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Abstract: 

Objective: To predict adverse kidney outcomes for use in optimizing medical management and 

clinical trial design. 

Research Design and Methods: In this individual participant data meta-analysis, 43 cohorts 

(N=1,621,817) from research studies, electronic medical records, and clinical trials with global 

representation were separated into development and validation cohorts. Models were developed 

and validated within strata of diabetes mellitus (presence or absence) and eGFR (≥60 or <60 

ml/min/1.73 m2) to predict a composite of ≥40% decline in eGFR or kidney failure (receipt of 

kidney replacement therapy) over 2-3 years. 

Results: There were 17,399 and 24,591 events in development and validation cohorts, 

respectively. Models predicting ≥40% eGFR decline or kidney failure incorporated age, sex, 

eGFR, albuminuria, systolic blood pressure, anti-hypertensive medication use, history of heart 

failure, coronary heart disease, atrial fibrillation, smoking status, and body-mass index (and 

hemoglobin A1c, insulin use, and oral diabetes medication use in those with diabetes). The 

median C-statistic was 0.774 (interquartile range [IQR]: 0.753, 0.782) in the diabetes/higher 

eGFR validation cohorts, 0.769 (IQR: 0.758, 0.808) in the diabetes/lower eGFR validation 

cohorts, 0.740 (interquartile range [IQR]: 0.717, 0.763) in the no diabetes/higher eGFR 

validation cohorts, and 0.750 (IQR: 0.731, 0.785) in the no diabetes/lower eGFR validation 

cohorts. Incorporating previous 2-year eGFR slope minimally improved model performance, and 

only in the higher eGFR cohorts.  
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Conclusions: Novel prediction equations for an eGFR decline of ≥40% eGFR can be applied 

successfully for use in the general population in persons with and without diabetes with higher or 

lower eGFR. 



8 
 

 Introduction 

 Chronic kidney disease (CKD) afflicts nearly 10% of the world’s population and 25% of 

the population with diabetes mellitus.(1; 2) Advanced CKD is largely irreversible; thus, early 

intervention is critical for reducing CKD progression and CKD-associated morbidity and 

mortality. The armamentarium of therapeutic options for preventing adverse kidney outcomes 

has greatly expanded over the past five years to include renin-angiotensin system inhibitors, 

sodium-glucose cotransporter-2 inhibitors (SGLT2-I), glucagon-like peptide-1 (GLP1) agonists, 

and selective mineralocorticoid receptor antagonists.(3-8) When used early in the course of 

disease, these agents have the potential to prevent kidney failure, whereas in patients with 

advanced CKD, effective therapy may only function to delay the onset.  As such, optimal 

medical management requires early identification of patients at high risk of decline in estimated 

glomerular filtration rate (eGFR).(9-13)  

 

Accurate prediction of the risk of CKD progression can also inform clinical trial design and 

enrollment. For patients with eGFR <60 ml/min/1.73 m2, Tangri et al. previously developed a 

kidney failure risk equation (KFRE) that uses demographic and laboratory data to predict the 

progression of CKD to kidney failure (receipt of kidney replacement therapy), the major 

outcome in clinical trials in advanced CKD.(14-19)  In patients with eGFR ≥60 ml/min/1.73 m2, 

the short-/intermediate-term risk of kidney failure is very low, and clinical trials often evaluate 

treatment effects on 40% decline in eGFR, the major surrogate outcome for kidney failure 

accepted by the US Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA).(6; 20) However, there are no widely-used prediction models for 40% decline in eGFR in 

the general population. 
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To inform risk prediction of early adverse kidney outcomes, we conducted a multinational 

observational study of >1 million patients in 43 cohorts. We focused on the general population, 

including but not limited to patients with early CKD (preserved eGFR ≥60 ml/min/1.73 m2 but 

urine albumin-to-creatinine ratio (ACR) >30 mg/g) and high cardiovascular risk. Our goal was to 

develop and externally validate prediction models for the composite outcome of 40% decline in 

eGFR or kidney failure using variables that are readily available in the electronic medical record, 

with a focus on the population with diabetes.   

 

Research Design and Methods 

Study population 

Included cohorts were drawn from the CKD Prognosis Consortium, a global consortium of 

cohorts with data on kidney function and outcomes and at least 1000 participants 

(www.ckdpc.org).(21) For the present study, cohorts were required to have measures of 

creatinine and albuminuria at baseline and at least two years of observation thereafter. In total, 

43 cohorts had adequate data and all agreed to participate. The time period of observation ranged 

from 1990 and 2017 and data from 23 countries were included. For the purpose of equation 

development, we divided cohorts into development and validation subsets, with development 

occurring in cohorts able to send individual participant data to the Data Coordinating Center as 

well as a random selection of 50% of the cohorts from OptumLabs® Data Warehouse (OLDW), 

and validation occurring in the remaining cohorts. The OLDW is a longitudinal, real-world data 

asset with de- identified administrative claims and electronic health record (EHR) data.(22) This 

http://www.ckdpc.org/
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study was approved for use of de-identified data by the institutional review board at the Johns 

Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. The need for informed 

consent was waived by the institutional review board. 

 

Procedures 

In all cohorts, eGFR was estimated using the CKD-EPI 2021 equation(23) and serum or plasma 

creatinine. Other key variables included demographics and urine ACR. For participants with 

measured urine protein-to-creatinine ratio (PCR) but not ACR, values were converted to ACR 

using the unadjusted conversion equation (Appendix 1).(24) For patients without diabetes, we 

also allowed urine dipstick protein categories and similarly converted these values to ACR. 

Other variables tested for inclusion were hypertension, systolic blood pressure, antihypertension 

medications, history of heart failure, history of coronary heart disease, history of atrial 

fibrillation, smoking status, body-mass index, as well as prior eGFR slope. Prior eGFR slope was 

estimated using all available creatinine measures and linear regression over the previous 2-years 

at the individual level and categorized as <-3 ml/min/1.73 m2 per year, between -3 and -1 

ml/min/1.73 m2, -1 to 1 ml/min/1.73 m2 per year (reference category), and >1 ml/min/1.73 m2 

per year. For patients with diabetes, we also considered hemoglobin A1c, insulin medication use, 

and oral diabetes medications.  

 

Outcomes 

The primary outcome was the composite of decline in eGFR ≥ 40% or kidney failure. This 

outcome was chosen because of its status as an accepted surrogate kidney endpoint by the EMA 
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and FDA.(12) In sensitivity analyses, we also evaluated a composite of decline in eGFR ≥30% or 

kidney failure and a composite of decline in eGFR ≥50% or kidney failure. 

 

Predicting ≥40% decline in eGFR or kidney failure in the general population 

We developed a new equation to predict the composite of ≥40% decline in eGFR or kidney 

failure over 2-3 years, the typical time-frame of a clinical trial. To incorporate research cohorts 

which had different time windows between repeat creatinine measurements, we allowed the 

follow-up to range from 1.5 years to 3.5 years. Our first model (Model 1) incorporated only the 

four variables that had previously been selected for use in the KFRE (age, sex, eGFR, ACR).(14) 

We then evaluated the addition of previously identified indicators associated with eGFR decline: 

systolic blood pressure, antihypertensive medication, their interaction term, history of heart 

failure, history of coronary heart disease, history of atrial fibrillation, smoking status, and body-

mass index (Model 2). Finally, we tested the addition of prior eGFR slope (Model 3). Each 

model was developed by fitting logistic regression of the composite outcome on covariates in 

each development cohort and then summarizing via random-effects meta-analysis using the 

restricted maximum likelihood for estimation and inputs of point estimates for each cohort. To 

assess performance, we estimated discrimination in each validation cohort using Harrell’s C-

statistic(25) and then summarized as the median and 25th-75th percentile across cohorts. We 

assessed model improvement between Model 2 and Model 3 by 1) running each model in the 

subset of patients with non-missing previous 2-year eGFR slope, 2) estimating change in C-

statistics between the two models, and 3) meta-analyzing change in C-statistic in the same 

manner. We evaluated calibration by plotting deciles of predicted vs. observed risk. We also 

evaluated risk gradients, estimating the relative risk of events in the top decile compared to those 
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in the lowest decile. In the case of <5 events in the lowest decile, it was iteratively combined 

with the adjacent decile until there were at least 5 events in the combined categories.(26) In 

sensitivity analyses, we also evaluated the risk relationships when modeled in multinomial 

logistic regression, capturing death as a competing outcome. We also evaluated more specific 

data inputs for anti-hypertension medication (separate indicators for RAAS blockers vs. other 

anti-hypertension medications) and oral hypoglycemic medications (separate indicators for 

SGLT2-I and GLP1RA vs. other oral hypoglycemic medications) in the OLDW cohorts. These 

modifications did not improve the overall c-statistic (data not shown). Thus, we maintained the 

simpler Model 2 and 3 for ease of implementation.     

 

Analyses were done in Stata version 16 (StataCorp) using complete case analysis and the R 

package “mvmeta” for the multivariate meta-analysis of all odds ratios. Statistical significance 

was determined using a 2-sided test with a threshold P value of <0.05. 

 

Role of the Funding Source 

The funder of this study had no role in the study design, data collection, analysis, data 

interpretation, or writing of the report. MEG and JC had full access to all analyses and all authors 

had final responsibility for the decision to submit for publication, informed by discussions with 

collaborators. 

 

Results 
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Baseline characteristics 

In total, there were 707,929 participants in 20 development cohorts with 17,399 cases of ≥40% 

decline in eGFR or kidney failure over an average of 3 years (range 1.5 to 3.5), split into strata 

by presence of diabetes and baseline eGFR (Table 1, Supplemental Tables S1-4). Average age 

was 57 years, 58% were women, mean eGFR was 86 ml/min/1.73 m2, and median urine ACR 

was 15 mg/g. There were 913,888 participants in 23 validation cohorts with 24,591 cases with 

≥40% decline in eGFR or kidney failure. Average age, eGFR, and urine ACR was similar to the 

development cohorts, but the proportion of women was lower owing to the inclusion of the 

cohort from the Veterans Administration.  

 

Development and validation of a model for the composite endpoint of ≥40% decline in eGFR or 

kidney failure in cohorts with eGFR ≥60 ml/min/1.73 m2 

The risk prediction models for ≥40% decline in eGFR or kidney failure developed in participants 

with eGFR ≥60 ml/min/1.73 m2 with only four variables (Model 1: age, sex, eGFR and urine 

ACR) had a median (25th -75th percentile of cohorts) c-statistic of 0.704 (0.681-0.738) in the 

validation cohorts of participants without diabetes and 0.750 (0.719, 0.758) in the validation 

cohorts of participants with diabetes (Table 2, Model 1). Coefficients varied between those 

without and with diabetes: older age was strongly associated with ≥40% decline in eGFR or 

kidney failure in the population without diabetes, but less so in the population with diabetes, and 

female sex and lower eGFR were risk factors only among participants with diabetes. Higher 

urine ACR was a consistent risk factor across groups.  
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Incorporating additional variables in the model (Model 2) revealed strong associations with 40% 

decline in eGFR or kidney failure, particularly for systolic blood pressure, a history of heart 

failure, and smoking status (Table 2, Model 2). Hemoglobin A1c and insulin use were also 

associated with the outcome in the population with diabetes. The median (25th -75th percentile of 

cohorts) C-statistic for Model 2 was 0.740 (0.717, 0.763) and 0.774 (0.753, 0.782) in the 

validation cohorts for people without and with diabetes, respectively (Supplemental Table S5). 

There was good calibration in the populations without and with diabetes (Figure 1A-B). The 

observed risk in the top vs. bottom decile was greater with Model 2 compared with Model 1 

(median (IQR) cohort risk gradient: 17.4 (14.0-19.5) vs. 13.1 (10.6-14.4) in those without 

diabetes, 16.4 (14.3-21.3) vs. 13.2 (11.4-15.0) in those with diabetes). Adding prior eGFR slope 

improved discrimination by only a modest amount in the validation cohorts among participants 

without and with diabetes (Table 2, Model 3).  

 

Development and validation of a model for the composite endpoint of ≥40% decline in eGFR or 

kidney failure in cohorts with eGFR <60 ml/min/1.73 m2 

The risk prediction models for ≥40% decline in eGFR or kidney failure developed in participants 

with eGFR <60 ml/min/1.73 m2 with only four variables (Model 1: age, sex, eGFR and urine 

ACR) had a median (25th -75th percentile of cohorts) c-statistic of 0.712 (0.677, 0.772) in the 

validation cohorts of participants without diabetes and 0.760 (0.731, 0.799) in the validation 

cohorts of participants with diabetes (Table 3, Model 1). Coefficients varied between those 

without and with diabetes in eGFR <60 ml/min/1.73 m2: older age was protective for ≥40% 

decline in eGFR or kidney failure in those with diabetes, but not in people without diabetes, and 
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male sex was a risk factor in patients without diabetes but protective in those with diabetes. 

Higher urine ACR was a consistent predictor of higher risk of adverse outcomes.  

 

Systolic blood pressure, a history of heart failure, and smoking status were again strong risk 

factors in people with eGFR <60 ml/min/1.73 m2 (Table 3, Model 2). The median (25th -75th 

percentile of cohorts) C-statistic for Model 2 was 0.750 (0.731, 0.785) and 0.769 (0.758,0.808) in 

the validation cohorts for people without and with diabetes, respectively. Calibration is shown in 

Figure 1C and D. The observed risk in the top vs. bottom decile was greater with Model 2 

compared with Model 1 (median (IQR) cohort risk gradient: 11.6 (10.2-13.6) vs. 8.9 (8.3-10.5) 

in those without diabetes, 19.5 (16.2-19.6) vs. 17.3 (16.2-19.6) in those with diabetes). Adding 

prior eGFR slope did not significantly improve discrimination in the validation cohorts in either 

the population without or with diabetes (Table 3, Model 3).  

 

 

Sensitivity analyses 

Model performance was similar when estimated using hypertension as a categorical variable 

(instead of systolic blood pressure and anti-hypertension medications) in both eGFR <60 

ml/min/1.73 m2 and eGFR ≥60 ml/min/1.73 m2 (Supplemental Tables S6-7). Risk factors were 

similar when modeling the outcome as 30% decline or kidney failure, and as 50% decline or 

kidney failure, although absolute risks were higher for the former and lower for the latter 

(Supplemental Tables S8-11). The C-statistics for the 50% decline were generally higher, 

consistent with the relative rarity of the event. Finally, when multinomial models were used to 
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capture the competing event of death, risk relationships were fairly consistent, with risk 

estimates on average 1.5%, 0.9%, 2.0%, 2.7% lower when using the competing risk model in 

eGFR ≥60 without diabetes, eGFR ≥60 with diabetes, eGFR <60 without diabetes, eGFR <60 

with diabetes. (Supplemental Figure S1; Supplemental Table S12).  

 

Conclusions 

In this multinational collaborative meta-analysis including >1 million individuals across 43 

cohorts, we developed new models that predict ≥40% decline in eGFR or kidney failure for use 

in the general population. The risk tools are publicly available and may be useful in medical 

management and in clinical trial design (www.ckdpcrisk.org/gfrdecline40).(9-13) We chose 

≥40% decline in eGFR or kidney failure as an outcome since it is accepted as a valid surrogate 

endpoint by regulatory bodies, but there was consistency in risk relationships when eGFR 

declines of ≥30% or ≥50% decline were examined. These models, when used in primary care 

settings, can identify patients at high risk of CKD progression even when eGFR is preserved. 

Additional work should evaluate how these and other equations developed for this population, 

such as our models to predict incidence of eGFR <60 ml/min/1.73 m2 and incidence of 

albuminuria in people with and without diabetes mellitus,(27) could inform clinical care and trial 

recruitment.   

 

Equations predicting ≥40% decline in eGFR or kidney failure may be useful if implemented in 

clinical practice, before significant eGFR decline has occurred. Despite decades of research and 

health policy work, CKD remains largely unrecognized until advanced stages (eGFR <30 
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ml/min/1.73 m2),(28) when the window for intervention and kidney failure prevention is lost. 

Even patients at high risk of kidney failure remain largely unaware of their diagnosis and 

prognosis, and they continue to receive suboptimal care.(29; 30) Multiple disease-modifying 

therapies are available for patients: both SGLT2I and newer mineralocorticoid receptor 

antagonists improve CKD progression outcomes when given with renin-angiotensin system 

inhibitors. Thus, the new equation can identify high-risk patients who would benefit from an 

early “triple therapy approach” to prevent kidney failure over their lifetime.(5-8) Conversely, the 

potential side effects of triple therapy may outweigh the potential benefit in some low-risk 

individuals with CKD Stage G1-G2, and emphasize the need for risk stratification in early 

disease. When combined with risk prediction tools for cardiovascular disease, prediction tools 

for kidney outcomes can help personalize treatment choices, nominating specific medication 

regimens over others that may be less useful in a given patient. 

 

Predicting 40% decline in eGFR emphasizes the importance of risk factors for CKD progression 

over current eGFR. eGFR itself is critical but a poor treatment target since glomerular sclerosis is 

irreversible. In Tangri’s KFRE for patients with eGFR <60 ml/min/1.73 m2, eGFR is the 

dominant risk factor with a relative hazard of 0.57 per 5 ml/min/1.73m2.(14) In our general 

population models to predict a 40% decline in eGFR, however, eGFR is only modestly or not 

associated with the outcome (relative hazard 0.83-1.03 per 5 ml/min/1.73 m2).  These differences 

– and the fact that the vast majority of patients with early CKD do not develop kidney failure(31) 

-- suggest that our models fill an important gap for use in general population.   
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Because we observed that many of the risk factor associations were different within groups 

categorized by the presence or absence of eGFR <60 ml/min/1.73 m2 and diabetes mellitus, we 

developed separate risk equations for each. For example, older age was a risk factor for eGFR 

decline in eGFR ≥60 ml/min/1.73 m2 but not among eGFR <60 ml/min/1.73 m2. The most 

consistent risk factor across models was albuminuria, a potentially modifiable metric of disease 

activity.  Vascular disease, particularly heart failure, and vascular risk factors, particularly higher 

systolic blood pressure, also consistently heralded a higher risk of 40% decline in eGFR.  

Interestingly, incorporating prior eGFR slope did not greatly improve any of the risk models’ 

performance. Since eGFR slopes require additional calculation for use in risk tools, the logistical 

issues in implementation may not be worth the incremental benefit.  

 

Strengths of this study include its large sample size and diversity in geography, ethnicity and 

health system design, providing strong evidence for generalizability. Our new equations use 

readily available inputs for accurate prediction of a 40% decline in eGFR. However, there are 

some limitations. First, we focused on patients who had measurements for eGFR and 

albuminuria (allowing quantitative and dipstick proteinuria measures among patients without 

diabetes). Thus, some results may be biased due to an informative measurement process or 

inaccurate when catalogued in the electronic medical record. However, we did not see any 

differences in accuracy in cohort studies where measurements were part of scheduled study 

visits. Second, we were unable to test biomarkers such as cystatin C, neutrophil gelatinase-

associated lipocalin (NGAL), kidney injury molecule-1 (KIM1), or tumor necrosis factor (TNF)-

receptor superfamily members 1A and 1B. These tests are not available in most patients; models 

incorporating these tests would require a change from current practice. As cystatin C use 
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increases in clinical settings, inclusion or substitution of cystatin C-based eGFR for creatinine-

based eGFR should also be tested.  Finally, which cutoffs should define low, medium and high 

risk and how they best connect to clinical actions remains to be defined. 

 

In conclusion, our new equations for predicting 40% decline in kidney function may inform 

clinical trial design as well as identify individuals at high-risk for CKD progression for effective 

intervention, early in the course of disease. Implementation studies of the new equations in 

health systems are needed. 
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Table 1. Summary characteristics of cohorts used in model development and validation for prediction of the composite 
outcome of ≥40% decline in eGFR or kidney failure  

  Population with eGFR ≥60 ml/min/1.73 m2 Population with eGFR <60 ml/min/1.73 m2 
 Population without diabetes Population with diabetes Population without diabetes Population with diabetes 
 Development Validation Development Validation Development Validation Development Validation 
Number of 
cohorts 19 18 20 20 19 21 20 21 
Number of 
participants 492669 556014 126638 244476 58094 64183 30530 49215 
eGFR 30% 
decline, n (%) 14997 (3%) 17389 (3%) 9249 (7%) 19012 (8%) 6413 (11%) 6947 (11%) 5693 (19%) 9176 (19%) 
eGFR 40% 
decline, n (%) 6355 (1%) 6643 (1%) 4183 (3%) 8642 (4%) 3516 (6%) 3815 (6%) 3345 (11%) 5491 (11%) 
eGFR 50% 
decline, n (%) 2923 (1%) 2866 (1%) 2038 (2%) 4139 (2%) 1967 (3%) 2166 (3%) 2015 (7%) 3428 (7%) 
Age, year  54 (15) 55 (15) 59 (13) 61 (12) 71 (12) 72 (11) 70 (10) 71 (10) 
Female, % 60 60 48 36 62 62 55 46 
eGFR, 
ml/min/1.73m2  92 (16) 92 (17) 90 (16) 89 (16) 47 (11) 47 (10) 46 (11) 47 (11) 
ACR/PCR 
available?* 7.2 9.1 100 100 20 19 100 100 
ACR, median 
(IQI) 9 (5-21) 9 (5-20) 12 (6-31) 12 (6-31) 19 (9-98) 23 (8-104) 27 (10-109) 28 (10-124) 
Dipstick 
proteinuria + or 
higher, % 6.9 9.1 NA NA 17 18 NA NA 
Hypertension, % 42 48 78 81 76 84 93 95 
Systolic blood 
pressure (SD), 
mmHg 125 (16) 126 (17) 130 (16) 131 (16) 130 (18) 130 (18) 132 (18) 132 (18) 
Anti-hypertensive 
medication use, % 27 28 47 38 53 54 65 59 
Heart failure, % 2.2 2.8 5.4 6.2 12 14 18 19 
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Coronary heart 
disease, % 9.2 12 19 25 26 31 38 42 
Atrial fibrillation, 
% 3.8 4.6 5.8 6.3 14 16 15 16 
Current smoker, 
% 5.6 9.3 8.1 16 5.2 7.8 6.3 11 
Former smoker, 
% 13 15 20 23 20 22 26 27 
Body mass index 
(SD), kg/m2 29 (7) 30 (17) 34 (8) 33 (7) 29 (6) 29 (6) 33 (7) 33 (7) 
Hemoglobin A1c 
(SD), % NA NA 7.5 (1.7) 7.4 (1.6) NA NA 7.2 (1.5) 7.3 (1.4) 
Oral glucose 
lowering  
medication use, % NA NA 48 49 NA NA 39 40 
Insulin use, % NA NA 21 19 NA NA 27 25 
Prior 2-year 
eGFR slope < -3 
ml, % 29.8 29.4 31.7 31.1 52.0 49.4 53.9 55.8 
Prior 2-year 
eGFR slope 
between -3 and -1 
ml, % 16.4 15.3 17.8 18.8 16.6 17.1 15.9 15.5 
Prior 2-year 
eGFR slope 
between -1 and 1 
ml, % 22.5 22.5 20.4 20.9 14.6 15.5 13.8 13.4 
Prior 2-year 
eGFR slope ≥ 1 
ml, % 31.2 32.9 30.1 29.1 16.9 17.9 16.4 15.4 
Mean (SD) are shown except where noted otherwise 
* PCR was converted to ACR; dipstick was only converted to ACR in population without diabetes 
NA – not applicable as the risk factor was not included in risk models. 
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Table 2. Models predicting the composite outcome of ≥40% decline in eGFR or kidney failure in the population with eGFR 
≥60 ml/min/1.73 m2 and performance in the development and validation cohorts 

 No Diabetes Diabetes  
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Age, 10y 1.59 (1.50, 1.69) 1.45 (1.36, 1.54) 1.40 (1.29, 1.52) 1.15 (1.11, 1.20) 1.16 (1.10, 1.22) 1.13 (1.06, 1.22) 
Male 0.97 (0.88, 1.07) 0.87 (0.79, 0.95) 0.79 (0.69, 0.89) 0.80 (0.74, 0.87) 0.78 (0.71, 0.86) 0.77 (0.68, 0.86) 
eGFR, 5ml 1.02 (1.00, 1.05) 1.03 (1.02, 1.05) 1.02 (1.00, 1.05) 0.93 (0.91, 0.95) 0.95 (0.92, 0.97) 0.95 (0.93, 0.98) 
lnACR* 1.59 (1.50, 1.68) 1.52 (1.44, 1.61) 1.46 (1.36, 1.56) 1.64 (1.60, 1.68) 1.51 (1.45, 1.56) 1.48 (1.42, 1.54) 
Systolic blood pressure, 20mmHg   1.36 (1.28, 1.44) 1.33 (1.21, 1.46)   1.16 (1.04, 1.30) 1.17 (1.02, 1.34) 
Anti-hypertensive medication use   1.30 (1.12, 1.51) 1.39 (1.19, 1.64)   1.33 (1.21, 1.46) 1.32 (1.17, 1.49) 
SBPxHTN meds   0.89 (0.83, 0.96) 0.88 (0.77, 1.00)   0.97 (0.86, 1.09) 0.90 (0.77, 1.05) 
History of HF   2.87 (2.48, 3.32) 2.78 (2.32, 3.33)   2.52 (2.17, 2.92) 2.66 (2.22, 3.18) 
History of CHD   1.51 (1.36, 1.67) 1.59 (1.37, 1.83)   1.24 (1.10, 1.41) 1.14 (0.98, 1.33) 
History of Afib   1.12 (0.91, 1.38) 1.12 (0.89, 1.43)   1.36 (1.04, 1.79) 1.51 (1.15, 2.00) 
Current smoker   1.46 (1.20, 1.79) 1.46 (1.15, 1.84)   1.13 (0.98, 1.30) 1.19 (1.00, 1.41) 
Former smoker   1.20 (1.10, 1.31) 1.21 (1.06, 1.37)   1.08 (0.96, 1.22) 1.05 (0.92, 1.20) 
BMI, 5 kg/m2   1.04 (1.01, 1.08) 1.04 (1.00, 1.09)   1.03 (1.00, 1.06) 1.02 (0.98, 1.06) 
HbA1c, mmol      1.10 (1.07, 1.14) 1.25 (1.04, 1.51) 
Oral antiDM medication      0.94 (0.83, 1.06) 1.03 (0.82, 1.29) 
Insulin      1.27 (1.08, 1.49) 1.47 (1.24, 1.73) 
Slope† <-3 ml     1.25 (1.03, 1.53)     1.09 (1.05, 1.13) 
-3ml ≤ Slope† < -1 ml     1.13 (0.93, 1.38)     0.93 (0.80, 1.08) 
Slope† ≥ 1 ml     1.69 (1.45, 1.98)     1.21 (0.99, 1.49) 

 
Development population, N 456,129 456,129 181,619 123,201 123,201 78,285 

Median C-statistic (IQR) 0.715 (0.679, 
0.741) 

0.740 (0.702, 
0.776) 

0.739 (0.703, 
0.761) 

0.730 (0.698, 
0.737) 

0.759 (0.738, 
0.780) 

0.751 (0.717, 
0.766) 

Change in c-statistic from previous 
model/column (using same N) ‡   

0.029 (0.021, 
0.038) 

0.007 (0.003, 
0.010) NA 

0.035 (0.029, 
0.041) 

0.004 (0.002, 
0.006) 

Validation population, N 550,179 550,179 236,284 238,440 238,440 142,673 

Median C-statistic (IQR) 0.704 (0.681, 
0.738) 

0.740 (0.717, 
0.763) 

0.743 (0.708, 
0.758) 

0.750 (0.719, 
0.758) 

0.774 (0.753, 
0.782) 

0.766 (0.747, 
0.796) 

Change in c-statistic from previous 
model/column (using same N) ‡   

0.031 (0.026, 
0.036) 

0.008 (0.004, 
0.012)   

0.028 (0.022, 
0.034) 

0.003 (0.001, 
0.005) 

*lnACR was converted by urine dipstick protein using published equation as: lnACR = 2.4732 + 0.7537 × (if trace) + 1.7346 × (if +) + 3.3624 × (if ++) + 4.6676 
× (if more than ++) 
†Reference: -1 ml/min/1.73 m2/year ≤ Slope < 1 ml/min/1.73 m2/year 
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‡Change in Model 2 c-statistic is from Model 1, run with the same sample size. Change in Model 3 c-statistic is from Model 2, re-run with the smaller sample 
size of Model 3. 
Bold indicates statistically significant result
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Table 3. Models predicting the composite outcome of ≥40% decline in eGFR or kidney failure in cohorts with eGFR <60 
ml/min/1.73 m2  
 No Diabetes Diabetes  

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 
Age, 10y 0.97 (0.93, 1.01) 0.92 (0.87, 0.98) 0.86 (0.79, 0.93) 0.86 (0.80, 0.92) 0.84 (0.78, 0.91) 0.84 (0.77, 0.92) 
Male 1.11 (1.02, 1.20) 1.06 (0.96, 1.18) 1.04 (0.91, 1.19) 0.89 (0.79, 0.99) 0.86 (0.77, 0.97) 0.88 (0.76, 1.01) 
eGFR, 5ml 0.83 (0.80, 0.86) 0.85 (0.82, 0.87) 0.83 (0.80, 0.86) 0.91 (0.88, 0.94) 0.93 (0.89, 0.96) 0.92 (0.88, 0.96) 
lnACR* 1.51 (1.46, 1.56) 1.48 (1.43, 1.53) 1.45 (1.39, 1.51) 1.67 (1.59, 1.74) 1.59 (1.51, 1.68) 1.56 (1.48, 1.65) 
Systolic blood pressure, 20mmHg   1.27 (1.18, 1.37) 1.34 (1.18, 1.52)   1.23 (1.12, 1.35) 1.24 (1.11, 1.40) 
Anti-hypertensive medication use   1.08 (0.95, 1.24) 1.21 (1.05, 1.40)   1.18 (1.02, 1.36) 1.23 (1.03, 1.47) 
SBPxHTN meds   0.98 (0.89, 1.07) 0.99 (0.84, 1.16)   0.95 (0.85, 1.05) 0.95 (0.83, 1.08) 
History of HF   1.63 (1.43, 1.86) 1.70 (1.45, 1.99)   1.52 (1.33, 1.75) 1.62 (1.38, 1.91) 
History of CHD   1.26 (1.13, 1.41) 1.27 (1.10, 1.46)   1.24 (1.09, 1.42) 1.15 (0.98, 1.36) 
History of Afib   1.08 (0.88, 1.31) 1.15 (0.89, 1.47)   1.05 (0.86, 1.27) 0.96 (0.77, 1.19) 
Current smoker   1.34 (1.08, 1.66) 1.27 (0.93, 1.74)   0.97 (0.76, 1.23) 0.97 (0.73, 1.29) 
Former smoker   1.19 (1.06, 1.34) 1.17 (1.00, 1.37)   1.15 (1.02, 1.30) 1.15 (1.01, 1.31) 
BMI, 5 kg/m2   0.98 (0.93, 1.02) 0.95 (0.90, 1.00)   1.03 (0.99, 1.06) 1.05 (1.01, 1.10) 
HbA1c, mmol      1.00 (0.96, 1.04) 0.99 (0.79, 1.25) 
Oral antiDM medication      0.88 (0.76, 1.02) 1.08 (0.82, 1.41) 
Insulin      1.10 (0.95, 1.28) 1.24 (0.93, 1.64) 
Slope† <-3 ml     0.93 (0.75, 1.15)     0.98 (0.93, 1.03) 
-3ml ≤ Slope† < -1 ml     0.97 (0.77, 1.22)     0.95 (0.80, 1.13) 
Slope† ≥ 1 ml     1.42 (1.12, 1.79)     1.17 (0.97, 1.41) 

 
Development population, N 50567 50567 29595 29145 29145 21591 

Median C-statistic (IQR) 0.702 (0.692, 
0.725) 

0.735 (0.717, 
0.764) 

0.739 (0.716, 
0.762) 

0.763 (0.720, 
0.788) 

0.787 (0.738, 
0.805) 

0.775 (0.731, 
0.787) 

Change in c-statistic from previous 
model/column (using same N) ‡   

0.024 (0.018, 
0.030) 

0.004 (0.001, 
0.007)   

0.017 (0.013, 
0.021) 

0.002 (0.001, 
0.003) 

Validation population, N 63717 63717 39015 48041 48041 34350 

Median C-statistic (IQR) 0.712 (0.677, 
0.772) 

0.750 (0.731, 
0.785) 

0.743 (0.706, 
0.793) 

0.760 (0.731, 
0.799) 

0.769 (0.758, 
0.808) 

0.766 (0.756, 
0.808) 

Change in c-statistic from previous 
model/column (using same N) ‡   

0.025 (0.015, 
0.036) 

0.002 (-0.002, 
0.006) 

0.760 (0.731, 
0.799) 

0.012 (0.007, 
0.018) 

0.001 (-0.000, 
0.002) 

*lnACR was converted by urine dipstick protein using published equation as: lnACR = 2.4732 + 0.7537 × (if trace) + 1.7346 × (if +) + 3.3624 × (if ++) + 4.6676 
× (if more than ++) 
†Reference: -1 ml/min/1.73 m2/year ≤ Slope < 1 ml/min/1.73 m2/year 
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‡Change in Model 2 c-statistic is from Model 1, run with the same sample size. Change in Model 3 c-statistic is from Model 2, re-run with the smaller sample 
size of Model 3. 
Bold indicates statistically significant result
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Figure 1. Calibration of the new equations to predict 40% decline in eGFR over 2-3 years 
in validation cohorts (A) with eGFR ≥60 ml/min/1.73 m2 and no diabetes; (B) with eGFR 
≥60 ml/min/1.73 m2 and diabetes; (C) with eGFR <60 ml/min/1.73 m2 and no diabetes; and 
(D) with eGFR <60 ml/min/1.73 m2 and diabetes 
Figure legend: light gray --- <100 events; gray --- 100 ~ 199 events; dark gray --- 200 ~ 399 events; black 
--- 400+ events 
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