OPTM). In this case, the main assumption of

PrivatePGM is satisfied, and therefore we can expect HDMM+PGM to scale much

better than HDMM by itself. In addition to improving scalability of HDMM, we expect

HDMM+PGM to provide better accuracy as well, since Algorithm 2 considers the

non-negativity constraint on p, which HDMM does not.

DualQuery DualQuery [37] is an iterative algorithm inspired by the same two-player

game underlying MWEM. It generates synthetic data to approximate the true data on

a workload of linear queries. DualQuery maintains a distribution over the workload

queries that depends on the true data so that poorly approximated queries have higher

probability mass. In each iteration, samples are drawn from the query distribution,

which are proven to be differentially private. The sampled queries are then used to

find a single record from the data domain (without accessing the protected data),

which is added to the synthetic database.

The measurements — i.e., the random outcomes from the privacy mechanism

— are the queries sampled in each iteration. Even though these are very different

from the canonical case of linear measurements we used to motivate PrivatePGM,

we can still express the log-likelihood as a function of p and select p to maximize

the log-likelihood using Algorithm 2. Because the log-likelihood only depends on p
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through the answers to the workload queries, if the workload can be expressed in

terms of µ instead, the log-likelihood can as well. Thus, after running DualQuery, we

can call Algorithm 2 with this custom loss function to estimate the data distribution,

creating the new mechanism DualQuery+PGM. We can then use the estimated model

pθ to estimate downstream queries directly, or to generate synthetic data as DualQuery

does. Additional details on this approach are given in the supplementary material.

New Mechanisms We have demonstrated above that PrivatePGM can be integrated

into a variety of existing mechanisms for discrete data. However, we developed Pri-

vatePGM not just to improve existing mechanisms, but to act as a general-purpose

tool that can simplify the design of future mechanisms. For mechanisms in the

select-measure-reconstruct paradigm, PrivatePGM provides a principled and scal-

able solution to the reconstruct step, which in turn allows the mechanism designer

to focus on the orthogonal select step. Indeed, in Chapter 5, we develop a new

mechanism for differentially private synthetic data generation that utilizes PrivatePGM

in this way.

4.6 Experimental evaluation

In this section, we measure the accuracy and scalability improvements enabled by

PrivatePGM when it is incorporated into existing privacy mechanisms.

4.6.1 Adding PrivatePGM to existing algorithms

To demonstrate the usefulness of our technology, we run four privacy mechanisms

(MWEM, PrivBayes, HDMM, DualQuery) with and without PrivatePGM. These mecha-

nisms are run with a privacy budget of ε = 1.0 (and δ = 0.001 for DualQuery). We

repeat each experiment five times and report the median workload error.
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We use four datasets in our experiments, summarized in Table 5.2. Each dataset

consists of a collection of categorical and numerical attributes (with the latter dis-

cretized into 100 bins).

Dataset Records Attributes Domain Queries
titanic 1304 9 3× 108 4851
adult 48842 15 1× 1019 62876
loans 42535 48 5× 1080 362201
stroke 19434 110 4× 10104 17716

Table 4.2: Datasets used in experiments along with the number of queries in the
workload used with the dataset.

We evaluate error with respect to a workload of fifteen randomly chosen three

way range-marginals. Specifically, for each attribute i ∈ [d], we define Wi = I (the

identity matrix) if i is a categorical attribute, and Wi = P (the prefix matrix) if i is

a discretized numeric attribute. Then, we sample 15 size three cliques, and for each

clique r = (i1, i2, i3), we construct the query matrix Wr = Wi1 ⊗Wi2 ⊗Wi3 . Error

is measured by a normalized L1 distance between true and estimated answers to the

workload queries.

Error(µ, µ̂) =
1

|C|
∑
r∈C

‖Wrµr −Wrµ̂r‖1

2 ‖Wrµr‖1

where µ and µ̂ are the true and estimated data marginals, respectively. The summand

is related to the total variation distance, and is equal in the special case when Wr = I.

Improved accuracy. PrivBayes and DualQuery are highly scalable algorithms

supporting the large domains considered here. Figures 4.1a and 4.1b show that

incorporating PrivatePGM significantly improves their accuracy. For PrivBayes, work-

load error is reduced by a factor of 6× and 7× on the loans and stroke datasets,

respectively, and 30% for adult. For DualQuery, we also observe very significant error

reductions of 1.2×, 1.8×, 3.5×, and 4.4×.
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Figure 4.1: Workload error of four mechanisms on four datasets, with and without
PrivatePGM for ε = 1.0.

Replacing infeasible estimation methods. The MWEM and HDMM algo-

rithms fail to run on the datasets and workloads we consider because both require

representations of the data vector that are too large to maintain in memory. However,

incorporating PrivatePGM makes these algorithms feasible in these settings.

As Figure 4.1c shows, for the first three datasets, MWEM crashed before completing

because it ran out of memory or timed out. It was able to run successfully on the 105-

dimensional stroke dataset, because we are using a factored MWEM implementation,

and the cliques in the workload did not overlap too much.

HDMM fails to run on all datasets, so for the purpose of comparison, we run a

modified version of the algorithm (denoted HDMM+LLS) which uses local least squares

independently over each measurement marginal instead of global least squares over the

full data vector. While scalable, Figure 4.1d shows that this heuristic is substantially

worse than PrivatePGM, especially on the titanic and loans dataset. Incorporating

PrivatePGM offers error reductions of 6.6×, 3.2×, 27×, and 6.3×. These improvements

primarily stem from non-negativity and global consistency offered by PrivatePGM.

Varying epsilon. While ε is set to 1 in Figure 4.1, in Figure 4.2a we look at the

impact of varying ε, for a fixed dataset and measurement set. We use the adult

dataset and the measurements selected by HDMM, (which do not depend on ε). The

magnitude of the improvement offered by PrivatePGM increases as ε decreases. At

ε = 0.3 and below, the mechanism has virtually no utility without PrivatePGM. At the
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Figure 4.2: (a) Error of HDMM variants on adult as a function of ε. (b) Scalability
of estimation algorithms. (c) Scalability of PrivatePGM for randomly and greedily
selected cliques.

highest ε of 10.0, HDMM+LLS actually offers slightly lower error than HDMM+PGM

on the workload, although both have very low error in an absolute sense. The error of

HDMM+PGM on the measurements is still better by more than a factor of three at this

privacy level. This behavior has been observed before in the low-dimensional setting,

where the ordinary least squares estimator generalizes better than the non-negative

least squares estimator for workloads with range queries [60].

4.6.2 The scalability of PrivatePGM

We now evaluate the scalability of our approach compared with two other general-

purpose estimation techniques: multiplicative weights (MW) [41] and iterative ordinary

least squares (LSMR) [34, 109]. We omit from comparison PrivBayes estimation and

DualQuery estimation because they are special-purpose estimation methods that cannot

handle arbitrary linear measurements. We conduct two separate scalability experi-

ments, to demonstrate how different factors influence the scalability of PrivatePGM.

Varying number of attributes We use synthetic data so that we can systemat-

ically vary the domain size and the number of attributes. We consider the simple

Laplace mechanism that adds noise directly to the three way marginals on attributes

r = (i, i+ 1, i+ 2) for 1 ≤ i ≤ d− 2. In Figure 4.2b, we vary the number of attributes

from 3 to 1000, fixing |Ωi| = 10 for each attribute i, and plot the time per iteration
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of each of these estimation algorithms. Both MW and LSMR fail to scale beyond

datasets with 10 attributes, as they both require materializing p in vector form, while

PrivatePGM easily scales to datasets with 1000 attributes.

While the domain size is the primary factor that determines scalability of the

baseline methods MW and LSMR, the scalability of PrivatePGM primarily depends

primarily on the measured cliques which determine the structure of the underlying

graphical model. In this experiment, the measurements were chosen to highlight a

case where the graphical model is “nice” and PrivatePGM scales very well.

Varying structure of cliques In our second scalability experiment, we consider a

100-dimensional dataset with |Ωi| = 10 for each attribute i. Neither MW or LSMR

are capable of running on domains this large, so this experiment is primarily about

understanding PrivatePGM. For k = 1, . . . , 103, we select k size three cliques, and

measure the corresponding marginals using the Laplace mechanism. Two procedures

are used for selecting the cliques: “random” and “greedy”. The random method

selects the cliques uniformly at random without replacement, while the greedy method

selects the cliques to minimize the size of the resulting junction tree. In Figure 4.2c,

we show that PrivatePGM scales much more favorably with greedily selected cliques,

which is not surprising because the size of the junction tree determines the complexity

of MARGINAL-ORACLE. In fact, with greedily selected cliques, PrivatePGM easily scaled

to k = 103, while for randomly selected cliques it only scaled to k = 51. This is a huge

difference, and thus a crucial property of PrivatePGM that practitioners interested in

using it need to be aware of.

4.7 Discussion and limitations

In this chapter, we presented PrivatePGM, a general-purpose technique for es-

timating a data distribution from differentially private observations. PrivatePGM

can be plugged into a number of existing mechanisms for discrete data, immediately
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improving their utility and/or scalability. PrivatePGM utilizes a compact factored

representation of the data vector, which enables it to scale effectively to truly high-

dimensional settings. In our experiments, we ran it on synthetic datasets with up to

1000 attributes, and corresponding domain size of n = 101000. There are two main

limitations of PrivatePGM, which are explained below.

First, PrivatePGM is not an end-to-end mechanism, but rather a tool for post-

processing the output of an existing mechanism. It plugs in naturally to a variety of

existing mechanisms, but can not be run “in isolation” without noisy observations as

input. This is not a limitation, but an intentional design decision. Since PrivatePGM

provides a principled solution to the reconstruct subproblem, it allows researchers

to focus their energy on the equally important and orthogonal select subproblem.

Since it was originally published, PrivatePGM has been used in exactly this manner as

a core component of three published mechanisms for synthetic data generation: MST

[70], PrivMRF [16], and AIM (Chapter 5).

Second, PrivatePGM is capable of scaling to high-dimensional settings only when

the measurements “allow it”. That is, the scalability of PrivatePGM depends on

the cliques that define the graphical model, which is determined by which marginals

the mechanism measured. As we saw in Section 4.6, there is a big difference in

runtime when these cliques are chosen greedily and when they are chosen randomly.

Furthermore, it requires some expertise in graphical models to understand the nuances

to the scalability of PrivatePGM. To help non-experts use PrivatePGM effectively, the

open source implementation exposes a function JT-SIZE (r1, . . . , rk) which consumes a

list of cliques and returns the size of the corresponding junction tree. The complexity of

PrivatePGM is closely related to JT-SIZE, and if it is sufficiently small, PrivatePGM can

be expected to run efficiently. There are two natural ways to overcome this limitation,

one is to design approximations that relax the optimization problem underlying

PrivatePGM in some way, and the other is to design a mechanism that carefully selects
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cliques to avoid this worst-case behavior by construction. We developed the former

idea in [72], and develop the latter idea in Chapter 5.
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CHAPTER 5

AIM: AN ADAPTIVE AND ITERATIVE MECHANISM
FOR DIFFERENTIALLY PRIVATE SYNTHETIC DATA

5.1 Motivation

In this chapter, we consider the problem of differentially private synthetic data

generation. This problem calls for generating a collection of records matching the input

schema, intended to be broadly representative of the source data, in a differentially

private manner. Private synthetic data is appealing because it fits any data processing

workflow designed for the original data, and, on its face, the user may believe they

can perform any computation they wish, while still enjoying the benefits of privacy

protection. Unfortunately it is well-known that there are limits to the accuracy that

can be provided by synthetic data, under differential privacy or any other reasonable

notion of privacy [27]. As a consequence, it is important to tailor synthetic data to

the intended workload.

While the problem of differentially private synthetic data has received considerable

research attention [110, 20, 113, 103, 102, 91, 95, 62, 92, 19, 38, 48, 50, 115, 89, 1,

10, 116, 4, 61], only a small subset of the prior work considered the concept of a

workload as part of the problem statement [37, 95, 5, 64]. While workload-awareness is

a useful distinguishing characteristic of these mechanisms, our experiments will reveal

that existing workload-aware mechanisms often fail to outperform workload-agnostic

mechanisms, even when evaluated specifically on their target workloads. Not only do

these algorithms fail to produce accurate synthetic data, they provide no way for

end-users to detect the inaccuracy. As a result, in practical terms, differentially private

synthetic data generation remains an unsolved problem.
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In this work, we advance the state-of-the-art of differentially private synthetic data

in two key ways. First, we propose a novel workload-aware mechanism that offers

lower error than all competing techniques. Second, we derive analytic expressions to

bound the per-query error of the mechanism with high probability.

Our mechanism, AIM, follows the select-measure-reconstruct paradigm intro-

duced in Chapter 3. We leverage PrivatePGM [73] for the reconstruct step, as it

provides a robust and efficient method for combining the noisy measurements into a

single consistent estimate of the data distribution from which synthetic records can

be generated.

The low error of AIM is primarily due to innovations in the select stage. AIM uses

an iterative, greedy selection procedure, inspired by the popular MWEM algorithm for

linear query answering. Like MWEM, AIM iteratively selects marginals to measure

using a carefully designed quality score function. This quality score takes into account:

(i) how well the candidate marginal is already estimated, (ii) the expected improvement

measuring it can offer, (iii) the relevance of the marginal to the workload, and (iv) the

available privacy budget. This novel quality score is accompanied by a host of other

algorithmic techniques including adaptive selection of rounds and budget-per-round,

intelligent initialization, and novel set of candidates from which to select.

In conjunction with AIM, we develop new techniques to quantify uncertainty in

query answers derived from the generated synthetic data. The problem of error quan-

tification for data independent mechanisms like the Laplace or Gaussian mechanism

is trivial, as they provide unbiased answers with known variance to all queries. The

problem is considerably more challenging for data-dependent mechanisms like AIM,

where complex post-processing is performed and only a subset of workload queries

have unbiased answers. Some mechanisms, like MWEM, provide theoretical guarantees

on their worst-case error, under suitable assumptions. However, this is an a priori

bound on error obtained from a theoretical analysis of the mechanism under worst-
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case datasets. Instead, we develop an a posteriori error analysis, derived from the

intermediate differentially private measurements used to produce the synthetic data.

Our error estimates therefore reflect the actual execution of AIM on the input data,

but do not require any additional privacy budget for their calculation. Formally, our

guarantees represent one-sided confidence intervals, and we refer to them simply as

“confidence bounds”. To our knowledge, AIM is the only differentially private synthetic

data generation mechanism that provides this kind of error quantification.

Organization In Section 5.2, we define the problem and assumptions of this work.

In Section 5.3, we assess the prior work in the field, characterizing different approaches

via key distinguishing elements and limitations.In Section 5.4, we present the core

ingredients of AIM. In Section 5.5, we derive analytic expressions to bound the per-

query error of AIM with high probability, which we use to construct confidence bounds.

In Section 5.6, we experimentally evaluate AIM.

5.2 Problem setup

In this chapter, our goal is to design a mechanism A : D → D that consumes

a discrete dataset D, and returns a synthetic dataset D̂ that conforms to the same

domain as D. The quality of the synthetic data will be judged based on a workload,

which for simplicity, we assume contains a collection of weighted marginal queries.

Definition 26 (Workload Error). A workload W consists of a list of marginal queries

r1, . . . , rk where ri ⊆ [d], together with associated weights ci ≥ 0. The error of a

synthetic dataset D̂ is defined as:

Error(D, D̂) =
1

k · |D|
k∑
i=1

ci

∥∥∥Mri(D)−Mri(D̂)
∥∥∥

1
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While this workload class is simpler than the ones considered in the previous

chapters, it is still fairly expressive. The formal problem statement we consider in this

chapter is stated below:

Problem 5 (Workload Error Minimization). Given a workload W , design an (ε, δ)-

DP synthetic data mechanism M : D → D such that the expected error defined in

Definition 26 is minimized.

5.3 Prior work on synthetic data

In this section we survey the state of the field, describing basic elements of a good

synthetic data mechanism, along with novelties of more sophisticated mechanisms. We

focus our attention on marginal-based approaches to differentially private synthetic data

in this section, as these have generally seen the most success in practical applications.

These mechanisms include PrivBayes [110], PrivBayes+PGM [73], MWEM+PGM [73],

MST [70], PrivSyn [116], RAP [5], GEM [64], and PrivMRF [16].

5.3.1 The select-measure-reconstruct paradigm

We begin by providing a broad overview of the basic approach employed by

many differentially private mechanisms for synthetic data. These mechanisms all fit

naturally into the select-measure-reconstruct framework. Recall from Chapter 3

that this framework represents a class of mechanisms which can naturally be broken

up into 3 steps: (1) select a set of queries, (2) measure those queries using a noise-

addition mechanism, and (3) reconstruct synthetic data that explains the noisy

measurements well. We consider iterative mechanisms that alternate between the

select and measure step to be in this class as well. Mechanisms within this class

differ in their methodology for selecting queries, the noise mechanism used, and the

approach to generating synthetic data from the noisy measurements.
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Algorithm 5 MWEM+PGM

Input: Dataset D, workload W , privacy parameter ρ, rounds T
Output: Synthetic Dataset D̂
ε = 2

√
ρ/T

σ =
√
T/ρ

θ0 = 0
for t = 1, . . . , T do
select rt ∈ W using the exponential mechanism with ε budget and score function:

qr(D) =
∥∥Mr(D)−Mr(pθt−1)

∥∥
1
− nr

measure marginal on rt with the Gaussian mechanism with scale σ:

µ̃rt = Mrt(D) +N (0, σ2)nrt

reconstruct data distribution pθt using PrivatePGM with loss function:

L(µ) =
t∑

j=1

∥∥µrj − µ̃rj∥∥2

2

end for
reconstruct synthetic data D̂ from pθT using PrivatePGM

return D̂

MWEM+PGM, shown in Algorithm 5, is one mechanism from this class that serves

as a concrete example as well as the starting point for our improved mechanism,

AIM. As the name implies, MWEM+PGM is a scalable instantiation of the well-known

MWEM algorithm [42] for linear query answering, where the multiplicative weights

(MW) step is replaced by a call to PrivatePGM. It is a greedy, iterative mechanism for

workload-aware synthetic data generation, and there are several variants. One variant

is shown in Algorithm 5. The mechanism begins by initializing an estimate of the joint

distribution to be uniform over the data domain (θ = 0). Then, it runs for T rounds,

and in each round it does three things: (1) select (via the exponential mechanism) a

marginal query that is poorly approximated under the current estimate, (2) measure

the selected marginal using the Gaussian mechanism, and (3) reconstruct a new
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data distribution (using PrivatePGM) that explains the noisy measurements well. After

T rounds, the estimated distribution is used to generate synthetic tabular data. In

the subsequent subsections, we will characterize existing mechanisms in terms of how

they approach these different aspects of the problem.

5.3.2 Basic elements of a good mechanism

In this section we outline some basic criteria reasonable mechanisms should satisfy

to get good performance. These recommendations primarily apply to the measure

step.

Measure entire marginals Marginals are an appealing statistic to measure because

every individual contributes a count of one to exactly one cell of the marginal. As a

result, we can measure every cell of Mr(D) at the same privacy cost of measuring a

single cell. With a few exceptions [5, 64, 95], existing mechanisms utilize this property

of marginals or can be extended to use it. The alternative of measuring a single

counting query at a time sacrifices utility unnecessarily.

Use Gaussian noise. Back of the envelope calculations reveal that if the number

of measurements is greater than roughly log (1/δ) + ε, which is often the case, then the

standard deviation of the required Gaussian noise is lower than that of the Laplace

noise. Many newer mechanisms recognize this and use Gaussian noise, while older

mechanisms were developed with Laplace noise, but can easily be adapted to use

Gaussian noise instead.

Use unbounded DP For fixed (ε, δ), the required noise magnitude is lower by a

factor of
√

2 when using unbounded DP (add / remove one record) over bounded

DP (modify one record). This is because the L2 sensitivity of a marginal query Mr

is 1 under unbounded DP, and
√

2 under bounded DP. Some mechanisms like MST,

PrivSyn, and PrivMRF use unbounded DP, while other mechanisms like RAP, GEM,
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Table 5.1: Taxonomy of mechanisms in the select-measure-reconstruct paradigm.

Name Year Workload Data Budget Efficiency
Aware Aware Aware Aware

Independent - 3

Gaussian+PGM - 3

PrivBayes [110] 2014 3 3 3

HDMM+PGM [73] 2019 3

PrivBayes+PGM [73] 2019 3 3 3

MWEM+PGM [73] 2019 3 3

PrivSyn [116] 2020 3 3 3

MST [70] 2021 3 3

RAP [5] 2021 3 3 3

GEM [64] 2021 3 3 3

PrivMRF [16] 2021 3 3 3

AIM [This Work] 2022 3 3 3 3

and PrivBayes use bounded DP. We remark that these two different definitions of DP

are qualitatively different, and because of that, the privacy parameters have different

interpretations. The
√

2 difference could be recovered in bounded DP by increasing

the privacy budget appropriately.

5.3.3 Distinguishing elements of existing work

Beyond the basics, different mechanisms exhibit different novelties, and under-

standing the design considerations underlying the existing work can be enlightening.

We provide a simple taxonomy of this space in Table 5.1 in terms of four criteria:

workload-, data-, budget-, and efficiency-awareness. These characteristics primarily

pertain to the select step of each mechanism.

Workload-awareness Different mechanisms select from a different set of candidate

marginal queries. PrivBayes and PrivMRF, for example, select from a particular subset

of k-way marginals, determined from the data. Other mechanisms, like MST and

PrivSyn, restrict the set of candidates to 2-way marginal queries. On the other end of

the spectrum, the candidates considered by MWEM+PGM, RAP, and GEM, are exactly
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the marginal queries in the workload. This is appealing, since these mechanisms

will not waste the privacy budget to measure marginals that are not relevant to the

workload.

Data-awareness Many mechanisms select marginal queries from a set of candidates

based on the data, and are thus data-aware. For example, MWEM+PGM selects

marginal queries using the exponential mechanism with a quality score function that

depends on the data. Independent, Gaussian, and HDMM+PGM are the exceptions,

as they always select the same marginal queries no matter what the underlying data

distribution is.

Budget-awareness Another aspect of different mechanisms is how well do they

adapt to the privacy budget available. Some mechanisms, like PrivBayes, PrivSyn, and

PrivMRF recognize that we can afford to measure more (or larger) marginals when

the privacy budget is sufficiently large. When the privacy budget is limited, these

mechanisms recognize that fewer (and smaller) marginals should be measured instead.

In contrast, the number and size of the marginals selected by mechanisms like MST,

MWEM+PGM, RAP, and GEM does not depend on the privacy budget available.1

Efficiency-awareness Mechanisms that build on top of PrivatePGM must take

care when selecting measurements to ensure JT-SIZE remains sufficiently small to

ensure computational tractability. Among these, PrivBayes+PGM, MST, and PrivMRF

all have built-in heuristics in the selection criteria to ensure the selected marginal

queries give rise to a tractable model. Gaussian, HDMM+PGM and MWEM+PGM

have no such safeguards, and they can sometimes select marginal queries that lead to

intractable models. In the extreme case, when the workload is all 2-way marginals,

1The number of rounds to run MWEM+PGM, RAP, and GEM is a hyper-parameter, and the best
setting of this hyper-parameter depends on the privacy budget available.
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Gaussian selects all 2-way marginals, model required for PrivatePGM explodes to the

size of the entire domain, which is often intractable.

Mechanisms that utilize different techniques for post-processing noisy marginals

into synthetic data, like PrivSyn, RAP, and GEM, do not have this limitation, and are

free to select from a wider collection of marginals. While these methods do not suffer

from this particular limitation of PrivatePGM, they have other pros and cons which

were surveyed in a recent article [68].

Summary With the exception of our new mechanism AIM, no mechanism listed in

Table 5.1 is aware of all four factors we discussed. Mechanisms that do not have four

checkmarks in Table 5.1 are not necessarily bad, but there are clear ways in which

they can be improved. Conversely, mechanisms that have more checkmarks than other

mechanisms are not necessarily better. For example, RAP has 3 checkmarks, but as

we show in Section 5.6, it does not consistently beat Independent, which only has 1

checkmark.

5.3.4 Other design considerations

Beyond these four characteristics summarized in the previous section, different

methods make different design decisions that are relevant to mechanism performance,

but do not correspond to the four criteria discussed in the previous section. In this

section, we summarize some of those additional design considerations.

Selection method Some mechanisms select marginals to measure in a batch, while

other mechanisms select them iteratively. Generally speaking, iterative methods like

MWEM+PGM, RAP, GEM, and PrivMRF are preferable to batch methods, because

the selected marginals will capture important information about the distribution that

was not effectively captured by the previously measured marginals. On the other

hand, PrivBayes, MST, and PrivSyn select all the marginals before measuring any of
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them. It is not difficult to construct examples where a batch method like PrivSyn

has suboptimal behavior. For example, suppose the data contains three perfectly

correlated attributes. We can expect iterative methods to capture the distribution

after measuring any two 2-way marginals. On the other hand, a batch method like

PrivSyn will determine that all three 2-way marginals need to be measured.

Budget split Every mechanism in this discussion, except for PrivSyn, splits the

privacy budget equally among selected marginals. This is a simple and natural thing

to do, but it does not account for the fact that larger marginals have smaller counts

that are less robust to noise, requiring a larger fraction of the privacy budget to

answer accurately. PrivSyn provides a simple formula for dividing privacy budget

among marginals of different sizes, but this approach is inherently tied to their batch

selection methodology. It is much less clear how to divide the privacy budget within a

mechanism that uses an iterative selection procedure.

Hyperparameters All mechanisms have some hyperparameters than can be tuned

to affect the behavior of the mechanism. Mechanisms like PrivBayes, MST, PrivSyn,

and PrivMRF have reasonable default values for these hyperparameters, and these

mechanisms can be expected to work well out of the box. On the other hand,

MWEM+PGM, RAP, and GEM have to tune the number of rounds to run, and it is

not obvious how to select this a priori. While the open source implementations may

include a default value, the experiments conducted in the respective papers did not

use these default values, in favor of non-privately optimizing over this hyper-parameter

for each dataset and privacy level considered [5, 64].
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Algorithm 6 AIM: An Adaptive and Iterative Mechanism

1: Input: Dataset D, workload W , privacy parameter ρ
2: Output: Synthetic Dataset D̂
3: Hyper-Parameters: MAX-SIZE=80MB, T = 16d, α = 0.9
4: σ0 =

√
T/(2 α ρ)

5: ρused = 0
6: t = 0
7: Initialize pθt using Algorithm 7
8: wr =

∑
s∈W cs | r ∩ s |

9: σt+1 ← σ0 εt+1 ←
√

8(1− α)ρ/T
10: while ρused < ρ do
11: t = t+ 1
12: ρused ← ρused + 1

8
ε2t + 1

2σ2
t

13: Ct = {rt ∈ W+ | JT-SIZE(r1, . . . , rt)) ≤ ρused
ρ
·MAX-SIZE}

14: select rt ∈ Ct using the exponential mechanism ε budget and score function:

qr(D) = wr

(∥∥Mr(D)−Mr(pθt−1)
∥∥

1
−
√

2/π · σt · nr
)

15: measure marginal on rt using the Gaussian mechanism with scale σ:

µ̃rt = Mrt(D) +N (0, σ2
t )
nrt

16: reconstruct the data distribution using PrivatePGM with loss function:

L(µ) =
t∑

j=1

1

σj

∥∥µrj − µ̃rj∥∥2

2

17: anneal εt+1 and σt+1 using Algorithm 8
18: end while
19: reconstruct synthetic data D̂ from pθt using PrivatePGM
20: return D̂

Algorithm 7 Initialize pθt (subroutine of Algorithm 6)

1: for r ∈ {r ∈ W+ | |r| = 1} do
2: t = t+ 1 σt ← σ0 rt ← r
3: µ̃rt = Mrt(D) +N (0, σ2

t )
rt

4: ρused ← ρused + 1
2σ2

t

5: end for
6: reconstruct pθt using PrivatePGM with L(µ) =

∑t
j=1

1
σj

∥∥µrj − µ̃rj∥∥2

2
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Algorithm 8 Budget annealing (subroutine of Algorithm 6)

1: if
∥∥Mrt(pθt)−Mrt(pθt−1)

∥∥
1
≤
√

2/π · σt · nrt then
2: εt+1 ← 2 · εt
3: σt+1 ← σt/2
4: else
5: εt+1 ← εt
6: σt+1 ← σt
7: end if
8: if (ρ− ρused) ≤ 2

(
1

2σ2
t+1

+ 1
8
ε2t+1

)
then

9: εt+1 =
√

8 · (1− α) · (ρ− ρused)
10: σt+1 =

√
1/(2 · α · (ρ− ρused))

11: end if

5.4 Mechanism components

While MWEM+PGM is a simple and intuitive algorithm, it leaves significant room

for improvement. Our new mechanism, AIM, is presented in Algorithm 6. In this

section, we describe the differences between MWEM+PGM and AIM, the justifications

for the relevant design decisions, as well as prove the privacy of AIM.

Intelligent Initialization. In Line 7 of AIM, we spend a small fraction of the

privacy budget to measure 1-way marginals in the set of candidates. Estimating

pθ from these noisy marginals gives rise to an independent model where all 1-way

marginals are preserved well, and higher-order marginals can be estimated under an

independence assumption. This provides a far better initialization than the default

uniform distribution while requiring only a small fraction of the privacy budget.

New Candidates. In Line 13 of AIM, we make two notable modifications to the

candidate set that serve different purposes. Specifically, the set of candidates is a

carefully chosen subset of the marginal queries in the downward closure of the workload.

The downward closure of the workload is the set of cliques that are subsets of some

clique in the workload, i.e., W+ = {r | r ⊆ s, s ∈ W}.
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Using the downward closure is based on the observation that marginals with

many attributes have low counts, and answering them directly with a noise addition

mechanism may not provide an acceptable signal to noise ratio. In these situations,

it may be better to answer lower-dimensional marginals, as these tend to exhibit a

better signal to noise ratio, while still being useful to estimate the higher-dimensional

marginals in the workload.

We filter candidates from this set that do not meet a specific model capacity

requirement. Specifically, the set will only consist of candidates that, if selected, will

lead to a JT-SIZE below a prespecified limit (the default is 80 MB). This ensures that

AIM will never select candidates that lead to an intractable model for PrivatePGM,

and hence allows the mechanism to execute consistently with a predictable memory

footprint and runtime.

Better Selection Criteria. In Line 14 of AIM, we make two modifications to the

quality score function for marginal query selection to better reflect the utility we

expect from measuring the selected marginal. In particular, our new quality score

function is

qr(D) = wr
( ∥∥Mr(D)−Mr(pθt−1)

∥∥
1
−
√

2/π · σt · nr
)
, (5.1)

which differs from MWEM+PGM’s quality score function qr(D) =
∥∥Mr(D)−Mr(pθt−1)

∥∥−
nr in two ways.

First, the expression inside parentheses can be interpreted as the expected improve-

ment in L1 error we can expect by measuring that marginal. It consists of two terms:

the L1 error under the current model minus the expected L1 error if it is measured at

the current noise level. Compared to the quality score function in MWEM+PGM, this

quality score function penalizes larger marginals to a much more significant degree,

since σt � 1 in most cases. Moreover, this modification makes the selection criteria
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“budget-adaptive”, since it recognizes that we can afford to measure larger marginals

when σt is smaller, and we should prefer smaller marginals when σt is larger.

Second, we give different marginal queries different weights to capture how relevant

they are to the workload. In particular, we weight the quality score function for

a marginal query r using the formula wr =
∑

s∈W cs | r ∩ s |, as this captures the

degree to which the marginal queries in the workload overlap with r. In general, this

weighting scheme places more weight on marginals involving more attributes. Note

that now the sensitivity of qr is wr rather than 1. When applying the exponential

mechanism to select a candidate, we must either use ∆t = maxr∈Ct wr, or invoke the

generalized exponential mechanism instead, as it can handle quality score functions

with varying sensitivity [85].

This quality score function exhibits an interesting trade-off: the penalty term√
2/πσtnr discourages marginals with more cells, while the weight wr favors marginals

with more attributes. However, if the inner expression is negative, then the larger

weight will make it more negative, and much less likely to be selected.

Adaptive Rounds and Budget Split. In Lines 12 and 17 of AIM, we introduce

logic to modify the per-round privacy budget as execution progresses, and as a result,

eliminate the need to provide the number of rounds up front. This makes AIM

hyper-parameter free, relieving practitioners from that often overlooked burden.

Specifically, we use a simple annealing procedure (Algorithm 8) that gradually

increases the budget per round when an insufficient amount of information is learned

at the current per-round budget. The annealing condition is activated if the difference

between Mrt(pθt) and Mrt(pθt−1) is small, which indicates that not much information

was learned in the previous round. If it is satisfied, then εt for the select step is

doubled, while σt for the measure step is cut in half.

This check can pass for two reasons: (1) there were no good candidates (all scores

are low in Equation (5.1)) in which case increasing σt will make more candidates good,
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and (2) there were good candidates, but they were not selected because there was too

much noise in the select step, which can be remedied by increasing εt. The precise

annealing threshold used is
√

2/π · σt · nrt , which is the expected error of the noisy

marginal, and an approximation for the expected error of pθt on marginal r. When

the available privacy budget is small, this condition will be activated more frequently,

and as a result, AIM will run for fewer rounds. Conversely, when the available privacy

budget is large, AIM will run for many rounds before this condition activates.

As σt decreases throughout execution, quality scores generally increase, and it has

the effect of “unlocking” new candidates that previously had negative quality scores.

We initialize σt and εt conservatively, assuming the mechanism will be run for T = 16d

rounds. This is an upper bound on the number of rounds that AIM will run, but in

practice the number of rounds will be much less.

As in prior work [116, 16], we do not split the budget equally for the select and

measure step, but rather allocate 10% of the budget for the select steps, and 90% of

the budget for the measure steps. This is justified by the fact that the quality function

for selection is a coarser-grained aggregation than a marginal, and as a result can

tolerate a larger degree of noise.

Privacy Analysis. The privacy analysis of AIM utilizes the notion of a privacy

filter [88], and the algorithm runs until the realized privacy budget spent matches the

total privacy budget available, ρ. To ensure that the budget is not over-spent, there

is a special condition (Line 8 in Algorithm 8) that checks if the remaining budget is

insufficient for two rounds at the current εt and σt parameters. If this condition is

satisfied, εt and σt are set to use up all of the remaining budget in one final round of

execution.

Theorem 13. For any T ≥ d, 0 < α < 1, and ρ ≥ 0, AIM satisfies ρ-zCDP.
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Proof. There are three steps in AIM that depend on the sensitive data: initialization,

selection, and measurement. The initialization step satisfies ρ0-zCDP for ρ0 = |{r ∈

W+ | |r| = 1}|/2σ2
0 ≤ d/2σ2

0 = 2αdρ/2T ≤ ρ. For this step, all we need is that the

privacy budget is not over-spent. The remainder of AIM runs until the budget is

consumed. Each step of AIM involves one invocation of the exponential mechanism, and

one invocation of the Gaussian mechanism. By Propositions 4 to 6, round t of AIM is

ρt-zCDP for ρt = 1
8
ε2t/8+1/2σ2

t . Note that at round t, ρused =
∑t

i=0 ρi, and we need to

show that ρused never exceeds ρ [88]. There are two cases to consider: the condition in

Line 8 of Algorithm 8 is either true or false. If it is true, then we know after round t that

ρ− ρused ≥ 2ρt+1, i.e., the remaining budget is enough to run round t+ 1 without over-

spending the budget. If it is false, then we modify εt+1 and ρt+1 to exactly use up the

remaining budget. Specifically, ρt+1 = 8(1−α)(ρ−ρused)/8+2α(ρ−ρused)/2 = ρ−ρused.

As a result, when the condition is true, ρused at time t+ 1 is exactly ρ, and after that

iteration, the main loop of AIM terminates. The remainder of the mechanism does

not access the data.

5.5 Uncertainty quantification

In this section, we propose a solution to the uncertainty quantification problem

for AIM. Our method uses information from both the noisy marginals, measured with

Gaussian noise, and the marginal queries selected by the exponential mechanism.

Importantly, the method does not require additional privacy budget, as it quantifies

uncertainty only by analyzing the private outputs of AIM. We give guarantees for

marginals in the (downward closure of the) workload, which is exactly the set of

marginals the analyst cares about. We provide no guarantees for marginals outside

this set, which is an area for future work.

We break our analysis up into two cases: the “easy” case, where we have access to

unbiased answers for a particular marginal, and the “hard” case, where we do not.
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In both cases, we identify an estimator for a marginal whose error we can bound

with high probability. Then, we connect the error of this estimator to the error of

the synthetic data by invoking the triangle inequality. The subsequent paragraphs

provide more details on this approach. Proofs of all statements in this section appear

in the full paper [71].

The easy case: supported marginal queries A marginal query r is “supported”

whenever r ⊆ rt for some t. In this case, we can readily obtain an unbiased estimate

of Mr(D) from µ̃rt , and analytically derive the variance of that estimate. If there

are multiple t satisfying the condition above, we have multiple estimates we can use

to reduce the variance. We can combine these independent estimates to obtain a

weighted average estimator :

Theorem 14 (Weighted Average Estimator). Let r1, . . . , rt and µ̃r1 , . . . , µ̃rt be as

defined in Algorithm 6, and let R = {r1, . . . , rt}. For any r ∈ R+, there is an

(unbiased) estimator µ̄r = fr(µ̃r1 , . . . , µ̃rt) such that:

µ̄r ∼ N (Mr(D), σ̄2
r)
nr where σ̄2

r =
[ t∑
j=1
r⊆rj

nr
nrjσ

2
j

]−1

,

Proof. For each rj ⊇ r, we observe µ̃rj ∼ Mrj(D) + N (0, σ2
i )
nrj . We can use this

noisy marginal to obtain an unbiased estimate Mr(D) by marginalizing out attributes

in the set rj \ r. This requires summing up nrj/nr cells, so the variance in each cell

becomes nrjσ
2
i /nr. Moreover, the noise is still normally distributed, since the sum

of independent normal random variables is normal. We thus have such an estimate

for each i satisfying rj ⊇ r, and we can combine these independent estimates using

inverse variance weighting [45], resulting in an unbiased estimator with the stated

variance. For the same reason as before, the noise is still normally distributed.
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While this is not the only (or best) estimator to use,2 the simplicity allows us to

easily bound its error, as we show in Theorem 15.

Theorem 15 (Confidence Bound). Let µ̄r be the estimator from Theorem 14. Then,

for any λ ≥ 0, with probability at least 1− exp (−λ2):

‖Mr(D)− µ̄r‖1 ≤
√

2 log 2σ̄rnr + λσ̄r
√

2nr

Proof. Noting that Mr(D)− µ̄r ∼ N (0, σ2)nr , the statement is a direct consequence

of Lemma 1, below.

Lemma 1. Let z ∼ N(0, σ2)n, then:

E[‖z‖1] =
√

2/πnσ

and

Pr[‖z‖1 ≥
√

2 log 2σn+ cσ
√

2n] ≤ exp (−c2)

Proof. First observe that |z(t)| is a sample from a half-normal distribution. Thus,

E[z(t)] =
√

2/πσ. From the linearity of expectation, we obtain E[‖z‖1] =
√

2/πσn,

as desired. For the second statement, we begin by deriving the moment generating

function of the random variable |xi|. By definition, we have:

2A better estimator would be the minimum variance linear unbiased estimator. Ding et al. [26]
derive an efficient algorithm for computing this from noisy marginals.
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E[exp (t · |z(t)|)] =

∫ ∞
−∞

φ(z) exp (t · |z|)dz

= 2

∫ ∞
0

φ(z) exp (t · z)dz

= 2

∫ ∞
0

1

σ
√

2π
exp

(
− z2

2σ2

)
exp (t · z)dz

=
1

σ

√
2

π

∫ ∞
0

exp
(
− z2

2σ2
+ t · z

)
dz

= exp
(σ2t2

2

)(
Φ
( tσ√

2

)
+ 1
)

Moreover, since ‖z‖1 =
∑n

t=1 |z(t)| is a sum of i.i.d random variables, the moment

generating function of ‖z‖1 is:

E[exp (t · ‖z‖1)] = exp
(σ2t2

2

)n(
Φ
( tσ√

2

)
+ 1
)n

From the Chernoff bound, we have

Pr[‖z‖1 ≥ a] ≤ min
t≥0

E[exp (t · ‖z‖1)]

exp (ta)

= min
t≥0

exp
(nσ2t2

2
− ta

)(
Φ
( tσ√

2

)
+ 1
)n

≤ min
t≥0

2n exp
(nσ2t2

2
− ta

)
≤ 2n exp

(nσ2(a/nσ2)2

2
− (a/nσ2)a

)
= 2n exp

( a2

2nσ2
− a2

nσ2

)
= 2n exp

(
− a2

2nσ2

)
= exp

(
− a2

2nσ2
+ n log 2

)

With some further manipulation of the bound, we obtain:
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Pr[‖z‖1 ≥ dσ
√

2n] ≤ exp
(
− d2 + n log 2

)
(a = dσ

√
2n)

Pr[‖z‖1 ≥ (c+
√
n log 2)σ

√
2n] ≤ exp (−c2) (d = c+

√
n log 2)

Pr[‖z‖1 ≥
√

2 log 2σn+ cσ
√

2n] ≤ exp (−c2)

Note that Theorem 15 gives a guarantee on the error of µ̄r, but we are ultimately

interested in the error of D̂. Fortunately, it easy easy to relate the two by using the

triangle inequality, as shown below:

Corollary 1. Let D̂ be any synthetic dataset, and let µ̄r be the estimator from

Theorem 14. Then with probability at least 1− exp (−λ2):

∥∥∥Mr(D)−Mr(D̂)
∥∥∥

1
≤
∥∥∥Mr(D̂)− µ̄r

∥∥∥
1

+
√

2 log 2σ̄rnr + λσ̄r
√

2nr

The LHS is what we are interested in bounding, and we can readily compute the

RHS from the output of AIM. The RHS is a random quantity that, with the stated

probability, upper bounds the error. When we plug in the realized values we get a

concrete numerical bound that can be interpreted as a (one-sided) confidence interval.

In general, we expect Mr(D̂) to be close to µ̄r, so the error bound for D̂ will not be

that much larger than that of µ̄r.
3

The hard case: unsupported marginal queries We now shift our attention to

the hard case, providing guarantees about the error of different marginals even for

unsupported marginal queries (those not selected during execution of AIM). This

3From prior experience, we might expect the error of D̂ to be lower than the error of µ̄r [80, 73],
so we are paying for this difference by increasing the error bound when we might hope to save instead.
Unfortunately, this intuition does not lend itself to a clear analysis that provides better guarantees.
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problem is significantly more challenging. Our key insight is that marginal queries not

selected have relatively low error compared to the marginal queries that were selected

by virtue of the exponential mechanism and the quality score function we use. We

can easily bound the error of selected queries and relate that to non-selected queries

by utilizing the guarantees of the exponential mechanism. In Theorem 16 below, we

provide expressions that capture the uncertainty of these marginals with respect to

pθt−1 , the iterates of AIM.

Theorem 16 (Confidence Bound). Let σt, εt, rt, Ct, µ̃rt ,pθt be as defined in Algo-

rithm 6, and let ∆t = maxr∈Ct wr. For all r ∈ Ct, with probability at least 1− e−λ21/2−

e−λ2:

∥∥Mr(D)−Mr(pθt−1)
∥∥

1
≤ w−1

r

(
Br + λ1σt

√
nrt + λ2

2∆t

εt

)

where

Br = wrt
∥∥Mrt(pθt−1)− µrt

∥∥
1︸ ︷︷ ︸

estimated error on rt

+
√

2/πσt
(
wrnr − wrtnrt

)︸ ︷︷ ︸
relationship to

non-selected candidates

+
2∆t

εt
log (|Ct|)︸ ︷︷ ︸

uncertainty from
exponential mech.

Proof. By the guarantees of the exponential mechanism, we know that, with probability

at most e−λ2 , for all r ∈ Ct we have:

qrt ≤ qr −
2∆t

εt
(log (|Ct|) + λ2)

Now define Er =
∥∥Mr(D)−Mr(pθt−1)

∥∥
1
. Plugging in qr = wr(Er −

√
2/πσtnr) and

rearranging gives:

117



Er ≥
wrt(Ert −

√
2/πσtnrt) + 2∆t

εt
(log (|Ct|) + λ2)

wr
+
√

2/πσtnr

From Lemma 2, with probability at most e−λ
2
1/2, we have:

∥∥Mrt(pθt−1)− µ̃rt
∥∥

1
+ λ1σt

√
nrt ≤ Ert

Combining these two facts via the union bound, along with some algebraic manipula-

tion, yields the stated result.

Lemma 2. Let a, b ∈ Rk and let c = b+ z where z ∼ N (0, σ2)n.

Pr[‖a− c‖1 ≤ ‖a− b‖1 − λσ
√
n] ≤ exp

(
− 1

2
λ2
)

Proof. First note that |a(j) − c(j)| = |a(j) − b(j) − z(j)|, which is distributed

according to a folded normal distribution with mean |a(j)− b(j)|. It is well known

[93] that the moment generating function for this random variable is Mi(t), where:

Mi(t) = exp
(1

2
σ2t2 + |a(j)− b(j)|t

)
Φ(|a(j)− b(j)|/σ + σt)

+ exp
(1

2
σ2t2 − |a(j)− b(j)|t

)
Φ(−|a(j)− b(j)|/σ + σt).

Moreover, the moment generating function of ‖a− c‖1 is M(t) =
∏

iMi(t). We

will begin by focusing our attention on bounding Mi(−t). For simplicity, let µ =

|a(j)− b(j)|. We have:
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Mi(−t) = exp
(σ2t2

2
− µt

)
Φ(µ/σ − σt)

+ exp
(σ2t2

2
+ µt

)
Φ(−µ/σ − σt)

= exp
(σ2t2

2
− µt

)
(1− Φ(−µ/σ + σt))

+ exp
(σ2t2

2
+ µt

)
Φ(−µ/σ − σt)

= exp
(σ2t2

2
− µt

)
− exp

(σ2t2

2
− µt

)
Φ(−µ/σ + σt)

+ exp
(σ2t2

2
+ µt

)
Φ(−µ/σ − σt)

≤ exp
(σ2t2

2
− µt

)
(Lemma 3 below; a = σt, b = µ/σ)

We are now ready to plug this result into the Chernoff bound, which states:

Pr[‖a− c‖1 ≤ r] ≤ min
t≥0

exp (t · r)M(−t)

≤ min
t≥0

exp (t · r)
∏
i

exp
(σ2t2

2
− |a(j)− b(j)|t

)
= min

t≥0
exp (t · r +

nσ2t2

2
− ‖a− b‖1 t)

Setting r = ‖a− b‖1 − λσ
√
n gives the desired result

Pr[‖a− c‖1 ≤ ‖a− b‖1 − λσ
√
n]

≤ min
t≥0

exp (t · (‖a− b‖1 − λσ
√
n) +

nσ2t2

2
− ‖a− b‖1 t)

= min
t≥0

exp
(
− tλσ√n+

nσ2t2

2

)
≤ exp (−λ2/2) (set t = λ/σ

√
n)
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Lemma 3. Let a, b ≥ 0, and let Φ denote the CDF of the standard normal distribution.

Then,

exp
(1

2
a2 + ab

)
Φ(−a− b) ≤ exp

(1

2
a2 − ab

)
Φ(a− b)

Proof. First observe that:

exp
(1

2
a2 + ab

)
Φ(−a− b) = exp

(
− 1

2
b2
)Φ(−a− b)
φ(−a− b)

exp
(1

2
a2 − ab

)
Φ(a− b) = exp

(
− 1

2
b2
)Φ(a− b)
φ(a− b)

Since a, b ≥ 0, we know that −a − b ≤ a − b. We will now argue that the function

Φ(α)
φ(α)

is monotonically increasing in α, which suffices to prove the desired claim. To

prove this, we will observe that this is this quantity is known as the Mills ratio [39]

for the normal distribution. We know that the Mills ratio is connected to a particular

expectation; specifically, if X ∼ N (0, 1), then

E[X | X < α] = −φ(α)

Φ(α)

Using this interpretation, it is clear that the LHS (and hence the RHS) is monotonically

increasing in α. Since − φ(α)
Φ(α)

is monotonically increasing, so is Φ(α)
φ(α)

.

We can readily compute Br from the output of AIM, and use it to provide a bound

on error in the form of a one-sided confidence interval that captures the true error

with high probability. While these error bounds are expressed with respect to pθt−1 ,

they can readily be extended to give a guarantee with respect to D̂.
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Corollary 2. Let D̂ be any synthetic dataset, and let Br be as defined in Theorem 16.

Then with probability at least 1− e−λ21/2 − e−λ2:

∥∥∥Mr(D)−Mr(D̂)
∥∥∥

1
≤
∥∥∥Mr(D̂)−Mr(pθt−1)

∥∥∥
1

+ w−1
r

(
Br + λ1σt

√
nrt + λ2

2∆t

εt

)

Again, the LHS is what we are interested in bounding, and we can compute the

RHS from the output of AIM. We expect pθt−1 to be reasonably close to D̂, especially

when t is larger, so this bound will often be comparable to the original bound on p̂θt−1 .

Putting it Together We’ve provided guarantees for both supported and unsup-

ported marginals. The guarantees for unsupported marginals also apply for supported

marginals, although we generally expect them to be looser. In addition, there is one

guarantee for each round of AIM. It is tempting to use the bound that provides the

smallest estimate, although unfortunately doing this invalidates the bound. To ensure

a valid bound, we must pick only one round, and that cannot be decided based on the

value of the bound. A natural choice is to use only the last round, for three reasons:

(1) σt is smallest and εt is largest in that round, (2) the error of pθt generally goes

down with t, and (3) the distance between pθt and D̂ should be the smallest in the last

round. However, there may be some marginal queries which were not in the candidate

set for that round. To bound the error on these marginals, we use the last round

where that marginal query was in the candidate set.

5.6 Experimental evaluation

In this section we empirically evaluate AIM, comparing it to a collection of state-

of-the-art mechanisms and baseline mechanisms for a variety of workloads, datasets,

and privacy levels.
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Figure 5.1: Workload error of competing mechanisms on the all-3way workload for
ε = 0.01, . . . , 100.

5.6.1 Experimental setup

Datasets Our evaluation includes datasets with varying size and dimensionality,

summarized in the table below.

Table 5.2: Summary of datasets used in the experiments.

Dataset Records Dimensions
Min/Max Total
Domains Domain Size

adult [52] 48842 15 2–42 4× 1016

salary [46] 135727 9 3–501 1× 1013

msnbc [15] 989818 16 18 1× 1020

fire [86] 305119 15 2–46 4× 1015

nltcs [66] 21574 16 2 7× 104

titanic [35] 1304 9 2–91 9× 107

Workloads We consider 3 workloads for each dataset, all-3way, target, and

skewed. Each workload contains a collection of 3-way marginal queries. The all-
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3way workload contains queries for all 3-way marginals. The target workload

contains queries for all 3-way marginals involving some specified target attribute. For

the adult and titanic datasets, these are the income>50K attribute and the

Survived attribute, as those correspond to the attributes we are trying to predict

for those datasets. For the other datasets, the target attribute is chosen uniformly

at random. The skewed workload contains a collection of 3-way marginal queries

biased towards certain attributes and attribute combinations. In particular, each

attribute is assigned a weight sampled from a squared exponential distribution. 256

triples of attributes are sampled with probability proportional to the product of their

weights. This results in workloads where certain attributes appear far more frequently

than others, and is intended to capture the situation where analysts focus on a small

number of interesting attributes. All randomness in the construction of the workload

was done with a fixed random seed, to ensure that the workloads remain the same

across executions of different mechanisms and parameter settings.

Mechanisms We compare against both workload-agnostic and workload-aware

mechanisms in this section. The workload-agnostic mechanisms we consider are

PrivBayes+PGM, MST, PrivMRF. The workload-aware mechanisms we consider are

MWEM+PGM, RAP, GEM, and AIM. We set the hyper-parameters of every mechanism

to default values available in their open source implementations. We also consider

baseline mechanisms: Independent and Gaussian. The former measures all 1-way

marginals using the Gaussian mechanism, and generates synthetic data using an

independence assumption. The latter answers all queries in the workload using the

Gaussian mechanism (using the optimal privacy budget allocation described in [116]).

Note that this mechanism does not generate synthetic data, only query answers.
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Privacy Budgets We consider a wide range of privacy parameters, varying ε ∈

[0.01, 100.0] and setting δ = 10−9. The most practical regime is ε ∈ [0.1, 10.0], but

mechanism behavior at the extremes can be enlightening so we include them as well.

Evaluation. For each dataset, workload, and ε, we run each mechanism for 5 trials,

and measure the workload error from Definition 26. We report the average workload

error across the five trials, along with error bars corresponding to the minimum and

maximum workload error observed across the five trials.

Runtime Environment. We ran most experiments on a single core of a compute

cluster with a 4 GB memory limit and a 24 hour time limit.4 These resources were

not sufficient to run PrivMRF or RAP, so we utilized different machines to run those

mechanisms. PrivMRF requires a GPU to run, so we used one node a different compute

cluster, which has a Nvidia GeForce RTX 2080 Ti GPU. RAP required significant

memory resources, so we ran those experiments on a machine with 16 cores and 64

GB of RAM.

5.6.2 all-3way workload

Results on the all-3way workload are shown in Figure 5.1. Workload-aware

mechanisms are shown by solid lines, while workload-agnostic mechanisms are shown

with dotted lines. From these plots, we make the following observations:

1. AIM consistently achieves competitive workload error, across all datasets and

privacy regimes considered. On average, across all six datasets and nine privacy

parameters, AIM improved over PrivMRF by a factor of 1.3×, MST by a factor

of 8.4×, MWEM+PGM by a factor 2.1×, PrivBayes+PGM by a factor 2.6×, RAP

by a factor 9.5×, and GEM by a factor 2.3×. In the most extreme cases, AIM

4These experiments usually completed in well under the time limit.
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Figure 5.2: Workload error of competing mechanisms on the target workload for
ε = 0.01, . . . , 100.

improved over PrivMRF by a factor 3.6×, MST by a factor 118×, MWEM+PGM

by a factor 16×, PrivBayes+PGM by a factor 14.7×, RAP by a factor 47.1×, and

GEM by a factor 11.7×.

2. Prior to AIM, PrivMRF was consistently the best performing mechanism, even

outperforming all workload-aware mechanisms. The all-3way workload is one

we expect workload agnostic mechanisms like PrivMRF to perform well on, so it

is interesting, but not surprising that it outperforms workload-aware mechanisms

in this setting.

3. Prior to AIM, the best workload-aware mechanism varied for different datasets

and privacy levels: MWEM+PGM was best in 65% of settings, GEM was best
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in 35% of settings 5 , and RAP was best in 0% of settings. Including AIM, we

observe that it is best in 85% of settings, followed by MWEM+PGM in 11% of

settings and GEM in 4% of settings. Additionally, in the most interesting regime

for practical deployment (ε ≥ 1.0), AIM is best in 100% of settings.

5.6.3 target workload

Results for the target workload are shown in Figure 5.2. For this workload, we

expect workload-aware mechanisms to have a significant advantage over workload-

agnostic mechanisms, since they are aware that marginals involving the target are

inherently more important for this workload. From these plots, we make the following

observations:

1. All three high-level findings from the previous section are supported by these

figures as well.

2. Somewhat surprisingly, PrivMRF outperforms all workload-aware mechanisms

prior to AIM on this workload. This is an impressive accomplishment for PrivMRF,

and clearly highlights the suboptimality of existing workload-aware mechanisms

like MWEM+PGM, GEM, and RAP. Even though PrivMRF is not workload-aware,

it is clear from their paper that every detail of the mechanism was carefully

thought out to make the mechanism work well in practice, which explains

it’s impressive performance. While AIM did outperform PrivMRF again, the

relative performance did not increase by a meaningful margin — offering a 1.4×

improvement on average and a 4.6× improvement in the best case.

5We compare against a variant of GEM that selects an entire marginal query in each round. In
results not shown, we also evaluated the variant of that measures a single counting query, and found
that this variant performs significantly worse.
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5.6.4 skewed workload

Results for the skewed workload are shown in Figure 5.3. For this workload,

we again expect workload-aware mechanisms to have a significant advantage over

workload-agnostic mechanisms, since they are aware of the exact (biased) set of

marginals used to judge utility. From these plots, we make the following observations:

1. All four high-level findings from the previous sections are generally supported

by these figures as well, with the following interesting exception:

2. PrivMRF did not score well on salary, and while it was still generally the second

best mechanism on the other datasets (again out-performing the workload-aware

mechanisms in many cases), the improvement offered by AIM over PrivMRF is

much larger for this workload, averaging a 2× improvement with up to a 5.7×

improvement in the best case. We suspect for this setting, workload-awareness

is essential to achieve strong performance.

5.6.5 Tuning model capacity

In Line 12 of AIM (Algorithm 6), we construct a set of candidates to consider in the

current round based on an upper limit on JT-SIZE. 80 MB was chosen to match prior

work,6 but in general we can tune it as desired to strike the right accuracy / runtime

trade-off. Unlike other hyper-parameters, there is no “sweet spot” for this one: setting

larger model capacities should always make the mechanism perform better, at the cost

of increased runtime. We demonstrate this trade-off empirically in Figure 5.4. For

ε = 0.1, 1, and 10, we considered model capacities ranging from 1.25 MB to 1.28 GB,

and ran AIM on the fire dataset with the all-3way workload. Results are averaged

6Cai et al. [16] limit the size of the largest clique in the junction tree to have at most 107 cells
(80 MB with 8 byte floats), while we limit the overall size of the junction tree.
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Figure 5.3: Workload error of competing mechanisms on the skewed workload for
ε = 0.01, . . . , 100.
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Figure 5.4: Effect of the model capacity hyperparameter on the performance of AIM.

over five trials, with error bars indicating the min/max runtime and workload error

across those trials. Our main findings are listed below:
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Figure 5.5: Observed error vs. 95% confidence bound on error for all cliques in the
workload for the all-3way workload fire dataset.

1. As expected, runtime increases with model capacity, and workload error decreases

with capacity. The case ε = 0.1 is an exception, where both the plots level

off beyond a capacity of 20 MB. This is because the capacity constraint is not

active in this regime: AIM already favors small marginals when the available

privacy budget is small by virtue of the quality score function for marginal

query selection, so the model remains small even without the model capacity

constraint.

2. Using the default model capacity and ε = 1 resulted in a 9 hour runtime. We can

slightly reduce error further, by about 13%, by increasing the model capacity to

1.28 GB and waiting 7 days. Conversely, we can reduce the model capacity to 5

MB which increases error by about 75%, but takes less than one hour. The law

of diminishing returns is at play.

Ultimately, the model capacity to use is a policy decision. In real-world deployments,

it is certainly reasonable to spend additional computational time for even a small

boost in utility.
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5.6.6 Uncertainty quantification

In this section, we demonstrate that our expressions for uncertainty quantification

correctly bound the error, and evaluate how tight the bound is. For this experiment,

we ran AIM on the fire dataset with the all-3way workload at ε = 10. In Figure 5.5,

we plot the true error of AIM on each marginal in the workload against the error

bound predicted by our expressions. We set λ = 1.7 in Corollary 1, and λ1 = 2.7,

λ2 = 3.7 in Corollary 2, which provides 95% confidence bounds. Our main findings

are listed below:

1. For all marginals in the (downward closure of the) workload, the error bound

is always greater than true error. This confirms the validity of the bound, and

suggests they are safe to use in practice. Note that even if some errors were

above the bounds, that would not be inconsistent with our guarantee, as at a

95% confidence level, the bound could fail to hold 5% of the time. The fact that

it doesn’t suggests there is some looseness in the bound.

2. The true errors and the error bounds vary considerably, ranging from 10−4 all

the way up to and beyond 1. In general, the supported marginals have both

lower errors, and lower error bounds than the unsupported marginals, which is

not surprising. The error bounds are also tighter for the supported marginals.

The median ratio between error bound and observed error is 4.4 for supported

marginals and 8.3 for unsupported marginals. Intuitively, this makes sense

because we know selected marginals should have higher error than non-selected

marginals, but the error of the non-selected marginal can be far below that of

the selected marginal (and hence the bound), which explains the larger gap

between the actual error and our predicted bound.
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5.7 Discussion and limitations

In this chapter, we have carefully studied the problem of workload-aware synthetic

data generation under differential privacy, and presented AIM, a new mechanism for

this task. AIM scales effectively to high-dimensional domains and provides state-of-the-

art error rates on a variety of workloads, datasets, and privacy levels. One way AIM can

immediately be improved is by modifying the model capacity parameter, whose default

value is 80 MB. Increasing this value allows AIM to use a large computational budget,

and it can be expected to provide better utility at the cost of increased runtime. For

the default value we set, the runtime of AIM frequently exceeded 10 hours, especially

at the higher values of ε. This could be improved by porting PrivatePGM to run on a

GPU, allowing us to use AIM with larger model capacities.
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CHAPTER 6

DISCUSSION AND FUTURE DIRECTIONS

In this thesis, we focused on the two related problems of linear query answering

and synthetic data generation under differential privacy. To that end, we presented

three new techniques to solve these problems: HDMM, PrivatePGM, and AIM. In this

chapter, we briefly summarize these contributions, and discuss problems that remain

open.

6.1 Summary

In Chapter 3, we presented HDMM, which overcomes the main scalability limitation

of the Matrix Mechanism, and scales effectively to large multidimensional domains.

For applications to which is scales, HDMM provides state-of-the-art error rates on

a variety of workloads. However, HDMM still requires an explicit representation of

the data vector, and therefore does not scale to high-dimensional settings where this

object cannot be materialized at all.

In Chapter 4, we presented PrivatePGM, which is a general-purpose solution to

the reconstruct sub-problem, and scales effectively to high-dimensional settings by

utilizing a factored representation of the data vector. The algorithm HDMM+PGM

overcomes the main scalability limitation of HDMM, although PrivatePGM is more

broadly applicable outside the context of HDMM. In fact, when plugged into four

state-of-the-art mechanisms, PrivatePGM was found to consistently improve their error

rates across a variety of datasets.
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In Chapter 5, we presented AIM, which is a workload-aware mechanism for synthetic

data generation that utilizes PrivatePGM to scale to high-dimensional settings. AIM

was carefully designed to extract the best ideas from prior work, while also introducing

new ideas where needed to overcome their limitations. AIM offered substantial

improvements over all prior work on this task in a variety of experimental settings.

6.2 Open Problems

There are a number of problems not addressed in this thesis that could be promising

directions for future research, which we enumerate and discuss below.

More general workloads In this thesis, we restricted our attention to the special-

but-common case of linear query workloads (Chapter 3) and marginal query workloads

(Chapter 5). Extending AIM or designing new synthetic data mechanisms that work

for the more general class of linear queries (perhaps defined over the low-dimensional

marginals) remains an important open problem. While the prior work, MWEM+PGM,

RAP, and GEM can handle workloads of this form, they achieve this by selecting a

single counting query in each round, rather than a full marginal query, and thus there

is likely significant room for improvement.

Beyond linear query workloads, other workloads of interest include more abstract

objectives like machine learning efficacy and other non-linear query workloads. These

metrics have been used to evaluate the quality of workload-agnostic synthetic data

mechanisms, but have not been provided as input to the mechanisms themselves. In

principle, if we know we want to run a given machine learning model on the synthetic

dataset, we should be able to tailor the synthetic data to provide high utility on that

model.

Mixed data types In this work, we assumed the input data was discrete, and each

attribute had a finite domain with a reasonably small number of possible values. Data
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with numerical attributes must be appropriately discretized before using our proposed

techniques, and the quality of the discretization could have a significant impact on

utility of the results and the runtime of our techniques. Designing mechanisms that

appropriately handle mixed (categorical and numerical) data types is an important

problem. There may be more to this problem than meets the eye: a new definition of

a workload and utility metric may be in order, and new types of measurements and

post-processing techniques may be necessary to handle numerical data.

Public data A promising avenue for future research is to design synthetic data

mechanisms that incorporate public data in a principled way. There are many places

in which public data can be naturally incorporated into AIM, and exploring these ideas

is a promising way to boost the utility of AIM in real world settings where public data

is available. Early work on this problem includes [63, 70, 64], but this area remains

under-explored.

Uncertainty quantification In Chapter 5, we developed some techniques for

uncertainty quantification specific to AIM and marginal queries. In general, uncertainty

quantification is an important open problem and more work is needed on it in general.

Simply treating the output of a differentially private mechanism “as is” without being

aware of how much error is in it can be detrimental to downstream analyses that rely

on privatized data. Correctly quantifying and communicating uncertainty is crucial to

avoid these misinterpretations or misuses of privatized data.
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[3] Ács, Gergely, Castelluccia, Claude, and Chen, Rui. Differentially private his-
togram publishing through lossy compression. In ICDM (2012), pp. 1–10.

[4] Asghar, Hassan Jameel, Ding, Ming, Rakotoarivelo, Thierry, Mrabet, Sirine,
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