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Maps of the geographical variation in prevalence play an important role in large-scale programs for the control of neglected trop-
ical diseases. Precontrol mapping is needed to establish the appropriate control intervention in each area of the country in question. 
Mapping is also needed postintervention to measure the success of control efforts. In the absence of comprehensive disease registries, 
mapping efforts can be informed by 2 kinds of data: empirical estimates of local prevalence obtained by testing individuals from a 
sample of communities within the geographical region of interest, and digital images of environmental factors that are predictive 
of local prevalence. In this article, we focus on the design and analysis of impact surveys, that is, prevalence surveys that are con-
ducted postintervention with the aim of informing decisions on what further intervention, if any, is needed to achieve elimination 
of the disease as a public health problem. We show that geospatial statistical methods enable prevalence surveys to be designed 
and analyzed as efficiently as possible so as to make best use of hard-won field data. We use 3 case studies based on data from soil-
transmitted helminth impact surveys in Kenya, Sierra Leone, and Zimbabwe to compare the predictive performance of model-based 
geostatistics with methods described in current World Health Organization (WHO) guidelines. In all 3 cases, we find that model-
based geostatistics substantially outperforms the current WHO guidelines, delivering improved precision for reduced field-sampling 
effort. We argue from experience that similar improvements will hold for prevalence mapping of other neglected tropical diseases.

Keywords.   control of neglected tropical diseases; geospatial analysis; impact survey; model-based geostatistics; prevalence 
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Soil-transmitted helminths (STHs) are a group of intestinal nema-
todes mainly composed of Ascaris lumbricoides (roundworms), 
Trichuris trichiura (whipworms), and Necator americanus and 
Ancylostoma duodenale (hookworms). Each of the 4 STH species 
has distinct characteristics, but control programs generally con-
sider them as a single group because of their similar transmission 
dynamics, diagnosis, control, and prevention measures [1].

Infection with STHs affects both children and adults. It can 
lead to iron deficiency anemia, protein energy malnutrition, 
prolapsed rectum, and stunted growth. Severe cases can lead to 
intestinal obstructions and gangrene [2].

The STH parasites are transmitted to the human host through 
soil contaminated with human faeces containing the parasites. 

Repeated mass drug administration (MDA) with albendazole 
or mebendazole is used to control morbidity. Periodical sur-
veys are necessary to monitor the impact of the intervention 
and adapt the control measures to the changing epidemiological 
situation [3].

 World Health Organization (WHO) guidelines [4] specify 
that the prevalence of STHs in a designated geographical area 
should be estimated as the observed proportion of positive test 
results. The value of this estimate then determines whether 
MDA should continue and, if so, at what frequency [4]. This 
estimate is almost always inefficient and often substantially so, 
because it takes no account of geographical variation in risk 
within the area of interest.

 The term geostatistics refers to a collection of statistical 
methods for learning about a spatially continuous phenom-
enon of scientific interest that varies over a designated ge-
ographical region, using data collected from a finite set of 
survey locations. Diggle et al [5] coined the term model-based 
geostatistics to mean the application of general principles of 
statistical method to geostatistical problems. These general 
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principles include the following: design the data collection to 
yield data that are as informative as possible about the ques-
tions of scientific interest, subject to practical constraints; 
formulate a model that is as simple as possible while being 
compatible with both the data and existing scientific know-
ledge; use efficient statistical methods to ensure that predic-
tions are as precise as possible.

 Our aim in this study is to demonstrate the advantages of 
using model-based geostatistics to design and analyze prev-
alence surveys in low-resource settings. Our particular focus 
is on the design and analysis of impact surveys, that is, preva-
lence surveys that are conducted postintervention with the aim 
of informing decisions on what further intervention, if any, is 
needed to achieve elimination of the disease as a public health 
problem.

 We use 3 case studies based on data from STH impact sur-
veys in Kenya, Sierra Leone, and Zimbabwe to compare the pre-
dictive performance of model-based geostatistics with methods 
described in current WHO guidelines [4]. In all 3 cases, we find 
that model-based geostatistics substantially outperforms the 
current WHO guidelines, delivering improved precision for 
reduced field-sampling effort. We also argue from experience 
that similar improvements will hold for prevalence mapping 
of other neglected tropical diseases or, more generally, to any 
setting in which geographical variation in prevalence exhibits 
spatial correlation.

METHODS

Design of STH Prevalence Surveys

Monitoring is an integral component of any STH control pro-
gram. Its purpose is to evaluate an implemented intervention 
and assess its impact. Surveys are usually conducted in schools 
or sentinel sites within a designated study region on the tacit 
assumption that data on prevalence in the surveyed schools will 

provide sufficient information to evaluate the program’s prog-
ress in the entire area. Surveys are usually targeted at school-
aged children (SAC), among whom prevalence of roundworm 
and whipworm infections is typically higher than in pre-SAC 
and adults.

The main elements of an STH survey design are (1) the 
number of schools to sample; (2) the number of children to test 
in every school; and (3) the locations of the sampled schools. 
Current guidelines include a recommendation to sample 50 
children per school to enable field researchers to survey a school 
in a single visit. The number of schools surveyed will be limited 
by the available budget. With regard to the locations of sampled 
schools, a random design (Figure 1) avoids any possibility of 
bias, but in the current geographical setting can result in sam-
pling near-neighboring schools that partially duplicate each 
other’s information if prevalence exhibits smooth spatial varia-
tion over the study region. A way to counter this is to aim for a 
more even spatial distribution of sampled schools. However, if 
done subjectively, this risks introducing bias.

To achieve an even spatial distribution of sampled schools 
while avoiding subjective bias, we recommend the use of a spa-
tially regulated sampling design (Figure 1).

This class of designs uses a constrained randomization that 
imposes a minimum distance between any 2 sampled locations 
and usually leads to better predictive performance [6].

Purposeful sampling, whereby schools are selected according 
to expert knowledge of the population and the distribution of 
the disease, also introduces bias. An objective way to take ad-
vantage of expert knowledge of this kind is to prestratify the 
study region, in which case we recommend spatially regulated 
sampling within each stratum.

Whatever design is used, it is advantageous to identify spa-
tially varying environmental factors that are known, or likely, to 
be associated with spatial variation in prevalence and are avail-
able in the form of digital images covering the study region. 

Figure 1.  Locations of the 1559 candidate primary schools in Sierra Leone (left panel). Spatially random and spatial regulated designs for 73 sampled schools (middle and 
right panels, respectively). The spatially regulated design imposes a minimum distance of 20 km between any 2 sampled schools.
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Variables of this kind should be considered for inclusion as ex-
planatory variables in the analysis of the survey data so as to 
improve predictive precision.

An implementation unit (IU) is a geographical area over 
which a particular treatment strategy will be applied; this could 
be a district, county, province, or whole country. After 5 or 
6 years of MDA, it is expected that disease prevalence will be 
lowered to the point at which a reduction in the frequency of 
subsequent rounds of MDA can be considered. According to 
the WHO STH decision tree [4], after 5 years of twice-yearly  
application, the MDA regimen should continue according to 
a set of endemicity classes defined by prevalence thresholds as 
follows: suspend MDA if STH prevalence is less than 2%; con-
duct MDA every 2 years if STH prevalence is between 2% and 
10%; annually if between 10% and 20%; twice yearly if between 
20% and 50%; and thrice yearly if greater than 50%.

Analyzing Prevalence Survey Data According to WHO Guidelines

According to WHO guidelines [4], the IU-level prevalence 
should be estimated by the formula

Prevalence =
Number of STH cases

Number of individuals tested
� (1)

This estimate is unbiased, albeit inefficient, provided that par-
ticipants (schools and children) are randomly chosen from the 
general population. Also according to WHO guidelines, the es-
timate given in equation (1) should be used to classify each IU 
into the endemicity classes listed above, with no consideration 
given to its associated degree of uncertainty.

Model-Based Geostatistical Analysis of Prevalence Survey Data

Diggle and Giorgi [7] give a complete account of the model-
based geostatistical approach to the analysis of georeferenced 
health outcome data. A short outline follows.

Our outcome of interest is the prevalence of any STH infec-
tion. We write P(x) for the true prevalence at any location x. The 
data collected at each sampled location x include the number, 
n(x), of individuals whose disease status we ascertain using a 
suitable test instrument, and the number, Y(x), who return a 
positive test result. The estimate of P(x) implied by the WHO 
guidelines is the observed proportion of test-positive results, 
q(x) = y (x)/n (x), but this is of limited value for 2 reasons. First, 
it tells us nothing about the prevalence anywhere other than at 
x; second, except in very rare circumstances it is not even the 
best estimate of P (x) itself.

One way to obtain a better estimate is to collect data on meas-
urements of 1 or more explanatory variables, d(x), attributes of 
x that we believe may be associated with P(x), and to fit a regres-
sion model, typically a logistic regression [8], to the complete 
data set. If values of d (x) are available at unsampled locations, 
for example as a set of digital images over the designated region, 
this addresses the first limitation of the naive estimate, q (x). But 

we can do better still by recognizing that in most cases, the avail-
able set of explanatory variables will not completely explain the 
spatial variation in prevalence. We therefore extend the logistic 
regression model by including an unobserved stochastic pro-
cess, S(x), to represent the variation in P(x) that is not explained 
by d (x). The resulting geostatistical logistic model assumes that

log (P (x) / (1 − P (x))) = d (x)′ β + S (x) + Z

and that, given P(x), the observed test-positive counts, y(x), 
are independent and binomially distributed with probabilities 
P(x) and denominators n(x).

In this model, the essential feature of S(x) is that its values at 
different locations, x and x′ say, are correlated to an extent that 
depends on the distance between x and x′ in a manner that we 
can estimate from the data along with the regression parameters 
β. For reasons of statistical efficiency and probity, we advocate 
likelihood-based methods (maximum likelihood or Bayesian) 
to estimate the model parameters, and probabilistic methods 
to predict scientifically interesting features of the unobserved 
prevalence surface P(x).

A Model-Based Decision Algorithm

We propose a probabilistic classification algorithm for IUs that 
proceeds as follows:

	1.	Fit to the available data a geostatistical logistic model in-
cluding any available covariates that can help to explain the 
spatial variability in infection.

	2.	For each IU, draw samples from the predictive distribution of 
the IU-wide population-weighted prevalence.

	3.	Calculate the predictive probability of belonging to each of 
the 5 endemicity classes and assign to the IU the endemicity 
class with the highest probability.

Case Studies

We have conducted simulations based on STH prevalence data 
collected in Zimbabwe [9], Kenya [10], and Sierra Leone [11] 
with 2 objectives: to evaluate the performance of our model-
based decision algorithm under different sampling designs, 
and to compare the results with the performance of the WHO 
guideline in conjunction with random sampling of school loca-
tions. All 3 countries had undergone 4 or more rounds of MDA 
prior to data collection. All surveys targeted SAC and assessed 
infection by the Kato-Katz method [12] using slides prepared 
from a stool specimen collected from each child on the day 
of the survey (1 slide per person in Sierra Leone, 2 slides per 
person in Kenya and Zimbabwe). The objectives of each preva-
lence survey were to measure the impact of PC interventions on 
STH prevalence, to assess the endemicity level of each IU, and 
to decide the treatment regimen for subsequent years.

We created 56 candidate survey designs by varying the 3 key 
design elements as follows:
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	1.	Number of schools to sample. We sampled a fraction, ranging 
between 40% and 100%, of the number of schools originally 
sampled in each country.

	2.	Number of children per school. We set this number at either 
30, 50, 70, or 100.

	3.	Locations of the sampled schools. We compared random 
and spatially regulated designs, in each case without 
prestratification.

The true prevalence surface, P (x) , is unknown. We there-
fore fitted a geostatistical model to the complete data set from 
each country, including various environmental characteris-
tics as explanatory variables, as reported in the Results. From 
the fitted model we calculated the predicted prevalence sur-
face and the corresponding endemicity class of each IU. We 
used the resulting classification as the benchmark relative to 
which we evaluated the performance of each candidate design, 
using as performance criterion the proportion of IUs correctly 
classified.

For each of the 56 candidate sampling designs, we replicated 
the following procedure 1000 times.

	1.	Simulate a synthetic data set from the benchmark prevalence 
surface.

	2.	Fit a geostatistical logistic model to the synthetic data set and 
assign to each IU an endemicity class using both the WHO 
guideline and the model-based decision algorithm.

	3.	Calculate the proportion of correctly classified IUs.

We then took as our measure of the performance of each candi-
date design the average, over all 1000 replicates, of the propor-
tion of correctly classified IUs.

RESULTS

Table 1 shows a summary of the survey data used for our 3 case 
studies. At the time of sampling, Zimbabwe had a much lower 
average prevalence than either Sierra Leone and Kenya. The 3 
data sets also vary substantially in size.

Figure 2 shows, for each country, the empirical STH preva-
lence at each sampled location. We fitted a geostatistical model 
to the data from each country as described above (“Model-
Based Geostatistical Analysis of Prevalence Survey Data”), in-
cluding in each case selecting covariates from a set of spatially 
varying environmental factors that are known to be potential 
drivers of STH infection (Supplementary Material 3). Figure 
3 shows the resulting predicted prevalence surfaces that, as 
noted earlier, provide the benchmark for our performance 
comparisons.

Kenya

The data for the Kenya case study were collected in an impact 
assessment survey of 17 936 children in 172 schools. The survey 
was conducted in 2017 after 4 rounds of MDA [10]. Our fitted 
geostatistical model included 3 environmental covariates: en-
hanced vegetation index, day and night land surface tempera-
ture, and soil acidity. Because the surveyed schools were located 
in 2 widely separate regions of Kenya with different historical 

Table 1.  Summary Statistics for Soil-Transmitted Helminth Surveys Conducted in Kenya, Sierra Leone, and Zimbabwe

Country Survey Year MDA Rounds No. of Schools

No. of Cases  
Examined Cases Detected Prevalence

Total Mean Total Mean Minimum Mean Maximum

Kenya 2017 4 172 17 936 104 2712 16 0 15.0 67.6

Sierra Leone 2016 6 73 3632 50 663 9 0 18.3 53.1

Zimbabwe 2018 6 336 12 537 37 96 0 0 0.8 25.0

Abbreviation: MDA, mass drug administration.

Figure 2.  Empirical prevalence of any soil-transmitted helminth (STH) infection at each sampled location in Kenya, Sierra Leone, and Zimbabwe.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab192#supplementary-data
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levels of STH prevalence, the model also included region as a 
2-level factor (Supplementary Material 3).

Figure 4 shows the results. Using model-based geostatistics, 
spatially regulated sampling slightly outperforms spatially random 
sampling, and both comfortably outperform the WHO guideline.

Sierra Leone

The data for the Sierra Leone case study were collected in an 
impact assessment survey of 3632 children in 73 schools. The 
survey was conducted in 2016 after 6 rounds of MDA [11]. Our 
fitted geostatistical model included 2 environmental covariates: 
soil sand content and soil pH (Supplementary Material 3).

Figure 5 shows the results. Both model-based geostatistical 
analyses outperform the WHO guideline. Also, spatially regu-
lated sampling outperforms spatially random sampling by a 
greater margin than in Kenya.

Zimbabwe

The data for the Zimbabwe case study are from an impact as-
sessment survey of 12 537 children in 336 schools. The survey 
was conducted between September and December 2018 after 
6  years of MDA [9]. Our fitted geostatistical model included 
3 environmental covariates: night-light emission, soil moisture, 
and soil pH (Supplementary Material 3).

Figure 3.  Predicted prevalence surfaces for Kenya, Sierra Leone, and Zimbabwe. Abbreviation: STH, soil-transmitted helminth.

Figure 4.  Performance of different sampling designs in the Kenya case study. Average proportion of correctly classified implementation units by number of schools (as 
percentage of number used in original survey), number of children per school (30, 50, 70, or 100), and spatial sampling design (spatially random or spatially regulated). 
Abbreviations: IU, implementation unit; MBG, model-based geostatistics; WHO, World Health Organization.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab192#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab192#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab192#supplementary-data
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Figure 6 shows the results. Using model-based geostatistics, 
the performances of spatially random and spatially regulated 
sampling designs are almost identical, and substantially better 
than the performance obtained using the WHO guideline.

DISCUSSION

Our first and strongest finding is that in all cases a model-
based geostatistical analysis, whether used in conjunction with 
a spatially random or a spatially regulated design, substantially 
outperforms the WHO guideline with respect to correct clas-
sification of the endemicity class of an IU. Adoption of the 
model-based geostatistical approach would therefore enable 
future prevalence studies to achieve improved precision with 
smaller sample sizes than have been used hitherto. In practice, 

the size of any prevalence survey is constrained by the available 
budget. The optimum balance between the number of schools 
and the number of children per school sampled then depends 
on the relative costs of travel to schools and the processing of 
test results.

Our second finding is that a spatially regulated sampling 
design performs at least as well as, and sometimes substan-
tially better than, a spatially random design. This was es-
tablished theoretically in the case of unrestricted sampling 
locations in a 1960 Swedish PhD thesis by Matérn [13]. In 
the current context, sampling locations are restricted to the 
locations of schools and, as our case studies demonstrate, 
this can limit the gains in efficiency that accrue from spatially 
regulated sampling by comparison with spatially random 
sampling.

Figure 5.  Performance of different sampling designs in the Sierra Leone case study. Average proportion of correctly classified implementation units by number of schools 
(as percentage of number used in original survey), number of children per school (30, 50, 70, or 100), and spatial sampling design (spatially random or spatially regulated). 
Abbreviations: IU, implementation unit; MBG, model-based geostatistics; WHO, World Health Organization.
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Purposeful sampling involves the deliberate favoring of some 
survey locations because of their known or suspected charac-
teristics; for example, in monitoring for postelimination re-
crudescence, sampling in historical areas of high prevalence 
has an obvious rationale. However, for country-wide assess-
ment of prevalence, this brings an equally obvious risk of bias. 
A better strategy is to prestratify the study area, use a random-
ized (spatially random or regulated) sampling design within 
each stratum, and to include stratum as a factor in the fitted 
geostatistical model. When data from preintervention preva-
lence surveys are available, these can be used to design a strati-
fied impact survey in which areas of historically low prevalence 
can be undersampled, resulting in a more efficient use of limited 
resources.

When the goal of a survey is to predict, rather to understand 
the causes of, spatial variation in prevalence, covariate effects 
are not of direct interest. But they are still important, because 
their inclusion can improve precision by transferring what 
would otherwise be unexplained, stochastic variation in prev-
alence to explained, systematic variation. Judgments on which 
covariates to include should, however, be made with care, be-
cause in any particular setting, environmental variables that are 
known to be generally associated with prevalence may never-
theless make negligible contributions to variation in prevalence 
within the study area. Inclusion of such covariates can lead to 
reduced, rather than enhanced, precision.

Other than determining a relevant set of candidate environ-
mental covariates, the specific disease context has no bearing 
on the model-based geostatistics approach to prevalence survey 
design and analysis. We have used it in, among other settings, 
studies of the spatial variation in prevalence of loaiasis [14, 15], 
onchocerciasis [16], malaria [17], snakebite [18], and lymphatic 
filariasis [19]. Based on this wide experience, we contend that 
the advantages of a model-based geostatistical approach over 
traditional approaches to survey design and analysis are not 
limited to the STH setting of the current study but will hold for 
any setting in which geographical variation in prevalence ex-
hibits spatial correlation.

In conclusion, this study adds to the evidence in support of 
a novel approach to reduce the cost of monitoring and evalua-
tion of control activities for STH and other neglected tropical 
diseases. However, an obstacle to the widespread adoption of 
this approach is its need for additional expertise in statistical 
analysis. To this end, WHO, in collaboration with the Centre 
for Health Informatics, Computing, and Statistics (CHICAS) 
at Lancaster University, is engaged in providing training and 
computational tools to facilitate the collection and geostatistical 
analysis of epidemiological data in endemic countries.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader, 

Figure 6.  Performance of different sampling designs in the Zimbabwe case study. Average proportion of correctly classified implementation units by number of schools 
(as percentage of number used in original survey), number of children per school (30, 50, 70, or 100), and spatial sampling design (spatially random or spatially regulated). 
Abbreviations: IU, implementation unit; MBG, model-based geostatistics; WHO, World Health Organization.
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the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the 
corresponding author.
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