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Abstract

The use of consumer-grade wearables for purposes beyond fitness tracking has not been

comprehensively explored. We generated and analyzed multidimensional data from 233 nor-

mal volunteers, integrating wearable data, lifestyle questionnaires, cardiac imaging, sphingo-

lipid profiling, and multiple clinical-grade cardiovascular and metabolic disease markers. We

show that subjects can be stratified into distinct clusters based on daily activity patterns and

that these clusters are marked by distinct demographic and behavioral patterns. While rest-

ing heart rates (RHRs) performed better than step counts in being associated with cardiovas-

cular and metabolic disease markers, step counts identified relationships between physical

activity and cardiac remodeling, suggesting that wearable data may play a role in reducing

overdiagnosis of cardiac hypertrophy or dilatation in active individuals. Wearable-derived

activity levels can be used to identify known and novel activity-modulated sphingolipids that

are in turn associated with insulin sensitivity. Our findings demonstrate the potential for wear-

ables in biomedical research and personalized health.

Author summary

Little is known about how data from wearable sensors can be used apart from fitness

tracking. We comprehensively studied 233 normal volunteers, integrating data from
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wearable sensors with lifestyle questionnaires, cardiac imaging, sphingolipid profiling,

and clinical measurements of various heart and metabolic disease markers. Apart from

showing that wearable sensors can be used to identify groups of volunteers with distinct

behavioral and demographic characteristics, we showed that resting heart rate (RHR)

from wearables performed better than step counts in predicting heart and metabolic dis-

ease risk markers. Notably, we further demonstrated that wearable data could be used in 2

areas of biomedical research. In the field of cardiac imaging, we showed that activity data

from wearables can be used to determine how the size of heart is influenced by physical

activity. Wearable data could also identify active individuals that are more likely than oth-

ers to have enlarged hearts and potentially be misdiagnosed with heart disease. In the field

of lipidomics, we showed that wearable data can be used to identify species of sphingoli-

pids that are affected by how active a person is. Some of these compounds are known to

be associated with obesity, diabetes, and heart disease.

Introduction

Public adoption of consumer-grade wearable activity trackers (“wearables”) has been steadily

increasing in recent years [1,2], and it is estimated that the global market for wearables will

exceed $34 billion US$ by 2020 [3]. Basic activity trackers provide accelerometer-based activity

data, whereas more sophisticated models are also capable of monitoring heart rate (HR).

Together, these indicators have the potential to provide deep insights into an individual’s car-

diovascular health and fitness. For instance, resting heart rate (RHR) is an important indicator

of cardiovascular health [4–6], whereas step counts can be used to infer patterns and levels of

physical activity. Both metrics play roles in the modulation and prediction of risk of cardiovas-

cular and metabolic disorders (CVMDs) [7].

Given the role played by physical activity in determining health outcomes, there has been

great interest in the use of wearables in healthcare. Most research on wearables thus far has

been focused on their utility in promoting increased physical activity in healthy and diseased

populations [8]. Whereas most studies reported increased physical activity after wearable

introduction [8], there is little evidence that this intervention results in clinically significant

health outcomes. For instance, a year-long study conducted on corporate employees showed

that although wearable introduction increased moderate to vigorous physical activity, it did

not improve health outcomes [9]. Furthermore, only around 10% of participants were still

using their wearable at study conclusion [9]. More recent studies have also started exploring

how wearable data correlate with clinical and biological markers. In one study monitoring

wearable data from 43 individuals over an average of 5 months, the authors showed that dis-

ease states and physiological differences between individuals (e.g., insulin sensitivity and

inflammation) could be discerned from the data [10]. Another study seeking to determine

how comprehensive personal data collected from 108 individuals correlated with physiology

and disease did not identify any significant correlations with wearable data [11]. There are also

studies exploring the use of time series HR data from wearables in the detection of conditions

associated with cardiovascular disease such as atrial fibrillation (AF), sleep apnea (SA), and

hypertension [12–14]. For example, deep neural networks (DNNs) trained on HR and step

count data obtained from the Apple Watch (Apple, www.apple.com) were able to detect AF,

SA, and hypertension at accuracies of 97%, 90%, and 82%, respectively [13,14].

Despite these advances, the lack of comprehensive datasets that integrate wearable

metrics with other data types means that the utility of consumer-grade wearables to basic,
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translational, and clinical research, as well as personalized health, remains largely uncharacter-

ized. In this study, our goal was to investigate the utility of consumer-grade wearables in car-

diovascular and lipidomics research. To that end, we generated multidimensional data from

233 normal individuals recruited for a longitudinal study (SingHEART/BioBank; National

Heart Centre Singapore [NHCS], https://www.nhcs.com.sg). Subjects were tracked using a

consumer-grade wearable activity and HR tracker (Fitbit Charge HR; Fitbit, www.fitbit.com),

in addition to comprehensive profiling through lifestyle questionnaires, clinical measurements

(e.g., weight, height, waist circumference [WC], blood pressure, etc.), lipid panel values, blood

glucose test, cardiac magnetic resonance imaging (CMR), and lipidomic profiling. We then

performed integrative analysis of the dataset in order to answer three specific questions. First,

can wearable metrics obtained from study subjects provide insights into their behavioral and

demographic characteristics? Second, how well do wearable metrics (both step- and HR-

based) correlate with CVMD risk markers such that they are useful in the areas of clinical and/

or translational research and personalized health monitoring? Finally, can wearable-derived

metrics be used to support basic research, particularly in the analysis of cardiac imaging and

lipidomic profiling data?

Results

Characteristics of the volunteer cohort

The cohort of 233 volunteers was tracked for a median duration of 4 days (range 2–6 days) per

subject. Summary statistics of this cohort are shown in Table 1 (full details in S1 Data). The

cohort had a median age of 48 years (range 21–69 years) and displayed a female bias (137/233,

58.8%). The average daily steps (“DailySteps”) median was 10,395 steps per day, which is consis-

tent with a recent study that compared Fitbit Flex (Fitbit, www.fitbit.com) and ActiGraph

(http://actigraphcorp.com/) measurements in 104 Singapore-resident individuals (median steps/

day = 10,193) [15]. There was no significant difference in DailySteps between male and female

subjects (Student t test, p = 0.604). In terms of wearable-derived HR metrics, median average

day and night HR were 75 bpm and 61 bpm, respectively, with a median RHR of 69 bpm. We

compared wearable-derived RHR (denoted henceforth as “RestingHR”) with in-clinic measure-

ments obtained from two sources, namely RHR measured by an automatic blood pressure mon-

itor (ABPM_HR) and during an electrocardiogram test (ECG_HR). We found that RestingHR

correlated better with ECG_HR, which is a generally accepted benchmark (rs = 0.690; p =
2.506 × 10−33), as compared with ABPM_HR (r = 0.541; p = 2.434 × 10−18). Bland-Altman analy-

sis [16] showed that RestingHR and ABPM_HR were on average higher than ECG_HR (mean

difference = 5 bpm and 9 bpm, respectively), with RestingHR having better agreement with

ECG_HR (95% limits of agreement = −9 bpm, 20 bpm) compared with ABPM_HR (95% limits

of agreement = −12 bpm, 30 bpm). This suggests that RestingHR is relatively accurate and com-

parable to clinical measurements. Active [10,17] volunteers (DailySteps> 8,000) had lower Rest-

ingHR compared with their sedentary counterparts, even after accounting for age, gender, and

body mass index (BMI; β = −3.185; p = 0.001). This observation was also significant when using

either continuous step counts (0.252 bpm less per 1,000 additional steps; p = 0.021) or when

using self-reported total activity (1.723 bpm less per additional unit; p = 4.080 × 10−6).

Wearable metrics provide insights on behavioral and demographic

stratification of volunteers

Because volunteers comprised males and females of varying age groups ranging from 21 to 69

years, we sought to determine whether there were clusters of volunteers defined by common
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activity patterns. We obtained per-volunteer daily activity profiles by averaging step counts

from multiple days by time of day. These daily profiles were then clustered using unsupervised

k-means clustering (k = 3), with Pearson correlation as a distance measure (Fig 1A). The 3

resulting clusters, of sizes 62, 63, and 108, respectively, showed distinct differences in terms of

peak activity periods (Fig 1A). The first (AM cluster) showed peak activity in the morning,

whereas the second (PM cluster) showed peak activity in the evening. A third cluster (MidDay

cluster) showed a more even distribution of activity, peaking in midday (Fig 1B).

To further characterize these activity clusters, we compared the distribution of subject age

and gender among the 3 clusters. There was no significant difference in gender composition

Table 1. Summary statistics of volunteers, grouped by gender.

Characteristic Female (n = 137; 58.8%) Male (n = 96; 41.2%) Test

Age, years 47.49 (11.44) 44.36 (12.63) 0.051

Ethnicity 0.257

Chinese 127 (92.7) 85 (88.5)

Malay 4 (2.9) 3 (3.1)

Indian 2 (1.5) 6 (6.2)

Others 4 (2.9) 2 (2.1)

BMI, kg/m2 22.68 (3.89) 24.65 (3.98) <0.001

WC, cm 78.33 (10.14) 88.54 (10.88) <0.001

SBP, mmHg 122.80 (17.36) 133.81 (15.64) <0.001

DBP, mmHg 72.88 (12.50) 83.12 (11.51) <0.001

RestingHR, (Fitbit, bpm) 70.37 (6.85) 68.72 (6.80) 0.07

ECG_HR, bpm 64.87 (9.58) 63.45 (11.13) 0.304

Total Cholesterol, mmol/l 5.33 (1.02) 5.26 (0.85) 0.581

LDL, mmol/l 3.28 (0.84) 3.37 (0.92) 0.471

HDL, mmol/l 1.60 (0.34) 1.33 (0.32) <0.001

TGs, mmol/l 0.98 (0.49) 1.34 (0.88) <0.001

Glucose, mmol/L 5.24 (0.41) 5.44 (0.64) 0.005

DailySteps, (Fitbit, x1000) 10.74 (4.13) 11.00 (3.66) 0.612

Fitbit ActivityClass 0.799

Cat I 14 (10.2) 10 (10.4)

Cat II 57 (41.6) 36 (37.5)

Cat III 54 (39.4) 38 (39.6)

Cat IV 12 (8.8) 12 (12.5)

GPPAQ Score 1.25 (1.12) 1.84 (1.15) <0.001

LVM, g 64.13 (14.49) 93.16 (21.29) <0.001

LVEDV, ml 107.79 (16.90) 137.36 (25.37) <0.001

RVEDV, ml 106.21 (19.00) 141.74 (22.65) <0.001

AoF, ml 65.62 (9.37) 78.39 (12.72) <0.001

Test p-values for between-gender comparisons are shown: For continuous variables, Student t test was used, whereas

categorical values were evaluated using the chi-squared test. The full dataset is available in S1 Data, and this table was

generated by code in S2 Data.

Abbreviations: AoF, aortic forward flow; BMI, body mass index; Cat, category; DailySteps, average daily steps; DBP,

diastolic blood pressure; ECG_HR, electrocardiogram heart rate; GPPAQ, General Practice Physical Activity

Questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LVEDV, left ventricular end-diastolic

volume; LVM, left ventricular mass; RestingHR, wearable-derived RHR; RHR, resting heart rate; RVEDV, right

ventricular end-diastolic volume; SBP, systolic blood pressure; TG, triglyceride; WC, waist circumference.

https://doi.org/10.1371/journal.pbio.2004285.t001
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among the clusters, and the average ages of subjects in the clusters were 50 (AM), 43 (PM),

and 46 (MidDay) years (Fig 1C). Mean age among the clusters was significantly different (one-

way ANOVA, p = 0.002), with the AM cluster having older subjects compared with the PM

cluster (Tukey’s test, p = 0.002).

We next considered sleep tracking data and characterized sleep and wake times across the

clusters. On average, sleep tracking data revealed that our volunteers spent 6 hours and 57

minutes asleep each day, which is consistent with other studies [18]. Average sleep times for

the AM, PM, and MidDay clusters were at hours 23:18, 00:07, and 23:40, respectively, whereas

average wake times were at hours 06:39, 08:10, and 07:43, respectively (Fig 1D). There was a

significant difference in sleep times among the clusters (one-way ANOVA, p = 1.3 × 10−4),

with the AM cluster going to bed earlier than the PM cluster (Tukey’s test, p = 7.18 × 10−5) and

the PM cluster having a later sleep time compared with the MidDay cluster (Tukey’s test,

p = 0.019). Similarly, wake times were different between clusters (one-way ANOVA, p =

8.98 × 10−6), with the AM cluster waking up earlier compared with both the PM cluster

Fig 1. Stratification of volunteers based on wearable-derived activity metrics. (A) Heatmap showing activity profiles of study subjects over a 24-hour

period, grouped by cluster (red = AM, green = PM, blue = MidDay). (B) Average activity profiles of the AM, PM, and MidDay clusters, respectively. (C)

Boxplots showing the age distribution of each cluster. (D) Distribution of sleep and wake times for each cluster. The code to generate this figure can be found

in S2 Data. Asterisks denote significance of Tukey’s range test between cluster pairs. � = p< 0.05; �� = p< 0.01; ��� = p< 0.001.

https://doi.org/10.1371/journal.pbio.2004285.g001
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(Tukey’s test p = 1.47 × 10−5) and the MidDay cluster (Tukey’s test p = 3.80 × 10−4). The signif-

icant disparities in age and sleep timing between the AM and the PM clusters reflect lifestyle

differences that could, in part, be explained by previous reports of an advance in circadian tim-

ing with aging [19].

Wearable metrics are associated with clinical risk markers

One key aim of this study is to characterize the relationship between wearable metrics and clin-

ical parameters of relevance to CVMD risk. To that end, volunteers had various clinical param-

eters measured in the clinic upon recruitment, including BMI, WC, systolic blood pressure

(SBP), diastolic blood pressure (DBP), as well as fasting levels of total cholesterol (TotalChol),

high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TGs) and fast-

ing blood glucose (FBG). Wearable metrics of interest that were evaluated against these clinical

parameters comprised DailySteps and RestingHR. For comparison, we also evaluated clinically

measured RHR values (ECG_HR), as well as questionnaire-derived activity scores (General

Practice Physical Activity Questionnaire [GPPAQ]).

After categorizing our volunteers according to commonly used clinical thresholds (see Mate-

rials and methods), we used logistic regression to determine the extent to which wearable met-

rics are associated with clinical risk markers. For models using DailySteps, adjustments were

made for age, BMI, and gender as well as interaction between gender and steps in order to

account for known gender-specific differences in metabolism and response to chronic exercise

[20,21]. For models using RestingHR, age and gender were included as independent covariates.

We found that RestingHR is a better predictor compared with DailySteps (Fig 2, S1 Table).

Whereas RestingHR was significantly associated with 7/9 clinical markers, DailySteps was only

significantly associated with lower odds of having high BMI, WC, and TG values in more

active males. For instance, male subjects benefitted more from taking more steps per day in

terms of reduced risk of obesity (high BMI) compared with their female counterparts (odds

ratio [OR] 0.710; pinteraction = 0.002; Fig 2). In contrast, questionnaire-based activity score

(GPPAQ) was not significantly associated with any clinical parameters (S1 Table).

Next, we compared RestingHR to gold standard clinical RHR (ECG_HR). For clinical markers

that were significantly associated with either measure, RestingHR achieved more significant p-val-

ues than ECG_HR in all clinical markers except for SBP and DBP, probably due to ECG_HR,

SBP, and DBP all being measured during the same clinic visit (S1 Table). This suggests that Rest-

ingHR is comparable to gold standard ECG_HR in associating with CVMD risk makers.

Exercise-induced cardiac remodeling can be identified through wearable-

inferred physical activity levels

A portion of the volunteers underwent CMR imaging. We therefore sought to determine

whether wearable-derived metrics could be used in the analysis of cardiac imaging data. In

particular, we were interested in whether wearable-derived physical activity was correlated

with cardiac remodeling because recent work done using activity questionnaires had indicated

that exercise-induced cardiac remodeling (EICR; also known as athlete’s heart) is not exclusive

to athletes but can also occur in moderately active individuals [22]. We considered cardiac

parameters associated with EICR, namely left ventricular mass (LVM; n = 202), left ventricular

end-diastolic volume (LVEDV; n = 216), right ventricular end-diastolic volume (RVEDV;

n = 126), and aortic forward flow (AoF; n = 202). The relationship between wearable-derived

activity and cardiac parameters was assessed using multiple linear regression adjusting for age,

gender, and SBP (covariates and indexing methods used are described in the Materials and

methods section). Because cardiac remodeling is more pronounced at the more extreme end
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of physical activity levels, we also considered DailySteps binned with cutoffs at the 10th, 50th,

and 90th percentiles to produce 4 categories (Categories I–IV). We found that both continuous

and categorical step counts were significant predictors for all 4 cardiac parameters (Fig 3, S2

Table). After adjusting for covariates, DailySteps (x1,000) was a significant predictor for LVM

(β = 0.353; p = 0.012), LVEDV (β = 0.386; p = 0.010), RVEDV (β = 0.617; p = 0.003), and AoF

(β = 0.466; p = 0.003). We next determined the risk of having abnormally high LVM (indexed

to body surface area [BSA]) among our very active volunteers because this is the characteristic

most associated with EICR. Those in the upper quartile of DailySteps were more likely to

exceed upper population-matched reference limits [23] compared with other volunteers (OR

3.239; CI 1.133–9.276; p = 0.026). We also considered RestingHR as a predictor for these car-

diac parameters and found it only significant for LVEDV, RVEDV, and AoF but not for LVM

(S2 Table). In summary, the integration of wearable activity metrics and cardiac imaging data

can reveal relationships between exercise and cardiac remodeling in normal individuals.

Wearable metrics identify sphingolipid species associated with physical

activity and insulin resistance

A subset of volunteers (n = 112) underwent serum sphingolipid profiling to determine the

abundance of various species of circulating sphingolipids, namely ceramides, sphingomyelins,

lactosylceramides, and glucosylceramides. Because circulating sphingolipids, especially

Fig 2. Associations between wearable data (DailySteps and RestingHR) and CVMD risk markers. The forest plot shows the

effect and significance of wearable metrics as predictors for clinical risk markers. For steps, the OR is for each additional 1,000

steps. For RestingHR, the OR is for each additional bpm. Details of models used in the logistic regressions and the thresholds used

to define the clinical features are provided in the Materials and methods section. p-Values and ORs for DailySteps are for

interactions between gender and steps, with the female gender being the reference level. The code to generate this figure can be

found in S2 Data. bpm, beats per minute; BMI, body mass index; CVMD, cardiovascular and metabolic disorder; DailySteps,

average daily steps; DBP, diastolic blood pressure; FBG, fasting blood glucose; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; OR, odds ratio; RestingHR, wearable-derived RHR; RHR, resting heart rate; SBP, systolic blood pressure; TG,

triglyceride; TotalChol, total cholesterol; WC, waist circumference.

https://doi.org/10.1371/journal.pbio.2004285.g002

Use of wearable data in cardiovascular and lipidomics research

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004285 February 27, 2018 7 / 18

https://doi.org/10.1371/journal.pbio.2004285.g002
https://doi.org/10.1371/journal.pbio.2004285


ceramides, have been shown to be correlated with cardiorespiratory fitness and exercise [24–

26], we sought to determine whether wearable-derived physical activity can contribute to the

discovery of relationships between activity and sphingolipid abundance.

Using multiple regression to account for age, gender, and BMI, we identified 12 sphingoli-

pids (Table 2, Fig 4) that were significantly associated with DailySteps (p< 0.05), 8 of which

had a false discovery rate (FDR)–adjusted p-value less than 0.1. All significant sphingolipids

were negatively associated with DailySteps. Of these, the specific sphingolipids most signifi-

cantly (p< 0.01; q < 0.1) associated with DailySteps included Cer(d18:1/18:0), Cer(d18:1/

Fig 3. Relationship between wearable-derived physical activity and cardiac parameters. Distribution of (A) LVM, (B) LVEDV,

(C) RVEDV, and (D) AoF values across the 4 activity categories (Cat I–Cat IV). The code to generate this figure can be found in

S2 Data. Asterisks denote significance of activity category as a GLM predictor with reference to Cat I. � = p< 0.05; �� = p< 0.01.

AoF, aortic forward flow; BSA, body surface area; GLM, generalized linear model; LVEDV, left ventricular end-diastolic volume;

LVM, left ventricular mass; RVEDV, right ventricular end-diastolic volume.

https://doi.org/10.1371/journal.pbio.2004285.g003
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20:0), and Cer(d18:1/24:1(15Z)), ceramides previously reported to be negatively correlated

with cardiorespiratory fitness as measured by peak oxygen consumption in volunteers [25].

We also identified associations among precursor dihydroceramides Cer(d18:0/20:0) and Cer

(d18:0/24:1(15Z)), which have been linked to obesity [24,27]. Together, this suggests that wear-

able-derived physical activity is capable of identifying relationships between lifestyle and

serum ceramide abundance. Apart from ceramides, we identified novel associations among

Table 2. List of sphingolipids significantly associated with DailySteps.

Sphingolipid DailySteps (x1,000) FBG

p-value β p-value β

Cer(d18:1/20:0)
�

0.002 −0.073 0.031 0.112

Cer(d18:0/20:0) 0.004 −0.066 0.434 0.044

Cer(d18:1/24:1(15Z)) 0.004 −0.067 0.391 0.045

Cer(d18:1/18:0)
�

0.005 −0.071 0.024 0.112

Cer(d18:0/24:1(15Z)) 0.009 −0.062 0.502 0.035

Cer(d18:1/16:0) 0.013 −0.061 0.575 0.028

Cer(d18:1/22:0) 0.014 −0.060 0.055 0.095

SM(36:0)
�

0.015 −0.056 0.024 0.123

Cer(d18:1/24:0) 0.023 −0.053 0.188 0.067

SM(36:1)� 0.027 −0.051 0.045 0.109

GlcCer(d18:1/16:0) 0.043 −0.043 0.066 −0.113

SM(36:2)� 0.048 −0.045 0.021 0.125

Associations with DailySteps are adjusted for age, gender, and BMI. Sphingolipids significant after FDR (false

discovery rate) correction (q < 0.1) are highlighted in bold, whereas those that are also significantly associated with

FBG levels are marked with an asterisk (�). The code to generate this table can be found in S2 Data.

Abbreviations: BMI, body mass index; Cer, ceramide; DailySteps, average daily steps; FBG, fasting blood glucose;

FDR, false discovery rate; GlcCer, glucosylceramide; SM, sphingomyelin.

https://doi.org/10.1371/journal.pbio.2004285.t002

Fig 4. Wearable-derived activity and sphingolipid abundance. Heatmap showing the abundance of sphingolipids that are

significantly associated with DailySteps. Columns represent volunteers ordered by increasing DailySteps. For comparison, values

of FBG and DailySteps are shown. All values are z-score normalized by row. The code to generate this figure can be found in S2

Data. Cer, ceramide; DailySteps, average daily steps; FBG, fasting blood glucose; GlcCer, glucosylceramide; SM, sphingomyelin.

https://doi.org/10.1371/journal.pbio.2004285.g004
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several sphingomyelins (SM(36:0), SM(36:1), SM(36:2)) and a glucosylceramide (GlcCer

(d18:1/16:0)), all of which were lower in more active subjects. We then compared the abun-

dance of these activity-associated sphingolipids with FBG levels and found that 5 of them were

also positively associated with FBG (p< 0.05). These included ceramides (Cer(d18:1/18:0),

Cer(d18:1/20:0)) and sphingomyelins (SM(36:0), SM(36:1), SM(36:2)) (Table 2). In line with

our findings, levels of ceramides (Cer(d18:1/18:0), Cer(d18:1/20:0))—as well as sphingomyelin

SM(36:1) in plasma and skeletal muscle—have been reported to be correlated with insulin

resistance [26,28–31]. This analysis was also repeated using RestingHR as a metric; however,

no significant associations were identified after accounting for multiple testing. These results

suggest that activity metrics from consumer-grade wearables are sufficiently accurate to yield

biologically relevant insights from lipidomics datasets.

Discussion

The data we presented above show that even short-duration wearable studies can provide

value to biomedical science, particularly in cardiovascular and lipidomics research. Our analy-

sis of time series activity data shows that wearable metrics can stratify a cohort into behavioral

clusters with distinct characteristics. This approach can assist researchers seeking to correlate

lifestyle physical activity with health outcomes.

Our characterization of the relationships between wearable metrics and CVMD markers

can also be used to inform future wearable studies. Specifically, we found that RHR metrics are

superior to step-based ones in terms of association with CVMD markers. However, this was

not the case for the cardiac imaging and lipidomics data. This is likely attributable to RHR

being a strong determinant of CVMD risk [5]. Conversely, unlike RHR, the relationship

between activity and CVMD risk is less straightforward because it is subject to many con-

founders not captured in this study, of which diet is likely to be a key factor. Such relationships

may only become apparent with larger sample sizes and diverse cohorts [32].

Despite rising adoption of wearables for personal activity and fitness tracking, the transla-

tion of wearable metrics into actionable health insights remains a challenge. Our results show

that, with respect to CVMD risk, RHR values from wearables are equivalent to—if not better

than—clinical RHR measurements. With wearables, users can continuously monitor RHR,

enabling early detection of deviations in RHR that herald changes to CVMD risk markers such

as weight gain and hypertension [33]. This may improve upon the status quo, whereby individ-

uals are typically only made aware of changes to health status and disease risk during infre-

quent health checkups. Notably, the correlation between wearable metrics and fasting glucose

suggests that wearables may provide an early indication of increased diabetes risk, which is

vital given that a large number of Singaporeans have undiagnosed diabetes [34]. From a

healthcare research perspective, continuous RHR tracking may become essential in long-term

studies tracking lifestyle and health parameters because it could provide a high-resolution view

of how changes in lifestyle impact cardiovascular health. Such insights, potentially emergent

from large-scale efforts such as Project Baseline (http://www.projectbaseline.com), will also

help formulate ways to present wearable data to users in ways that promote compliance with

healthy lifestyle behaviors and facilitate early detection of disease states.

Our findings on the utility of wearables in analyzing CMR data and identifying individuals

at risk of having abnormally high LVM have clinical and research implications. EICR is a

benign adaptation to increased cardiovascular load resulting from exercise [35], although

there are conflicting reports of malignant adaptation to excessive exercise [36,37]. Initially

thought to be exclusive to competitive athletes, a recent population study found that 14% of

individuals in the most active category met imaging criteria for left ventricular hypertrophy
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[22]. Overlapping features between EICR and hypertrophic cardiomyopathy pose a risk of

overdiagnosis by clinicians faced with abnormal findings in nonathletic patients, particularly

at a time when regular exercise is heavily promoted to the public [35,38]. Apart from increased

awareness of this phenomenon by clinicians, wearable metrics can play a role in differentiating

between pathologic and physiological remodeling.

CMR is the preferred imaging modality for population-scale health studies (e.g., UK Bio-

bank [n = 100,000] [39], German National Cohort [n = 30,000] [40], Canadian Partnership for

Tomorrow [n = 10,000] [41]) because it avoids exposure to ionizing radiation or contrast

agents [39]. Our findings hint at a wider role for wearables in population studies aiming

to dissect the relationship between lifestyle and cardiac function. The rising number of

normal individuals undergoing CMR as part of population-scale studies implies that a non-

negligible fraction will be flagged with abnormal CMR findings. Where follow-up of incidental

findings is consented and authorized, wearables could thus play a role in reducing the risk of

overdiagnosis.

Ceramides are sphingolipids involved in cellular stress response and are linked to patholog-

ical conditions such as insulin resistance, obesity, and cardiovascular disease [42]. Further-

more, higher levels of cardiorespiratory fitness are associated with lower plasma ceramide

abundance, suggesting that physical activity may play a beneficial role in regulating levels of

these molecules. Using wearable-derived activity data, we identified specific sphingolipids

associated not only with activity but also with insulin resistance. Among the top activity-asso-

ciated sphingolipids, 3 ceramides—Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1

(15Z))—have been previously shown to predict risk of major adverse events due to cardiovas-

cular disease [43,44] and have been included in clinical laboratory tests [45], showing that our

approach can identify lifestyle-modifiable sphingolipids linked to health outcomes. Whereas

previous studies investigating relationships between cardiorespiratory fitness and circulating

ceramides have been interventional [25,46] (i.e., using exercise training programs or graded

treadmill test), we found that analysis of baseline wearable-derived activity levels can also pro-

vide insights into such relationships. Future studies, including population cohorts, could be

conducted using commodity wearable devices, ultimately enabling more data to be collected

while reducing study complexity.

One limitation of this study is the relatively short duration of the tracking periods, thus

compromising power to detect associations between activity and CVMD markers. Our cardiac

imaging and lipidomics analyses suggest that longer tracking periods, particularly feasible

when volunteers share data from their personal devices, will prove to be even more useful.

Additionally, volunteers recruited into this cohort may be enriched for those with a higher

level of regard for their health and well-being. There was limited examination of time series

(as opposed to summary)–wearable data. Activity cluster membership (with the AM cluster

as reference) was tested as a predictor for all the association analyses in this study; however,

apart from LVEDV (pPM_cluster = 0.071; pMidDay_cluster = 0.014) and AoF (pPM_cluster = 0.467;

pMidDay_cluster = 0.025) in the cardiac imaging data, there were no other significant associations.

Further studies on the utility of features derived from the time series data (e.g., HR variability,

HR recovery, activity intensity) are therefore warranted.

In summary, we have characterized in a sizeable cohort the relationship between wearable

metrics and a wide range of volunteer phenotypes including lifestyle patterns, demographics,

CVMD clinical markers, cardiac imaging, and serum sphingolipid profiles. Our findings show

that apart from fitness tracking, consumer-grade wearables can play a role in both basic and

clinical research. Such wearables could also provide a low-cost means for early detection of

changes in an individual’s personal CVMD risk profile, potentially resulting in more timely

detection and intervention of CVMDs.

Use of wearable data in cardiovascular and lipidomics research
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Materials and methods

Study volunteers and ethics statement

The SingHEART/Biobank study was established at the NHCS to characterize normal reference

values for various cardiovascular and metabolic disease-related markers in Singaporeans. Nor-

mal volunteers were enrolled into this study using a protocol and written informed consent

form approved by the SingHealth Centralized Institutional Review Board (ref: 2015/2601). The

volunteers underwent comprehensive profiling in the following areas: (1) activity tracking

using the Fitbit Charge HR wearable sensor, (2) physical activity and lifestyle questionnaire,

(3) CMR imaging, (4) serum sphingolipid profiling, (5) fasting lipid and glucose panel, and (6)

assessment of clinical parameters (e.g., HR, blood pressure, BMI). A total of 233 volunteers

were included in this study after evaluation for completeness of activity tracking data (details

below) and removal of subjects with extreme outlier activity metrics (potentially due to

improper wearable usage). Inclusion criteria were as follows:

1. Aged between 21 and 69 years.

2. No personal medical history of myocardial infarction (MI), coronary artery disease (CAD),

peripheral arterial disease (PAD), stroke, cancer, autoimmune/genetic disease, endocrine

disease, diabetes mellitus, psychiatric illness, asthma, or chronic lung disease and chronic

infective disease.

3. No family medical history of cardiomyopathies.

Activity tracking

Volunteers were issued a Fitbit Charge HR wearable activity tracker to be worn over a course

of 5 days (e.g., typically Monday–Friday). However, because the first and last days of the study

tended to be partial days, the average yield for each study was 3 days of complete tracking

(defined as�20 hours with steps and HR data). Data for each subject were downloaded

from the Fitbit website using the “fitbitScraper” package (https://github.com/corynissen/

fitbitScraper; NB: This method of data access is now deprecated; the same data can be obtained

through the Fitbit API at https://dev.fitbit.com/reference/web-api/quickstart). Step counts

were available at 2 levels: intraday step counts in 15-minute intervals and daily totals. Intraday

HR data were available at 5-minute intervals, along with confidence levels. Intraday sleep

tracking data containing details of each sleep session were also retrieved.

To determine data completeness, we used HR confidence values as an indicator that the

subject is wearing the device. HR data points with confidence value of “−1” were considered to

be invalid (i.e., device was not worn or was incorrectly worn). First, the HR values table was

merged with the steps table by their time points. We then counted the number of hours per

day that contained HR data with a valid confidence value. Days with�20 valid hours were

considered to be complete. Furthermore, days with no intraday step data were excluded. Such

events typically arose due to delayed syncing of the device resulting in older data being

overwritten.

To determine RestingHR, we calculated the average HR value for time points that met the

following criteria: (1) had�100 steps take place within the 15-minute interval and (2) had a

valid HR value. Day HR was similarly obtained but by restricting to time points between 2 PM

and 4 PM, whereas night HR sampled time points between 2 AM and 4 AM.

For DailySteps estimation, we obtained the average sum of steps that took place in data-

complete days. We also derived estimated daily steps using an alternative method. Briefly, we

obtained step-count data points across data-complete days that were matched with valid HR
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values. We then calculated estimated daily steps by multiplying the average of these step-count

values by 96 (i.e., the number of 15-minute intervals per day). Daily step values derived

through both methods were highly correlated (rs = 0.955; p< 2.2 × 10−16). We thus used Daily-

Steps as a measure of wearable-derived physical activity for the rest of this study.

Sleep tracking data was processed as follows: the amount of sleep for each day was deter-

mined by summing the duration of all sleep sessions for that day. An average sleep duration

was then obtained from the data-complete days. Sleep hour was determined by calculating the

average start time of sleep sessions occurring between 7 PM and 4 AM. Wake hour was deter-

mined by averaging the end time of sleep sessions. Only subjects with average sleep duration,

sleep hour, and wake hour that were within 2 standard deviations (SDs) from mean values

were included for statistical analysis in the study (216/233 subjects).

Clustering of daily activity profiles

For each volunteer, we obtained a 24-hour daily activity profile in the following manner. First,

step-counts were smoothed across sliding windows of 5 time points. Then, step-counts from

multiple data-complete days were collapsed into a single average profile by averaging step-

counts from the same daily time point. Time points with no valid step counts were filled with

zeros, and the daily profile was again smoothed in 5–time point sliding windows. Volunteers

were clustered using unsupervised k-means clustering (k = 3) with Pearson correlation as a

distance measure.

Physical activity questionnaire

As part of the study, volunteers answered several questionnaires to ascertain their lifestyle.

Physical activity was primarily assessed using the GPPAQ (https://www.gov.uk/government/

publications/general-practice-physical-activity-questionnaire-gppaq). Briefly, subjects provide

information on amount spent in the last week on the following activities: (1) physical exercise,

(2) cycling, (3) walking, (4) housework, and (5) gardening and/or do-it-yourself activity. Addi-

tionally, volunteers were asked of the amount of physical activity involved in their occupations,

as well as their walking pace. A physical activity index (PAI) was generated based on the

amount of physical exercise and/or cycling as well as their occupational activity level. The PAI

has four activity levels: Inactive, Moderately Inactive, Moderately Active, and Active. These are

treated as numerical scores in this study. In this study, amount of cycling was not factored into

PAI derivation in order to facilitate a more direct comparison with wearable-derived activity.

Clinical parameters

The following measurements were performed on the day of volunteer recruitment. First, weight

and height were measured using a SECA703 weighing scale (Seca), whereas SBP and DBP were

obtained using an Intellivue MX450 patient monitor (Philips). Volunteers fasted for 8 to 10

hours prior to the recruitment appointment, and blood was drawn for the following tests: (1)

lipid and glucose panel and (2) serum sphingolipid profiling. Additionally, the volunteers also

underwent a Pagewriter TC30 16-lead ECG test (Philips). HRs were obtained from two separate

sources, the blood pressure monitor (“ABPM_HR”) and from the ECG reading (“ECG_HR”).

Clinical risk markers and thresholds

The following clinical markers were considered in the study: BMI, WC, SBP, and DBP as well

as fasting levels of TotalChol, HDL, LDL, TG, and FBG. Thresholds used to define risk levels

(S3 Table) are as follows: High BMI (>27.5), High WC (>100 cm for males,>90 cm for
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females), High SBP (>140 mmHg), High DBP (>90 mmHg), High TotalChol (>6.2 mmol/l),

Low HDL (<1 mmol/l), High LDL (>4.1 mmol/l), High TG (>2.3 mmol/l), and High FBG

(>6 mmol/l).

Association tests

Multiple linear regression and logistic regression analyses described in this study were con-

ducted using the GLM (generalized linear model) function in R. For multiple linear regression,

a Gaussian error distribution was used, whereas a binomial one was used for logistic regression.

When gender was considered as a covariate, the female gender was set as the reference level.

For logistic regression analysis between wearable metrics and clinical parameters, two mod-

els were used depending on the metric. For step-based metrics, the model is Clinical_Marker

~ Age + Gender + Metric + Gender × Metric, whereas for RHR-based metrics, the model is

Clinical_Marker ~ Age + Gender + Metric. ORs and p-values reported for step-based metrics

are for the Gender × Metric interaction term. To ensure that results from various metrics are

comparable, association analyses were conducted on a subset of subjects (223/233) with valid

measurements for all metric types (i.e., DailySteps, RestingHR, ABPM_HR, ECG_HR,

GPPAQ score). For logistic regression between activity clusters (AM cluster as reference level)

and clinical markers, the following model was used: Clinical_Marker ~ Age + Gender + Daily-

Steps + Gender × DailySteps + ActivityCluster.

CMR

CMR of the volunteers was performed using either a Magnetom Aera 1.5T (Siemens) or Inge-

nia 3T (Phillips) scanner under previously described settings [23]. Parameters such as cardiac

volumes and mass were analyzed from imaging data using the CMR42 software (Circle Car-

diovascular Imaging) and standardized protocols [23]. Four cardiac parameters were consid-

ered in this study: LVM, LVEDV, RVEDV, and AoF, with the first three being indexed to BSA

according to the Dubois formula [47]. When performing multiple linear regression, adjust-

ment was made for age, gender, and SBP. In the case of AoF, additional adjustment was made

for weight and height. Only cardiac parameters with values within 2 SDs from their mean

value were included for analysis. Numbers of data points analyzed for each cardiac parameter

are as follows: LVM (n = 202), LVEDV (n = 216), RVEDV (n = 126), and AoF (n = 203). For

logistic regression analysis of abnormally high BSA-indexed LVM against volunteer physical

activity, only those of Chinese ethnicity were considered (n = 192). Cutoffs for defining abnor-

mal BSA-indexed LVM were obtained from a study of 180 healthy Singaporeans (70 g/m2 for

males, 50 g/m2 for females) [23].

Lipidomics profiling and analysis

Lipid internal standard mix (Ceramide/Sphingoid Internal Standard Mixture I, Avanti Polar

Lipids) of 500 pmol was added to 100 μl of serum in a microcentrifuge tube. After an equilibra-

tion period of 30 s, 1.2 ml of HPLC-grade methanol was added to the mixture, followed by vor-

texing. The mixture was then incubated at 50˚C for 10 min, followed by centrifugation to

pellet the precipitated protein. The supernatant was then removed and placed in a clean micro-

centrifuge tube for drying under nitrogen gas. To reconstitute the dried extract, 100 μl of

methanol was then used. The reconstituted lipid solution was then separated using a liquid

chromatography–mass spectrometry (LC-MS) system (Agilent 1260) and a Thermo Scientific

Accucore HILIC column (100 × 2.1 mm; particle size 2.6 μm). Mobile phase A consisted of

acetonitrile/water (95:5) with 10 mM ammonium acetate, pH 8.0, and mobile phase B con-

sisted of acetonitrile/water (50:50) with 10 mM ammonium acetate, pH 8.0. For the separation,
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the column was equilibrated with 100% mobile phase A, increasing to 20% mobile phase B in 5

min, then held for 5 min. The column was then re-equilibrated with 100% mobile phase A for

5 min. Finally, mass spectrometry (MS) and data acquisition were performed using an Agilent

6430 triple-quadrupole mass spectrometer. As data were generated in two batches, normaliza-

tion was performed within each batch on raw values (measured in pmols) by performing z-

score transformation on a per-sphingolipid basis, prior to combining the data. Odd-chain

sphingolipids and sphingolipids with missing values in more than 20% of samples were

excluded from analysis.

Software and statistical tests

All statistical analyses in this study were performed using the R statistical environment. Unless

otherwise stated, correlations described in this study are Spearman correlation coefficients.

Adjustment for multiple testing in the lipidomics analysis was done using the Benjamini-

Hochberg FDR method [48].
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S1 Table. Results of logistic regression analysis of CVMD risk markers and various met-

rics, wearable and nonwearable. p-Values are shown, with ORs and 95% CIs shown in brack-

ets. Highlighted cells have p< 0.05. p-Values for DailySteps and GPPAQ score are p-values for

the Gender × Metric interaction term. Cells with bold values indicate those for which Rest-

ingHR performs better compared with ECG_HR. CVMD, cardiovascular and metabolic disor-

der; DailySteps, average daily steps; ECG_HR, RHR measured by an electrocardiogram test;

GPPAQ, General Practice Physical Activity Questionnaire; OR, odds ratio; RestingHR, wear-

able-derived RHR; RHR, resting heart rate.

(XLSX)

S2 Table. Summary of multiple linear regression results for LVM, LVEDV, RVEDV, and

AoF using both continuous (DailySteps) and categorical measures of physical activity,

as well as RestingHR. Cat I–Cat IV denotes the categorical grouping of subjects based on

DailySteps, with Cat I set as the reference. For comparison, results for questionnaire-based

(GPPAQ) physical activity scores (as continuous predictors) are shown. Highlighted cells have

p< 0.05. AoF, aortic forward flow; BSA, body surface area; DailySteps, average daily steps;

GPPAQ, General Practice Physical Activity Questionnaire; LVEDV, left ventricular end-dia-

stolic volume; LVM, left ventricular mass; RestingHR, wearable-derived RHR; RHR, resting

heart rate; RVEDV, right ventricular end-diastolic volume.
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Quan Lim, Jianhong Ching, Jonathan Jiunn Liang Yap, Swee Yaw Tan, Anders Sahlén, Cal-

vin Woon-Loong Chin, Bin Tean Teh, Steven G. Rozen.

Funding acquisition: Stuart Alexander Cook, Khung Keong Yeo, Patrick Tan.

Investigation: Weng Khong Lim, Jonathan Jiunn Liang Yap, Swee Yaw Tan, Anders Sahlén,

Calvin Woon-Loong Chin, Bin Tean Teh.

Methodology: Weng Khong Lim, Sonia Davila, Chengxi Yang, Chee Jian Pua, Jianhong

Ching, Calvin Woon-Loong Chin, Bin Tean Teh.

Project administration: Sonia Davila.

Resources: Weng Khong Lim, Chengxi Yang, Chee Jian Pua, Jianhong Ching.

Software: Weng Khong Lim, Jing Xian Teo, Christopher Blöcker, Jing Quan Lim.
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