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The safety and efficacy of pharmacotherapy in children, particularly preterms, neo-

nates and infants, is limited by a paucity of good-quality data from prospective clinical

drug trials. A specific challenge is the establishment of valid biomarkers. OMICs tech-

nologies may support these efforts by complementary information about targeted

and nontargeted molecules through systematic characterization and quantitation of

biological samples. OMICs technologies comprise at least genomics, epigenomics,

transcriptomics, proteomics, metabolomics and microbiomics in addition to the

patient's phenotype. OMICs technologies are in part hypothesis-generating, allowing

an in depth understanding of disease pathophysiology and pharmacological mecha-

nisms. Application of OMICs technologies in paediatrics faces major challenges

before routine adoption. First, developmental processes need to be considered,
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including a subdivision into specific age groups as developmental changes clearly

impact OMICs data. Second, compared to the adult population, the number of

patients is limited as are the type and amount of necessary biomaterial, especially in

neonates and preterms. Thus, advanced trial designs and biostatistical methods, non-

invasive biomarkers, innovative biobanking concepts including data and samples from

healthy children, as well as analytical approaches (eg liquid biopsies) should be

addressed to overcome these obstacles. The ultimate goal is to link OMICs technolo-

gies with innovative analysis tools, such as artificial intelligence at an early stage. The

use of OMICs data based on a feasible approach will contribute to the identification

complex phenotypes and subpopulations of patients to improve the development of

medicines for children with potential economic advantages.
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1 | INTRODUCTION

The interindividual variability in the efficacy and safety of drugs in

both adults and children complicates the selection of the right drug

and the right dose for the individual patient. The extrinsic and intrinsic

factors that contribute to interindividual variability include disease

status, organ function (eg, liver, kidney), age, weight and lifestyle as

well as drug adherence.1,2 Around 20% of adverse drug reactions

(ADRs) are dose-independent, which cannot be explained from a

drug's conventional pharmacology. These “off-target” drug effects

may be explained by other factors, including pharmacogenomics (PGx)

variation.3,4

With improved knowledge of the human genome, genetic varia-

tion has been identified as a crucial influencing factor on pharmaco-

therapy and disease. Thus, PGx research is widely accepted in the

drug develoment process, including clinical trial activities. Of note, a

significant number of drug labels already include PGx information for

the adult population5 and international consortia like the Clinical

Pharmacogenetics Implementation Consortium (CPIC), the Dutch

Pharmacogenetics Working Group (DPWG), the Canadian Pharmaco-

genomics Network for Drug Safety (CPNDS) and the French National

Network (Réseau) of Pharmacogenetics (RNPGx) provide substantial

guideline information.3 In the meantime, it is well accepted that drug

safety and efficacy in children can also benefit substantially from PGx

research. In addition, developmental aspects that modify drug targets

and ADME (absorption, distribution, metabolism, elimination) pro-

cesses must be considered as well. This includes changes in body

composition and organ function, the expression and function of drug-

metabolizing enzymes and transporters as well as pharmacodynamics

drug targets such as receptors and specific proteins (eg, guanine

nucleotide-binding proteins).6 Thus, a more comprehensive approach

is warranted and in the meantime an initiative has been started to

collect information on paediatric ontogeny by a well-organized

knowledge base.7 Comprehensive translational and clinical research

activities are needed to gather robust data during the drug

development process in the paediatric population. This review aims to

address specifically various approaches, commonly termed as OMICS

technologies (Table 1), which should be considered more intensively

early in the development process for medicines in children and clinical

trial initiatives.

This review reflects a collaboration between researchers from the

Innovative Medicines Initiative conect4children (IMI c4c) Expert

Group on Pharmacogenomics and other OMICS technologies.95

2 | GENOMICS AND PGX

Genetic testing for variants underlying inherited diseases has been a

fundamental part of the health system for decades. Regarding

inherited genetic diseases, childhood is the crucial period for testing

to prevent negative long-term effects. Several diagnostic procedures

are well established and implemented in clinical practice early after

birth or even during pregnancy (eg, screening for trisomy 21). To

achieve nationwide testing for a number of severe inherited diseases

that are amenable to therapeutic strategies (eg, phenylketonuria),

high-income developed countries and a steadily growing number of

low- and middle-income countries have established newborn screen-

ing programmes (NBS) to detect inborn errors of metabolism early

after birth to provide subsequent therapeutic strategies. Diagnostic

methods include classical laboratory tests like immunoassays,

functional assays such as the detection of endogenous compounds via

mass-spectrometry, but also, increasingly, genomic procedures such

as next-generation sequencing. Genetic testing of the CFTR gene for

early detection of cystic fibrosis is, for example, part of NBS in

addition to screening of nongenetic parameters (eg, immunoreactive

trypsinogen). CFTR modulators like ivacaftor and lumacaftor are

labelled for treatment of children carrying variants which result in a

gating defect (CFTR class III variants) and/or a CFTR folding defect

(eg, F508del). Most recently, a conferred additional benefit regarding

efficacy and safety in children ≥12 years of age carrying the

2 NEUMANN ET AL.
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Phe508del-gating or Phe508del-residual function variants has been

reported for the CFTR modulator regimen using elexacaftor,

tezacaftor and ivacaftor compared to previous CFTR modulators.8

This example highlights the concept of PGx in children and the study

of variations of germline DNA related to drug response.18

However, consideration of PGx in the drug development process

in children remains limited compared to the adult setting, where use

of genomics to define disease susceptibility, prognosis and improve-

ment of drug response is more broadly implemented.96 Up to

December 2020 the FDA listed 431 pharmacogenomic biomarkers in

drug labelling, of which about 40% were related to oncology.5 A total

of 165 clinical annotation guidelines and 784 drug label annotations

are currently available at the PharmGKB website.97 Moreover, genetic

variation supports not only better prediction of efficacy and/or safety

of pharmacotherapy but also helps to identify new targets.

Numerous publications arising in the last decade have empha-

sized the importance of paediatric PGx.98–103 As in adults, oncology is

also pioneering in paediatric PGx and the example of treatment of

childhood acute lymphoblastic leukemia demonstrates this enormous

progress.12 Here, the risk of toxic events in response to drug treat-

ment can be significantly reduced by the consideration of PGx infor-

mation on thiopurine haematoxicity and TPMT and NUDT15

genotypes15,16 and on vincristine-related neurotoxicity and variants in

the gene encoding the centrosomal protein CEP72.17,21

Evidence for the benefit of preemptive and/or point-of-care PGx

testing is growing.104 The challenge for the implementation process of

PGx into clinical practice is currently well addressed by various expert

groups worldwide105-107 but requires evidence-based data from clini-

cal trials. As mentioned above, information from the CPIC, DPWG,

CPNDS and RNPGx includes evidence-based PGx recommendations

for dose-adjusted treatment or alternative drug therapy according to

pheno-/genotypes. Paediatric recommendations are part of PGx

guidelines, but data are mostly limited based on the small number of

studies involving children.108,109 An overview of the currently publi-

shed CPIC Guidelines and specific pediatric recommendations is given

in Table 2. PGx guidelines with relatively robust paediatric data are

also available for noncancer drugs, eg, atomoxetine and CYP2D613 as

well as tacrolimus and CYP3A5.20 The increased risk of

aminoglycoside-induced hearing loss in association with variants of

the MT-RNR1 gene is another well-accepted example10 since in young

children hearing skills are not fully developed and the impact of oto-

toxicity is particularly high. Regarding the different PGx guidelines

(CPIC, DPWG, CPNDS, RNPGx) some discordances exist, although

the committees have similar methodologies of gudieline develop-

ment.3 For instance, cisplatin-induced hearing loss has been associ-

ated with an increased risk particularly in children carrying TPMT

variants14 and the FDA added PGx information to the cisplatin drug

label.5 However, so far only the CPNDS strongly recommends TPMT

genotyping in children prior to starting a therapy with cisplatin.19

The increasing acceptance of paediatricans to implement PGx

guidelines is corroborated by a recent survey of paediatric providers

in the United States and Japan indicating that in >80% PGx was con-

sidered to improve paediatric drug efficacy and/or safety.133 In a veryT
A
B
L
E
1

(C
o
nt
in
ue

d)

O
M
IC
s

m
et
ho

ds
B
io
m
at
er
ia
l

M
et
ho

do
lo
gy

In
fo
rm

at
io
n

A
pp

lic
at
io
n

E
xa

m
p
le
s

H
u
gh

es
et

al
2
0
1
8
8
7

N
is
h
id
a
et

al
2
0
1
8
8
8

N
u
sb
au

m
et

al
2
0
1
8
8
9

M
an

et
al
2
0
1
7
9
0

Si
lb
er
ge

ld
2
0
1
7
9
1

Si
m

et
al
2
0
1
5
9
2

K
o
st
ic
et

al
2
0
1
4
9
3

H
ai
se
r
&
T
u
rn
b
au

gh
2
0
1
3
9
4

A
bb

re
vi
at
io
ns
:E

W
A
S,

ep
ig
en

o
m
e-
w
id
e
as
so
ci
at
io
n
st
ud

y;
G
W

A
S,

ge
no

m
e-
w
id
e
as
so
ci
at
io
n
st
ud

y;
LC

-M
S/
M
S,

liq
ui
d
ch

ro
m
at
o
gr
ap

hy
ta
nd

em
m
as
s
sp
ec
tr
o
m
et
ry
;m

iR
N
A
,m

ic
ro
R
N
A
;N

G
S,

n
ex

t
ge

n
er
at
io
n

se
qe

un
ci
ng

;N
M
R
,n

uc
le
ar

m
ag
en

ti
c
re
so
na

nc
e;

R
N
S-
Se

q,
R
N
A
se
qu

en
ci
ng

;W
G
B
S,

w
ho

le
-g
en

o
m
e
bi
su
lf
it
e
se
qu

en
ci
ng

.

NEUMANN ET AL. 5



T
A
B
L
E
2

C
ur
re
nt
ly

av
ai
la
bl
e
C
P
IC

gu
id
el
in
es

an
d
sp
ec
if
ic
pa

ed
ia
tr
ic
re
co

m
m
en

da
ti
o
ns

D
ru
gs

T
ar
ge

ts
A
pp

lic
ab

ili
ty

to
pa

ed
ia
tr
ic
pa

ti
en

ts
pr
o
po

se
d

Sp
ec

if
ic
p
ae

d
ia
tr
ic
re
co

m
m
en

d
at
io
n
s

A
ba

ca
vi
r1

1
0

H
LA

-B
Y
es

N
o

A
llo

pu
ri
no

l1
1
1

H
LA

-B
Y
es

N
o

A
m
ik
ac
in
,g
en

ta
m
ic
in
,k
an

am
yc
in
,p

ar
o
m
o
m
yc
in
,

pl
az
o
m
ic
in
,s
tr
ep

to
m
yc
in
,t
o
br
am

yc
in

1
0

M
T
-R
N
R
1

Y
es

Y
es

A
m
it
ri
pt
yl
in
e,

cl
o
m
ip
ra
m
in
e,

de
si
pr
am

in
e,

do
xe

pi
n,

im
ip
ra
m
in
e,

no
rt
ri
pt
yl
in
e,

tr
im

ip
ra
m
in
e1

1
2

C
Y
P
2
C
1
9
,C

Y
P
2
D
6

Y
es

N
o

at
az
an

av
ir
1
1
3

U
G
T
1
A
1

Y
es

N
o

at
o
m
o
xe

ti
ne

1
3

C
Y
P
2
D
6

Y
es

Y
es

A
za
th
io
pr
in
e,

m
er
ca
pt
o
pu

ri
ne

,t
hi
o
gu

an
in
e1

5
,1
1
4

N
U
D
T
1
5
,T

P
M
T

Y
es

Y
es

C
ap

ec
it
ab

in
e,

fl
uo

ro
ur
ac
il1

1
5

D
P
Y
D

Y
es

N
o

C
ar
ba

m
az
ep

in
e,

o
xc
ar
ba

ze
pi
ne

1
1
6

H
LA

-A
,H

LA
-B

Y
es

N
o

C
el
ec
o
xi
b,

fl
ur
bi
pr
o
fe
n,

ib
up

ro
fe
n,

lo
rn
o
xi
ca
m
,

m
el
o
xi
ca
m
,p

ir
o
xi
ca
m
,t
en

o
xi
ca
m

1
1
7

C
Y
P
2
C
9

Y
es

N
o

C
it
al
o
pr
am

,e
sc
it
al
o
pr
am

,f
lu
vo

xa
m
in
e,

pa
ro
xe

ti
ne

,

se
rt
ra
lin

e1
1
8

C
Y
P
2
C
1
9

Y
es

fo
r
C
Y
P
2
D
6
,

F
o
r
C
Y
P
2
C
1
9
w
it
h
ca
ut
io
n

N
o

cl
o
pi
do

gr
el

1
1
9

C
Y
P
2
C
1
9

Y
es

N
o

C
o
de

in
e,

hy
dr
o
co

do
ne

,t
ra
m
ad

o
l1
2
0

C
Y
P
2
D
6
,O

P
R
M
1
,C

O
M
T

Y
es

re
gu

la
to
ry

ag
en

ci
es

(e
g,
F
D
A
,E

M
A
)a

d
vi
se

ag
ai
n
st

th
e

u
se

o
f
co

d
ei
n
e/
tr
am

ad
o
li
n
ch

ild
re
n
<
1
2
ye

ar
s
an

d
in

ch
ild

re
n
yo

u
n
ge

r
th
an

1
8
ye

ar
s
o
f
ag
e
af
te
r

to
n
si
lle
ct
o
m
y
an

d
/o

r
ad

en
o
id
ec
to
m
y.

If
co

d
ei
n
e
is

u
se
d
in

so
m
e
cl
in
ic
al
se
tt
in
gs
/s
p
ec
if
ic
p
ae

d
ia
tr
ic

p
at
ie
n
t
p
o
p
u
la
ti
o
n
s,
ca
re
fu
lC

Y
P
2
D
6
ge

n
o
ty
p
e-

gu
id
ed

u
se

o
f
co

d
ei
n
e
sh
o
u
ld

b
e
co

n
si
d
er
ed

D
es
fl
ur
an

e,
en

fl
ur
an

e,
ha

lo
th
an

e,
is
o
fl
ur
an

e,

m
et
ho

xy
fl
ur
an

e,
se
vo

fl
ur
an

e,
su
cc
in
yl
ch

o
lin

e1
2
1

C
A
C
N
A
1
S,

R
Y
R
1

Y
es

T
h
er
e
is
le
ss

ex
p
er
ie
n
ce

w
it
h
M
H

su
sc
ep

ti
b
ili
ty

in

ch
ild

re
n
as

co
m
p
ar
ed

w
it
h
ad

u
lt
s,
b
u
t
u
n
p
u
b
lis
h
ed

o
b
se
rv
at
io
n
s
su
gg

es
t
th
at

th
e
ri
sk

o
f
an

M
H

re
ac
ti
o
n

m
ay

b
e
h
ig
h
er

w
h
en

an
an

es
th
et
ic
is
ad

m
in
is
te
re
d
in

ch
ild

h
o
o
d

D
ex

la
ns
o
pr
az
o
le
,l
an

so
pr
az
o
le
,o

m
ep

ra
zo

le
,

pa
nt
o
pr
az
o
le

1
2
2

C
Y
P
2
C
1
9

Y
es

Y
es
,o

n
ly

fo
r
p
ae

d
ia
tr
ic
p
at
ie
n
ts

>
1
ye

ar

ef
av
ir
en

z1
2
3

C
Y
P
2
B
6

Y
es

Y
es
,o

n
ly

fo
r
p
ae

d
ia
tr
ic
p
at
ie
n
ts

≥
4
0
kg

b
o
d
y
w
ei
gh

t

F
o
r
ch

ild
re
n
>
3
ye

ar
s
an

d
<
4
0
kg

b
o
d
y
w
ei
gh

t
T
D
M

is

re
co

m
m
en

d
ed

d
u
e
to

lim
it
ed

cl
in
ic
al
d
at
a

F
o
sp
he

ny
to
in
,p

he
ny

to
in

1
2
4

C
Y
P
2
C
9
,H

LA
-B

Y
es

Y
es
,f
o
r
H
LA

-B
*1
5
:0
2

F
o
r
C
Y
P
2
C
9
o
n
ly

in
co

m
b
in
at
io
n
w
it
h
T
D
M

Iv
ac
af
to
r1

2
5

C
F
T
R

Y
es

Y
es
,o

n
ly

fo
r
p
ae

d
ia
tr
ic
p
at
ie
n
ts

≥
6
ye

ar
s

O
nd

an
se
tr
o
n,

tr
o
pi
se
tr
o
n
1
2
6

C
Y
P
2
D
6

Y
es

B
ec
au

se
C
Y
P
2
D
6
ca
ta
ly
ti
c
ac
ti
vi
ty

in
n
eo

n
at
es

(<
1
m
o
n
th
)d

ep
en

d
s
st
ro
n
gl
y
o
n
d
ev

el
o
p
m
en

ta
l

6 NEUMANN ET AL.



recent retrospective study, PGx testing of paediatric patients who

were referred for pharmacogenetic testing was analysed. Almost half

of these patients (48.7%) had a clinical diagnosis where the PGx

results could help in selecting treatment options. In 15.0% of cases

the PGx results could be used for dose adjustment of at least one cur-

rently prescribed drug. The two most common gene-drug diagnosis

groups with matching clinical diagnosis and prescription were mood

disorders and gastritis/esophagitis, and these are therefore considered

promising targets for future studies in the area of PGx testing in chil-

dren and adolescents.134

With advancing diagnostic technologies PGx testing has become

faster, cheaper and more attractive in clinical practice as well as for

drug development. Beyond hypothesis generating research whole-

genome and exome sequencing including short-read next-generation

sequencing are increasingly implemented into clinical routine and used

for gene diagnostics of diseases as well as for PGx profiling.9 Targeted

approaches like oligonucleotide microarrays or mass spectrometry-

based assays (MALDI-TOF) to detect known single nucleotide poly-

morphisms (SNPs) and copy number variation are also very well

established. Genome-wide assocation study (GWAS) can yield not

only disease susceptibility genes, but also clinically relevant PGx infor-

mation, as was nicely shown in the example of childhood leukemia.12

One of the first landmark papers regarding GWAS PGx demonstrated

that flucloxacillin-induced liver injury is associated with the HLA-

B*5701 allele.23 Other GWAS examples with relevance for children

followed, such as the association of immediate penicillin hypersensi-

tivity with HLA-DRB1*10:01, providing insights into the mechanisms

of immediate reactions,11 and the higher incidence of hypersensitivity

(P = 7.5 � 10,5 odds ratio 1.64) and anti-asparaginase antibodies

(P = 1.4 � 105, odds ratio 2.92) in children with asparaginase treat-

ment for leukemia/lymphoma and HLA-DRB1*07:01.22

In this context, GWAS have proven useful to inform drug

repurposing and to identify causal relationships between druggable

exposures and complex diseases. For instance, thousands of variants

that have been identified through GWAS related to clinically relevant

phenotypes contribute to better understanding of the genes and path-

ways involved in disease pathophysiology. Mapping of genome-wide

significant loci to drug targets with consequences for repurposed

agents is promising for drug development and should be considered

more intensively.135

What is widely accepted for inherited diseases, that early diag-

nosis and therapy yield the best prognosis, holds also true for PGx.

The earlier the PGx status of a child is known the better the phar-

macotherapy can be tailored to the individual patient, avoiding

acute as well as negative long-term effects due to inappropriate

pharmacotherapy,136 which also holds true for the drug develop-

ment process. This is especially important for the vulnerable paedi-

atric patient groups where side effects or lack of drug efficacy may

result in lifelong damage. Moreover, the impact of developmental

aspects on enzyme activity, metabolic pathways and other ADME

processes is mandatory to consider as well, particularly in the first

years of life. Notably, this dynamic maturation process of protein

expression and function has the potential to alter the phenotypeT
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which is first identified from the genetic information.137 Thus, the

correlation between genotype and phenotype may still differ from

adults since, for instance, post-transcriptional processes are also

subject to developmental alterations and are crucial for protein

function. This means that a poor metabolizer phenotype may be

determined by the quantitation of plasma levels of a specific drug,

although genetically the patient is a heterozygous carrier of a func-

tionally relevant PGx variant. This phenomenon is well known in a

figurative way in adult medicine and termed phenocopying. Here

heterozygous patients result in a poor metabolizer phenotype due

to inhibition of the remaining enzyme activity via drug-drug interac-

tion.138 Taken together, convincing examples are given that geno-

mics and PGx research in paediatrics will promote individualized

treatment and therefore should be strongly followed in clinical trial

activities during the drug development process.139 Nevertheless, it

has been shown that genetic information, even if next-generation

sequencing strategies have been applied, is limited to explain the

interindividual variability of hepatic expression and function of

ADME targets such as drug metabolizing enzymes or transporters

with consequences for drug response.140–142 Therefore, other

underlying mechanisms need to be identified through consideration

of innovative approaches.

3 | EPIGENOMICS

Whereas the genome remains constant in an individual across their

lifetime, the epigenome is highly flexible, dynamic and responsive.

Epigenetic modifications play an important role in gene expression

and silencing, including DNA methylation (which is the most inves-

tigated), histone modification and microRNA expression.26 Exten-

sive DNA methylation plasticity is known to occur during

embryogenesis. This is crucial for the development and mainte-

nance of cellular differentiation and identity. The fact that monozy-

gotic twins exhibit similar epigenomes early in life, which diverge

increasingly with increasing age, demonstrates the impact and

responsive nature of epigenetics.35 In oncology specific epigenetic

profiles are associated with cancer development, thereby demon-

strating the relationship between the epigenome and disease.143

Given the fact that the epigenome is highly responsive to the envi-

ronment, these findings can shed light on the mechanism behind

disease acquisition due to external risk factors. Reprogramming

during pregnancy as a consequence of epigenomic modulation may

result in specific paediatric phenotypes even after birth,27,28 nicely

shown by the example of Prader-Willi syndrome and transient neo-

natal diabetes mellitus.24

Alongside the contribution from genomics, investigation of epig-

enomics is proposed to contribute to our understanding of the inter-

individual variability of drug response, including ADRs, and also to

promote the development of new epigenetic drugs.30 With regard to

childhood cancer, not only the spectrum of cancer types and their

incidence differ from adults, but also genetic and epigenetic profiles.

Although generally paediatric cancers contain fewer mutations,

interestingly a higher frequency of genetic variants encoding for epi-

genetic regulators has been found for cancer types such as brain

tumors, neuroblastoma and retinoblastoma.33

The impact of ageing in adults on DNA methylation is well

addressed, with consequences on drug targeting and treatment strate-

gies.25 Different studies and meta-analyses comparing paediatric and

adult data demonstrate qualitative and quantitative differences in

DNA methylation patterns occurring over a lifetime. Moreover, there

is increasing evidence that epigenetic regulation via DNA methylation

has a major impact on the expression of pharmacogenes (eg, ADME

genes), which promotes research activity known as

pharmacoepigenomics.30 It has been shown that DNA methylation of

transcription factor binding sites within the CYP3A promoter in mice

and humans explain the switch from CYP3A7 expression in embryonic

livers to CYP3A4 in postnatal tissues.34 Comparable results were

found for CYP2W1 expression indicating silencing of expression of

CYP2W1 by epigenetic regulation in healthy adult tissues compared

to the foetal gut.31 Regarding drug transport, hyper- and hyp-

omethylation of efflux and uptake transporter proteins from the ABC

(eg, ABCB1, ABCG2) and SLC transporter families (eg, OCT1, MCTs)

are well described with consequences for pharmacokinetics and

pharmacodynamics.29,30,32

To this end, pharmacoepigenomics needs to be addressed more

systematically in paediatric drug research, including clinical trial activi-

ties. Of note, epigenetic analyses are tissue-specific and this may limit

the feasibility of research activites in children where the availability of

tissue biopsies is extremly limited. However, for example, the nonin-

vasive approach of DNA methylation analysis in body fluids using cell-

free circulating DNA in blood is promising, particular for cancer drugs,

but warrants futher investigation.

4 | TRANSCRIPTOMICS

In addition to DNA sequencing and epigentic studies, transcriptomics

adds information on gene expression, thereby taking the next step

towards the elucidation of mechanisms describing discrepancies

between geno- and phenotypes. Of note, epigenomic alterations of

the RNA itself are well known,144,145 as are feedback mechanisms of

transcriptomic products on the epigenome.146 Similar to epigenomics,

transcriptome analyses are cell/tissue-specific.147

In general post-transcriptional modifications are fundamental for

the functionality of the cytochrome P450 superfamily enzymes, which

are essential for the metabolism of xenobiotics.148 Types of post-

transcriptional modifications include the processing of pre-RNAs

through alternative splicing, capping or polyadenylation into func-

tional mature RNA, and alternative splicing is an important site of

functional influence for genetic polymorphisms in drug-metabolizing

enzymes, transporters and other drug targets, as nicely shown by the

CYP3A5*1 variant.50 Interestingly, alternative splicing may be age-

dependent and explain part of the developmental change in ADME

protein expression, as recently shown for the hepatic uptake trans-

porter SLCO1B1.39

8 NEUMANN ET AL.



The majority of trait-associated SNPs are not located in protein

coding regions and are likely to act via modification of gene expres-

sion. Expression quantitative trait loci (eQTL) studies are going

beyond univariate SNP-transcript associations and differentiate

between cis (ie, located within the transcribed gene region) and trans

(ie, distant) eQTLs to uncover biological pathways and polygenetic

effects of expression regulation, including the enrichment of col-

ocalized functional elements. Several eQTL-studies in different adult

tissues (eg, human liver) have been published,49 but with the limitation

of small sample sizes. Novel technologies to cover more diverse,

disease-relevant cell types have been recently suggested.37 Whilst

hybridization-based microarrays for transcriptional profiling have been

used to provide information on diagnosis, prognosis and optimal

treatment,149 current approaches combine RNA-sequencing (RNA-

Seq) with advanced bioinformatic approaches to interrogate large

datasets, including the many possibly relevant transcript variants.

Many paediatric diseases can be classified by their transcriptomic

response, and transcriptomic approaches have also improved our

understanding of the pathology of paediatric diseases as well as of

therapeutic interventions, thereby contributing significantly to drug

development. Beyond paediatric cancer,41,44 transcriptomic profiles of

diseased tissue offer a window into a wide range of paediatric condi-

tions, including inflammatory bowel disease42 and juvenile idiopathic

arthritis.43 RNA-Seq approaches can complement genomic sequencing

to yield improved genetic diagnoses in Mendelian disease with conse-

quences for drug therapy and drug development.46 Whole blood rep-

resents a convenient body compartment for sampling, and whole-

blood studies have identified diagnostic signatures that support diag-

nosis in otherwise difficult-to-diagnose conditions.150 In infectious

diseases, blood signatures may be pathogen-specific48 or class-

specific,47 and this enables understanding of disease progression, for

instance in tuberculosis.38 The utility of transcriptomics for biological

understanding and diagnosis extends beyond infectious problems to

inflammatory conditions such as Kawasaki disease45 and non-

inflammatory conditions including neonatal encephalopathy.40 Finally,

there is evidence that a transcriptome-wide association approach is

able to identify functionally relevant genetic associations, which has

been recently shown for severe anthracycline-induced cardiotoxicity

and the association with growth/differentiation factor 5.36 We there-

fore encourage paediatric clinical trials to incorporate sampling for

transcriptomic studies, particularly in combination with other analyses

such as genomic approaches.

5 | PROTEOMICS

Epigenomics and transcriptomics are crucial for better understanding

of phenotype-genotype correlations. In addition, protein data provide

definite information on the expression of target proteins. This infor-

mation is most important, as mRNA levels may not correlate with pro-

tein expression. Several molecular and biochemical reasons for such

discrepancies are well known, such as the variety of transcripts, regu-

lation via miRNAs, proteasomal degradation and post-translational

modifications. Proteomics covers exhaustive analytical methods

including mass-spectrometry tecniques such liquid chromatography

tandem mass spectrometry and matrix assisted laser desorption/ioni-

zation tandem time-of-flight mass spectrometry.151 An additional

challenge is the identification of proteins for hypothesis-generating

research, which requires huge libraries and advanced IT systems. Pro-

tein biomarkers in adults are used for diagnosis, monitoring of disease

progression and/or treatment response dictations as part of the drug

development process.51 A specific area in drug research is

pharmacoproteomics, with examples such as carboplatin and pacli-

taxel resistance in ovarian cancer.55 Promising results of a combina-

tion of pharmacoproteomics with PGx have been reported for

warfarin59 and recently DrugBank,152 a web-enabled database, has

been updated which contains comprehensive information about drugs

and related issues such as targets and interactions. Of note the new

version DrugBank 5.0. provides additional highly interesting data on

pharmacoproteomics.54

Paediatric proteomic research has also been widely conducted in

some areas, including acute lymphablastic leukemia,57 type 1 diabe-

tes52 and ventilator-induced lung injury.53 Regarding developmental

aspects and medicines in children, proteome analyses showed remark-

able differences, reflecting again the impact of developmental regula-

tion in tissues as well as specific cell types.56 Although a huge number

of potentially relevant protein biomarkers is identified each year in

drug research, only a small number reach validation and approval by

the FDA.58 Although a diverse variety of databases is available, the

major limiation is still a more powerful bioinformatics support for

database searching. More innovative interdisciplinary approaches con-

sidering the combination of various OMICs approaches should be

addressed early in the drug development process.

6 | METABOLOMICS

In addition to proteomics, metabolomics allows for the identification

of metabolic profiles through qualitative and quantitative data on a

multitude of small molecules. For metabolomics analyses, various bio-

fluid samples, including serum, plasma, urine and cerebrospinal fluid as

well as tissue samples (eg, biopsies) and exhaled breath, can be used.

Beyond the identification of specific biomarkers for disease suscepti-

bility and drug response, bioinformatics-driven complex pathway ana-

lyses based on metabolomics are promising. In recent years, it has

been recognized that the metabolic pattern reflects the functional sta-

tus of an individual more comprehensively than other approaches

such as genomics, as metabolic profiles incorporate the influence of

additional factors including diet, environmentent or the gut micro-

biome.153 Here again developmental aspects resulting in functional

consequences particularly related to paediatric medicines are

included.154 As mentioned above, the Guthrie test, which has been

routinely used for decades, is an excellent example of a metabolomic

screening test for inborn errors (elevated concentration of phenylala-

nine and galactose in blood) that is based on metabolomics.65 Novel

mass spectrometry technologies improved NBS significantly,

NEUMANN ET AL. 9



measuring a huge variety of endogenous compounds in a less time-

and cost-consuming manner.63 Moreover, innovations such as next-

generation metabolic screening as an untargeted metabolomics

approach appear to be promising.70 Beyond NBS, metabolomics is

well established for diagnosis of other diseases in childhood. One

major advantage is that noninvasive biosamples can be used, such as

urine,155 saliva and blood. Methodologies such as dried blood spots

are being introduced to overcome the limited amount of biomaterial,

particularly in the preterm and newborn settings.

Untargeted assays allow large-scale and hypothesis-generating

approaches in paediatric research to identify and characterize novel

compounds which significantly expand our knowledge not only

related to disease pathophysiology (eg, childhood asthma72 or infec-

tion69) but also to drug-related metabolic alteration.66,75 Another

promising noninvasive method in paediatric metabolomics is

breathomics, with specific focus on exhaled volatile organic com-

pounds (VOC) in paediatric asthma.74 VOCs in exhaled breath come

from the lungs, but also via the lungs from the general circulation, and

various techniques (eg, electronic nose analysis, mass spectrometry)

can be used for analysis. Notably, breathomics allows the detection of

bacterial and/or viral infections,60 the amount of inflammatory cells in

blood,73 different diagnosis of respiratory diseases61 and response to

medication.68

The application of metabolomics and better understanding of

endogenous metabolism in the nutrition of neonates has been nicely

shown by the work of Dessi et al.76 A further interesting paediatric

example is the application of metabolomics to differentiate between

children with and without typical symptoms of gastrointestinal disor-

ders. Researchers were able to show that an integrated profiling

approach using metabolomics from urine and serum, and cytokines is

able to stratify successfully between children with appendicitis- and

nonappendicitis-related abdominal pain, and perforated and non-

perforated appendicitis.71

Thus, clinical trial monitoring not only involves monitoring of drug

effects, but also diet, food by-products, additional drug use, herbal

supplements, individual ADME phenotypes, etc. Implementation of

pharmacometabolomics and particularly pharmacometabolomics-

informed PGx in drug devlopment is increasing. Several excellent

reviews62,67,156 have been published demonstrating that metabolomic

profiles are associated with variable pharmacological response

followed by the identification of subphenotypes based on better

understanding of biochemical pathways and the pivotal role of indi-

vidual variation in drug-response phenotypes. Comprehensive collec-

tion of biomaterials such as blood and urine, and consideration of

metabolomic approaches in prediatric clinical trials will strengthen the

drug development process overall.

7 | MICROBIOMICS

The move to recognize the microbiome as a human organ has helped

increase awareness of microbiomic research in the scientific commu-

nity.157 Historically, microbiome research was predominantely linked

to microbial ecology, the study of the interaction of bacteria with their

environment and the effect on the ecosystems (eg, plants and animal

species). However, there is now convincing data demonstrating the

microbiome's impact on various diseases, such as gastrointestinal (eg,

inflammatory bowel diseases88,93 or necrotizing enterocolitis92) and

hepatic diseases (eg, hepatic steatosis),88 several types of cancer82

and asthma80 as well as mental illnesses such as major depressive dis-

order.84 A strong interaction of the microbiome with the immune,

endocrine, metabolic and nervous systems is well accepted.86 Thus,

for example, microbes colonize not only the gut but are also detected

in the respiratory and genitourinary tract and tissues without disease-

causing effects.91

The microbiome underlies developmental processes as well,

which requires age-specific research activites. Moreover, the impact

of drug treatment on the microbiome with clinical consequences

in later in life has nicely been shown for Caesarean section and

early antibiotic exposure interfering with the natural microbiome

development and obesity risk.81 Other examples are reported are the

association with progress for respiratory diseases78,90 and most

strikingly the contribution of the microbiome in autism spectrum

disorder.87

The concept of the therapeutic potential of the microbiome is

emerging. Here, the first evidence is reported in children with inflam-

matory bowel diseases89 and autism spectrum disorders83 and the use

of probiotics as well as microbiota transfer. Very recently, Park et al

showed that the microbiome is in part responsible for the variability in

the pattern of symptoms of chronic rhinosinusitis comparing data

from adult and paediatric patients.79 The gut microbiome may also

have an impact on the first-pass metabolism of drugs. This has been

shown for more than 50 drugs metabolized by the gut microbiome,

including drugs that are used in daily practice, such as omeprazole.94

Moreover, the absorption (eg, digoxin), distribution (eg, sulfasalazine)

and elimination (eg, irinotecan) of drugs85 is also influenced by the

microbiome. Here, future concepts include the topic of potential

activation of selected prodrugs, depending on microbial metabolism,

as demonstrated for azo drugs (phenazopyridine) used in inflammatory

bowel disease therapy for decades.158 A recent key paper

strongly supports the impact of microbiomics and drug development.

Here the authors provide evidence that the bioaccumulation of

drugs by gut bacteria contributes significantly to drug availability and

bacterial metabolism with consequences for pharmacokinetics, ADR

and drug response.77 Thus, the microbiome is probably the most

innovative OMICs field, with enormous potential not only for

adults but also for children, and consequences for future therapeutic

options.

8 | CONSEQUENCES FOR PAEDIATRIC
CLINICAL TRIALS

Based on data from adults there is increasing evidence that various

OMICs technologies contribute substantially to better understanding

of drug-related events, including efficacy as well as safety.
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Regulators like the FDA accept biomarker information in the sub-

mission package for New Molecular Entities (NME) or Biologic License

Application (BLA), and adaptive drug development concepts have

changed traditional clinical drug development of phases 1 to 3.159

Between 2015 and 2019 more than half of EU and US approvals were

supported by biomarker data during at least one of the development

stages.159 Notably, the ICH Guideline E16 describing the context,

structure and format of qualification submissions for clinical and non-

clinical genomic biomarkers related to drug development160 is applica-

ble also to other types of biomarkers, thereby increasing the

acceptance of biomarkers in the global drug development process.161

There are challenges for the incorporation of OMICs technologies

in paediatric pharmacological research studies. Paediatric studies

often include small numbers of participants in each age group and

there are ethical concerns concerning the obtaining of consent from

both parents and children for the conservation and reuse of

biosamples after their initial use in a study. There is substantial

progress with regard to innovative analytical and computational

technologies as well as novel study designs alongside biobanking

initiatives in paediatric research, for example urine and saliva as

noninvasive specimen for proteomics and metabolomics analyses are

feasible to obtain. Besides serum, saliva can be used for molecular

analyses. Residual material from routine clinical blood sampling in the

context of pediatric drug trials as well as dried blood spots are alterna-

tives. Very recently Forno and Celed�on162 reported that noninvasive

access to nasal epithelial cells is useful to perform epigenomic

analyses in childhodd asthma since these cells are closely related to

bronchial epithelial cells. However, keeping in mind that some OMICs

technologies are tissue-specific, such as DNA methylation, further

concepts are neccesary to guarantee minimal burden according to

ethical requirements.163 Moreover, Estrella et al successfully used

NBS blood spots for further analysis investigating biomarkers for the

disease pathophysiology of diabetes type 1.64 Pediatric drug trial

protocols should consider from the beginning various OMICs

technologies based on standardized and well-documented standard

operation procedures, including handling of biological samples in the

combination of precise phenotypic data for comprehensive data

analysis and further research activities. Necessary financial

resources should be provided either through partnerships with the

pharmaceutical industry or through public third-party funding

(eg, EU projects).

Innovative IT-based modelling tools, such as physiologically-

based pharmacokinetic (PBPK) modelling and system medicine

approaches, are crucial for an innovative future pediatric drug

F IGURE 1 Information flow and
application of OMICs technologies to
personalized medicine in children. The
integration of clinical data and data from
genomics, epigenomics, transcriptomics,
proteomics, metabolomics and

microbiomics based on prior biological
knowledge enables the opportunity to
develop specific classifiers for
personalized medicine. A central element
of this workflow is the systematic
computational network analysis
comprising various approaches
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development process. PBPK enables the integration of various

OMICs data based on information from drug trials and/or literature

reviews, including ontogenetic information to predict dosing of

pediatric medicines, particularly in critical subpopulations like neo-

nates. The concept of PBPK starts to build a specific PBPK model,

including subsequent evaluation based on adult data. Next, the

model is scaled to the paediatric population for a priori prediction

of pharmacokinetics and here data from pediatric clinical trials is

integrated, comprising drug levels, physiological parameters, data

on enzyme and/or transporter expression with consideration of

developmental age-related alteration.164–166 Importantly, PGx infor-

mation, for instance with an impact on drug-related ADME

processes, can be included as well.167 A digitizing software solution

as a tool for PBPK modelling to gather data from graphical repre-

sentations with excellent accuracy and precision has also been

established.168 Novel concepts of a more holistic view based on

multilayer network theory and artificial intelligence may also ensure

better integration of multi-OMICs data.169

To this end, disease diagnosis, stratification, susceptibility,

prognosis of disease and treatment response will substantially benefit

from comprehensive consideration of multi-OMICs approaches in

paediatric research and clinical trial activities (Figure 1). Moreover,

comprehensive collection of various OMICs data during the clinical

phase of pediatric drug development in contrast to the collection

of real-world data will contribute to the improvement and even

optimization of the drug development process with benefits for

research and development productivity, including economic aspects,

as has been demonstrated for the adult situation.170,159

Beyond well-defined and “systematic” biobanking and OMICs

strategies within trials, the systematic assessment of paediatric

phenotypic data, the use of electronic health records and/or other

digital applications as well as innovative IT-based analysis tools is

challenging. To obtain a better understanding of gene-environment

interactions, as well as potential treatment options, a holistic approach

is needed that combines nongenetic factors and multi-OMICs-driven

information with modelling and simulation to predict drug-response

profiles, which are exploited to generate evidence-based treatment

decisions.
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