
© 2009 IEEE. Reprinted, with permission, from Vignesh Veerapandian, Xingguo Xiong, "Efficient SOPC-

Based Multicore System Design Using NOC", Proc. of IEEE International Joint Conferences on Computer,

Information, and Systems Sciences, and Engineering (CISSE'09), Dec. 4-12, 2009.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way

imply IEEE endorsement of any of the University of Bridgeport's products or services. Internal or

personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this

document, you agree to all provisions of the copyright laws protecting it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient SOPC-Based Multicore System Design
Using NOC

Vignesh Veerapandian, Xingguo Xiong
Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Email: vveerapa@bridgeport.edu, xxiong@bridgeport.edu

Abstract — Due to the advancement of VLSI (Very Large Scale
Integrated Circuits) technologies, we can put more cores on a
chip, resulting in the emergence of a multicore embedded
system. This also brings great challenges to the traditional
parallel processing as to how we can improve the performance
of the system with increased number of cores. In this paper, we
meet the new challenges using a novel approach. Specifically,
we propose a SOPC (System on a Programmable Chip) design
based on multicore embedded system. Under our proposed
scheme, in addition to conventional processor cores, we
introduce dynamically reconfigurable accelerator cores to
boost the performance of the system. We have built the
prototype of the system using FPGAs (Field-Programmable
Gate Arrays). Simulation results demonstrate significant
system efficiency of the proposed system in terms of
computation and power consumption. Our approach is to
develop a highly flexible and scalable network design that
easily accommodates the various needs. This paper presents
the design of our NOC (Network on Chip) which is a part of
the platform that we are developing for a reconfigurable
system. The major drawback of SOPC based systems lies in the
routing of the various on-chip cores. Since it is technically
difficult to integrate more than one core on a single chip, we
come across several routing problems which lead to inefficient
functioning. Thus we implemented several NOC based routing
algorithms which considerably improve accessing speed and
enhance the system efficiency.

Keywords: Multicore system, System on a Programmable
Chip (SOPC), Network on Chip (NOC), Multiprocessor
System-on-Chip (MPSOC).

I. INTRODUCTION

During the 1990s more and more processor cores and large
reusable components have been integrated on a single
silicon die‚ which has become known under the label of
System-on-Chip (SOC). Buses and point-to-point
connections were the main means to connect the
components, Hence they can be used very cost efficiently.
As silicon technology advances further‚ several problems
related to buses have appeared. [1][5] Buses can efficiently
connect 3-10 communication partners but they do not scale
to higher numbers.

As a result‚ around 1999 several research groups have
started to investigate systematic approaches to the design of
the communication part of SOCs. It soon turned out that the

Problem has to be addressed at all levels from the physical
to the architectural to the operating system and application
level. Hence‚ the term Network on Chip (NOC) is today
used mostly in a very broad meaning‚ encompassing the
hardware communication infra-structure‚ the middleware
and operating system communication services and a design
methodology and tools to map applications onto a NOC. All
this together can be called a NOC platform. [4] Networks on
Chip (NOCs) have emerged as a viable option for designing
scalable communication architectures. For multiprocessor
System-on-Chips (MPSOCs), on-chip micro networks are
used to interconnect the various cores. The main idea with
NOCs, besides the solutions to the physical issues, is the
possibility for more cores to communicate simultaneously,
leading to larger on-chip bandwidths. The adoption of NOC
architecture is driven by several forces: from a physical
design viewpoint, in nanometer CMOS technology
interconnects dominate both performance and dynamic
power dissipation, as signal propagation in wires across the
chip requires 2 multiple clock cycles. NOC links can reduce
the complexity of designing wires for predictable speed,
power, noise, reliability, etc., thanks to their regular, well
controlled structure. From a system design viewpoint, with
the advent of multi-core processor systems, a network is a
natural architectural choice.

NOC can provide separation between computation and
communication; support modularity and IP reuse via
standard interfaces; handle Synchronization issues; serve as
a platform for system test and hence increase engineering
productivity.

II. DIFFERENT NOC TOPOLOGIES

The Network-on-Chip (NOC) architecture, as outlined in
Figure 1, provides the communication infrastructure for the
resources. In this way it is possible to develop the hardware
of resources independently as stand-alone blocks and create
the NOC by connecting the blocks as elements in the
network.

.
Figure.1. Network on chip [7]

A number of different NOC topologies have been proposed.
They all have in common that they connect resources to
each other through networks and that information is sent as
packets over the networks [7]. Network on Chip (NOC) has
evolved as an important research topic during the last few
years. The idea is that scalable switched networks are used
for on-chip communication among processing units, in order
to cope with design of continuously growing systems.
Design complexity promotes reuse of investment in earlier
designs as well as purchase of outside intellectual property
(IP). However, in larger designs, communication among
components will become a bottleneck using traditional
techniques like common buses. NOC is one solution to
address this issue because packet switched communication
can provide higher flexibility, throughput and reusability.
To gain full advantage when using this concept in NOC
architecture design, the size of resources should be similar
and the communication facilities should be homogeneous.

2.1 Honey Comb Technology

In NOC design, the resources communicate with each other
by sending addressed packets of data and routing them to
the destinations by the network of switches [7]. Though
many topologies are possible, we will first discuss about
Honey comb topology. The overall organization is in the
form of a honeycomb, as shown in Figure.2. The resources -
computational, storage and I/O - are organized as nodes of
the hexagon with a local switch at the centre that
interconnects these resources. Hexagons at the periphery
would be primarily for I/O, whereas the ones in the core
would have storage and computational resource. To further
improve the connectivity, switches are directly connected to
their next nearest neighbors, as shown in Figure 2, allowing
any resource to reach 27 additional resources with two hops.
As a last measure to further improve connectivity, every

alternate switch is directly connected making each resource
element reach a lot more elements with minimal number of
hops.

 Figure.2. A honey comb structure for NOC [7]

2.2 Mesh Topology

NOC is a scalable packet switched communication platform
for single chip systems. The NOC architecture consists of a
mesh of switches together with some resources which are
placed on slots formed by the switches.[2] Figure 3 shows
NOC architecture with 16 resources. Each switch is
connected to four neighboring switches and one resource.
Resources are heterogeneous. A resource can be a processor
core, a memory block, a FPGA, custom hardware block or
any other intellectual property (IP) block, which fits into the
available slot and complies with the interface with the NOC
switch. We assume switches in NOC have buffers to
manage data traffic.

Figure.3. 4×4 NOC switch [2]

Every resource has a unique address and is connected to a
switch in the network via a resource network interface
(RNI). The NOC platform defines four protocol layers: the
physical layer, the data link layer, the network layer, and the
transport layer. The RNI implements all the four layers,
whereas every switch to switch interface implements the
three of four layers except physical layer. The NOC
architecture also has a concept of region allows us to handle
physically larger resources and can be used to provide fault
tolerance. A typical NOC architecture will provide a
scalable communication infrastructure for interconnecting
cores. The area of multi-media is a very suitable candidate
for using this high computing capacity of NOCs. NOC is a
general paradigm and one needs to specialize a NOC based
architecture for every application area.

III. SOPC BUILDER

SOPC Builder is a powerful system development tool.
SOPC Builder enables us to define and generate a complete
system-on-a-Programmable-chip (SOPC) in much less time
than using traditional, manual integration methods. SOPC
Builder is included as part of the Quartus II software
(www.Altera.com). We used SOPC Builder to create
systems based on the Nios® II processor. [3]

 Figure.4. System example [3]

Figure.4 shows an FPGA design that includes an SOPC
Builder system and custom logic modules. We can integrate
custom logic inside or outside the SOPC Builder system. In
this example, the custom component inside the SOPC
Builder system communicates with other modules through
an Avalon-MM master interface. The custom logic outside
of the SOPC Builder system is connected to the SOPC
Builder system through a PIO interface. The SOPC Builder
system includes two SOPC Builder components with
Avalon-ST source and sinks interfaces. The system
interconnect fabric shown below in Figure.5 connects all of
the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnects as appropriate.

Figure.5. System interconnect fabric

The systems interconnect fabric [3] for memory-mapped
interfaces are a high-bandwidth interconnects structure for
connecting components that use the Avalon® Memory-
Mapped (Avalon-MM) interface. The system interconnect
fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. It is a
cross-connect fabric and not a tri-stated or time domain
multiplexed bus. Here we describe the functions of system
interconnect fabric for memory-mapped interfaces and the
implementation of those functions.

3.1. Chip Planner

The Chip Planner provides a visual display of chip
resources. It can show logic placement, Logic Lock and
custom regions, relative resource usage, detailed routing
information, fan-in and fan-out paths between registers, and
delay estimates for paths.

 Figure.6. Chip planner tool bar from Quartus II Software

With the Chip Planner, we can view critical path
information, physical timing estimates, and routing
congestion. We can also perform assignment changes with
the Chip Planner, such as creating and deleting resource
assignments, and post-compilation changes like creating,
moving, and deleting logic cells and I/O atoms. By using the
Chip Planner in conjunction with the Resource Property
Editor, we can change connections between resources and
make post-compilation changes to the properties of logic
cells, I/O elements, PLLs, and RAM and digital signal
processing (DSP) blocks. With the Chip Planner, we can
view and create assignments for a design floor plan, perform
power and design analyses, and implement ECOs in a single
tool.

3.2. Viewing Routing Congestion

The Routing Congestion view allows us to determine the
percentage of routing resources used after a compilation.
This feature identifies where there is a lack of routing
resources. This information helps us to make decisions
about design changes that might be necessary to ease the
routing congestion and thus meet design requirements. The
congestion is visually represented by the color and shading
of logic resources. The darker shading represents greater
routing resource utilization. We can set a routing congestion
threshold to identify areas of high routing congestion. After
selecting the Routing Utilization layer setting, click on the
Routing Congestion icon on the taskbar.

3.3. Viewing I/O Banks

The Chip Planner can show all of the I/O banks of the
device. To see the I/O bank map of the device, click the

Layers icon located next to the Task menu. Under
Background Color Map, select I/O Banks.

3.4. Generating fan-in and fan-out Connections

This feature enables us to view the immediate resource that
is the fan-in or fan-out connection for the selected atom. For
example, selecting a logic resource and choosing to view the
immediate fan-in enables us to see the routing resource that
drives the logic resource. We can generate immediate fan-in
and fan-outs for all logic resources and routing resources.
To remove the connections that are displayed, click the
“Clear Connections” icon in the toolbar.

3.5. Highlight Routing

This feature enables us to highlight the routing resources
used for a selected path or connection.

3.6. Delay Calculation

We can view the timing delays for the highlighted
connections when generating connections between
elements. For example, you can view the delay between two
logic resources or between a logic resource and a routing
resource.

3.7. Viewing Assignments in the Chip Planner

Location assignments can be viewed by selecting the
appropriate layer set from the tool. To view location
assignments in the Chip Planner, select the Floor plan
Editing (Assignment) task or any custom task with
Assignment editing mode. The Chip Planner shows
location assignments graphically, by displaying assigned
resources in a particular color (gray, by default). We can
create or move an assignment by dragging the selected
resource to a new location.

IV. RESULTS

Using SOPC Builder in Quartus II tool, we designed and
simulated efficient SOPC-based Multicore System, and the
results are listed in Figure 7-11.
 Figure 7 shows the screenshot of the developed SOPC
builder system. It is done using SOPC builder, this build
system has a design of multicore system with 2 CPU’s,
Avalon tri state bridge, flash memory, LCD and PIO’s. It’s
a FPGA design which includes SOPC builder system and
custom logic modules. We can integrate custom logic inside
or outside the SOPC builder system. In this design the
custom logic modules inside the SOPC builder system
communicates with other modules through an Avalon-MM-
master interface. The custom logic modules outside of the

SOPC builder system is connected to SOPC system through
a PIO interface.

Figure.7. SOPC builder for system building

The block diagram of the symmetric file is shown in Figure
8. SOPC builder allows us to design the structure of a
hardware system. The GUI allows adding components to a
system configure the components and specify the
connectivity. After adding and parameterize components,
SOPC Builder generates the system interconnect fabric,
outputs HDL files and .BDF during system generation.
This .BDF file shown in Figure8 represents the top –level
SOPC system for use in Quartus II.

Figure.8. Block diagram of the symmetric file

The compilation result is shown in Figure 9. Once the
system design is over it need to be verified whether the

designed system has no errors so in order to test the system
we compile our system. It shows 100% full compilation
during synthesize of our SOPC system.

Figure.9. Compilation

The chip planner view of the compiled design is shown in
Figure 10. In this screenshot we can see the build
components placed in this chip planner. We can view
critical path information, physical timing estimation and
routing congestion. The Chip Planner uses a hierarchical
zoom viewer that shows various abstraction levels of the
targeted Altera device. As we increase the zoom level, the
level of abstraction decreases, thus revealing more detail
about our design.

Figure.10. Chip planner view of compiled design

The routing utilization is shown in Figure 11. It allows us to
determine the percentage of routing resources used after
compilation. This information helps us to make decisions
about design changes which is necessary to ease the routing
congestion to meet the design requirements. The routing
congestion is visually represented by the color and shading
of logic resources. In Figure 11 we can see some areas are
dark and some areas are bright. The dark regions represent
greater routing resource utilization and the bright regions
represent no routing congestion.

 Figure.11. Routing utilization (Darker areas
Show dense routing connections)

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simple multicore embedded system was
developed and synthesized using Altera SOPC Builder.
The synthesize results demonstrate that routing will be the
greater issue when it comes to the chip design. Using
network-on-chip architecture a prototype system based on
networking was developed to overcome the routing issue.
As a result, network-on-chip micro networks are used in
multicore processors to interconnect the various cores to
communicate simultaneously. This leads to larger on-chip
bandwidth and reduces routing congestion so that the
system efficiency is enhanced. Our designed multicore
system has two CPU cores which are individually optimized
to the particular computational characteristics of different
application fields, complementing each other to deliver high
performance levels with high flexibility at reduced cost.
The research focus is shifting from implementation of NOC
to investigation of its optimal use. The research problems in
NOC design are identified as synthesis of communication
infrastructure, choice of communication paradigm,
application mapping and optimization. In the future, we will
continue to design an efficient multicore SOPC with
optimized timing constraints, reduced latency and improved

programmability. We will also develop highly embedded,
multi-core systems with more number of cores which in turn
increases the system performance and many applications
can run at the same time.

REFERENCES

 [1] Luca Benini, Giovanni De Micheli, “Networks on
Chips: A New SoC Paradigm”, Computer, v.35 n.1, p.70-
78, January 2002.
 [2] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja, A. Hemani, “A network
on chip architecture and design methodology”, Proceedings
of IEEE Computer Society Annual Symposium on VLSI, pp.
105-112, April 2002.
[3] Quartus II Handbook, SOPC Builcer, Version 9.0,
Volume 4, URL:
 www.altera.com/literature/hb/qts/qts_qii5v4.pdf
[4] Axel Jantesh and Hannu Tenhumen, “Networks on
Chip”, Kluwer Academic Publications, 2003, Boston, USA.
[5] Muhammad Ali, Michael Welzl, Sybille Hellebrand, “A
dynamic routing mechanism for network on chip”,
Proceedings of IEEE NORCHIP, Oulu, Finland, 21-22,
Nov. 2005.
[6] International Technology Roadmap for Semiconductors
2003, URL: http://public.itrs.net
[7] H. Tenhunen and A. Jantsch, "Networks on Chip",
Springer, 1st edition, ISBN: 1402073925, Jan. 2003.

	Xiong_CISSE09_Vignesh_NOC_paper1_Cover_Page
	Xiong_CISSE09_Vignesh_NOC_paper1

