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Quantifying the impact of non-stationarity
in reinforcement learning-based traffic
signal control
Lucas N. Alegre1, Ana L.C. Bazzan1 and Bruno C. da Silva2

1 Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul, Brazil

2 CICS, University of Massachusetts, Amherst, Massachusetts, United States of America

ABSTRACT
In reinforcement learning (RL), dealing with non-stationarity is a challenging issue.
However, some domains such as traffic optimization are inherently non-stationary.
Causes for and effects of this are manifold. In particular, when dealing with traffic
signal controls, addressing non-stationarity is key since traffic conditions change
over time and as a function of traffic control decisions taken in other parts of a
network. In this paper we analyze the effects that different sources of non-stationarity
have in a network of traffic signals, in which each signal is modeled as a learning
agent. More precisely, we study both the effects of changing the context in which
an agent learns (e.g., a change in flow rates experienced by it), as well as the effects of
reducing agent observability of the true environment state. Partial observability may
cause distinct states (in which distinct actions are optimal) to be seen as the same
by the traffic signal agents. This, in turn, may lead to sub-optimal performance.
We show that the lack of suitable sensors to provide a representative observation of
the real state seems to affect the performance more drastically than the changes to the
underlying traffic patterns.

Subjects Agents and Multi-Agent Systems, Artificial Intelligence, Autonomous Systems
Keywords Reinforcement learning, Traffic signal control, Non-stationarity, Multiagent systems

INTRODUCTION
Controlling traffic signals is one way of dealing with the increasing volume of vehicles
that use the existing urban network infrastructure. Reinforcement learning (RL) adds up to
this effort by allowing decentralization (traffic signals—modeled as agents—can
independently learn the best actions to take in each current state) as well as on-the-fly
adaptation to traffic flow changes. It is noteworthy that this can be done in a model-free
way (with no prior domain information) via RL techniques. RL is based on an agent
computing a policy mapping states to actions without requiring an explicit environment
model. This is important in traffic domains because such a model may be very complex,
as it involves modeling traffic state transitions determined not only by the actions of
multiple agents, but also by changes inherent to the environment—such as time-
dependent changes to the flow of vehicles.

One of the major difficulties in applying reinforcement learning (RL) in traffic control
problems is the fact that the environments may change in unpredictable ways. The agents
may have to operate in different contexts—which we define here as the true underlying
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traffic patterns affecting an agent; importantly, the agents do not know the true context of
their environment, e.g., since they do not have full observability of the traffic network.
Examples of partially observable variables that result in different contexts include
different traffic patterns during the hours of the day, traffic accidents, road maintenance,
weather, and other hazards. We refer to changes in the environment’s dynamics as
non-stationarity.

In terms of contributions, we introduce a way to model different contexts that arise in
urban traffic due to time-varying characteristics. We then analyze different sources of non-
stationarity—when applying RL to traffic signal control—and quantify the impact that
each one has on the learning process. More precisely, we study the impact in learning
performance resulting from (1) explicit changes in traffic patterns introduced by different
vehicle flow rates; and (2) reduced state observability resulting from imprecision or
unavailability of readings from sensors at traffic intersections. The latter problem may
cause distinct states (in which distinct actions are optimal) to be seen as the same by the
traffic signal agents. This not only leads to sub-optimal performance but may introduce
drastic drops in performance when the environment’s context changes. We evaluate
the performance of deploying RL in a non-stationary multiagent scenario, where each
traffic signal uses Q-learning—a model-free RL algorithm—to learn efficient control
policies. The traffic environment is simulated using the open-source microscopic traffic
simulator SUMO (Simulation of Urban MObility) (Lopez et al., 2018) and models the
dynamics of a 4 × 4 grid traffic network with 16 traffic signal agents, where each agent
has access only to local observations of its controlled intersection. We empirically
demonstrate that the aforementioned causes of non-stationarity can negatively affect
the performance of the learning agents. We also demonstrate that the lack of suitable
sensors to provide a representative observation of the true underlying traffic state seems to
affect learning performance more drastically than changes to the underlying traffic
patterns.

The rest of this paper is organized as follows. The next section briefly introduces
relevant RL concepts. Then, our model is introduced in “Methods”, and the corresponding
experiments in “Experiments and Results”. Finally, we discuss related work in “Related
Work” and then present concluding remarks.

BACKGROUND
Reinforcement learning
In reinforcement learning (Sutton & Barto, 1998), an agent learns how to behave by
interacting with an environment, from which it receives a reward signal after each action.
The agent uses this feedback to iteratively learn an optimal control policy π �—a function
that specifies the most appropriate action to take in each state. We can model RL
problems as Markov decision processes (MDPs). These are described by a set of states S, a
set of actions A, a reward function Rðs; a; s0Þ ! R and a probabilistic state transition
function Tðs; a; s0Þ ! ½0; 1�. An experience tuple〈s, a, s′, r〉denotes the fact that the
agent was in state s, performed action a and ended up in s′ with reward r. Let t denote the
tth step in the policy π. In an infinite horizon MDP, the cumulative reward in the future
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under policy π is defined by the action-value function (or Q-function)Qπ(s,a), as in Eq. (1),
where γ ∈ [0, 1] is the discount factor for future rewards.

Qpðs; aÞ ¼ E
�X1

s¼0

csrtþsjst ¼ s; at ¼ a;p

�
(1)

If the agent knows the optimal Q-values Q�(s,a) for all state-actions pairs, then the
optimal control policy π� can be easily obtained; since the agent’s objective is to maximize
the cumulative reward, the optimal control policy is:

p�ðsÞ ¼ argmaxaQ
�ðs; aÞ 8s 2 S; a 2 A (2)

Reinforcement learning methods can be divided into two categories: model-free and
model-based. Model-based methods assume that the transition function T and the reward
function R are available, or instead try to learn them. Model-free methods, on the other
hand, do not require that the agent have access to information about how the environment
works. Instead, they learn an action-value function based only on samples obtained by
interacting with the environment.

The RL algorithm used in this paper is Q-learning (QL), a model-free off-policy
algorithm that estimates the Q-values in the form of a Q-table. After an experience〈s, a, s′,
r〉, the corresponding Q(s,a) value is updated through Eq. (3), where α ∈ [0, 1] is the
learning rate.

Qðs; aÞ :¼ Qðs; aÞ þ aðr þ cmax
a

Qðs0; aÞ � Qðs; aÞÞ (3)

Importantly, in the tabular case with online learning, which we tackle in our work,
Q-learning is known to converge to optimal policies given mild assumptions about
exploration whenever deployed on stationary MDPs (Watkins, 1989; Tsitsiklis, 1994).

In order to balance exploitation and exploration when agents select actions, we use in
this paper the ε-greedy mechanism. This way, agents randomly explore with probability ε
and choose the action with the best expected reward so far with probability 1 − ε.

Non-stationarity in RL
In RL, dealing with non-stationarity is a challenging issue (Hernandez-Leal et al., 2017).
Among the main causes of non-stationarity are changes in the state transition function
T(s, a, s′) or in the reward function R(s, a, s′), partial observability of the true environment
state (discussed in “Partial Observability”) and non-observability of the actions taken by
other agents.

In an MDP, the probabilistic state transition function T is assumed not to change.
However, this is not realistic in many real world problems. In non-stationary
environments, the state transition function T and/or the reward function R can change at
arbitrary time steps. In traffic domains, for instance, an action in a given state may have
different results depending on the current context—i.e., on the way the network state
changes in reaction to the actions of the agents. If agents do not explicitly deal with context
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changes, they may have to readapt their policies. Hence, they may undergo a constant
process of forgetting and relearning control strategies. Though this readaptation is
possible, it might cause the agent to operate in a sub-optimal manner for extended periods
of time.

Importantly, no convergence guarantees exist in the non-stationary case, and so one
needs to design ways to keep the agents from being heavily affected by changes to the
environment’s dynamics (Padakandla, 2020). Motivated by this challenge, one of the goals
of our work is to quantify the impact that different sources of non-stationarity have on
the agents’ learning process. Ideally, one should aim to shape the learning problem into
one that is as stationary as possible, so that convergence guarantees may be given. Recent
work in the RL literature has investigated methods for dealing with non-stationary
environments by explicitly modeling a set of contexts and their associated local policies
(Alegre, Bazzan & Da Silva, 2021; Padakandla, 2020). These methods are orthogonal to
the idea studied in our paper: by augmenting state definitions we can reduce partial
observability and thus minimize the effect of non-stationarity on the learning process and
on convergence.

Partial observability
Traffic control problems might be modeled as Dec-POMDPs (Bernstein, Zilberstein &
Immerman, 2000)—a particular type of decentralized multiagent MDP where agents
have only partial observability of their true states. A Dec-POMDP introduces to an MDP a
set of agents I, for each agent i ∈ I a set of actions Ai, with A = XiAi the set of joint actions,
a set of observations Ωi, with Ω = XiΩi the set of joint observations, and observation
probabilities O(o|s,a), the probability of agents seeing observations o, given the state is s
and agents take actions a. As specific methods to solve Dec-POMDPs do not scale with the
number of agents (Bernstein et al., 2002), it is usual to tackle them using techniques
conceived to deal with the fully-observable case. Though this allows for better scalability,
it introduces non-stationarity as the agents cannot completely observe their environment
nor the actions of other agents.

In traffic signal control, partial observability can appear due to lack of suitable sensors to
provide a representative observation of the traffic intersection. Additionally, even when
multiple sensors are available, partial observability may occur due to inaccurate (with low
resolution) measures.

METHODS
As mentioned earlier, the main goal of this paper is to investigate the different causes of
non-stationarity that might affect performance in a scenario where traffic signal agents
learn how to improve traffic flow under various forms of non-stationarity. To study this
problem, we introduce a framework for modeling urban traffic under time-varying
dynamics. In particular, we first introduce a baseline urban traffic model based on MDPs.
This is done by formalizing—following similar existing works—the relevant elements of
the MDP: its state space, action set, and reward function.
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Then, we show how to extend this baseline model to allow for dynamic changes to its
transition function so as to encode the existence of different contexts. Here, contexts
correspond to different traffic patterns that may change over time according to causes
that might not be directly observable by the agent. We also discuss different design
decisions regarding the possible ways in which the states of the traffic system are defined;
many of these are aligned with the modeling choices typically done in the literature, as for
instance (Mannion, Duggan & Howley, 2016; Genders & Razavi, 2018). Discussing the
different possible definitions of states is relevant since these are typically specified in a way
that directly incorporates sensor information. Given the amount and quality of sensor
information, however, different state definitions arise that—depending on sensor
resolution and partial observability of the environment and/or of other agents—result in
different amounts of non-stationarity.

Furthermore, in what follows we describe the multiagent training scheme used (in
“Multiagent Independent Q-learning”) by each traffic signal agent in order to optimize its
policy under non-stationary settings. We also describe how traffic patterns—the contexts
in which our agents may need to operate—are modeled mathematically in “Contexts”.
We discuss the methodology that is used to analyze and quantify the effects of non-
stationarity in the traffic problem in “Experiments and Results”.

Finally, we emphasize here that the proposed methods and analyzes that will be
conducted in this paper—aimed at evaluating the impact of different sources of non-
stationary—are the main contributions of our work. Most existing works (e.g., those
discussed in “Related Work”) do not address or directly investigate at length the
implications of varying traffic flow rates as sources of non-stationarity in RL.

State formulation
In the problems or scenarios we deal with, the definition of state space strongly influences
the agents’ behavior and performance. Each traffic signal agent controls one intersection,
and at each time step t it observes a vector st that partially represents the true state of the
controlled intersection.

A state, in our problem, could be defined as a vector s 2 Rð2þ2jPjÞ, as in Eq. (4), where P
is the set of all green traffic phases1, ρ ∈ P denotes the current green phase, δ ∈ [0,
maxGreenTime] is the elapsed time of the current phase, densityi ∈ [0, 1] is defined as
the number of vehicles divided by the vehicle capacity of the incoming movements of
phase i and queuei ∈ [0, 1] is defined as the number of queued vehicles (we consider as
queued a vehicle with speed under 0.1 m/s) divided by the vehicle capacity of the incoming
movements of phase i.

s ¼ ½q; d; density1; queue1;…; densityjPj; queuejPj� (4)

Note that this state definition might not be feasibly implementable in real-life settings
due to cost issues arising from the fact that many physical sensors would have to be
paid for and deployed. We introduce, for this reason, an alternative definition of state

1 A traffic phase assigns green, yellow or
red light to each traffic movement. A
green traffic phase is a phase which
assigns green to at least one traffic
movement.
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which has reduced scope of observation. More precisely, this alternative state definition
removes density attributes from Eq. (4), resulting in the partially-observable state vector

s 2 Rð2þjPjÞ in Eq. (5). The absence of these state attributes is analogous to the lack of
availability of real-life traffic sensors capable of detecting approaching vehicles along the
extension of a given street (i.e., the density of vehicles along that street). This implies
that, without the density attributes, the observed state can not inform the agent whether
(or how fast) the links are being filled with new incoming vehicles, which may lead to a
situation with large queue lengths in the next time steps.

s ¼ ½q; d; queue1;…; queuejPj� (5)

Note also that the above definition results in continuous states. Q-learning, however,
traditionally works with discrete state spaces. Therefore, states need to be discretized after
being computed. Both density and queue attributes are discretized in ten levels/bins equally
distributed. We point out that a low level of discretization is also a form of partial-
observability, as it may cause distinct states to be perceived as the same state. Furthermore,
in this paper we assume—as commonly done in the literature—that one simulation time
step corresponds to five seconds of real-life traffic dynamics. This helps encode the fact
that traffic signals typically do not change actions every second; this modeling decision
implies that actions (in particular, changes to the current phase of a traffic light) are taken
in intervals of five seconds.

Actions
In an MDP, at each time step t each agent chooses an action at ∈ A. The number of actions,
in our setting, is equal to the number of phases, where a phase allows green signal to a
specific traffic direction; thus, |A| = |P|. In the case where the traffic network is a grid
(typically encountered in the literature (El-Tantawy, Abdulhai & Abdelgawad, 2013;
Mannion, Duggan & Howley, 2016; Chu et al., 2019)), we consider two actions: an agent
can either keep green time to the current phase or allow green time to another phase;
we call these actions keep and change, respectively. There are two restrictions in the action
selection: an agent can take the action change only if δ ≥ 10 s (minGreenTime) and the
action keep only if δ < 50 s (maxGreenTime). Additionally, change actions impose a
yellow phase with a fixed duration of 2 s. These restrictions are in place to, e.g., model the
fact that in real life, a traffic controller needs to commit to a decision for a minimum
amount of time to allow stopped cars to accelerate and move to their intended destinations.

Reward function
The rewards assigned to traffic signal agents in our model are defined as the change in
cumulative vehicle waiting time between successive actions. After the execution of an
action at, the agent receives a reward rt 2 R as given by Eq. (6):

rt ¼ Wt �Wtþ1 (6)
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where Wt and Wt + 1 represent the cumulative waiting time at the intersection before and
after executing the action at, following Eq. (7):

Wt ¼
X
v2Vt

wv;t (7)

where Vt is the set of vehicles on roads arriving at an intersection at time step t, and wv, t

is the total waiting time of vehicle v since it entered one of the roads arriving at the
intersection until time step t. A vehicle is considered to be waiting if its speed is below
0.1 m/s. Note that, according to this definition, the larger the decrease in cumulative
waiting time, the larger the reward. Consequently, by maximizing rewards, agents reduce
the waiting time at the intersections, thereby improving the local traffic flow.

Multiagent independent Q-learning
We tackle the non-stationarity in our scenario by using Q-learning in a multiagent
independent training scheme (Tan, 1993), where each traffic signal is a QL agent with its
own Q-table, local observations, actions and rewards. This approach allows each agent to
learn an individual policy, applicable given the local observations that it makes; policies
may vary between agents as each one updates its Q-table using only its own experience
tuples. Besides allowing for different behaviors between agents, this approach also
avoids the curse of dimensionality that a centralized training scheme would introduce.
However, there is one main drawback of an independent training scheme: as agents are
learning and adjusting their policies, changes to their policies cause the environment
dynamics to change, thereby resulting in non-stationary. This means that original
convergence properties for single-agent algorithms no longer hold due to the fact that the
best policy for an agent changes as other agents’ policies change (Busoniu, Babuska &
De Schutter, 2008).

Contexts
In order to model one of the causes for non-stationary in the environment, we use the
concept of traffic contexts, similarly to Da Silva et al. (2006). We define contexts as traffic
patterns composed of different vehicle flow distributions over the Origin-Destination
(OD) pairs of the network. The origin node of an OD pair indicates where a vehicle is
inserted in the simulation. The destination node is the node in which the vehicle ends
its trip, and hence is removed from the simulation upon its arrival. A context, then, is
defined by associating with each OD pair a number of vehicles that are inserted (per
second) in its origin node. Non-stationarity then emerges since the current context
changes during the simulation in the form of recurrent events on the traffic environment.
Importantly, although each context corresponds to a stationary traffic pattern, the
environment becomes non-stationary w.r.t. the agents because the underlying context
changes unpredictably, and the agents cannot perceive an indicator of the current context.

Changing the context during a simulation causes the sensors measures to vary
differently in time. Events such as traffic accidents and hush hours, for example, cause the
flow of vehicles to increase in a particular direction, thus making the queues on the lanes of
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this direction to increase faster. In the usual case, where agents do not have access to all
information about the environment state, this can affect the state transition T and the
reward R functions of the MDP directly. Consequently, when the state transition
probabilities and the rewards agents are observing change, the Q-values of the state-action
pairs also change. Therefore, traffic signal agents will most likely need to undergo a
readaptation phase to correctly update their policies, resulting in periods of catastrophic
drops in performance.

EXPERIMENTS AND RESULTS
Our main goal with the following experiments is to quantify the impact of different
causes of non-stationarity in the learning process of an RL agent in traffic signal control.
Explicit changes in context (e.g., vehicle flow rate changes in one or more directions)
are one of these causes and are present in all of the following experiments. This section first
describes details of the scenario being simulated as well as the traffic contexts, followed by a
definition of the performance metrics used as well as the different experiments that
were performed.

We first conduct an experiment where traffic signals use a fixed control policy—a
common strategy in case the infrastructure lacks sensors and/or actuators. The results of
this experiment are discussed in “Traffic Signal Control under Fixed Policies” and are
used to emphasize the problem of lacking a policy that can adapt to different contexts;
it also serves as a baseline for later comparisons. Afterwards, in “Effects of Disabling
Learning and Exploration” we explore the setting where agents employ a given policy in a
context/traffic pattern that has not yet been observed during the training phase. In “Effects
of Reduced State Observability” we analyze (1) the impact of context changes when
agents continue to explore and update their Q-tables throughout the simulation; and
(2) the impact of having non-stationarity introduced both by context changes and by the
use of the two different state definitions presented in “State Formulation”. Then, in “Effects
of Different Levels of State Discretization” we address the relation between non-
stationarity and partial observations resulting from the use of imprecise sensors, simulated
by poor discretization of the observation space. Lastly, in “Discussion” we discuss what are
the main findings and implications of the results observed.

Scenario
We used the open-source microscopic traffic simulator SUMO to model and simulate
the traffic scenario and its dynamics, and SUMO-RL (Alegre, 2019) to instantiate the
simulation as a reinforcement learning environment with all the components of an MDP.
The traffic network is a 4 × 4 grid network with traffic signals present in all 16 intersections
(Fig. 1). All links have 150 m, two lanes and are one-way. Vertical links follow N-S
traffic directions and horizontal links followW-E directions. There are eight OD pairs: 4 in
theW-E traffic direction (A2F2, A3F3, A4F4, and A5F5), and 4 in the N-S direction (B1B6,
C1C6, D1D6, E1E6).

In order to demonstrate the impact of context changes on traffic signals (and hence, on
the traffic), we defined two different traffic contexts with different vehicle flow rates. Both
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contexts insert the same amount of vehicles per second in the network, but do so by using a
different distribution of those vehicles over the possible OD pairs. In particular:

� Context 1 (NS = WE): insertion rate of 1 vehicle every 3 s in all eight OD pairs.

� Context 2 (NS<WE): insertion rate of 1 vehicle every 6 s in the N-S direction OD pairs
and one vehicle every 2 s in the W-E direction OD pairs.

It is expected that a policy in which the two green traffic phases are equally distributed
would have a satisfactory performance in Context 1, but not in Context 2. In the following
experiments, we shift between Context 1 and Context 2 every 20,000 time steps,
starting the simulation with Context 1. This means that the insertion rates change every
20,000 time steps, following the aforementioned contexts.

Metrics
To measure the performance of traffic signal agents, we used as metric the summation of
the cumulative vehicle waiting time on all intersections, as in Eq. (7). Intuitively, this
quantifies for how long vehicles are delayed by having to reduce their velocity below
0.1 m/s due to long waiting queues and to the inadequate use of red signal phases.
This metric is also a good indication of the agents performance, since it is strongly
related to the rewards assigned to each agent, defined in Eq. (6). Therefore, as the agents
improve their local policies to minimize the change in cumulative vehicle waiting time, it is
expected that the global waiting time of the traffic environment also decreases.

At the time steps in which phase changes occur, natural oscillations in the queue sizes
occur since many vehicles are stopping and many are accelerating. Therefore, all plots
shown here depict moving averages of the previously-discussed metric within a time
window of 15 s. The plots related to Q-learning are averaged over 30 runs, where the

Figure 1 4 × 4 grid network. (A) Network topology. (B) Network in SUMO.
Full-size DOI: 10.7717/peerj-cs.575/fig-1
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shadowed area shows the standard deviation. Additionally, we omit the time steps of the
beginning of the simulation (since the network then is not yet fully populated with
vehicles) as well as the last time steps (since then vehicles are no longer being inserted).

Traffic signal control under fixed policies
We first demonstrate the performance of a fixed policy designed by following the High
Capacity Manual (National Research Council, 2000), which is popularly used for such task.
The fixed policy assigns to each phase a green time of 35 s and a yellow time of 2 s.
As mentioned, our goal by defining this policy is to construct a baseline used to quantify
the impact of a context change on the performance of traffic signals in two situations:
one where traffic signals follow a fixed policy and one where traffic signals adapt and learn
a new policy using QL algorithm. This section analyzes the former case. Figure 2 shows
that the fixed policy, as expected, loses performance when the context is changed. When
the traffic flow is set to Context 2 at time step 20,000, a larger amount of vehicles are
driving in theW-E direction and thus producing larger waiting queues. In order to obtain a
good performance using fixed policies, it would be necessary to define a policy for each
context and to know in advance the exact moment when context changes will occur.
Moreover, there may be an arbitrarily large number of such contexts, and the agent, in
general, has no way of knowing in advance how many exist. Prior knowledge of these
quantities is not typically available since non-recurring events that may affect the
environment dynamics, such as traffic accidents, cannot be predicted. Hence, traffic signal
control by fixed policies is inadequate in scenarios where traffic flow dynamics may change
(slowly or abruptly) over time.

Figure 2 Total waiting time of vehicles in the simulation: fixed policy traffic signals, context change
at time step 20,000. Full-size DOI: 10.7717/peerj-cs.575/fig-2

Alegre et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.575 10/20

http://dx.doi.org/10.7717/peerj-cs.575/fig-2
http://dx.doi.org/10.7717/peerj-cs.575
https://peerj.com/computer-science/


Effects of disabling learning and exploration
We now describe the case in which agents stop, at some point in time, to learn from their
actions and simply follow the policy learned before a given context change. The objective
here is to simulate a situation where a traffic signal agent employs a previously-learned
policy to a context/traffic pattern that has not yet been observed in its training phase.
We achieve this by setting both α (learning rate) and ε (exploration rate) to 0 when
there is a change in context. By observing Eq. (3), we see that the Q-values no longer have
their values changed if α = 0. By setting ε = 0, we also ensure that the agents will not explore
and that they will only choose the actions with the higher estimated Q-value given the
dynamics of the last observed context. By analyzing performance in this setting,
we can quantify the negative effect of agents that act solely by following the policy learned
from the previous contexts.

During the training phase (until time step 20,000), we use a learning rate of α = 0.1
and discount factor γ = 0.99. The exploration rate starts at ε = 1 and decays by a factor of
0.9985 every time the agent chooses an action. These definitions ensure that the agents
are mostly exploring at the beginning, while by the time step 10,000 ε is below 0.05, thereby
resulting in agents that continue to purely exploit a currently-learned policy even after a
context change; i.e., agents that do not adapt to context changes.

In Fig. 3 we observe that the total waiting time of vehicles rapidly increases after the
context change (time step 20,000). This change in the environment dynamics causes the
policy learned in Context 1 to no longer be efficient, since Context 2 introduces a flow
pattern that the traffic signals have not yet observed. Consequently, the traffic signal agents
do not know what are the best actions to take when in those states. Note, however, that
some actions (e.g., changing the phase when there is congestion in one of the directions)

Figure 3 Total waiting time of vehicles. Q-learning traffic signals. Context change α and ε set to 0 at
timestep 20,000. Full-size DOI: 10.7717/peerj-cs.575/fig-3
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are still capable of improving performance, since they are reasonable decisions under both
contexts. This explains why performance drops considerably when the context changes
and why the waiting time keeps oscillating afterwards.

Effects of reduced state observability
In this experiment, we compare the effects of context changes under the two different state
definitions presented in “State Formulation”. The state definition in Eq. (4) represents a
more unrealistic scenario in which expensive real-traffic sensors are available at the
intersections. In contrast, in the partial state definition in Eq. (5) each traffic signal has
information only about how many vehicles are stopped at its corresponding intersection
(queue), but cannot relate this information to the number of vehicles currently
approaching its waiting queue, as vehicles in movement are monitored only on density
attributes.

Differently from the previous experiment, agents now continue to explore and
update their Q-tables throughout the simulation. The ε parameter is set to a fixed value of
0.05; this way, the agents mostly exploit but still have a small chance of exploring other
actions in order to adapt to changes in the environment. By not changing ε we ensure that
performance variations are not caused by an exploration strategy. The values of the QL
parameters (α and γ) are kept as in the previous experiment.

The results of this experiment are shown in Fig. 4. By analyzing the initial steps in
the simulation, we note that agents using the reduced state definition learn significantly
faster than those with the state definition that incorporates both queue and density
attributes. This is because there are fewer states to explore, and so it takes fewer steps for
the policy to converge. However, given this limited observation capability, agents converge

Figure 4 Total waiting time of vehicles. Q-learning agents with two state representations: queue and
queue + density. Context changes at times 20,000, 40,000 and 60,000.

Full-size DOI: 10.7717/peerj-cs.575/fig-4
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to a policy resulting in higher waiting times when compared to that resulting from
agents with more extensive state observability. This shows that the density attributes are
fundamental to better characterize the true state of a traffic intersection. Also note that
around time 10,000, the performance of both state definitions (around 500 s of total
waiting time) are better than that achieved under the fixed policy program (around 2,200 s
of total waiting time), depicted in Fig. 2.

In the first context change, at time 20,000, the total waiting time of both state definitions
increases considerably. This is expected as it is the first time agents have to operate in
Context 2. Agents operating under the original state definition recovered from this context
change rapidly and achieved the same performance obtained in Context 1. However,
with the partial state definition (i.e., only queue attributes), it is more challenging for agents
to behave properly when operating under Context 2, which depicts an unbalanced traffic
flow arriving at the intersection.

Finally, we can observe how (at time step 60,000) the non-stationarity introduced by
context changes relates to the limited partial state definition. While traffic signal agents
observing both queue and density do not show any oscillations in the waiting time of
their controlled intersections, agents observing only queue have a significant performance
drop. Despite having already experienced Context 2, they had to relearn their policies
since the past Q-values were overwritten by the learning mechanism to adapt to the
changing past dynamics. The dynamics of both contexts are, however, well-captured in the
original state definition, as the combination of the density and queue attributes provides
enough information about the dynamics of traffic arrivals at the intersection. This
observation emphasizes the importance of more extensive state observability to avoid the
negative impacts of non-stationarity in RL agents.

Effects of different levels of state discretization
Besides the unavailability of appropriate sensors (which results in incomplete description
of states) another possible cause of non-stationarity is poor precision and low range of
observations. As an example, consider imprecision in the measurement of the number of
vehicles waiting at an intersection; this may cause distinct states—in which distinct actions
are optimal—to be perceived as the same state. This not only leads to sub-optimal
performance, but also introduces drastic performance drops when the context change.
We simulate this effect by lowering the number of discretization levels of the attribute
queue in cases where the density attribute is not available.

In Fig. 5 we depict how the discretization level of the attribute queue affects performance
when a context change occurs. The red line corresponds to the performance when queue is
discretized into 10 equally-distributed levels/bins (see “State Formulation”). The dark
blue line corresponds to performance under a reduced discretization level of 4 bins.
Note how after a context change (at time steps 20,000, 40,000 and 60,000) we can observe
how the use of reduced discretization levels causes a significant drop in performance.
At time 40,000, for instance, the total waiting time increases up to three times when
operating under the lower discretization level.
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Intuitively, an agent with imprecise observation of its true state has reduced capability
to perceive changes in the transition function. Consequently, when traffic flow rates
change at an intersection, agents with imprecise observations require a larger number of
actions to readapt, thereby dramatically increasing queues.

Discussion
Many RL algorithms have been proposed to tackle non-stationary problems (Choi,
Yeung & Zhang, 2000; Doya et al., 2002; Da Silva et al., 2006). Specifically, these works
assume that the environment is non-stationary (without studying or analyzing the specific
causes of non-stationary) and then propose computational mechanisms to efficiently learn
under that setting. In this paper, we deal with a complementary problem, which is to
quantify the effects of different causes of non-stationarity in the learning performance.
We also assume that non-stationarity exists, but we explicitly model many of the possible
underline reasons why its effects may take place. We study this complementary
problem because it is our understanding that by explicitly quantifying the different reasons
for non-stationary effects, it may be possible to make better-informed decisions about
which specific algorithm to use, or to decide, for instance, if efforts should be better spent
by designing a more complete set of features instead of by designing more sophisticated
learning algorithms.

In this paper, we studied these possible causes specifically when they affect urban
traffic environments. The results of our experiments indicate that non-stationarity in the
form of changes to vehicle flow rates significantly impact both traffic signal controllers
following fixed policies and policies learned from standard RL methods that do not model
different contexts. However, this impact (that results in rapid changes in the total number

Figure 5 Total waiting time of vehicles. Q-learning traffic signals with different levels of discretization
for the attribute queue. Context changes at time steps 20,000, 40,000 and 60,000.

Full-size DOI: 10.7717/peerj-cs.575/fig-5
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of vehicles waiting at the intersections) has different levels of impact on agents depending
on the different levels of observability available to those agents. While agents with the
original state definition (queue and density attributes) only present performance drops in
the first time they operate in a new context, agents with reduced observation (only queue
attributes) may always have to relearn the readapted Q-values. The original state
definition, however, is not very realistic in the real world, as sensors capable of providing
both attributes for large traffic roads are very expensive. Finally, in cases where agents
observe only the queues attributes, we demonstrated that imprecise measures (e.g. low
number of discretization bins) potencializes the impact of context changes. Hence, in
order to design a robust RL traffic signal controller, it is critical to take into account which
are the most adequate sensors and how they contribute to provide a more extensive
observation of the true environment state.

We observed that the non-stationarity introduced by the actions of other concurrently-
learning agents in a competitive environment seemed to be a minor obstacle to acquiring
effective traffic signals policies. However, a traffic signal agent that selfishly learns to
reduce its own queue size may introduce a higher flow of vehicles arriving at neighboring
intersections, thereby affecting the rewards of other agents and producing non-
stationarity. We believe that in more complex scenarios this effect would be more clearly
visible.

Furthermore, we found that traditional tabular Independent Q-learning presented a
good performance in our scenario if we do not take into account the non-stationarity
impacts. Therefore, in this particular simulation it was not necessary to use more
sophisticated methods such as algorithms based on value-function approximation; for
instance, deep neural networks. These methods could help in dealing with larger-scale
simulations that could require dealing with higher dimensional states. However, we
emphasize the fact that even though they could help with higher dimensional states, they
would also be affected by the presence of non-stationarity, just like standard tabular
methods are. This happens because just like standard tabular Q-learning, deep RL methods
do not explicitly model the possible sources of non-stationarity, and therefore would suffer
in terms of learning performance whenever changes in state transition function occur.

RELATED WORK
Reinforcement learning has been previously used with success to provide solutions to
traffic signal control. Surveys on the area (Bazzan, 2009; Yau et al., 2017; Wei et al., 2019)
have discussed fundamental aspects of reinforcement learning for traffic signal control,
such as state definitions, reward functions and algorithms classifications. Many works
have addressed multiagent RL (Arguello Calvo & Dusparic, 2018; Mannion, Duggan &
Howley, 2016; El-Tantawy, Abdulhai & Abdelgawad, 2013) and deep RL (Van der Pol,
2016; Liang et al., 2018; Liu et al., 2017) methods in this context. In spite of non-
stationarity being frequently mentioned as a complex challenge in traffic domains, we
evidenced a lack of works quantifying its impact and relating it to its many causes and
effects.
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In Table 1 we compare relevant related works that have addressed non-stationary in the
form of partial observability, change in vehicle flow distribution and/or multiagent
scenarios. In (Da Silva et al., 2006), Da Silva et. al explored non-stationarity in traffic signal
control under different traffic patterns. They proposed the RL-CDmethod to create partial
models of the environment—each one responsible for dealing with one kind of context.
However, they used a simple model of the states and actions available to each traffic
signal agent: state was defined as the occupation of each incoming link and discretized into
3 bins; actions consisted of selecting one of three fixed and previously-designed signal
plans. In (Oliveira et al., 2006), Oliveira et al. extend the work in (Da Silva et al., 2006) to
address the non-stationarity caused by the random behavior of drivers in what regards the
operational task of driving (e.g. deceleration probability), but the aforementioned
simple model of the states and actions was not altered. In (Balaji, German & Srinivasan,
2010), Balaji et al. analyze the performance of tabular Q-learning in a large multiagent
scenario. Their state state space, however, was significantly discretized and constituted of
only 9 possible states. In (Liu et al., 2017), Liu et al. proposed a variant of independent
deep Q-learning to coordinate four traffic signals. However, no information about vehicle
distribution or insertion rates was mentioned or analyzed. A comparison between different
state representations using the A3C algorithm was made in (Genders & Razavi, 2018);
however, that paper did not study the capability of agents to adapt to different traffic

Table 1 Related work.

Study Scenario Method State observability Flow non-stationarity

Da Silva et al. (2006) and
Oliveira et al. (2006)

3 × 3 grid network RL-CD (model-based) Occupation discretized in 3 bins (no
comparison made)

Two unbalanced flows

Balaji, German &
Srinivasan (2010)

Central Business
District area in
Singapore

Q-learning (model-free) Queue and flow (9 possible states
only)

Morning and afternoon
peaks

Liu et al. (2017) 2 × 2 grid network CDRL (model-free) Position, speed and neighbour
intersection (no comparison made)

Not mentioned

Genders & Razavi (2018) Isolated intersection A3C (model-free) Three different definitions (different
resolutions compared)

Variable flow rate equally
distributed between
phases

Zhang et al. (2018) Multiple network
topologies

DQN (model-free) Different car detection rates
compared

Variable flow rate equally
distributed between
phases

Horsuwan & Aswakul
(2019)

Isolated intersection
on Sathorn Road

Ape-X (model-free) Mean occupancy (no comparison
made)

Fixed flow

Chu et al. (2019) 5 × 5 grid network Multiagent A2C (model-free) Delay and number of vehicles (no
comparison made)

Time variant major and
minor traffic flow groups

Padakandla,
Prabuchandran &
Bhatnagar (2019)

Isolated intersection Context QL (applicable for
model-free and model-
based)

Queue discretized in 3 bins (no
comparison made)

High and low volume

Ours 4 × 4 grid network Independent Q-learning
(model-free)

Queue and density (lack of sensors
and different resolutions
compared)

Two unbalanced flows
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flow distributions. In (Zhang et al., 2018) state observability was analyzed in a vehicle-to-
infrastructure (V2I) scenario, where the traffic signal agent detects approaching vehicles
with Dedicated Short Range Communications (DSRC) technology under different
rates. In (Horsuwan & Aswakul, 2019) a scenario with partially observable state (only
occupancy sensors available) was studied, however no comparisons with different state
definitions or sensors were made. In (Chu et al., 2019), Chu et al. introduced Multiagent
A2C in scenarios where different vehicle flows distributed in the network changed their
insertion rates independently. On the other hand, they only used a state definition which
gives sufficient information about the traffic intersection. Finally, in (Padakandla,
Prabuchandran & Bhatnagar, 2019), Padakandla et al. introduce Context-QL, a method
similar to RL-CD that uses a change-point detection metric to capture context changes.
They also explored non-stationarity caused by different traffic flows, but they did not
consider the impact of the state definition used (with low discretization and only one
sensor) in their results. To the extent of our knowledge, this is the first work to analyze how
different levels of partial observability affect traffic signal agents under non-stationary
environments where traffic flows change not only in vehicle insertion rate, but also in
vehicle insertion distribution between phases.

CONCLUSION
Non-stationarity is an important challenge when applying RL to real-world problems in
general, and to traffic signal control in particular. In this paper, we studied and quantified
the impact of different causes of non-stationarity in a learning agents performance.
Specifically, we studied the problem of non-stationarity in multiagent traffic signal
control, where non-stationarity resulted from explicit changes in traffic patterns and from
reduced state observability. This type of analysis complements those made in existing
works related to non-stationarity in RL; these typically propose computational
mechanisms to learn under changing environments, but usually do not systematically
study the specific causes and impacts that the different sources of non-stationary may have
on learning performance.

We have shown that independent Q-Learning agents can re-adapt their policies to
traffic pattern context changes. Furthermore, we have shown that the agents state
definition and their scope of observations strongly influence the agents re-adaptation
capabilities. While agents with more extensive state observability do not undergo
performance drops when dynamics change to previously-experienced contexts, agents
operating under a partially observable version of the state often have to relearn policies.
Hence, we have evidenced how a better understanding of the reasons and effects of
non-stationarity may aid in the development of RL agents. In particular, our results
empirically suggest that effort in designing better sensors and state features may have a
greater impact on learning performance than efforts in designing more sophisticated
learning algorithms.

For future work, traffic scenarios that include other causes for non-stationarity can be
explored. For instance, unexpected events such as traffic accidents may cause drastic
changes to the dynamics of an intersection, as they introduce local queues. In addition,
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we propose studying how well our findings generalize to settings involving arterial roads
(which have greater volume of vehicles) and intersections with different numbers of traffic
phases.
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