
Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 1

ONTOLOGY FOR PIXEL PROCESSING

Zhengbo Zhou
668546

Final Graduate Thesis submitted to the Department of
Computer Science, University of Bridgeport. Supervised by
Prof. Rao. Submitted on June 29, 2005.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52956031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 2

Ontology for Pixel Processing

1. Abstract

For all kinds of output devices, such as monitors, printers etc, the most important thing is
to show the right information to the user. Pixel is the basic element both on screen and
materials printed with. And, as a result pixel processing is the basic technique to make
the output correct, precise, and suitable to use on different occasions. Pixel processing
solves operations on each pixel of the image, which is for the pixel matrices of that image,
so that the image would have different appearance.

Ontology is about the exact description of things and their relationships. It is an old
study of philosophy from ancient Greece. As the study of artificial intelligence keeps
growing, the concept of ontology has been in use more and more in the formalization of
knowledge in terms of classes, properties, instances and relations [1].

This paper mainly discusses how to build ontology of pixel processing with OWL.
Actually, it is focused on how to describe pixel processing and its functions or operations
in an understandable way by computer. With such description, it is possible to improve
the development of pixel processing and the sharing of its knowledge both between
people and machines. That is from the Natural Language Processing point of view. And
also, in the future, it provides a base for intelligent agent to implement pixel processing
by understanding such kind of definition and description directly through its knowledge
base built up with such ontology. In other words, that may realize the automatic program
or program analysis.

Key words:
Pixel, Pixel Processing, Ontology, OWL, Description

2. Background

2.1 Pixel Processing

Pixel: (PIX [picture] ELement) The smallest addressable unit on a display screen. The
higher the pixel resolution (the more rows and columns of pixels), the more information
can be displayed [3].

The definition is highly context sensitive. For example, we can speak of pixels in a
visible image (e.g. a printed page) or pixels carried by one or more electronic signal(s), or
represented by one or more digital value(s), or pixels on a display device. This list is not
exhaustive and depending on context there are several synonyms which are accurate in
particular contexts, e.g. pel, sample, bytes, bits, dots, spots, superset, triad, stripe set,
window, etc [3]. We can also speak of pixels in the abstract, in particular when using
pixels as a measure of resolution, e.g. 2400 pixels per inch or 640 pixels per line. Dots

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 3

are often used to mean pixels, especially by computer sales and marketing people, and
gives rise to the abbreviation DPI or dots per inch.

Note that a pixel may be comprised of sub-parts or sub pixels. For example a pixel on a
color display may be composed of red, green and blue sub-parts (sub-pixels, sub-pels,
etc.) the three of which may be referred to as a triad. A pixel in a video signal may be
composed of RGB parts or Y, R-Y, B-Y or Y, I, Q, or Y, C, M or subcarrier modulated Y
or composite video or separate signals such as separate ones of the various three sub-
pixels above. Many unskilled people, and sometimes skilled people, incorrectly use pixel
and image element interchangeably, or use pixel to refer to sub-parts. Unskilled people
don't know any better and the skilled people know better but because the meaning is clear
from the context do so anyway. Many dictionaries also get it wrong [3].

Typical pixels we are concerned with in laser printers are those made up of sub-pels in
the screening processes, those made up of yellow, cyan and magenta sub-pels in color
printing and those which are simply dots of black toner in black and white printers.
Typical pixels we are concerned with in television systems are the samples of composite
video signals (a single digital value having Y and color subcarrier components) those
carried by three electronic signals or three digital values, either Y, R-Y, B-Y or R, G, B
depending on where in the TV we are looking and those displayed on the TV screen
which are made up of R, G and B color sub-pixels. Note that Y, R-Y and B-Y values are
often carried as two electronic signals in television applications, Y in one and time
multiplexed R-Y, B-Y in the other [3].

Image element is a broader term than pixels and is also highly context sensitive. Image
elements includes both complete pixels as well as those various sub-parts of pixels and
other elements of images which are not pixel related such as DCT coefficients. For
example, it is correct to say that the red part of an RGB pixel is an image element but it is
not normally considered correct to refer to the red part as a pixel itself (although persons
who are not skilled in the television industry often do).

In storage, pixels are made up of one or more bits. The greater this "bit depth," the more
shades or colors can be represented. The most economical system is monochrome, which
uses one bit per pixel (on/off). Gray scale and color displays typically use from 4 to 24
bits per pixel, providing from 16 to 16 million colors.

On screen, pixels are made up of one or more dots of color. Monochrome and gray scale
systems use one dot per pixel. For monochrome, the dark pixel is energized light. For
gray scale, the pixel is energized with different intensities, creating a range from dark to
light. Color systems use a red, green and blue dot per pixel, each of which is energized to
different intensities, creating a range of colors perceived as the mixture of these dots.
Black is all three dots dark, white is all dots light.

2.2 Pixel processing functions

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 4

Pixel-based image processing includes the following
General pixel based manipulation including transendental functions are carried out by the
following routines. For multiple image manipulation the image type returned is
determined by the function im_sup_vtype

Vartype im_sup_vtype(Vartype vtype1, Vartype vtype2)
which ensures no truncation of the result due to casting (truncation may still occur for
numbers beyond the normal range of number representation).
Single image operation [2]:

Double image operation[2]:

Imrect *im_add(double k,Imrect *im)
Add the constant k to all pixels in the specified image. For the case of complex images only the real
component is modified.

void im_pixf_dec(Imrect * image, int i, int j)
Decrement pixel (i, j) in image. Pixels outside image are ignored.

Imrect *im_times(double k, Imrect * im)
Returns an image with pixels scaled by of their input values.

Imrect *im_minus(Imrect * im)
Inverts the sign of all pixel values returning a new image.

Imrect *im_sqr(Imrect * im)
Compute the sqaure of each image pixel value, all values returned as float_v except complex_v,
which is returned as complex_v.

Imrect *im_log(Imrect * im)
Returns an image of natural logariths for all pixels while maintaining sign. The function is a direct
inverse of im_exp(). All images are returned as type float_v except for type complex_v which is
returned as complex_v.

Imrect *im_sqrt(Imrect * im)
Returns an image with each pixel the square-root of the initial grey level value. The sign of the
original pixel is preserved, for true complex treatment of negative values use imz_sqrt().

Imrect *im_quad(im)
Returns an image which has been vertically and horizontally doubled to produce boundary
continuity. Intended for use before Fourier transform operations to remove Gibbs oscillations after
deconvolution.

Imrect *im_sin(Imrect * im)
Returns an image with each pixel given by the trigonometric sine of the initial grey level data.

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 5

Still, there are a lot of operations or processing not listed here, since pixel processing is
still developing new functions to satisfy different requirements. For example, pixel
processing also deals with 3-dimensional computer graphic operations. And moreover,
different companies will develop different algorithms and function to fit their own
display products.

2.3 Ontology and OWL [1]

The OWL Web Ontology Language is designed for use by applications that need to
process the content of information instead of just presenting information to humans.
OWL facilitates greater machine interpretability of Web content than that supported by
XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a
formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite,
OWL DL, and OWL Full.

2.3.1 Ontology

As already mentioned, ontology is about the exact description of things and their
relationships. For knowledge, ontology is about the exact description of the
representation of the knowledge itself, as well as the relationships among different

Imrect *im_diff(Imrect * im1, Imrect * im2)
Subtract the pixels contained in two images and return the difference image.

Imrect *im_sum(Imrect * im1, Imrect * im2)
Returns an image whose pixels are the sum of those in the input images within the
common region of interest.

Imrect *im_prod(Imrect * im1, Imrect * im2)
Returns an image with values given by the product of the pixels in the images im1 and
im2.

Imrect *im_div(Imrect * im1, Imrect * im2, double thresh, double val)
Divide the pixels contained in image im1 by those contained in image im2. Numerical
stability is maintained by preventing the denominator reducing below a value of when
it's absolute value is less than .

Imrect *im_combine(Imrect * im1, Imrect * im2, void *(*func) (), void *data)
Returns an image with pixels computed from the specified input image pixels operated
upon by the specified function.

Imrect *im_fpp_combine(Imrect * im1, Imrect * im2, void *(*func) (), void *data)
General purpose routine for operating on two images of types float_v and ptr_v with
the specified function.

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 6

categories of the knowledge. And moreover, for the web, ontology is about the exact
description of web information and relationships between web information.

2.3.2 OWL: Development and Features

OWL is a Web Ontology Language, which is built on top of RDF – Resource Definition
Framework and written in XML. It is a part of Semantic Web Vision, and was designed
to be interpreted by computers, but not for being read by people. OWL became a W3C
(World Wide Web Consortium) Recommendation in February 2004. The OWL Web
Ontology Language is a language for defining and instantiating Web ontologies, and,
OWL ontology may include the descriptions of classes, properties, and their instances.
Given such ontology, the OWL formal semantics specifies how to derive its logical
consequences, i.e. facts not literally present in the ontology, but entailed by the semantics
[1].

One of the effective approaches to solve the data exchange among different computers
via the computer networks is using XML – eXtensible Markup Language. Since HTML
is to solve how the data appears in front of people, it does not make different computers
different systems to “know” the data, however, the documents written in XML can
describe what data is and be shared and exchanged among different systems. XML
provides a syntax for structured documents, however it imposes no semantic constraints
on the meaning of the document. Following this, the W3 Consortium implemented the
ideas of an ontology when creating RDF – the Resource Definition Framework. RDF is a
data model for objects and relations between them, providing a simple semantic for this
data model. RDF uses XML syntax to describe objects and relations in the data model.
After that, RDFS was developed to describe properties and classes of RDF resources,
with a semantic for creating hierarchies of such objects and classes and thus providing the
means for generalization.

RDFS is considered to be an ontology language, containing classes and properties and
being aware of concepts of range and domain, as well as having the ability describe
subclasses and superclasses. However, for implementing the Semantic Web RDFS is not
quite optimal as it lacks the features necessary to describe resources in sufficient detail.
As Santtu Toivonen concludes in his paper “Using RDF(S) to Provide Multiple Views
into a Single Ontology” , RDFS is suitable for providing the means for an ontology that
characterizes some environment, no matter how abstract. RDFS alone, however, suffers
from its dependence on domain-specific and case-specific details. RDFS suffers from an
expressive inadequacy and it lacks a number of important relations between classes such
as equivalence and disjointedness, as well as cardinality and characteristics of properties.

To solve the problem RDFS brings as mentioned above, two languages were developed
almost concurrently. OIL (Ontology Inference Layer) in Europe and DAML (DARPA
Agent Markup Language) in U.S.. Both of them are based on top of RDFS. After
submitted the combination of the two—DAML+OIL to W3 Consortium for
standardization, OWL –the Ontology Web Language was born as a new W3C standard
language. OWL is layered on top of RDFS, using its syntax for expressing ontological

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 7

primitives such as Class, Relation, Subclass etc. In addition OWL adds a much richer set
of its own primitives, such as transitivity, cardinality, disjunction etc., as well as
characteristics of properties like symmetry, richer typing of properties (e.g.
nonNegativeInteger), and enumerated classes. As a result, OWL has more facilities for
expressing meaning and semantics than XML, RDF (S), and thus OWL goes beyond
these languages in its ability to represent machine interpretable content on the Web.
The main purpose of OWL can be concluded as below:

1, Formalize a domain by defining classes and properties of those classes,
2, Define individuals and assert properties about them, and
3, Reason about these classes and individuals to the degree permitted by the
formal semantics of the OWL language.

2.3.3 The Species of OWL

All this as lead to a set of requirements that may seem incompatible: efficient reasoning
support and convenience of expression for a language as powerful as a combination of
RDF Schema with a full logic.

Indeed, these requirements have prompted W3C's Web Ontology Working Group to
define OWL as three different sublanguages, each of which is geared towards fulfilling
different aspects of these incompatible full set of requirements:

OWL Full: The entire language is called OWL Full, and uses all the OWL languages
primitives. It also allows to combine these primitives in arbitrary ways with RDF and
RDF Schema. The advantage of OWL Full is that it is fully upward compatible with
RDF, both syntactically and semantically: any legal RDF document is also a legal OWL
Full document, and any valid RDF/RDF Schema conclusion is also a valid OWL Full
conclusion. The disadvantage of OWL Full is the language has become so powerful as to
be undecidable, dashing any hope of complete (let alone efficient) reasoning support. [3]

OWL DL: In order to regain computational efficiency, OWL DL (Description Logic)

is a sublanguage of OWL Full which restricts the way in which the constructors from
OWL and RDF can be used. The advantage of this is that it permits efficient reasoning
support. The disadvantage is that we loose full compatibility with RDF: an RDF
document will in general have to be extended in some ways and restricted in others
before it is a legal OWL DL document. Conversely, every legal OWL DL document is
still a legal RDF document.

 OWL Lite: An ever further restriction limits OWL DL to a subset of the language
constructors. For example, OWL Lite excludes enumerated classes, disjointness
statements and arbitrary cardinality (among others). The advantage of this is a language
that is both easier to grasp (for users) and easier to implement (for tool builders). The
disadvantage is of course a restricted expressivity.

There are strict notions of upward compatibility between these three sublanguages:
 Every legal OWL Lite ontology is a legal OWL DL ontology.

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 8

 Every legal OWL DL ontology is a legal OWL Full ontology.
 Every valid OWL Lite conclusion is a valid OWL DL conclusion.

Every valid OWL DL conclusion is a valid OWL Full conclusion.

3. Pixel Processing Ontology Design

From the perspective of ontology, we can build up a class hierarchy of pixel processing
and its related concepts.

3.1 Class analysis and hierarchy building:

According to the basic functions (operations) provided in Background part and some
special pixel processing operations, here is the basic class hierarchy model:

To implement this basic hierarchy in OWL easily, Protégé 3.0 Beta version has been used
to generate the OWL script and also a graphic interface.
In protégé 3.0, we can build the class hierarchy as follows:

RayTracing

Pixel Processing

Single-Image
Processing

Multi-Image
Processing

Image Add Image
Time

Image Minus …(mor
e)

Tweening Convolution …(more) Image
Differentiate

threedimensio
nImageProces
s i n g

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 9

We can also have the ontology for related concepts
Pixel, Sub-Pixel, Megapixel, BitDepth, ColorSystem, etc, within which we can build a
large knowledge base for the domain of computer graphics.
For simplicity, the class below can satisfy the basic requirement for the classes above.

3.2 Property (slots) analysis:
Properties should be included:
Pixel Processing: input (image), output (image), number of images

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 10

Some other properties:

For each class we built in Protege 3.0, here is the property list:
SingleImageProcessing:

MultiImageProcessing

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 11

imageAdd

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 12

Tweening:

4. Examples

Here are two examples of how is the instance of a class in OWL, and that instance is
what may be used in some interface or application for intelligent search or reasoning,
depending on different kind of implementation in fields like natural language
understanding, program analysis, etc.

Tweening:
Short for in-betweening, the process of generating intermediate frames between two
images to give the appearance that the first image evolves smoothly into the second
image. Tweening is a key process in all types of animation, including computer
animation. Sophisticated animation software enables you to identify specific objects in an
image and define how they should move and change during the tweening process.
The algorithm for tweening is as follows [3]:

21)1(inputimagetinputimageteoutputimag ∗+∗−=

Images, whether input or output, are pixel matrices. However, input image 1 and 2 have
to be of same dimension. That means, if image 1 is an 800*640 matrix, then image 2 has
to be an 800*640 matrix also. “t” is a real number greater or equal to 0 and less or equal
to 1.

The following section of code is OWL for the class of Tweening:

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 13

There is an individual of Tweening class

<owl:Class rdf:ID="Tweening">
 <rdfs:subClassOf rdf:resource="#MultiImageProcessing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >2</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#inputImage"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Short for in-betweening, the process of generating intermediate
frames between two images to give the appearance that the first image
evolves smoothly into the second image. </rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="constantT"/>
 </owl:onProperty>
 <owl:allValuesFrom
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 14

Convolution:
Convolution, the mathematical, local operation is central to modern image processing.
The basic idea is that a window of some finite size and shape--the support--is scanned
across the image. The output pixel value is the weighted sum of the input pixels within
the window where the weights are the values of the filter assigned to every pixel of the
window itself. The window with its weights is called the convolution kernel. This leads
directly to the following variation on eq. .

If the filter h[j,k] is zero outside the (rectangular) window {j=0,1,...,J-1; k=0,1,...,K-1},
then, using eq. , the convolution can be written as the following finite sum[3]:

Also, we have the code as follows:

And the instance of the class Convolution.

<owl:Class rdf:ID="Convolution">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >2</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="inputImage"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="MultiImageProcessing"/>
 </rdfs:subClassOf>
 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The basic idea is that a window of some finite size and shape--
the support--is scanned across the image. </rdfs:comment>
 </owl:Class>

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 15

Raytracing:

After having explored 2 2-dimensional image-processing functions, let’s have a look at a
3-dimensional computer graph technique—raytracing. In the very simplest terms,
raytracing is a method for producing views of a virtual 3-dimensional scene on a
computer [4]. A raytracing program calculates the illumination effects of a surface by
tracking, or tracing, the path of a light ray as it bounces off or is refracted through the
surface [4].

Let’s describe the basic raytracing scenes. A scene in raytracing includes objects, light
sources and viewpoint (also camera or eye), which is somehow similar with the picture
above. In general, an object is any thing, either solid, liquid, or gas, that you will display
in your scene [5]. Light sources, like objects, may be placed at arbitrary locations in the
scene. However, unlike objects, light sources emit light [5]. In ray tracing, the viewpoint

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 16

or “camera” is much like this in that it determines where on the "film" (or, in the case of
ray tracing, the computer screen) the light rays hit [4][5]. The basic process of generating
the scene can be as follows. Taking out one ray emitting from the light source and follow
that ray towards the objects, when the ray meets the proper object, there are two
possibilities—one is reflecting, which means the surface of the object reflect the ray
according to the mirror theory; the other is refracting, which means the object is
transparent and the ray can be refracted through the object. Different objects will have
different properties, so that the reflecting and refracting or both of them will happen
according to the exact object the ray meets. Through out one or several such kind of
actions among objects, the ray will finally reach the screen or the eye of a person taking
the color or lightness or other appearance of each object and even the background. Those
information will be calculated as pixel values for each pixel on the screen when display
[5][6]. In realizing the raytracing scene into algorithm, people also reverse the process.

After the description of the scene and process of raytracing, we can have a look at the
raytracing algorithm and the ray tracer. Actually, ray tracer is a raytracing program,
which can perform the calculation of ray tracing. The algorithm begins, as in ray casting,
by shooting a ray from the eye and through the screen, determining all the objects that
intersect the ray, and finding the nearest of those intersections. It then recurses (or repeats
itself) by shooting more rays from the point of intersection to see what objects are
reflected at that point, what objects may be seen through the object at that point, which
light sources are directly visible from that point, and so on [5]. Also, we could see that in
such kind of pseudo-code as below [4]:

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 17

Procedure RenderPicture()
 For each pixel on the screen,
 Generate a ray R from the viewing position through the point on the view
 plane corresponding to this pixel.
 Call the procedure RayTrace() with the arguments R and 0
 Plot the pixel in the colour value returned by RayTrace()
 Next pixel
End Procedure
Procedure RayTrace(ray R, integer Depth) returns colour
 Set the numerical variable Dis to a maximum value
 Set the object pointer Obj to null
 For each object in the scene
 Calculate the distance (from the starting point of R) of the nearest
 intersection of R with the object in the forward direction
 If this distance is less than Dis
 Update Dis to this distance
 Set Obj to point to this object
 End if
 Next object
 If Obj is not null
 Set the position variable Pt to the nearest intersection point of R and Obj
 Set the total colour C to black
 For each light source in the scene
 For each object in the scene
 If this object blocks the light coming from the light source to Pt
 Attenuate the intensity of the received light by the transmittivity
 of the object
 End if
 Next object
 Calculate the perceived colour of Obj at Pt due to this light source
 using the value of the attenuated light intensity
 Add this colour value to C
 Next light source
 If Depth is less than a maximum value
 Generate two rays Refl and Refr in the reflected and refracted directions,
 starting from Pt
 Call RayTrace with arguments Refl and Depth + 1
 Add (the return value * reflectivity of Obj) to C
 Call RayTrace with arguments Refr and Depth + 1
 Add (the return value * transmittivity of Obj) to C
 End if
 Else
 Set the total colour C to the background colour
 End if
 Return C
End Procedure

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 18

Based on the descriptions and the algorithms above, the simplified model of Raytracing
class can be designed as below:
(protégé picture)

Here I made some assumptions to simplify the model:
1. Use point light source, so that don’t need to consider the distribution of the light
2. Assume the whole scene in a 3-dimension coordinate system.
3. Use points on the boarder of the object and the center position of the object to locate

the object and represent the shape of object.

The picture below shows the instance of the raytracing class.

Ontology for Pixel Processing—CS598 Graduate Thesis Zhengbo Zhou 668546

 19

5. Evaluations and Conclusion

According to the result from protégé, the ontology can satisfy the basic requirement of
describing the pixel processing concepts. The most important thing is that, it can
describe an action not just for concepts, in some logical way. However, the disadvantage
is that it still needs some technique to enhance the ability to describe the restriction of
processing (function) parameters. On the other hand, since ontology built by OWL can
be read by computers, that makes the possibility that the ontology of pixel processing can
be used in automatic programming or program analysis. Next step of this research is to
perfect the whole ontology hierarchy and also develop an interface for other applications
to get in text which related to pixel processing or even real pixel processing programs or
algorithms. Natural language understanding or automatic program analysis and
programming can be the ultimate goal.

6. Reference

1. Mostafa Aref, Zhengbo Zhou “The Ontology Web Language (OWL) for a Multi-Agent
Understating System”, IEEE 2005 International Conference on Integration of Knowledge
Intensive Multi-Agent Systems: Modeling, Exploration, and Engineering, Waltham, MA,
PP 586-591, 2005
2. http://www.tina-vision.net/manuals/prog_ref/node84.html
3. http://www.answers.com/topic/pixel
4. http://fuzzyphoton.tripod.com
5. http://www.geocities.com/jamisbuck/raytracing.html
6. Edward Angel “Interactive Computer Graphics: A Top-Down Approach Using
OpenGL”, Third Edition, Addison-Wesley Publishing Company, 2003
7. J.D Foley, A. Van Dam “Fundamentals of Interactive Computer Graphics” Addison-
Wesley, 1982

The Ontology Web Language (OWL) for a Multi-
Agent Understating System

Mostafa M. Aref Zhengbo Zhou

Department of Computer Science and Engineering
University of Bridgeport, Bridgeport, CT 06601

email: aref@bridgeport.edu

Abstract— Computer understanding is a challenge
problem in Artificial Intelligence. A multi-agent system has
been developed to tackle this problem. Among its modules is
its knowledge base (vocabulary agents). This paper
discusses the use of the Ontology Web Language (OWL) to
represent the knowledge base. An example of applying OWL
in sentence understanding is given. Followed by an
evaluation of OWL.

1. INTRODUCTION
One of various definitions for Artificial Intelligence is “The
study of how to make computers do things which, at the
moment, people do better”[7]. From the definition of AI
mentioned above, “Understanding” can be looked as the
first step for a system to realize the ability of doing things as
well as humans. Natural language processing needs an
understanding system to make the machine understand
human languages. Understanding is a transformation from
one representation to another [1]. To achieve this
transformation, the input will be processed through a series
of agents. From morphological analysis to pragmatic
analysis, the machine can “read” the input and has its own
representation. Several applications may be developed
based on the understanding system. Some examples of
these applications are Machine learning, machine translating,
and expert systems with better performance.

A multi-agents understanding system accepts a user input in
a form of speech (typed or voice). Then, the user may enter
several questions concerning the user input. The system
should answer these questions that reflects the
understanding of the input [1]. The multi-agents
understanding system consists of the following agents: a
morphological analyzer, a semantic analyzer, a discourse
analyzer, a user interface, and a knowledge base. The
knowledge base is the main module in the understanding
system. It contains the English vocabulary agents and all
the linguistic information about the vocabulary using object-
oriented technology [1].

OWL is a Web Ontology Language. It is built on top of
RDF – Resource Definition Framework and written in XML.
It is a part of Semantic Web Vision, and is designed to be
interpreted by computers, not for being read by people.
OWL became a W3C (World Wide Web Consortium)
Recommendation in February 2004 [2]. The OWL is a
language for defining and instantiating Web ontologies.
OWL ontology may include the descriptions of classes,
properties, and their instances [3]. Given such ontology, the
OWL formal semantics specifies how to derive its logical
consequences, i.e. facts not literally present in the ontology,
but entailed by the semantics.

Section 2 describes a multi-agents understanding system.
Section 3 gives a brief description of a newly standardized
technique, Web Ontology Language—OWL. A working
example of the OWL applied in knowledge representation is
given in section 4. Section 5 evaluates the performance of
OWL. Conclusion and directions of the current research are
presented in section 6.

2. MULTI-AGENT UNDERSTANDING SYSTEM
To understand something is to transform it from input
representation into internal representation has been chosen
to correspond to a set of available actions that could be
performed [1]. The process of natural language
understanding is as follows [7], as shown in Figure 1.

Morphological Agent: given the input text, morphological
analyzer converts the text into group of words in the basic
form and their linguistic information. It also separates the
affixes from the input tokens [1]. Semantic Agent: structures
are created to represent meanings of a group of words
(sentence). In other words, a mapping is made between the
input sentence and objects in the task domain. Discourse
Agent: Given the agent sub-societies of set of sentences,
discourse analyzer agent resolves references between these
sentences. The user interface is needed to facilitate the
communication between the understanding system and the
user [1]. For example, a web page containing several text
input boxes can get input from a human and then gives
another page or dialog box with the answer or some other
actions.

mailto:aref@bridgeport.edu

Figure 1 - Multi-agent understanding system

I
n
t
e
r
n
e
t

Morphological
Analyzer

Agent
Speech-to-text

Agent

Semantic
Analyzer

Agent
Knowledge Base

Vocabulary Agents User
InterfaceAgent Sub-Societies

of the User Input

Discourse
Analyzer

Agent
Text-to-Speech

Agent Query
Analyzer

Agent

2.2 Knowledge Base

A knowledge base is a collection of knowledge expressed
using some formal knowledge representation language [7].
In the understanding system, the knowledge base is the main
module. It contains the English vocabulary agents and all
linguistic information about this vocabulary. Good
Knowledge representation is the basis of a good knowledge
base. To evaluate one knowledge representation, there are
the following four criteria [7]:

Representational Adequacy: the ability to represent all kinds
of knowledge that are needed in that domain. Inferential
Adequacy: the ability to manipulate the representational
structures to derive new structures corresponding to new
knowledge inferred from old. Inferential Efficiency: the
ability to incorporate into the knowledge structure additional
information that can be used to focus the attention of the
inference mechanisms in the most promising directions.
Acquisitional Efficiency: the ability to acquire new
information easily. The simplest case involves direct
insertion, by a person, of new knowledge into the database.
Ideally, the program itself would be able to control
knowledge acquisition.

The objective of knowledge representation is to organize the
information necessary to the application such that it is easily
accessed and manipulated. The knowledge content must be
sufficient to solve problems in the domain and it must be
efficient [1]. There are several knowledge representations
such as: predicate logic, procedural, semantic nets,
conceptual dependency and object-oriented representation
[1] and [7].

Object-oriented knowledge representation organizes
knowledge into classes of objects, subclasses and
superclasses. That is an important issue in knowledge
representation. By this organization, a class may inherit the
properties of any of its superclasses and it may pass
properties to any one of its subclasses [1]. However, only
traditional object-oriented technique is not enough for a
good knowledge representation or knowledge base.

3. OWL – ONTOLOGY WEB LANGUAGE
Ontology is about the exact description of things and their
relationships. It is an old study of philosophy from ancient
Greece. As the study of artificial intelligence growing, the
concept of ontology have been using more and more in the
formalization of knowledge in terms of classes, properties,
instances and the relations. So, for knowledge, ontology is
about the exact description of the representation of the
knowledge itself, as well as the relationships among
different categories of the knowledge. Moreover, for the
web, ontology is about the exact description of web
information and relationships between web information [2].

The OWL Web Ontology Language is designed for use by
applications that need to process the content of information
instead of just presenting information to humans. Because it
provides additional vocabulary along with a formal
semantics, OWL facilitates greater machine interpretability
of Web content than XML, RDF, and RDF Schema (RDFS).

3.1 OWL Development

One of the effective approaches to solve the data exchange
among different computers via the computer networks is
using XML – eXtensible Markup Language. HTML is to
solve how the data appears in front of people. The
documents written in XML can describe what data is and be
shared and exchanged among different systems [2]. XML
provides a syntax for structured documents, however it
imposes no semantic constraints on the meaning of the
document. Following this, the W3 Consortium introduces
the idea of ontology when creating RDF – the Resource
Definition Framework. RDF is a data model for objects and
relations between them, providing a simple semantic for this
data model. RDF uses XML syntax to describe objects and
relations in the data model [5].

After that, RDFS is developed to describe properties and
classes of RDF resources, with a semantic for creating
hierarchies of such objects and classes and thus providing
the means for generalization. RDFS is considered to be an
ontology language, containing classes and properties and
being aware of concepts of range and domain, as well as
having the ability describe subclasses and superclasses.
However, for implementing the Semantic Web RDFS is not
quite optimal as it lacks the features necessary to describe
resources in sufficient detail. As Santtu Toivonen concludes
in his research [9], RDFS is suitable for providing the
means for an ontology that characterizes some environment,
no matter how abstract [5]. RDFS alone, however, suffers
from its dependence on domain-specific and case-specific
details. RDFS suffers from an expressive inadequacy and it
lacks a number of important relations between classes such
as equivalence and disjointedness, as well as cardinality and
characteristics of properties.

To solve the RDFS problems, two languages were
developed almost concurrently. OIL (Ontology Inference
Layer) in Europe and DAML (DARPA Agent Markup
Language) in U.S.. Both of them are based on top of RDFS.
After submitted the combination of the two—DAML+OIL
to W3 Consortium for standardization, OWL –the Ontology
Web Language is born as a new W3C standard language.
OWL is layered on top of RDFS, using its syntax for

expressing ontological primitives such as Class, Relation,
Subclass etc. In addition OWL adds a much richer set of its
own primitives, such as transitivity, cardinality, disjunction
etc. Also, it adds characteristics of properties like symmetry,
richer typing of properties (e.g. nonNegativeInteger), and
enumerated classes [5]. As a result, OWL has more
facilities for expressing meaning and semantics than XML
and RDF (S). Thus OWL goes beyond these languages in its
ability to represent machine interpretable content on the
Web. Figure 2 shows the development from XML to OWL.

The main purposes of OWL can be concluded as below:
1- Formalize a domain by defining classes and properties

of those classes,
2- Define individuals and assert properties about them, and
3- Reason about these classes and individuals to the degree

permitted by the formal semantics of the OWL
language.

3.2 The Species of OWL

All of these have led to a set of requirements that may seem
incompatible: efficient reasoning support and convenience
of expression for a language as powerful as a combination
of RDF Schema with a full logic.

Indeed, these requirements have prompted W3C's Web
Ontology Working Group to define OWL as three different
sublanguages [4], each of which is geared towards fulfilling
different aspects of this incompatible full set of
requirements:

OWL Full—The entire language is called OWL Full, and
uses all the OWL languages primitives. It also allows
combining these primitives in arbitrary ways with RDF and
RDF Schema. This includes the possibility (also present in
RDF) to change the meaning of the pre-defined (RDF or
OWL) primitives, by applying the language primitives to
each other. For example, in OWL Full people could impose
a cardinality constraint on the class of all classes, essentially
limiting the number of classes that can be described in any
ontology. The advantage of OWL Full is that it is fully
upward compatible with RDF, both syntactically and
semantically: any legal RDF document is also a legal OWL

Figure 2 - the Development of OWL.

Combine
VocabulariesOIL Define vocabularies

Revision

Extend
Vocabularies XML OWLDAML

(DAML+OIL)
RDF RDFS

DAML-
ONT

Full document, and any valid RDF/RDF Schema conclusion
is also a valid OWL Full conclusion. The disadvantage of
OWL Full is the language has become so powerful as to be
undecidable, dashing any hope of complete (let alone
efficient) reasoning support [3].

OWL DL (Description Logic)—In order to regain
computational efficiency, OWL DL is a sublanguage of
OWL Full which restricts the way in which the constructors
from OWL and RDF can be used. Roughly this amounts to
disallowing application of OWL's constructor's to each other,
and thus ensuring that the language corresponds to well-
studied description logic. The advantage of this is that it
permits efficient reasoning support. The disadvantage is the
lose of full compatibility with RDF. An RDF document will
in general have to be extended in some ways and restricted
in others before it is a legal OWL DL document. Conversely,
every legal OWL DL document is still a legal RDF
document [3].

OWL Lite—An ever further restriction limits OWL DL to a
subset of the language constructors. For example, OWL Lite
excludes enumerated classes, disjointness statements and
arbitrary cardinality (among others). The advantage of this
is a language that is both easier to grasp (for users) and
easier to implement (for tool builders). The disadvantage is
of course a restricted expressivity [3].

Ontology developers adopting OWL should consider which
sublanguage best suits their needs. The choice between
OWL Lite and OWL DL depends on the extent to which
users require the more-expressive constructs provided by
OWL DL and OWL Full. The choice between OWL DL and
OWL Full mainly depends on the extent to which users
require the meta-modeling facilities of RDF Schema (e.g.
defining classes of classes, or attaching properties to
classes). When using OWL Full as compared to OWL DL,
reasoning support is less predictable since complete OWL
Full implementations will be impossible.

There are strict notions of upward compatibility between
these three sublanguages. Every legal OWL Lite ontology
is a legal OWL DL ontology. Every legal OWL DL
ontology is a legal OWL Full ontology. Every valid OWL
Lite conclusion is a valid OWL DL conclusion. Every valid
OWL DL conclusion is a valid OWL Full conclusion [3].

3.3 Structure and Basic Element of OWL

OWL as a Web Ontology Language can define classes using
XML syntax. Figure 3 shows a simple name classes.
Actually, people know almost nothing about these classes
other than their existence, despite the use of familiar English
terms as labels. Within this document, the Noun class can
now be referred to using #Noun, e.g. rdf:resource="#Noun".
Another form of reference uses the syntax
rdf:about="#Noun" to extend the definition of a resource. It
permits the extension of the imported definition from
sources in other OWL construct without modifying the

original document and supports the incremental construction
of a larger ontology [3].

The
rdfs:s
gener
X is
transi
X is
class
easily

Indiv
to de
indiv
minim
class

“rdf:t
class
to be
speci
kinds
part e
one a
woul
Peop
impo
Figur

Simp
woul
of tax
the m
[3]. A
are di
instan
dataty
two c
From
transi
“raise

<owl:Class rdf:ID="Verb"/>
</owl:Class>
<owl:Class rdf:ID="Noun"/>
</owl:Class>
Figure 3 - Simple Named Classes

fundamental taxonomic constructor for classes is
ubClassOf. It relates a more specific class to a more
al class. If X is a subclass of Y, then every instance of
also an instance of Y. The rdfs:subClassOf relation is
tive. If X is a subclass of Y and Y a subclass of Z then
a subclass of Z. Apparently, with the definition of a
and a subclass, we can apply “is a” relationship very
 by OWL.

iduals— In addition to classes, it is possible to be able
scribe their members. We normally think of these as
iduals in our universe of things. An individual is

ally introduced by declaring it to be a member of a
e.g. <Verb rdf:ID="buy1" />.

ype” is an RDF property that ties an individual to a
of which it is a member. There are a couple of points
 made here. First, it has already decided that “buy” (a
fic verb) is member of Verb, the class containing all
 of verbs. Second, there is no requirement in the two-
xample that the two elements need to be adjacent to
nother, or even in the same file (though the names

d need to be extended with a URI in such a case).
le design Web ontologies to be distributed. They can be
rted and augmented, creating derived ontologies.
e 4 shows an example of a subclass and an individual.

<owl:Class rdf:ID="CountableNoun">
<rdfs:subClassOf rdf:resource="#Noun" />
</owl:Class>
<owl:Verb rdf:ID="buy1" />
<rdf:type rdf:resource="#Verb"/>
</owl:Thing>
Figure 4 - A Subclass and An Individual

le Properties—This world of classes and individuals
d be pretty uninteresting if there is the only definition
onomies. Properties let us assert general facts about
embers of classes and specific facts about individuals
 property is a binary relation. Two types of properties
stinguished [3]. Datatype properties: relations between
ces of classes and RDF literals and XML Schema
pes. Object properties: relations between instances of
lasses. Figure 5 shows an object property example.

 the given above, it is not only to know that “raise” is
tive, but also it is able to infer from the domain that
” is a verb.

Data types [3]— OWL uses most of the built-in XML
Schema datatypes. References to these datatypes are by
means of the URI reference for the datatypes [2]. Now
OWL is still under testing and study, the effectiveness of its
expression and communication among machines attracts the
experts in related area to use this language and do research
with it. Next section is going to present current
implementations.

3.4

To
it i
of
int
RD
Pra

On
ord
ver
is
litt
on
On
Wo
par
Gr
sta
int
inf

To
rep

•
•
•
•
•

According to the requirement of knowledge representation
of natural language, there is the corresponding OWL code
for the content in knowledge base: In the figure 6, “agent”,
“transactionAmount”, “time” and “result” are attributes of
object “buy1”.

<owl:ObjectProperty rdf:ID="isTransitive">
<rdfs:domain rdf:resource="#Verb"/>
</owl:ObjectProperty>
<owl:Class rdf:ID=”Word”/>
</owl:Class>
<owl:Class rdf:ID="Verb">
<rdfs:subClassOf rdf:resource="#Word" />
</owl:Class>
<owl:Word rdf:ID="Raise">
<isTransitive/>
</owl:Word>
Figure 5 - Object Property Example

 Linguistic OWL

 use OWL in the understanding system knowledge base,
s by first to gather linguistic information. OWL version
Wordnet is a project that translate the Wordnet database
o OWL. There is an ongoing project called “Wordnet in
FS and OWL” [10]. It is one of the Semantic Web Best
ctices, and developed by Wordnet Task Force.

e of its approaches is integrating existing datamodels in
er to provide a unified OWL vocabulary for RDF
sions of Wordnet [11]. There is a WordNet.OWL which

an OWL-ontology based on WordNet 1.7.1 [12]. Also, a
le bit earlier, there is another project to develop
tologies known as SUMO—Suggested Upper Merged
tology, and now there is also this version (partial) of
rdnet database [13]. This ontology is being created as
t of the IEEE Standard Upper Ontology Working
oup. The goal of this Working Group is to develop a
ndard upper ontology that will promote data
eroperability, information search and retrieval, automated
erring, and natural language processing [13].

4. OWL IN KNOWLEDGE BASE
 illustrate the working of OWL in knowledge
resentation, an example of a text input is given.

Figure 6 - An Example in OWL

5. EVALUATION OF OWL
The four criteria to evaluate a proper knowledge
representation are representational adequacy, inferential
adequacy, inferential efficiency and acquisitional efficiency.
However, unfortunately, up to now no single system that
optimizes all of the capabilities for all kinds of knowledge
has yet been found. Following these four principles, we will
see how OWL can work for the knowledge representation in
a natural language processing system.

Since OWL is using XML, it has a strong ability that can be
shared and exchanged between different types of computers
using different types of operating system and application
languages.
 .
Chris bought an old car with $5000 last Friday
 The verb: "buy"
 Verb’s agent: "Chris"
 Result of the action: “car”
 Time of the action: “last Friday”
 Money in the transaction: “$5000”

<Buying rdf:ID="buy1">
<agent rdf:resource="#Agent" />
<agent rdf:ID="Chris" />
<transactionAmount rdf:resource="#CurrencyMeasure" />
<transactionAmount rdf:ID="$5000" />
<time rdf:resource=”#TimePosition”/>
<time rdf:ID=”Friday”/>
<result rdf:resource=”#Entity”/>
<result rdf:ID=”car1”/>
</Buying>
<Human rdf:ID="Chris">
<immediateInstance rdf:resource=”#Human”/>
</Human>

<Vehicle rdf:ID="car1">
<monetaryValue rdf:resource=”#CurrencyMeasure”/>
<monetaryValue rdf:ID=”$5000”/>
<property rdf:resource=”#Attributes”/>
</Vehicle>
<UnitedStatesDollar rdf:ID="$5000">
<lessThanOrEqualTo rdf:datatype="&xsd;string”>5000
< /lessThanOrEqualTo>
<greaterThanOrEqualTo rdf:datatype=”&xsd;string”>5000
</greaterThanOrEqualTo>
</UnitedStatesDollar>
<Friday rdf:ID="Friday1">
<PastFn rdf:resource=”#TimePosition” />
</Friday>
Representational adequacy—By building up from XML,
OWL inherits its main function of describing data. By
using ontology in XML syntax and necessary RDF Schema,
OWL describes the domain knowledge in ontology
primitives (objects, classes, properties etc). Basically, by
using this kind of representation, inheritance can be

http://taurus.unine.ch/knowler/wordnet.html
http://www.cogsci.princeton.edu/~wn/
http://suo.ieee.org/
http://suo.ieee.org/

performed efficiently using ontologies. As from examples
in section 3.3, the property “subclassof” can explicitly
describe the relation. Furthermore, the whole fact set of
OWL for classes and objects include the description of an
ontology, and the axioms describes the manipulation on
each ontology. As a result, it is not only able to describe
things in detail, but also able to provide a large base of
relationships and the probability of doing reasoning among
different ontologies.

Inferential adequacy—As mentioned above, axiom can play
a role of knowledge operator. Axioms are used to associate
class and property identifiers with either partial or complete
specifications of their characteristics, and to give other
information about classes and properties. Axioms used to be
called definitions, but they are not all definitions in the
common sense of the term and thus a more neutral name has
been chosen [5]. Besides axioms, OWL also has other kind
of manipulation on ontologies.

Acquisitional efficiency—Compared to some of the
knowledge representation method mentioned in [7],
ontologies developed by OWL have their own advantages in
this criterion. But, as deputed by a lot of researchers, this
kind of knowledge representation still lacks of acquisitional
efficiency. Most of the ontologies are created by people,
not by machine.

Disadvantages—So far, it may not be possible to describe
OWL semantics with logic programs or rule base directly.
There should be some tools, including reasoners, validators
or so to do some ancillary work during using OWL.
Another inconvenience is, as a new w3c standard, it is not
prevailed in a very wide range, and a lot of research work
and testing work are undergoing to exploit its usage. Only
few organizations, including university laboratories and
academic organizations, are studying or implementing OWL.
Similar to other knowledge representation technique, it is
not easy for OWL to have good performance on knowledge
acquisition. However, OWL is still being studied and
developed, so, probably it is possible to find out the
breakthrough of this principle in OWL in the future.

6. CONCLUSION AND FUTURE TASK
Natural language understanding may be considered as being
a mapping of a natural language text to an internal
representation that capture the meaning of that text. This
paper presents an ongoing research project about a multi-
agents understanding system and the construction of its
knowledge base. The knowledge base is the foundation of
the work and communication between each of the modules
in the system. The new technique of OWL—Web Ontology
Language, provides a new tool to implement knowledge
representation. Some of its feature fits the requirement of
knowledge representation and are proved to be efficient by
some tests and implementations. However, as a new
standard and language, there is the opportunity to develop

its potential ability in knowledge representation and natural
language processing.

After explored the OWL and evaluated its ability in
knowledge representation, the current research focuses on
its implementation in this area and discuss its ability in
machine learning based on the NLP with OWL. To do this
research, WordNet provides a certain kind of platform and
foundation. A task force of semantic web is doing the work
to convert the WordNet database into OWL.

REFERENCE
[1] Mostafa Aref, “A Multi-Agent System for Natural

Language Understanding”, Proceedings of the
International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, 1-3, Cambridge MA,
PP 36-40, 2003.

[2] W3C School, “Tutorial of RDF OWL”,
www.w3schools.com, 2004.

[3] Michael K. Smith, Chris Welty, Deborah L.
McGuinness, “OWL Web Ontology Language Guide”,
W3C Recommendation, www.w3.org/TR/owl-guide,
10 February 2004.

[4] Deborah L. McGuinness, Frank van Harmelen, “OWL
Web Ontology Language Overview”, W3C
Recommendation, www.w3.org/TR/2003/PR-owl-
features-20031215/#ref-rdf-schema, 10 February 2004.

[5] Kostyantyn Vovk, Ontology and Object-Oriented
Representation, Spring 2004.

[6] Sandro Hawke, “OWL Implementation”,
http://www.w3.org/2001/sw/WebOnt/impls, 2003.

[7] Elaine Rich, Kevin Knight, Artificial Intelligence,
Second Edition 1991 McGraw-Hill Inc.

[8] Stuart Russell, Peter Norvig Artificial Intelligence: A
Modern Approach, 1995 Prentice Hall ; Pearson
Education.

[9] S. Toivonen. “Using RDF(S) to Provide Multiple
Views into a Single Ontology”. SemWeb 2001
Workshop, Hong Kong, 2001.

[10] “Wordnet in RDFS and OWL”,
http://www.w3.org/2001/sw/BestPractices/WNET/word
net-sw-20040713.html W3C 2004.

[11] Coordinator Aldo Gangemi, “Semantic Web Best
Practices”, WordNet Task Force
http://www.w3.org/2001/sw/BestPractices/WNET/tf,
Wordnet Task Force, 2004.

[12] KID Processing Group, “knOWLer: Ontology-based
Information Management System”,
http://taurus.unine.ch/knowler/ 2004.

[13] Deborah Nichols and Allan Terry, “SUMO Ontology”,
http://ontology.teknowledge.com/ Teknowledge
Corp.2004.

http://www.w3.org/2001/sw/WebOnt/impls
http://www.w3.org/2001/sw/BestPractices/WNET/wordnet-sw-20040713.html
http://www.w3.org/2001/sw/BestPractices/WNET/wordnet-sw-20040713.html
http://www.w3.org/2001/sw/BestPractices/WNET/tf
http://taurus.unine.ch/knowler/
http://ontology.teknowledge.com/

	1001_arefzhou.pdf
	Abstract— Computer understanding is a challenge p
	1. Introduction
	2. Multi-agent Understanding System
	3. OWL – Ontology Web Language
	4. OWL in Knowledge Base
	5. Evaluation of OWL
	6. Conclusion and Future Task
	Reference

