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Abstract — Due to the advancement of VLSI (Very Large Scale 
Integrated Circuits) technologies, we can put more cores on a 
chip, resulting in the emergence of a multicore embedded 
system. This also brings great challenges to the traditional 
parallel processing as to how we can improve the performance 
of the system with increased number of cores. In this paper, we 
meet the new challenges using a novel approach. Specifically, 
we propose a SOPC (System on a Programmable Chip) design 
based on multicore embedded system. Under our proposed 
scheme, in addition to conventional processor cores, we 
introduce dynamically reconfigurable accelerator cores to 
boost the performance of the system. We have built the 
prototype of the system using FPGAs (Field-Programmable 
Gate Arrays). Simulation results demonstrate significant 
system efficiency of the proposed system in terms of 
computation and power consumption. Our approach is to 
develop a highly flexible and scalable network design that 
easily accommodates the various needs. This paper presents 
the design of our NOC (Network on Chip) which is a part of 
the platform that we are developing for a reconfigurable 
system. The major drawback of SOPC based systems lies in the 
routing of the various on-chip cores. Since it is technically 
difficult to integrate more than one core on a single chip, we 
come across several routing problems which lead to inefficient 
functioning. Thus we implemented several NOC based routing 
algorithms which considerably improve accessing speed and 
enhance the system efficiency. 
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I. INTRODUCTION 

 
During the 1990s more and more processor cores and large 
reusable components have been integrated on a single 
silicon die‚ which has become known under the label of 
System-on-Chip (SOC). Buses and point-to-point 
connections were the main means to connect the 
components, Hence they can be used very cost efficiently. 
As silicon technology advances further‚ several problems 
related to buses have appeared. [1][5] Buses can efficiently 
connect 3-10 communication partners but they do not scale 
to higher numbers.  
 
As a result‚ around 1999 several research groups have 
started to investigate systematic approaches to the design of 
the communication part of SOCs. It soon turned out that the  

 
 
Problem has to be addressed at all levels from the physical 
to the architectural to the operating system and application 
level. Hence‚ the term Network on Chip (NOC) is today 
used mostly in a very broad meaning‚ encompassing the 
hardware communication infra-structure‚ the middleware 
and operating system communication services and a design 
methodology and tools to map applications onto a NOC. All 
this together can be called a NOC platform. [4] Networks on 
Chip (NOCs) have emerged as a viable option for designing 
scalable communication architectures. For multiprocessor 
System-on-Chips (MPSOCs), on-chip micro networks are 
used to interconnect the various cores. The main idea with 
NOCs, besides the solutions to the physical issues, is the 
possibility for more cores to communicate simultaneously, 
leading to larger on-chip bandwidths. The adoption of NOC 
architecture is driven by several forces: from a physical 
design viewpoint, in nanometer CMOS technology 
interconnects dominate both performance and dynamic 
power dissipation, as signal propagation in wires across the 
chip requires 2 multiple clock cycles. NOC links can reduce 
the complexity of designing wires for predictable speed, 
power, noise, reliability, etc., thanks to their regular, well 
controlled structure. From a system design viewpoint, with 
the advent of multi-core processor systems, a network is a 
natural architectural choice. 
 
NOC can provide separation between computation and 
communication; support modularity and IP reuse via 
standard interfaces; handle Synchronization issues; serve as 
a platform for system test and hence increase engineering 
productivity.  
 
 

II. DIFFERENT NOC TOPOLOGIES 
 
The Network-on-Chip (NOC) architecture, as outlined in 
Figure 1, provides the communication infrastructure for the 
resources. In this way it is possible to develop the hardware 
of resources independently as stand-alone blocks and create 
the NOC by connecting the blocks as elements in the 
network. 



.  
Figure.1. Network on chip [7] 

A number of different NOC topologies have been proposed. 
They all have in common that they connect resources to 
each other through networks and that information is sent as 
packets over the networks [7]. Network on Chip (NOC) has 
evolved as an important research topic during the last few 
years. The idea is that scalable switched networks are used 
for on-chip communication among processing units, in order 
to cope with design of continuously growing systems. 
Design complexity promotes reuse of investment in earlier 
designs as well as purchase of outside intellectual property 
(IP). However, in larger designs, communication among 
components will become a bottleneck using traditional 
techniques like common buses. NOC is one solution to 
address this issue because packet switched communication 
can provide higher flexibility, throughput and reusability. 
To gain full advantage when using this concept in NOC 
architecture design, the size of resources should be similar 
and the communication facilities should be homogeneous. 
 

2.1 Honey Comb Technology  
 
In NOC design, the resources communicate with each other 
by sending addressed packets of data and routing them to 
the destinations by the network of switches [7]. Though 
many topologies are possible, we will first discuss about 
Honey comb topology. The overall organization is in the 
form of a honeycomb, as shown in Figure.2. The resources - 
computational, storage and I/O - are organized as nodes of 
the hexagon with a local switch at the centre that 
interconnects these resources. Hexagons at the periphery 
would be primarily for I/O, whereas the ones in the core 
would have storage and computational resource. To further 
improve the connectivity, switches are directly connected to 
their next nearest neighbors, as shown in Figure 2, allowing 
any resource to reach 27 additional resources with two hops. 
As a last measure to further improve connectivity, every 

alternate switch is directly connected making each resource 
element reach a lot more elements with minimal number of 
hops.  
 

 
                Figure.2. A honey comb structure for NOC [7] 
 
2.2 Mesh Topology 
 
NOC is a scalable packet switched communication platform 
for single chip systems. The NOC architecture consists of a 
mesh of switches together with some resources which are 
placed on slots formed by the switches.[2] Figure 3 shows 
NOC architecture with 16 resources. Each switch is 
connected to four neighboring switches and one resource. 
Resources are heterogeneous. A resource can be a processor 
core, a memory block, a FPGA, custom hardware block or 
any other intellectual property (IP) block, which fits into the 
available slot and complies with the interface with the NOC 
switch. We assume switches in NOC have buffers to 
manage data traffic.  
 

 
Figure.3. 4×4 NOC switch [2] 



 
Every resource has a unique address and is connected to a 
switch in the network via a resource network interface 
(RNI). The NOC platform defines four protocol layers: the 
physical layer, the data link layer, the network layer, and the 
transport layer. The RNI implements all the four layers, 
whereas every switch to switch interface implements the 
three of four layers except physical layer. The NOC 
architecture also has a concept of region allows us to handle 
physically larger resources and can be used to provide fault 
tolerance. A typical NOC architecture will provide a 
scalable communication infrastructure for interconnecting 
cores. The area of multi-media is a very suitable candidate 
for using this high computing capacity of NOCs. NOC is a 
general paradigm and one needs to specialize a NOC based 
architecture for every application area.  
 

III. SOPC BUILDER 
 
SOPC Builder is a powerful system development tool. 
SOPC Builder enables us to define and generate a complete 
system-on-a-Programmable-chip (SOPC) in much less time 
than using traditional, manual integration methods. SOPC 
Builder is included as part of the Quartus II software 
(www.Altera.com). We used SOPC Builder to create 
systems based on the Nios® II processor. [3] 
 
 

 
                        Figure.4. System example [3] 

Figure.4 shows an FPGA design that includes an SOPC 
Builder system and custom logic modules. We can integrate 
custom logic inside or outside the SOPC Builder system. In 
this example, the custom component inside the SOPC 
Builder system communicates with other modules through 
an Avalon-MM master interface. The custom logic outside 
of the SOPC Builder system is connected to the SOPC 
Builder system through a PIO interface. The SOPC Builder 
system includes two SOPC Builder components with 
Avalon-ST source and sinks interfaces. The system 
interconnect fabric shown below in Figure.5  connects all of 
the SOPC Builder components using the Avalon-MM or 
Avalon-ST system interconnects as appropriate. 
 

 
Figure.5. System interconnect fabric  

 
The systems interconnect fabric [3] for memory-mapped 
interfaces are a high-bandwidth interconnects structure for 
connecting components that use the Avalon® Memory-
Mapped (Avalon-MM) interface. The system interconnect 
fabric consumes minimal logic resources and provides 
greater flexibility than a typical shared system bus. It is a 
cross-connect fabric and not a tri-stated or time domain 
multiplexed bus. Here we describe the functions of system 
interconnect fabric for memory-mapped interfaces and the 
implementation of those functions. 
 
3.1. Chip Planner 
 
The Chip Planner provides a visual display of chip 
resources. It can show logic placement, Logic Lock and 
custom regions, relative resource usage, detailed routing 
information, fan-in and fan-out paths between registers, and 
delay estimates for paths.  



 
   Figure.6. Chip planner tool bar from Quartus II Software 
 
With the Chip Planner, we can view critical path 
information, physical timing estimates, and routing 
congestion. We can also perform assignment changes with 
the Chip Planner, such as creating and deleting resource 
assignments, and post-compilation changes like creating, 
moving, and deleting logic cells and I/O atoms. By using the 
Chip Planner in conjunction with the Resource Property 
Editor, we can change connections between resources and 
make post-compilation changes to the properties of logic 
cells, I/O elements, PLLs, and RAM and digital signal 
processing (DSP) blocks. With the Chip Planner, we can 
view and create assignments for a design floor plan, perform 
power and design analyses, and implement ECOs in a single 
tool. 
 
3.2. Viewing Routing Congestion 
 
The Routing Congestion view allows us to determine the 
percentage of routing resources used after a compilation. 
This feature identifies where there is a lack of routing 
resources. This information helps us to make decisions 
about design changes that might be necessary to ease the 
routing congestion and thus meet design requirements. The 
congestion is visually represented by the color and shading 
of logic resources. The darker shading represents greater 
routing resource utilization. We can set a routing congestion 
threshold to identify areas of high routing congestion. After 
selecting the Routing Utilization layer setting, click on the 
Routing Congestion icon on the taskbar. 
 
3.3. Viewing I/O Banks 
 
The Chip Planner can show all of the I/O banks of the 
device. To see the I/O bank map of the device, click the 

Layers icon located next to the Task menu. Under 
Background Color Map, select I/O Banks. 
 
3.4. Generating fan-in and fan-out Connections 
 
This feature enables us to view the immediate resource that 
is the fan-in or fan-out connection for the selected atom. For 
example, selecting a logic resource and choosing to view the 
immediate fan-in enables us to see the routing resource that 
drives the logic resource. We can generate immediate fan-in 
and fan-outs for all logic resources and routing resources. 
To remove the connections that are displayed, click the 
“Clear Connections” icon in the toolbar.  
 
3.5. Highlight Routing 
 
This feature enables us to highlight the routing resources 
used for a selected path or connection.  
 

3.6. Delay Calculation 

We can view the timing delays for the highlighted 
connections when generating connections between 
elements. For example, you can view the delay between two 
logic resources or between a logic resource and a routing 
resource.  
 
3.7. Viewing Assignments in the Chip Planner 
 

Location assignments can be viewed by selecting the 
appropriate layer set from the tool. To view location 
assignments in the Chip Planner, select the Floor plan 
Editing (Assignment) task or any custom task with 
Assignment editing mode.  The Chip Planner shows 
location assignments graphically, by displaying assigned 
resources in a particular color (gray, by default). We can 
create or move an assignment by dragging the selected 
resource to a new location. 
 

IV. RESULTS 

Using SOPC Builder in Quartus II tool, we designed and 
simulated efficient SOPC-based Multicore System, and the 
results are listed in Figure 7-11.  
    Figure 7 shows the screenshot of the developed SOPC 
builder system. It is done using SOPC builder, this build 
system has a design of multicore system with 2 CPU’s, 
Avalon tri state bridge, flash memory, LCD and PIO’s. It’s 
a FPGA design which includes SOPC builder system and 
custom logic modules. We can integrate custom logic inside 
or outside the SOPC builder system. In this design the 
custom logic modules inside the SOPC builder system 
communicates with other modules through an Avalon-MM- 
master interface. The custom logic modules outside of the 



SOPC builder system is connected to SOPC system through 
a PIO interface. 

 
 

 
Figure.7. SOPC builder for system building 

 
The block diagram of the symmetric file is shown in Figure 
8. SOPC builder allows us to design the structure of a 
hardware system. The GUI allows adding components to a 
system configure the components and specify the 
connectivity. After adding and parameterize components, 
SOPC Builder generates the system interconnect fabric, 
outputs HDL files and .BDF during system generation. 
This .BDF file shown in Figure8 represents the top –level 
SOPC system for use in Quartus II.  

 

 
Figure.8. Block diagram of the symmetric file 

 
The compilation result is shown in Figure 9. Once the 
system design is over it need to be verified whether the 

designed system has no errors so in order to test the system 
we compile our system. It shows 100% full compilation 
during synthesize of our SOPC system. 

 

 
Figure.9. Compilation 

 
The chip planner view of the compiled design is shown in 
Figure 10.  In this screenshot we can see the build 
components placed in this chip planner. We can view 
critical path information, physical timing estimation and 
routing congestion. The Chip Planner uses a hierarchical 
zoom viewer that shows various abstraction levels of the 
targeted Altera device. As we increase the zoom level, the 
level of abstraction decreases, thus revealing more detail 
about our design. 
 

                      
Figure.10. Chip planner view of compiled design 



 
The routing utilization is shown in Figure 11. It allows us to 
determine the percentage of routing resources used after 
compilation. This information helps us to make decisions 
about design changes which is necessary to ease the routing 
congestion to meet the design requirements. The routing 
congestion is visually represented by the color and shading 
of logic resources. In Figure 11 we can see some areas are 
dark and some areas are bright. The dark regions represent 
greater routing resource utilization and the bright regions 
represent no routing congestion. 
 
                                  

 Figure.11. Routing utilization (Darker areas  
Show dense routing connections) 

 
 

V. CONCLUSIONS AND FUTURE WORK 
 

In this paper, a simple multicore embedded system was 
developed and synthesized using Altera SOPC Builder.   
The synthesize results demonstrate that routing will be the 
greater issue when it comes to the chip design. Using 
network-on-chip architecture a prototype system based on 
networking was developed to overcome the routing issue. 
As a result, network-on-chip micro networks are used in 
multicore processors to interconnect the various cores to 
communicate simultaneously. This leads to larger on-chip 
bandwidth and reduces routing congestion so that the 
system efficiency is enhanced. Our designed multicore 
system has two CPU cores which are individually optimized 
to the particular computational characteristics of different 
application fields, complementing each other to deliver high 
performance levels with high flexibility at reduced cost.  
The research focus is shifting from implementation of NOC 
to investigation of its optimal use. The research problems in 
NOC design are identified as synthesis of communication 
infrastructure, choice of communication paradigm, 
application mapping and optimization. In the future, we will 
continue to design an efficient multicore SOPC with 
optimized timing constraints, reduced latency and improved 

programmability. We will also develop highly embedded, 
multi-core systems with more number of cores which in turn 
increases the system performance and many applications 
can run at the same time. 
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