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Abstract

Quantum information processing with trapped ions is a mature field in which single and multiple

qubit gates have been demonstrated with exceptionally high process fidelities. As such, there is

much interest in designing architectures made up of arrays of ion traps that are able to perform

general-purpose quantum computing and manufactured at large scale.

These designs require that ions be shuttled throughout such an architecture as quickly as

possible while avoiding decoherence of the internal motional states of the ions. Invariant-

based inverse engineering has been proposed as a way to obtain such control procedures, with

theoretical and experimental demonstrations. In this thesis, I will explore methods that extend

the current results of invariant-based inverse engineering to allow for the precise control of

motional states of trapped ions in more than one spatial dimension, which has great applicability

to the problem of shuttling trapped ions through these architectures.

First of all, I introduce a novel quantum invariant corresponding to that of a multidimensional

motional state and show how it may be used to obtain experimental controls that realise ion

shuttling around a corner, with relevant numerical examples. I then discuss how to extend

this framework to the control of more than one ion at a time, with a numerical demonstration

of separation of two trapped ions. Finally, I outline a method by which one may be able to

characterise numerically the effect of noise and anharmonicities in trapping potentials on the

motional states of trapped ions.
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Chapter 1

Introduction

The concept of a so-called quantum computer, a device which uses coherent manipulations of

a quantum mechanical system to carry out useful computational work, has been discussed for

many years. Such devices promise to solve certain computational problems quickly that are

thought to take exponential time on a classical computer. Since the introduction of the quantum

computer as a thought experiment in the 1980s, advances in control of small systems that

demonstrate quantum behaviour, as well as the development of sophisticated error-correction

techniques, have made it plausible to consider the construction of a quantum computer.

Quantum computers may be constructed out of a variety of candidate physical systems, all of

which have different features that make them amenable to the necessary control techniques,

such as quantum silicon photonics, superconducting quantum circuits, or trapped ions. A key

choice that must be made in any design of a quantum computer is the identification of some

part of a physical system with a qubit, which may be thought of as a two-level system that

encodes some useful quantum information. Examples of qubits include the hyperfine energy

levels of a trapped ion, or a photon existing in a superposition of being in two optical modes.

In order for a quantum computer to be useful, it must be able to process large amounts of

quantum information flexibly and in parallel. In particular, one requires the ability to entangle

qubits together at will in order to compute useful things, such as the factorisation of a large

number or simulating the physical properties of a quantum system. Such requirements are

17



18 Chapter 1. Introduction

experimentally demanding in practice.

Proof of concept experiments demonstrating the manipulation of quantum information on phys-

ical devices, including the required entangling operations, have been carried out on a variety

of physical platforms. However, these involve the manipulation of only a few qubits, whereas

useful quantum computers are expected to consist of tens of thousands of qubits at the very

least. As a result, the design of a quantum computer must be scalable to higher numbers of

qubits, otherwise it would not be practical to build. For example, the manipulation of a wide

variety of physical systems involves the application of lasers, each of which must be aligned

individually. It is impractical to expect to be able to align tens of thousands of lasers at the

same time.

The design of a scalable quantum computer is not straightforward, requiring as it does great

attention to the characteristics of the underlying physical system that is being controlled as

well as an assessment of the practicality of construction of the device. For some twenty years

now, it has been proposed to build a scalable quantum computer using trapped ions. Such a

device would consist of a very large microfabricated structure throughout which ions may be

trapped using a combination of static and oscillating electric fields, and the qubits are encoded

in the internal states of the ions.

The advantage of this architecture is that it requires only small numbers of ions to be trapped

together at one time. As a result, a very large number of ions may be maintained throughout

the structure all at once, while the operation of the quantum computer involves only coherent

manipulation of a small number of ions at a time. Such manipulations have been demonstrated

experimentally to very high accuracy. In particular, single qubit manipulations and operations

that introduce entanglement between pairs of qubits have been demonstrated with very high

accuracy, even in the presence of heating and noise. They may also be carried out using

global microwave fields and magnetic field gradients, which removes the need for cumbersome

alignment of a large number of lasers.

The fact that the building blocks of a trapped ion quantum computer, which is to say the

single and entangling qubit operations, can be performed with ease, is very encouraging for the
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prospect of building a scalable quantum computer. However, in addition to the engineering

challenges that must be overcome in manufacturing such a device at scale, there remain some

outstanding technical challenges. In particular, such designs require trapped ions to be shuttled

throughout a large structure in order to generate the types of long-range entanglement necessary

to carry out a useful quantum computation. Additionally, one needs to be able to separate ions

that are initially trapped together into two distinct traps.

Although trapped ion shuttling and separation have been demonstrated successfully in experi-

ment, one would prefer to be able to perform both operations quickly, robustly, and in a manner

that does not excite the motional states of the ions in question. There exist a number of theo-

retical open questions relating to ion shuttling and separation that must be solved in order to

design and build a useful trapped ion quantum computer. In this thesis I will address a number

of these questions, with a view to contemporary implementation of ion shuttling and separation

in currently existing ion trapping chips. In particular, I demonstrate how to achieve fast ion

shuttling in any number of spatial dimensions, as well as progress in the control of more than

one trapped ion, with numerical demonstrations.

In Ch. 2, I discuss quantum computing in detail and outline how trapped ion quantum compu-

tation is implemented experimentally, with a view to motivating the study of physically relevant

problems in the theory of ion shuttling and separation. I will also summarise the state of the

art in ion shuttling and separation, the physics of ion traps, and introduce the reader to the

notion of invariant-based inverse engineering, in which I proceed to prove a number of results

in this thesis.

In Ch. 3, I introduce a new quantum invariant that may be used to control single ions in any

number of spatial dimensions. I prove its correctness, show how it may be used to carry out

invariant-based inverse engineering, and discuss its properties and how it relates to an already

discovered quantum invariant.

In Ch. 4, I employ the invariant derived in Ch. 3 to obtain experimental controls that shuttle

an ion around a corner in the plane, which is relevant to the experimental problem of shuttling

ions through a junction in a segmented ion trap.
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In Ch. 5, I attempt to generalise the results of Ch. 3 to more than one ion. I present another

quantum invariant that corresponds to a system of many interacting ions and discuss its features

and limitations. I show how it may be employed in a simplified physical scenario to control two

ions.

In Ch. 6, I employ an invariant used in Ch. 5 to realise separation of two trapped ions. I discuss

the features of the resulting experimental controls and the dynamics of the trapped ions.

In Ch. 7, I discuss the prospect of working with trapping potentials that are not quadratic in

position. I outline how to use the invariant of Ch. 3 to implement time-dependent perturbation

theory, which allows for a numerical account of noise and higher than quadratic trapping

potentials that are naturally present in experimental systems.



Chapter 2

Background Theory

In this chapter, I will introduce the notion of quantum computing, and explore its historical

development and applications to the solution of real world problems. I will then discuss the

field of quantum computing with trapped ions, with particular reference to proposals to realise

scalable quantum computing, and introduce the problems of ion shuttling and separation. I

will explore relevant aspects of trapped ion physics in detail, as well as Gaussian states, which

play an important role in the analysis of trapped ion motional dynamics. I will also introduce

quantum invariants, and discuss how they may be used to realise ion shuttling and separation.

I will conclude with an important technical lemma that will be used throughout this thesis.

2.1 Introduction to quantum computing

In recent years, much experimental work has been done on realising a ‘quantum computer’, a

physical device that promises to perform some computational tasks such as simulation of quan-

tum systems much faster than the computers we have today. First proposed by Feynman [3, 4],

after several decades of theoretical and experimental work, the concept of a quantum computer

has developed from a thought experiment into a series of concrete engineering proposals that

can be realised using near-contemporary technology.

A quantum computer uses coherent manipulations of a quantum-mechanical system to realise

21



22 Chapter 2. Background Theory

computations. There exist many equivalent ways of describing the operation of a quantum

computer. A particularly useful one is the so-called gate model [4, 5, 6] of quantum computing.

In this setting, the physical system at hand is taken to consist of a large number of two-level

subsystems, often referred to as qubits [7, 8], which may usefully be thought of as idealised

two-level systems. The operation of the computer revolves around performing coherent manip-

ulations on small numbers of qubits, typically one or two qubits at a time. Such manipulations

are described by unitary evolution of the states of the qubits, and by performing many such

manipulations on the qubits over time, one can create a potentially very large entangled state

over all of the qubits. After some such unitary evolution has been realised, the qubits are

measured, resulting in a binary string of measurement outcomes, which is the result of the

quantum computation.

The ability to carry out such manipulations leads to a computational advantage in certain tasks

[9, 10] over that attainable with traditional computers, hereafter to be referred to as classical

computers. In particular, the time taken for a quantum computer to solve certain problems

scales more favourably with problem size than the corresponding time taken on a classical

computer. Various quantum algorithms, designed to be run on quantum computers, have been

constructed. At first consisting of problems mostly of theoretical interest [10], Shor’s algo-

rithm [11] was eventually discovered, which allows one to factor a number in polynomial time,

a feat not thought to be possible with classical computers. This spurred much interest and

development in the field of quantum computing. Since then, many other quantum algorithms

have been discovered to carry out difficult and interesting tasks, which are too numerous to list

here. Examples include Grover’s algorithm for unstructured search [12], the hidden subgroup

problem [13] as well as a growing family of quantum computational chemistry algorithms [14]

that can determine the properties of molecules that are too impractical to determine with a

classical computer, with demonstrations on contemporary superconducting quantum comput-

ers [15]. The new field of quantum natural language processing [16, 17, 18] exploits various

resemblances between diagrammatic categorical quantum mechanics and language grammars

to carry out natural language processing on quantum computers. Quantum computers are also

thought to be much faster at solving certain tasks in computational linear algebra [19] which



2.1. Introduction to quantum computing 23

has spurred interest in the use of quantum computers to carry out tasks in machine learning

[20, 21, 22].

After the discovery of useful quantum algorithms, the question turned to the practicality of the

construction of such a device. For some time, it was believed that the development of quantum

computers would not be possible, as one cannot realise unitary evolution of real-world quantum

mechanical systems to complete accuracy, due to the effects of experimental imperfection and

environmental noise [23]. The argument went that over time, errors would build up in the state

of the quantum computer, destroying the result of the quantum computation before it could

be measured [23]. The development of quantum error-correcting codes [24, 25, 26] showed that

this need not be an obstacle to the construction of a quantum computer. In a quantum system

that is subject to noise that can cause errors, quantum information may be protected against

certain classes of noise by encoding it inside larger physical systems. One can then perform

measurements on the larger physical system in such a way that the measurement preserves the

quantum information while the measurement outcomes give information about which error has

occured in the underlying physical system, allowing one to carry out a further unitary evolution

to recover the state of the system. As such, the presence of noise on individual physical qubits

is not necessarily an obstacle to storing coherent quantum information in them.

Subsequently, error-correcting codes were used to develop fault-tolerant quantum computing,

in which errors in the implementation of unitary evolution and qubit measurement at the end

of the operation are dealt with in a similar manner. The foundational result of the field is

the ‘threshold theorem’ [27, 28], a milestone in the development of quantum computing. The

threshold theorem states that, as long as the effects of noise and experimental defects are below

a sufficiently low threshold, one can in principle carry out quantum computations to arbitrary

accuracy, with only a modest overhead in computational resources. Much work has been done

on the development of quantum error-correcting codes [29, 30, 31] and fault tolerant quantum

computing [32, 33, 34], including the estimation of what the thresholds are likely to be for

real-world experimental systems [35]. Modern error-correcting codes [36, 37] deliver thresholds

that exceed 1%, which are certainly attainable in various physical systems.
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After quantum computing was shown to be feasible in the presence of noise and imperfections,

the question turned to which physical systems would be desirable to build a quantum computer

out of. The qualities that a candidate ought to satisfy were laid out by DiVincenzo [38]. One

requires a physical system which can be well-isolated from the environment and whose quantum

state can be manipulated coherently to a high degree. There exist many different proposals, each

with their own advantages and disadvantages. Examples include the superconducting quantum

computer [39, 40, 41], the linear optical quantum computer [42, 43, 44] and the neutral atom

quantum computer [45, 46]. Impressive developments towards useful quantum computing have

been made on many of them [47, 48, 49]. Of particular interest is the concept of the trapped

ion quantum computer.

2.2 Trapped ion quantum computing

In this section, I will review the concept, advantages and history of trapped ions in quantum

information processing, and outline how scalable quantum computing may be achieved using

them.

Ions have trapped for decades now [50, 51], and can be cooled using various approaches including

Doppler cooling [52, 53] and sideband cooling [54, 55]. One reason for doing so is that the

trapped ion may be very well isolated from its environment in practice, which allows for the

internal states of the ion to be addressed coherently. In practice, lifetimes on the order of

minutes [56] have been observed. Key applications of trapped ions include the manufacture of

atomic clocks [57] as well as mass spectroscopy [58]. However, for present purposes, it is their

application to quantum information processing that is most relevant.

The coherent manipulation of the internal states of trapped ions has motivated the proposal

of trapped ions for quantum information processing experiments. Concretely, the qubit is

identified with a choice of two energy levels within the ion, which may originate from the

optical [59, 60, 61] or hyperfine [62, 63, 64] transitions. The qubit is prepared by initialising it

in one of the two states that comprise the qubit, which can be done with very high fidelity [65].
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By applying appropriately chosen electromagnetic radiation, depending on the choice of qubit,

one can realise fast [66] single-qubit gates with high fidelities [67, 65] that often well exceed

99%. A requirement of performing quantum computing with trapped ions is that the state

of the qubits must be measured. This may be achieved by making use of the fact that some

internal states of the ion fluoresce much more than others. One can perform a measurement

on the qubit simply by measuring the fluorescence of the ion [68, 69, 70] which has also been

achieved with high fidelity [65].

In order to realise interesting quantum information processing experiments, it is necessary to

carry out an entangling gate on the qubits, which entails inducing an interaction between the

internal states of two different ions. One may carry this out indirectly with two ions that are

trapped together in the same trap. Although the internal states of the ions do not interact with

each other, the motional states of the ions are coupled together via the Coulomb interaction.

Under the assumption that the two ions are in their joint motional ground state, one may apply

appropriately chosen laser light in order to entangle the qubits encoded in the internal states of

the two ions [71]. This technique has been successfully implemented experimentally [62, 72] and

has motivated the development of related schemes [73] which allow one to entangle more than

two ions at a time, with corresponding demonstrations experimentally [74]. These two-qubit

gates, much like the single-qubit gates, have been demonstrated to work with very high fidelity,

with progress being made towards making them fast [75] and resilient to the effects of errors

[76] and heating in the joint motional state of the trapped ions [77, 78].

The ability to carry out all of these operations suffices for the construction of a universal

quantum computer, which can realise arbitrary unitary evolution on the collective register

of qubits that it maintains. Accordingly, many proof-of-principle experiments demonstrating

the efficacy of trapped ions for quantum computing have been demonstrated, including an

implementation of a quantum algorithm on five trapped-ion qubits [79].

As outlined, all of the ingredients that are needed to operate a quantum computer have been

demonstrated to work very well, culminating in the development of programmable devices

that execute a given sequence of quantum gates [80, 81], in effect realising small quantum
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computers. From the point of view of the development of quantum computing, the next question

to be addressed is that of the construction of very large quantum computers. Although it is

hoped that contemporary small quantum computers can compete with traditional computers

on certain tasks [82], quantum computers are likely to need more than hundreds of thousands

of qubits in order to solve problems that are of industrial interest [83, 84, 85] in reasonable

timeframes, which has motivated proposals for scalable trapped ion quantum computing.

2.2.1 Scalable trapped ion quantum computing

In this section, I will outline a number of various proposals for scalable quantum computing

with trapped ions, and enumerate their advantages and disadvantages as well as engineering

challenges that must be surmounted.

A simple approach to performing quantum information processing with a large number of

trapped ions involves simply trapping the ions within a single trap [86, 80, 87]. In this scenario,

the trapped ions interact with each other via their shared collective motional modes, which

is sufficient to implement the aforementioned entangling gates [71, 73]. In order to achieve

this, one needs to be able to address the ions individually. There exist a variety of schemes to

achieve this. One can deflect the laser that implements a quantum gate to couple to trapped ions

individually, as they are well separated in space [88], though this imposes an overhead in terms

of additional experimental complexity. Other approaches involve using an AC Stark shift to

alter the frequencies of the trapped ions, which is sufficient to allow for the ions to be addressed

individually and in pairs [89]. A related approach is the use of magnetic field gradients [90],

supplied by current carrying wires that are integrated into the ion trap, to achieve the required

frequency shifts. Such techniques have been employed experimentally to construct registers of

trapped ions upon which any desired single qubit and entangling operation can be implemented

[80], with low levels of crosstalk.

One could therefore attempt to do scalable quantum computing simply by scaling up the

numbers of ions that are stored within any one trap. Unfortunately, the schemes used to

address the ions break down as the number of ions becomes too high. For example, since
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the equilibrium separation distance of ions reduces with the number of trapped ions [91], it

becomes harder to resolve the separation between ions, requiring higher and higher magnetic

field gradients [90]. There exist also numerous other technical difficulties [92] in manipulating

large numbers of ions that are trapped together, which imposes an effective limit on the number

of trapped ions that may be used to carry out useful quantum information processing. As a

result, approaches to quantum computing with large numbers of trapped ions necessarily involve

the use of more than one ion trap, which I will now detail.

In order to surmount the difficulties associated with large numbers of trapped ions, Wineland

et. al proposed the concept of the ‘quantum charge coupled device’ (QCCD) in a now classic

paper [93]. A QCCD is a very large two-dimensional structure consisting of electrodes and

other experimental apparatus required to manipulate trapped ions is fabricated. During the

operation of such a device, ions are trapped in small numbers at trapping zones that are

spread throughout the structure. As the ions are never held together in large numbers, the

aforementioned scaling issues never arise. In order to induce interactions within pairs of ions

that are not trapped together, the ions are continually shuttled around the structure. Ions which

are to interact with each other are brought together in the same trap and subsequently driven

apart once the necessary two-qubit interaction has been carried out. The difficulties associated

with manipulating large numbers of trapped ions in the same trap have been replaced with

the engineering challenge of manufacturing a large ion trap structure. A detailed proposal

for the construction of a large-scale QCCD using contemporary engineering practices has been

proposed [94], as well as an experimental demonstration of the QCCD concept [81] to produce

a prototype device. The number of trapped ions scales with the area of the structure, allowing

for any number of trapped ions to be maintained with high connectivity [95].

Although in principle there is no limit on the size of a QCCD, in practice one is limited by the

fact that the ion traps, typically fabricated on a silicon wafer [96, 97], are limited by the wafer

size and cannot be manufactured to arbitrary size. To surmount this obstacle, one would prefer

to manufacture a number of QCCD modules with some means of communication between

them. One such proposal involves the use of photonic interconnects, in which interactions

between ions in different trapping structures are mediated via photons coupled into optical
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fibre [98, 99, 100, 101]. The use of photons allows one to consider a wide range of non-local

interactions between ions in different traps, as the ions need not be physically close to each

other in order to interact. However, the interaction is inherently probabilistic [99] and requires

additional optical equipment to implement [98], which may be challenging to manufacture at

scale. An additional concern is that the observed entanglement rates are on the order of 1 Hz

[102], which is considerably slower than the time taken to execute single-qubit gates [66]. This

would greatly increase the clock cycle time, which one would prefer to keep as low as possible

compared to the decoherence time [38] in order to increase the number of operations that could

be carried out. A simpler approach to connecting QCCD modules [94] involves simply aligning

the modules to neighbour each other in space, in such a way that the ions may be shuttled

between adjacent trapping structures. The effect of any misalignment of trapping structures

imposes an effective potential barrier that any trapped ion must overcome during shuttling.

Numerical simulations [94] indicate that the height of this potential barrier is not expected to

be prohibitively large in realistic situations.

2.2.2 Ion shuttling and separation

As discussed in Sec. 2.2.1, ions must be shuttled and separated within a QCCD in order to

make viable large-scale quantum computing with trapped ions. In this section I will outline the

problems of ion shuttling and separation in detail, together with theoretical and experimental

progress towards realising them.

Most proposals for a QCCD [93, 94] involve a two-dimensional array of ion traps arranged in a

lattice configuration. The traps are connected with so-called X-junctions [93, 103, 104], named

after their shape, within which ions are routed [95] in order to travel to different parts of the

QCCD. One is therefore interested not only in linear shuttles, in which an ion travels along

a straight line, but more complicated motions in which an ion may turn a corner through an

X-junction.

Ion shuttling is required to be fast, in order to ensure that the time taken for the QCCD to

execute a cycle of the computer is short compared to the decoherence time of the internal states
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of the ion [38]. Ions must also be shuttled without excessive excitation of the motional state of

the ion. Although ions are best entangled when they are close to their motional ground state,

some heating of the motional ground state is tolerated [77]. If the motional states of the trapped

ions are excited too highly after shuttling, then not only will the fidelity of entangling gates

decrease but the ion may end up lost after successive shuttling operations heat the motional

state of the ion excessively. Even such a dramatic error as loss of an ion may be compensated

for at the error-correction stage of the computer [105], provided that one has the ability to

inject in fresh ions where they have been lost, provided that the rate of ion loss is sufficiently

low. One would therefore prefer the motional state of the ion to be heated as little as possible

below some acceptable threshold.

The requirement that ion shuttling be done quickly, without exciting the motional mode of

the ion after transport, is theoretically and experimentally demanding. Nevertheless, much

progress has been made. Ion shuttling has been demonstrated for twenty years now [106] in

linear traps, in which ions may be shuttled along a linear axis, with very low ion losses and low

observed motional heating, albeit in the limit of large shuttling times. More recently, ions have

been shuttled quickly with minimal motional excitations also within a linear trap [107, 108, 81].

Ions of different species have also been shuttled together [81], which is useful as it allows for

one species to be employed to sympathetically cool the other [109].

In a QCCD, one has to consider not only linear shuttles of trapped ions, but more complicated

motions through X-junctions. Accordingly, much work has been done on demonstrating the

transport of ions through various types of microfabricated junction. Ions have been shuttled

through a T-junction [110], albeit slowly. Shuttling through junctions in two-dimensional ar-

chitectures is more challenging due to the presence of a non-vanishing pseudopotential [110]

which the ion must overcome during transport. Ions have also been shuttled through a so-

called Y-junction [111] consisting of three arms, with the additional technical restriction that

the ion is laser-cooled through transport. Performing fast shuttling through a junction remains

theoretically and experimentally challenging.

Ions must also be separated quickly during the operation of a QCCD, from being initially at
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rest within the same trap to being well-separated within different traps. Although this is more

demanding, much progress has been made. Ions have been separated experimentally [106] with

more recent efforts focusing on fast ion separation [112, 81]. There is also much interest in

designing traps specifically to facilitate fast separation of ions [113, 114].

Although there has been much encouraging progress in the field of ion shuttling and separa-

tion, there exist numerous challenges to surmount, in particular those related to dealing with

junctions in a QCCD.

2.3 Trapped ion physics

2.3.1 Ion traps

Having introduced ion traps, and their utility for quantum information processing, I will outline

here in detail relevant aspects of trapped ion physics, in order to illuminate how the motional

dynamics of trapped ions may be controlled in practice, to realise the important tasks of ion

shuttling and separation.

In order to trap an ion, it is most convenient to make use of the fact that ions, being charged

particles, interact strongly with the electromagnetic field via the Coulomb interaction. By

engineering this field carefully, one can ensure that the ion is trapped in a single region. An

ion is trapped when it moves in a potential that possesses a potential minimum at which the

Hessian of the trapping potential is positive definite. The ion will then experience a restoring

force upon experiencing small displacements from the potential minimum, which has the effect

of confining the ion to a small region surrounding the potential minimum, which is accordingly

often referred to as the centre of the trap.

It follows directly from Maxwell’s equations that no charged particle may be trapped by a

static electric field [115]. In order to trap ions, it is necessary to consider the imposition of

additional electromagnetic fields. There exist two main proposals for achieving this, which I

will now address.
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First proposed by Dehmelt [116], a Penning trap employs a homogeneous magnetic field, as well

as a static electric field supplied by electrodes to provide a potential that can trap ions. Ions [53,

117] as well as other charged particles such as electrons [118] and molecular ions [119] have been

trapped in Penning traps for decades, in some cases for months on end [120]. However, there

exist various technical disadvantages to doing quantum computing with Penning traps. Some

proposed implementations [94] of the QCCD involve the use of carefully engineered magnetic

field gradients to drive the entangling gates [63], which is incompatible with the requirement to

maintain a homogenous magnetic field in order to trap the ion. As a consequence, Penning traps

are not typically considered when considering scalable quantum computing, though proposals

do exist [121].

A more convenient alternative involves trapping ions using static and oscillating electric fields.

The addition of an oscillating electric field is sufficient to trap charged particles, which is

known as a Paul trap [50]. Paul traps are used in the majority of proposals for scalable

trapped ion quantum computing [93, 94], in part because it is possible to manufacture Paul

traps using conventional microfabrication techniques [122, 123, 96]. Many of the proof-of-

principle experiments demonstrating quantum information processing with trapped ions have

been realised with Paul traps [62, 74, 124].

2.3.2 Physics of Paul traps

In this section, I will analyse the workings of Paul traps in detail, and derive successive expres-

sions for the effective confining potential that an ion experiences in a Paul trap. I will outline

how the trapping potential that an ion experiences may be changed in practice, which must be

done to carry out tasks such as ion shuttling and separation.

As stated in Sec. 2.3.1, ions are trapped in Paul traps using a combination of static and

oscillating electric fields. Following the presentation of [125], a trapped ion of mass m and

charge q in a Paul trap experiences a potential of the form

ϕ(t, x, y, z) = qVDC(x, y, z) + q cos(Ωt)VAC(x, y, z), (2.1)
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where the quantities VDC(x, y, z) and cos(Ωt)VAC(x, y, z) may be thought of as the static and

oscillating electric potentials that result from applying some set of voltages to the electrodes

that make up a Paul trap.

The ion possesses the corresponding equation of motion

m¨⃗x = −q∇VDC − q cos(Ωt)∇VAC . (2.2)

The dynamics of ions in the potential ϕ(t, x, y, z) may be solved for explicitly in terms of

solutions of Mathieu’s differential equation [50, 125], from which one can show that ions are

trapped in this potential, as long as some conditions relating the quantities VDC , VAC and Ω

are met. Nevertheless, it is often cumbersome to work with the potential ϕ(t, x, y, z) as it is

time-dependent. Assuming that the applied frequency Ω of the oscillating potential is very

large, which will often be the case, it is possible to average the dynamics over fast time scales

to obtain an effective time-independent potential in which the ions move, which will now be

shown.

Firstly, the ion trajectory is decomposed into a slow-oscillating component x⃗S(t) and a fast-

oscillating component x⃗D(t) [125],

x⃗(t) = x⃗S(t) + x⃗D(t). (2.3)

To obtain an equation of motion, one substitutes Eq. (2.3) into Eq. (2.2) to obtain

m¨⃗xS +m¨⃗xD = −q∇VDC

∣
∣
∣
∣
x⃗S+x⃗D

− q cos(Ωt)∇VAC

∣
∣
∣
∣
x⃗S+x⃗D

, (2.4)

where the vertical evaluation bars indicate that the quantities ∇VDC and ∇VAC are evaluated

at the position x⃗S + x⃗D.

Eq. (2.4) is not very illuminating, as it couples together both the slow-oscillating part of the

trajectory x⃗S and the fast-oscillating part x⃗D in a complicated way. To make progress, one
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assumes further that the fast-oscillating part of the motion x⃗D is small compared to the slow-

oscillating part x⃗S. This allows one to work to lowest order in the fast-oscillating part of the

motion x⃗D, which will facilitate many simplifications.

Eq. (2.4) may be simplified by taking Taylor expansions of the quantities ∇VDC and ∇VAC to

lowest order in the fast-oscillating part of the motion x⃗D to obtain

m¨⃗xS+m¨⃗xD = −q
(

∇VDC

∣
∣
∣
∣
x⃗S

+ (x⃗D · ∇)∇VDC

∣
∣
∣
∣
x⃗S

)

−q cos(Ωt)
(

∇VAC

∣
∣
∣
∣
x⃗S

+ (x⃗D · ∇)∇VAC

∣
∣
∣
∣
x⃗S

)

.

(2.5)

As Eq. (2.5) contains both small and large terms, one can equate them in order to derive a new

equation, which will allow one to solve for the fast-oscillating part of the motion x⃗D.

Neglecting small terms of order x⃗D in Eq. (2.5) gives

m¨⃗xS +m¨⃗xD = −q∇VDC

∣
∣
∣
∣
x⃗S

− q cos(Ωt)∇VAC

∣
∣
∣
∣
x⃗S

. (2.6)

Eq. (2.6) contains both slow and fast oscillating parts, which allows for further simplification.

Equating the fast oscillating parts gives

m¨⃗xD = −q cos(Ωt)∇VAC

∣
∣
∣
∣
x⃗S

, (2.7)

which can be integrated to obtain

x⃗D =
q

mΩ2
cos(Ωt)∇VAC

∣
∣
∣
∣
x⃗S

, (2.8)

which is to say that the fast-oscillating part of the dynamics x⃗D has explicitly been solved for.

By substituting the expression in Eq. (2.8) for the fast-oscillating part of the motion x⃗D back

into Eq. (2.5), one can obtain an equation of motion involving only the slow-oscillating part of

the motion x⃗S.
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Substituting Eq. (2.8) into Eq. (2.5) gives

m¨⃗xS = −q∇VDC

∣
∣
∣
∣
x⃗S

− q2

mΩ2
cos(Ωt)

(

∇VAC

∣
∣
∣
∣
x⃗S

· ∇
)

∇VDC

∣
∣
∣
∣
x⃗S

− q2

mΩ2
cos2(Ωt)(∇VAC

∣
∣
∣
∣
x⃗S

·∇)∇VAC

∣
∣
∣
∣
x⃗S

.

(2.9)

Although Eq. (2.9) involves only the slow-oscillating part of the dynamics x⃗S as promised, it

contains the fast oscillating term cos(Ωt). By averaging over fast time scales, an equation of

motion involving only slowly varying quantities may be derived.

Concretely, the slow-oscillating part of the dynamics x⃗S does not vary considerably over times

T = 2π
Ω
. Averaging Eq. (2.9) over this short time T gives

m¨⃗xS = −q∇VDC

∣
∣
∣
∣
x⃗S

− q2

2mΩ2
(∇VAC

∣
∣
∣
∣
x⃗S

· ∇)∇VAC

∣
∣
∣
∣
x⃗S

= −∇
(

qVDC +
q2

4mΩ2
∇V 2

AC

) ∣
∣
∣
∣
x⃗S

. (2.10)

The slow-oscillating part of the motion x⃗S is therefore effectively governed by the potential

ϕeff = qVDC +
q2

4mΩ2
(∇VAC)

2, (2.11)

which is often called the pseudopotential, or the pondermotive potential. This completes the

derivation that can be found in full in [125].

Eq. (2.11) determines the pseudopotential ϕeff in terms of the applied static electric field VDC

and the applied oscillating electric field cos(ωt)VAC . In practice, the motional state of the ion

is altered by adjusting the voltages on the trap electrodes, which in turn changes these applied

electric fields, resulting in a change in the pseudopotential ϕeff . Many tasks related to control

of trapped ion motional states may therefore be thought of as a search for the appropriate

sequences of voltages to apply to the trap electrodes.

The quantity x⃗D is commonly called the micromotion of the ion, which is often neglected alto-

gether. Indeed, as can be seen from inspection of Eq. (2.8), when the quantity ∇VAC vanishes



2.3. Trapped ion physics 35

so does the micromotion x⃗D. There exist ways of minimising the effect of the micromotion in

experiment [126].

Ions that are trapped at the minimum of the pseudopotential will oscillate small oscillations

around the trap minimum. Consequently, they will be affected only by a spatially small region

of the pseudopotential ϕeff surrounding the trap minimum. This allows for the pseudopotential

ϕeff to be replaced by a second-order Taylor expansion in many cases.

The minimum of the pseudopotential ϕeff coincides with the centre of the trap C⃗. One can

therefore write for the Taylor expansion of the pseudopotential ϕeff

ϕeff (x⃗) ≈ ϕeff (C⃗) +
1

2
(x⃗− C⃗)T∇∇ϕeff

∣
∣
∣
∣
C⃗

(x⃗− C⃗), (2.12)

which is the potential of a harmonic trap, i.e. one that is quadratic in position, with trap centre

C⃗. The eigenvectors v⃗i and the positive eigenvalues ω2
i of the Hessian of the pseudopotential

∇∇ϕeff denote the principal axes of the trap and the squared trapping frequencies respectively.

As a result, the Hessian ∇∇ϕeff of the pseudopotential can be thought of as characterising the

curvature of the trap.

As explained in Sec. 2.2.2, there is great interest in shuttling and separation of trapped ions

within Paul traps. In practice, these tasks are achieved by modulating the applied static

electric field VDC and the applied oscillating electric field cos(ωt)VAC over time in some way.

This gives rise to a change in the position of the trap centre C⃗ and the curvature of the trap as

characterised by the Hessian of the pseudopotential ∇∇ϕeff . Consequently, both the position

of the trap centre C⃗ and the trap curvature ∇∇ϕeff can be thought of as time-dependent

quantities, that are ultimately determined by experimental control through the applied static

electric field VDC and the applied oscillating electric field cos(ωt)VAC .
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2.4 Phase-space quantum mechanics

Many results in this thesis are proven in the phase-space setting of quantum mechanics, as this

is the natural way to deal with Hamiltonians that are quadratic in position and momentum, as

well as Gaussian states which are intimately connected with such Hamiltonians. In this section

I will introduce various key definitions and results that will be referred to throughout this work,

along with a brief history of the use of Gaussian states in computational quantum mechanics.

As demonstrated in Sec. 2.3.2, the motional potentials which trapped ions experience may

typically be taken to be time-dependent and quadratic in position, as in Eq. (2.12). It will

prove convenient to relabel some quantities. Writing

M(t) =
1

m
∇∇ϕeff

∣
∣
∣
∣
C⃗

, (2.13)

and

F⃗ (t) = ∇∇ϕeff

∣
∣
∣
∣
C⃗

C⃗, (2.14)

the Hamiltonian governing a single ion in the potential given in Eq. (2.12) may be written as

H(t) =
∑

i

p̂2i
2m

+
1

2
m
∑

ij

Mij(t)x̂ix̂j −
∑

i

F⃗i(t)x̂i, (2.15)

where m is the mass of the ion and the x̂i and p̂i are the position and momentum operators

in each of the d spatial dimensions. The quantity M(t) is a real symmetric matrix since it is

proportional to the Hessian of the pseudopotential ∇∇ϕeff

∣
∣
∣
∣
C⃗

.

Naturally, d = 3 in an experimental setting, though one is free to consider other values. In

particular, in linear traps, one usually takes d = 1 [127] as the radial modes of motion can often

be ignored.

Since the Hamiltonian given in Eq. (2.15) is quadratic both in position and momentum, many

simplifications can be made by treating position and momentum on an equal footing. One
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introduces the vector of position and momentum operators X̂,

X̂ =

(

x̂1, x̂2, ..., x̂n, p̂1, p̂2, ..., p̂n

)

. (2.16)

Eq. (2.15) may be rewritten compactly in terms of the phase space operator X̂ to get

H =
1

2
X̂TΩX̂ + V⃗ · X̂, (2.17)

where

Ω =






mM ❖

❖
1
m
✶




 , (2.18)

and

V⃗ =






−F⃗

0




 . (2.19)

Eq. (2.17) makes it clear that the HamiltonianH is a quadratic form in the phase-space operator

X̂. Such Hamiltonians H have an intimate connection with Gaussian states, which will now be

addressed.

2.4.1 Gaussian states

Gaussian states are immensely useful in the analysis of the dynamics of the Hamiltonian given

in Eq. (2.17). Under time-evolution, any Gaussian state subject to this Hamiltonian will re-

main Gaussian [128]. Furthermore, Gaussian states may be characterised in terms of very

few parameters, which has facilitated their use in numerical methods to investigate molecular

wavepacket dynamics [128, 129, 130, 131, 132, 133], with extensions to more than one spatial

dimension [134, 135] and anharmonic potentials [136]. For present purposes, it is useful to note

that Gaussian states are characterised entirely in terms of their phase-space expectation X and
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covariance matrix Σ [135],

Xi =
〈

X̂i

〉

, (2.20)

Σij =
1

2

〈

X̂iX̂j + X̂jX̂i

〉

− ⟨Xi⟩ ⟨Xj⟩ . (2.21)

Gaussian states may be expressed most compactly in terms of their Wigner function [135],

W (Z1, ..., Z2n) =
1√

πn detΣ
e−

1

2
(Zi−Xi)Σ

−1

ij (Zj−Xj). (2.22)

Having defined the symplectic matrix S to be

S =






❖ ✶

−✶ ❖




 , (2.23)

the equations of motion for the phase-space expectation X and covariance matrix Σ read

Σ̇ = SΩΣ− ΣΩS, (2.24)

Ẋ = S
(

ΩX + V⃗
)

. (2.25)

By integrating Eqs. (2.24) and (2.25), one can efficiently determine the dynamics of a Gaussian

state under time-evolution [135], which is useful considering that, in general, determining the

dynamics via solution of the time-dependent Schrödinger equation is not easy.

While Eq. (2.24) is an evolution equation for the covariance matrix Σ, Eq. (2.25) is equivalent

to Hamilton’s equations for a classical particle governed by the Hamiltonian given in Eq. (2.17).

Consequently, the dynamics of a Gaussian state may be separated into a classical trajectory,

given by the phase-space expectationX, and the covariance matrix Σ which contains all relevant

quantum mechanical phenomena such as squeezing.
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2.5 Quantum invariants

In this section, I will introduce the concept of quantum invariants, together with a brief history

of them and some of their properties. I will conclude by detailing their application to the

control of motional states of trapped ions.

Quantum invariants were introduced by Lewis [137], in an attempt to analyse the one-dimensional

time dependent harmonic oscillator (though motivated by the motion of charged particles in

magnetic fields [138] rather than trapped ions). Such systems possess the Hamiltonian

H =
p2

2
+

1

2
ω2(t)x2. (2.26)

Viewing the HamiltonianH as defining a classical system, one can solve Hamilton’s equations to

obtain the position x(t) and momentum p(t) of the system. As the frequency ω(t) is varying in

time, the HamiltonianH(x(t), p(t)), considered as a function of the position x(t) and momentum

p(t), is not conserved under time evolution. However, if the frequency ω(t) is slowly varying,

then the quantity

H(x(t), p(t))

ω(t)
(2.27)

is approximately conserved [139, 140]. Such quantities are known as adiabatic invariants. A

drawback of adiabatic invariants is that they require that all parameters appearing in the

Hamiltonian, such as the frequency ω(t) in Eq. (2.26), to vary slowly, which is not necessarily

the case in physical systems that one would like to analyse. They are also inherently classical

quantities that do not appear to have quantum counterparts.

In an attempt to expand the applicability of adiabatic invariants to Hamiltonians which are

not slowly changing in time, Kruskal [141] outlined how one may derive from a wide class of

adiabatic invariants constants of motion that are given by asymptotic expansions that are cor-

rect to all orders. Upon application of Kruskal’s method to the Hamiltonian given in Eq. (2.26)

[142], to some surprise [143] one obtains not an asymptotic expansion but rather an exact con-

stant of motion. Furthermore, this construction, which is entirely classical [137], motivates the
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definition of a quantum invariant, an operator which may be considered to be an exact constant

of motion under the quantum dynamics of a time-dependent system [137].

A quantum invariant I(t) is an operator that satisfies the equation

dI(t)
dt

= i[I(t), H(t)], (2.28)

and the quantum invariant discovered by Lewis [137] may be written as

I(t) = 1

2

(
x̂2

ρ2
+ (ρp̂− ρ̇x̂)2

)

, (2.29)

provided that the equation

ρ̈+ ω2(t)ρ =
1

ρ3
, (2.30)

often denoted the Ermakov equation [143], is satisfied. It is straightforward to verify directly

that the invariant I(t) given in Eq. (2.29) satisfies the defining equation for a quantum invariant

Eq. (2.28) with the Hamiltonian H(t) as defined in Eq. (2.26).

In this work, I will limit myself to the analysis of quantum invariants that are Hermitian.

However, non-Hermitian invariants exist and are of use in carrying out various tasks in quantum

control theory [144].

Quantum invariants possess many useful and interesting properties that justify their name. It

may be shown that the eigenvalues of any invariant I are constant in time [145]. Furthermore,

one can show that the eigenstates of I can always be chosen in such a way that they solve the

time-dependent Schrödinger equation for H(t). I will now detail this proof in detail as it is of

prime importance to the use of quantum invariants for quantum control.

2.5.1 Quantum invariants and the Schrödinger equation

Lewis and Riesenfeld [145] were the first to note the important connections between quantum

invariants and solutions of the time-dependent Schrödinger equation that ultimately allow for
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the use of quantum invariants in control theory. In this section I will reproduce some of their

key results contained in [145].

The time-dependent Schrödinger equation reads, in units where h̄ = 1,

i
d

dt
|ψ⟩ = H(t) |ψ⟩ . (2.31)

The eigenvalues and eigenstates of the invariant I have an intimate connection with the

Schrödinger equation in Eq. (2.31). Since the invariant I is Hermitian, they may be taken

to satisfy the following relations,

I |λ, κ⟩ = λ |λ, κ⟩ , (2.32)

⟨λ′, κ′|λ, κ⟩ = δλ,λ′δκ,κ′ , (2.33)

where the eigenvalues λ of the invariant I are real and the label κ runs over all quantum numbers

besides the eigenvalues λ in order to characterise the eigenstates |λ, κ⟩ non-degeneratively.

2.5.1.1 Time independence of the eigenvalues of a quantum invariant

The eigenvalues λ are not only real but are also independent of time. One may prove this by

demonstrating that the time derivative of the eigenvalues dλ
dt

vanishes. In order to do this, one

first needs an expression involving the time derivative of the eigenvalues dλ
dt
. Differentiating

Eq. (2.32) gives

dI
dt

|λ, κ⟩+ I d

dt
|λ, κ⟩ = dλ

dt
|λ, κ⟩+ λ

d

dt
|λ, κ⟩ . (2.34)

Although Eq.(2.34) contains the time derivative of the eigenvalues dλ
dt
, it is not clear how the

time derivative of the eigenvalues dλ
dt

depends explicitly on the other quantities involved. By

taking an appropriate inner product, one can derive an expression for the time derivative of

the eigenvalues dλ
dt
. Taking the inner product of Eq. (2.34) with a state |λ, κ⟩ gives, after
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simplification and cancellations,

dλ

dt
= ⟨λ, κ|dI

dt
|λ, κ⟩ . (2.35)

Eq. (2.35) relates the time derivative of the eigenvalues dλ
dt

to the matrix elements of the time

derivative of the invariant dI
dt
. In order to make progress, it is necessary to derive an additional

relation involving the invariant I and its time derivative dI
dt
.

Operating on |λ, κ⟩ with Eq. (2.28) gives, after rearranging, that

i
dI
dt

|λ, κ⟩+ IH |λ, κ⟩ − λH |λ, κ⟩ = 0. (2.36)

Eq. (2.36) involves the time derivative of the invariant dI
dt

explicitly. By taking the inner product

of Eq. (2.36), one can derive an expression for the matrix elements of the time derivative of the

invariant dI
dt

that appear on the right hand side of Eq. (2.35).

Taking the inner product of Eq. (2.36) with a state |λ′, κ′⟩ gives,

i ⟨λ′, κ′|dI
dt

|λ, κ⟩+ (λ′ − λ) ⟨λ′, κ′|H|λ, κ⟩ = 0. (2.37)

The matrix element of dI
dt

that appears on the left hand side of Eq. (2.37) is of the same form

as that appearing on the right hand side of Eq. (2.35). By setting λ = λ′ and κ = κ′, it is

possible to equate Eqs. (2.35) and (2.37).

Setting λ = λ′ and κ = κ′ in Eq. (2.37) gives that

⟨λ, κ|dI
dt

|λ, κ⟩ = 0. (2.38)

By equating Eqs. (2.35) and (2.38), we see that

dλ

dt
= 0, (2.39)
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which is to say that the eigenvalues λ are indeed constant in time.

2.5.1.2 Eigenstates of a quantum invariant may be chosen to satisfy the Schrödinger

equation

Since the invariant I is a time-dependent operator, and its eigenvalues λ are time-independent,

all of the time-dependence of the invariant I lies in the eigenstates |λ, κ⟩. The eigenstates |λ, κ⟩

can be chosen to be solutions of the Schrödinger equation, which will now be proved.

Some of the expressions derived in Sec. 2.5.1.1 will prove useful. Since the eigenvalues λ were

eventually shown to be time-independent, it is possible to simplify some of those expressions.

Eq. (2.34) may be simplified to

(λ− I) d
dt

|λ, κ⟩ = dI
dt

|λ, κ⟩ . (2.40)

Eq. (2.40) may be regarded as an evolution equation for the eigenstates |λ, κ⟩ that is first-order

in time, much like the Schrödinger equation. However, it involves the invariant I, while the

Hamiltonian H does not enter directly into Eq. (2.40), as it does in the Schrödinger equation.

By manipulating Eq. (2.40) further, it is possible to obtain an equation involving only the

Hamiltonian H, which will be of great assistance in exploring the connection between the

eigenstates |λ, κ⟩ and the Schrödinger equation.

Eq. (2.37) relates matrix elements of the time derivative of the invariant dI
dt

to matrix elements

of the Hamiltonian H. It may be used to eliminate the time derivative of the invariant dI
dt

entirely from Eq. (2.40) in favour of H as desired.

In order to do this, one first takes the inner product of Eq. (2.40) with |λ′, κ′⟩ to obtain

(λ− λ′) ⟨λ′, κ′| d
dt
|λ, κ⟩ = ⟨λ′, κ′|dI

dt
|λ, κ⟩ . (2.41)

One can then use Eq. (2.37) to eliminate the matrix element ⟨λ′, κ′|dI
dt
|λ, κ⟩ in Eq. (2.41) to
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obtain a useful equation involving H explicitly,

i(λ− λ′) ⟨λ′, κ′| d
dt
|λ, κ⟩ = (λ− λ′) ⟨λ′, κ′|H|λ, κ⟩ . (2.42)

Eq. (2.42) relates the time-derivative of the eigenstates d
dt
|λ, κ⟩ to the Hamiltonian H without

any reference to the invariant I as desired. By taking λ ̸= λ′, one can simplify Eq. (2.42)

further to obtain

i ⟨λ′, κ′| d
dt
|λ, κ⟩ = ⟨λ′, κ′|H|λ, κ⟩ . (2.43)

Eq. (2.43) is written in terms of matrix elements, while the Schrödinger equation Eq. (2.31) is

the evolution equation of a quantum state. In order to investigate the link between the two, it

is helpful to express the Schrödinger equation in terms of matrix elements.

The Schrödinger equation for a state |ψ⟩ reads

i
d

dt
|ψ⟩ = H(t) |ψ⟩ . (2.44)

By inserting resolutions of the identity into the Schrödinger equation, one obtains an equivalent

equation involving matrix elements

i
∑

λ′,κ′

|λ′, κ′⟩ ⟨λ′, κ′| d
dt
|ψ⟩ =

∑

λ′,κ′

|λ′, κ′⟩ ⟨λ′, κ′|H|ψ⟩ . (2.45)

One concludes that if

i ⟨λ′, κ′| d
dt
|ψ⟩ = ⟨λ′, κ′|H|ψ⟩ . (2.46)

for all eigenvalues λ′ and all quantum numbers κ′, then the Schrödinger equation in Eq. (2.44)

is satisfied.

Identifying the eigenstate |λ, κ⟩ with the state |ψ⟩ gives that Eq. (2.43) is in fact the same as

Eq. (2.46). Unfortunately, it does not follow that the eigenstate |λ, κ⟩ satisfies the Schrödinger

equation, as Eq. (2.43) holds only when λ ̸= λ′.
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In order to show that the eigenstates |λ, κ⟩ satisfy the Schrödinger equation, it is sufficient to

show that they satisfy Eq. (2.46) in the case that λ = λ′, which is to say that

i ⟨λ, κ′| d
dt
|λ, κ⟩ = ⟨λ, κ′|H|λ, κ⟩ . (2.47)

Eq. (2.47) is not necessarily satisfied by any choice of eigenstates |λ, κ⟩. There however exists

a degree of freedom in choosing the eigenstates |λ, κ⟩ which has not yet been made use of. The

eigenstates |λ, κ⟩ may be multiplied by any arbitrary phase factor

|λ, κ⟩ → |λ, κ⟩α = eiαλ,κ(t) |λ, κ⟩ , (2.48)

to obtain a different set of eigenstates |λ, κ⟩α of the invariant I. This gauge freedom in choosing

the phase αλ,κ(t) of the eigenstates may be employed to demonstrate that, under an appropriate

choice of phase αλ,κ(t), the new eigenstates |λ, κ⟩α satisfy Eq. (2.47).

One starts by observing that since the eigenstates |λ, κ⟩α are indeed eigenstates of I for any

choice of phase αλ,κ(t), all the results proven so far for the eigenstates |λ, κ⟩ hold also for the

new eigenstates |λ, κ⟩α.

The new eigenstates |λ, κ⟩α satisfy Eq. (2.47) provided that the phases αλ,κ(t) are chosen

appropriately. Eq. (2.47) reads, in terms of the new eigenstates |λ, κ⟩α,

i ⟨λ, κ′|α
d

dt
|λ, κ⟩α = ⟨λ, κ′|αH|λ, κ⟩α . (2.49)

Substituting the expression in Eq. (2.48) for the new eigenstates |λ, κ⟩α into Eq. (2.49) gives,

after rearranging and simplification,

δκκ′

dαλ,κ

dt
= ⟨λ, κ′|i d

dt
−H|λ, κ⟩ . (2.50)

As the left hand side of Eq. (2.50) is proportional to the Dirac delta symbol δκκ′ , the right hand

side must vanish for κ ̸= κ′. This is always possible to arrange. Since i d
dt
−H is a Hermitian
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operator [145], one may simply choose the eigenstates |λ, κ⟩ to diagonalise this operator.

Having done this, the requirement that Eq. (2.50) be satisfied reduces to

dαλ,κ

dt
= ⟨λ, κ|i d

dt
−H|λ, κ⟩ . (2.51)

Eq. (2.51) is a first order differential equation for the phases αλ,κ(t). The phases αλ,κ(t) may

always be chosen to satisfy Eq. (2.51), which completes the proof contained in full in [145] that

the |λ, κ⟩α satisfy the Schrödinger equation.

The eigenstates |λ, κ⟩α are therefore occasionally referred to as ‘transport modes’ [127] of the

time-dependent Hamiltonian H(t), as any solution of the Schrödinger equation may be built

out of them via superposition. As a consequence, if a quantum invariant I is defined for a

time-dependent Hamiltonian H(t), then one may simply diagonalise the invariant I, following

the above procedure, as an alternative to solving the time-dependent Schrödinger equation

explicitly, which is in general analytically difficult and expensive numerically.

Quantum invariants, in particular the one presented in Eq. (2.29), have found a great variety of

applications to different fields, including being used as a theoretical tool to compute topological

phases in planar waveguides [146] and minispace quantum cosmologies [147]. They may also

be constructed for light beam propagation in nonlinear inhomogeneous media [148]. Quantum

invariants have also been constructed for two-level [149, 150] and four-level systems [151].

However, for the current purpose, quantum invariants found a novel application some decades

after their discovery to quantum control theory, which I will now turn to.

2.5.2 Invariant-based inverse-engineering

In this section, I will introduce the notion of invariant-based inverse engineering, which allows

one to carry out various tasks in quantum control theory, including those related to shuttling

and separation of trapped ions.

As explained in Sec. 2.2.2, the problems of ion shuttling and separation require that the motional
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states of trapped ions be close to their ground states at the beginning and end of the dynamics.

Letting the time T be the duration of the procedure, the initial Hamiltonian H(0) and the

final Hamiltonian H(T ) may be taken as fixed and determined by the problem at hand. For

example, the initial Hamiltonian H(0) and the final Hamiltonian H(T ) may represent trapping

potentials in distinct locations, in the case of ion shuttling. The problem that this thesis is

chiefly concerned with is the derivation of Hamiltonians H(t) where the time t lies between 0

and the duration T that ensure that the ground state of the Hamiltonian of the system at initial

time H(0) is driven into the ground state of H(T ) a time T later. Such a Hamiltonian H(t)

ensures that there is no motional heating of the system at all during transport, and therefore

may be regarded as the best possible outcome.

It is possible to generate such HamiltoniansH(t) using a technique based on quantum invariants

[152, 127, 153, 150, 154]. First of all, one fixes a choice of initial Hamiltonian H(0) and final

Hamiltonian H(T ). One then constructs a non-degenerate time-dependent Hermitian operator

I(t) such that [I(0), H(0)] and [I(T ), H(T )] commute. One then deduces the Hamiltonian

H(t) via the requirement that the operator I(t) is an invariant for the Hamiltonian H(t) i.e.

by ensuring that Eq. (2.28) is satisfied at all times. Such a choice of H(t) will ensure that I is

a quantum invariant for that Hamiltonian by construction. Furthermore, this Hamiltonian in

fact performs ground state to ground state transfer from initial time t = 0 to final time t = T .

Assuming that the population starts in the ground state of H(0) at time t = 0, the fact that

the ground state of H(0) is non-degenerate and [I(0), H(0)] implies that the ground state of

H(0) is also a non-degenerate eigenstate of I(0). This non-degenerate eigenstate solves (up

to an unimportant time-dependent phase) the Schrödinger equation for H(t), which is to say

that the final state of the system after time-evolution is the ground state of I(T ). A similar

argument gives that this state must also be an eigenstate of H(T ). This approach is commonly

denoted ‘invariant-based inverse engineering’. For a more complete review of the subject, I

refer the reader to [154].

Not many details concerning how one may deduce H(t) from Eq. (2.28) have been given, or

indeed it has not even been proved that one ends in the ground state ofH(T ) as opposed to some

higher state. Addressing the first of these issues, the deduction process is highly dependent on
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the structure of the physical problem at hand and one cannot make general statements about

it without reference to some particular problem. As for the latter, it is often possible to prove

that one indeed ends up in the ground state of H(T ) with the class of quantum invariants that

are discussed in this thesis.

Enough material has already been introduced to give a simple example of invariant-based inverse

engineering that will illuminate how the method may be employed. Consider a system governed

by the Hamiltonian given in Eq. (2.26). First of all, an initial Hamiltonian H(0) and a final

Hamiltonian H(T ) must be fixed. Since H(t) is determined by ω(t), this is equivalent to fixing

an initial frequency ω(0) and a final frequency ω(T ). One then takes Eq. (2.29) to define an

operator I(t), where the scalar function ρ(t) is chosen to satisfy ρ̇(0) = ρ̈(0) = ρ̇(T ) = ρ̈(T ) = 0,

ρ(0) = ω− 1

2 (0) and ρ(T ) = ω− 1

2 (T ). It may be verified that such choices ensure that the operator

I and the Hamiltonian H commute at initial and final times as required.

It remains to ensure that the operator I(t) is an invariant, which is the case if Eq. (2.30) is

satisfied. One can rearrange Eq. (2.30) to obtain the trapping frequency ω(t) in terms of the

scalar quantity ρ,

ω(t) =

√

1

ρ4
− ρ̈

ρ
. (2.52)

Using Eq. (2.52) to define the trapping frequency ω(t) in this way ensures that I is indeed

an invariant for the Hamiltonian H, as Eq. (2.30) is satisfied by construction, and so all the

preconditions are met. It is also straightforward to confirm in this case that the population

is transferred to the ground state of the final Hamiltonian H(T ) as opposed to some excited

state. Since the ground state of the initial Hamiltonian H(0) is Gaussian, it remains Gaussian

as it is subject to a potential defined through Eq. (2.26) that is quadratic in position. But the

only Gaussian eigenstate of H(T ) is the ground state as H(T ) is the Hamiltonian of a simple

harmonic oscillator.

With some modifications, notably the addition of a linear term, the inverse engineering proce-

dure presented here is very similar to that used recently to obtain results in ion shuttling and

separation, which will now be addressed.
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2.6 Ion shuttling and separation with invariant-based in-

verse engineering

In this section, I will present recent work that employs invariant-based inverse engineering to

perform diverse tasks involving the manipulation of trapped ion motional states, some of which

is generalised by the results presented in this thesis.

2.6.1 Ermakov-Lewis invariant

In order to employ invariant-based control, we must certainly have a suitable invariant to use.

As noted in Sec. 2.3.2, a trapped ion experiences a potential that is quadratic in position to a

good approximation.

Although strictly speaking the dynamics of a trapped ion are three-dimensional, as mentioned

in Sec. 2.4 it is valid to consider in linear ion traps only one motional mode of the motion and

neglect all others. This is most typically done in the analysis of trapped ions in linear traps,

in which the ion is confined to an axis along which it may be shuttled. To model this, one can

write down the Hamiltonian

H =
p2

2m
+

1

2
mω2(t)x2 − F (t)x, (2.53)

where the frequency term ω(t) and force term F (t) may be obtained from a second-order Taylor

expansion of the pseudopotential given in Eq. (2.11).

This Hamiltonian possesses the invariant [155]

I(t) = 1

2m
(ρ(p̂−mα̇)−mρ̇(x̂− α))2 +

1

2
m

(
x− α

ρ

)2

, (2.54)

where

ρ̈+ ω2(t)ρ =
1

ρ3
(2.55)
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and

α̈ + ω2(t)α =
F (t)

m
(2.56)

must be satisfied.

Eq (2.55) is the Ermakov equation in Eq. (2.30). Eq. (2.56) is usually referred to as the Newton

equation.

This invariant may be used in the context of invariant based inverse engineering. Following the

example of Sec. 2.5.2, one designs an invariant I by choosing scalar functions α(t) and ρ(t) that

parametrise an invariant via Eq. (2.54). By rearranging Eqs. (2.55) and (2.56), one can derive

the frequency term ω(t) and the force term F (t) in terms of the scalar functions α and ρ. As

in the example of Sec. 2.5.2, this is sufficient to realise ground state to ground state shuttling.

This technique has been used to control the transportation of ions and cold atoms in a linear

trap [127, 153, 150], with extensions to deal with optimal shuttling in the presence of noise

[156, 157, 158]. By expanding in terms of dynamical normal modes, more than one ion may be

controlled at the same time. Using such an approach, one can transport two ions simultaneously

[159, 160], expand and compress ion chains [161] and separate two trapped ions into separate

traps [162]. Such methods however are generally limited to the consideration of one spatial

dimension.

Although the invariant I presented in Eq. (2.54) has been successfully used to control a wide

range of physical systems, there exist situations in which this invariant is not applicable in more

than one spatial mode. Generally speaking, the application of this invariant to systems with

more than one spatial mode requires the application of an appropriate time-dependent point

transformation to yield a separable Hamiltonian, upon which invariant-based inverse engineer-

ing may be applied to each part in turn [163]. In the absence of such transformations, inverse

engineering must necessarily rely upon perturbative or numerical techniques. The invariant

that is to be presented in this thesis allows for the control of systems in more than one spatial

dimension without having to employ such techniques, and as such represents a milestone in the

development of invariant-based inverse engineering.
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2.6.2 Physical interpretation of the invariant

The scalar quantities α and ρ have a natural physical interpretation in terms of dynamical

quantities of the underlying physical system, which can be of great help when designing them

in the context of invariant-based inverse engineering.

During a physical process that is governed by a choice of invariant I via inverse engineering,

the dynamical state of the system is guaranteed to be in the ground state of the invariant I.

Since the invariant I is quadratic in position and momentum, it is straightforward enough to

determine this state directly.

The ground state wavefunction ψ0 of the invariant I may be calculated to be [164]

ψ0(x) =
1√
ρ

(m

π

) 1

4

exp

(

im

(
ρ̇x2

2ρ
+

(α̇ρ− αρ̇)x

ρ

))

exp

(

−m
2

(
x− α

ρ

)2
)

. (2.57)

This is the state of the system up to a time-dependent phase. Although the quantities α and ρ

appear directly in Eq. (2.57), it is not yet clear how to interpret them physically. Since the state

ψ0(x) is a Gaussian state, it is naturally characterised in terms of its phase space expectation X

and covariance matrix Σ, as detailed in Sec. 2.4.1. These quantities may be calculated directly

using Eq. (2.57), to obtain expressions in terms of the scalar quantities ρ and α. The expected

position ⟨x̂⟩ and uncertainty in position ⟨∆x̂2⟩ turn out to be

⟨x̂⟩ = α, (2.58)

〈
∆x̂2

〉
=

ρ2

2m
. (2.59)

This leads to a simple and useful interpretation of the scalar quantities α and ρ.

The scalar quantity α is the expected position of the ion. In fact, since the Hamiltonian

defined in Eq. (2.53) is quadratic, the expectations of position and momentum actually obey

the classical equations of motion [165]. The scalar quantity α may furthermore be interpreted

as the classical trajectory of the particle. In the context of manipulation of trapped ions, some

ion trajectories are rendered impossible by the constraints of the trap trajectory. For example,
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one would not want the ion to attempt to pass through a trap electrode during transport. The

ability to design the classical trajectory of the ion α directly is therefore very useful.

The scalar quantity ρ governs the uncertainty in position of the particle. As such, it may be

said to characterise the width of the wavepacket, as is apparent from Eq. (2.57). As a rule, one

would prefer for the wavepacket to be localised in space, otherwise the wavepacket may vary

on length scales that are comparable to those on which the potential varies, and the crucial

assumption that the potential is quadratic in position would break down. The ability to choose

the scalar quantity ρ therefore implies the possibility of ensuring the position uncertainty does

not get too great, which may be of experimental utility.

2.7 Matrix anticommutator equation

This thesis involves many manipulations of matrix-valued quantities. In this section I will

present an important technical lemma that is applied during the solution of certain matrix-

valued equations that appear throughout this work.

The matrix anticommutator equation

{A,X} = B, (2.60)

will often need to be solved for the matrix X, given that A and B are square matrices of size

d.

Assuming that A is positive, one may always solve Eq. (2.60) uniquely for the matrix X [166],

which I will now detail.

As A is positive, it is also Hermitian, so it admits an eigendecomposition A = PΛP T , where P

is a unitary matrix and Λ = λiδij is a real diagonal matrix consisting of the eigenvalues λi of

A.
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Substituting into Eq. (2.60) one obtains

PΛP TX +XPΛP T = B. (2.61)

By manipulating this equation, an anticommutator equation involving the diagonal matrix Λ

may be obtained, which will prove much easier to solve. Premultiplying by P T and postmulti-

plying by P gives

ΛP TXP + P TXPΛ = P TBP. (2.62)

Eq. (2.62) may be simplified by writing it in terms of different quantities. Writing

Y = P TXP, (2.63)

and

C = P TBP, (2.64)

one can re-express Eq. (2.62) as

ΛY + Y Λ = C, (2.65)

which is to say that the problem has indeed been reduced to an anticommutator equation in

which one of the matrices Λ is diagonal as promised.

It is possible to solve Eq. (2.65) in closed form, which leads eventually to a closed form expression

for X. Writing Eq. (2.65) out in components gives, after simplification,

(λi + λj)Yij = Cij. (2.66)

Since A is positive, its eigenvalues λi are always positive, which means that the expression

λi + λj never vanishes.

One can therefore rearrange Eq. (2.66) to obtain

Yij =
Cij

λi + λj
, (2.67)
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which gives Y in terms of C.

Eq. (2.63) may be rearranged to obtain X in terms of Y ,

X = PY P T , (2.68)

which allows for the determination of X from Y , concluding the proof laid out in [166]. Con-

sequently, the solution X always exists and is unique. The method of solution presented here

may be implemented inexpensively on a computer for small matrix sizes d.

Henceforth, I will refer to ‘solving the anticommutator equation’ with the understanding that

it may always be solved uniquely, under the assumption that the matrix A is positive, without

reference to the technical details presented here.



Chapter 3

A multidimensional quantum invariant

3.1 Introduction

Quantum invariants have been used to control one-dimensional motional states of trapped

ions, leading to theoretical implementations and experimental demonstrations of ion shuttling

in linear traps. In this chapter, I outline the construction of a quantum invariant corresponding

to that of a multidimensional harmonic oscillator, which may be used to control the motion of

trapped ions in more exotic trap geometries, such as that of an X-junction trap.

I begin by outlining the difficulties and obstacles encountered in attempting to construct a

useful quantum invariant. Proceeding in stages, I construct a series of increasingly sophisti-

cated expressions for a quantum invariant until arriving at one which can be used to invert to

obtain Hamiltonians. I examine its properties, proving that it can indeed be used to obtain

Hamiltonians of the desired form, and offer physical interpretations of the various quantities

involved. I conclude with a discussion of how this invariant generalises the traditional one-

dimensional Ermakov-Lewis invariant discussed in Sec. 2.6.1 used previously to shuttle ions in

one dimension.

This chapter is based on work published in [1].

55
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3.2 A quadratic invariant

As detailed in Secs. 2.3.2 and 2.4, ions trapped in Paul traps typically experience potentials of

the form

H(t) =
∑

i

p̂2i
2m

+
1

2
m
∑

ij

Mij(t)x̂ix̂j −
∑

i

F⃗i(t)x̂i. (3.1)

The aim of this chapter is to extend the techniques of invariant-based inverse engineering, as

outlined in Sec. 2.5.2 to derive Hamiltonians H(t) of the form given in Eq. (3.1). The matrix-

valued quantity Mij(t), which characterises the curvature of the trap, and the vector-valued

quantity F⃗i(t), which characterises the displacement of the trap, may be thought of as yet

undetermined parameters which are to be fixed by a choice of invariant I.

In order to do this, one must certainly have a candidate operator I(t) that may be an invariant

for Hamiltonians of the form appearing in Eq. (3.1).

It is not immediately clear how to construct such an object. I start by noting that the Hamilto-

nian in Eq. (3.1) is quadratic in position and momentum operators. Indeed, this is what allows

us to use Gaussian states to describe the dynamics compactly in the first place, as discussed in

Sec. 2.4.1.

I begin the quest for a suitable quantum invariant by assuming as an ansatz that the invariant

I(t) must also be quadratic in position and momentum operators, and determining necessary

conditions that ensure that I(t) is indeed an invariant. In order to do this, the problem is

first reformulated in phase space, where the quadratic operators I(t) and H(t) have compact

expressions that may be manipulated succinctly.

3.2.1 Phase space formulation

Following Sec. 2.4, the Hamiltonian introduced in Eq. (3.1) may be rewritten as
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H =
1

2
X̂TΩX̂ + V⃗ · X̂, (3.2)

where

Ω =






mM ❖

❖
1
m
✶




 , (3.3)

and

V⃗ =






−F⃗

0




 . (3.4)

As well as making the quadratic dependence of the Hamiltonian on the position and momentum

operators explicit in Eq. (3.2), this formulation makes it straightforward to write down a suitable

ansatz for the form of a possible quantum invariant I(t) that is also quadratic in position and

momentum operators.

The operator I(t) is defined to be

I(t) = 1

2
X̂TΓ(t)X̂ + W⃗ (t) · X̂ + θ(t), (3.5)

where the quantity Γ(t) is a 2d-by-2d real symmetric matrix-valued function of time, the quan-

tity W⃗ (t) is a 2d dimensional vector-valued function of time and the quantity θ(t) is a scalar-

valued function of time. The explicit time dependence will sometimes be omitted for reasons

of brevity.

In order for the operator I to be an invariant, it must satisfy the defining equation for a

quantum invariant given in Eq. (2.28). By substituting the expressions for the Hamiltonian

H and the operator I found in Eqs. (3.2) and (3.5), one can deduce necessary and sufficient

conditions for the operator I to be an invariant.
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A direct computation gives that the operator I(t) is an invariant if and only if the equations

dΓ

dt
= ΩSΓ− ΓSΩ, (3.6)

dW⃗

dt
= ΩSW⃗ − ΓSV⃗ , (3.7)

dθ

dt
= V⃗ TSW⃗ , (3.8)

hold.

As these are first-order differential equations, given a concrete choice for the Hamiltonian H

(and hence the quantities Ω and V⃗ ), we can choose initial conditions for the quantities Γ, W⃗

and θ and integrate in order to find an invariant I(t). This suggests that, at least formally,

there exist many invariants I that may be of use.

However, as discussed previously, from the perspective of invariant-based inverse engineering

one views the Hamiltonian H as something undetermined that is deduced from a particular

choice of invariant I. I turn now to this perspective, and assume that the quantities Γ, W⃗ and

θ are fixed, thus determining a choice of invariant I, and explore how the Hamiltonian H may

be obtained from the invariant I.

The right hand side of Eqs. (3.6)-(3.8) are linear in the components of the matrix-valued

quantity Ω and the vector-valued quantity V⃗ , which suggests that given choices of the quantities

Γ, W⃗ and θ, one may attempt to substitute those and solve the resulting linear system of

equations for the components of the matrix-valued quantity Ω and the vector-valued quantity

V⃗ . Indeed, it is quite feasible to perform such an inversion numerically. Using standard results

from linear algebra one may obtain easily expressions for the family (which may be infinite) of

the matrix-valued quantity Ω and the vector-valued quantity V⃗ that solve this linear system.

There exist many drawbacks with this proposed approach. First of all, it is not clear that even

one solution to this system of equations exist given an arbitrary choice of invariant I, as a

linear system of equations may have zero, one, or an infinite family of solutions. Most fatal of

all, however, is that it is not clear how to choose solutions for the matrix-valued quantity Ω and

the vector-valued quantity V⃗ that are compatible with Eqs. (3.3)-(3.4). More concretely, if one
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is successful in deducing a Hamiltonian with this method, in general one can expect to obtain

mixed terms x̂ip̂j + p̂jx̂i of Lorentz type in the Hamiltonian, and terms linear in momentum pi.

This poses a very serious problem as they cannot easily be engineered in ion traps which are

well-modelled by potentials quadratic in position of the form given in Eq. (3.1). A restricted

form of the invariant I can be used to resolve these difficulties and obtain a Hamiltonian of the

form given in Eq. (3.1).

3.3 Towards a realisable invariant

In this section, I will introduce further expressions for the quantities Γ, W⃗ and θ that will

eventually allow one to invert to obtain a Hamiltonian of the desired form defined in Eq. (3.1).

I will start with the matrix-valued quantity Γ that characterises the purely quadratic part of the

invariant Γ as this poses the greatest difficulty, and will prove useful in obtaining appropriate

expressions for the vector-valued quantity W⃗ and the scalar-valued quantity θ.

As discussed in the previous section, one cannot expect to choose the matrix-valued quantity

Γ freely in such a way to be consistent with the desired Hamiltonian H(t) given in Eq. (3.1). I

will deal with this by imposing a functional form on the matrix-valued quantity Γ that will give

rise to a Hamiltonian H(t) of the correct form. Introducing a d-by-d complex-valued matrix

quantity P , from now I impose that the matrix-valued quantity Γ is of the form

Γ = Re






mṖ †Ṗ −Ṗ †P

−P †Ṗ 1
m
P †P




 . (3.9)

The matrix-valued quantity Γ must satisfy Eq. (3.6) in order for the operator I to be an

invariant. By substituting the expression for the matrix-valued quantity Γ given in Eq. (3.9)

and the desired form for the quadratic part of the Hamiltonian Ω given in Eq. (3.3) into

Eq. (3.6), one can obtain an equation involving the complex matrix-valued quantity P directly.
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Substituting Eq. (3.9) into Eq. (3.6) gives






mRe(Ṗ †D +D†Ṗ ) −Re(D†P )

−Re(P †D) 0




 = 0, (3.10)

where D = P̈ + PM .

I conclude that any choice of the complex matrix-valued quantity P that satisfies the differential

equation

P̈ + PM = 0 (3.11)

gives rise to a physically appropriate choice of the matrix valued quantity Ω consistent with

Eq. (3.3) and a choice of matrix valued quantity Γ that satisfy Eq. (3.6). The matrix val-

ued quantity Γ is now defined entirely in terms of the complex matrix-valued quantity P via

Eq. (3.9).

Armed with this new expression for the matrix valued quantity Γ, one can attempt to perform

invariant-based inverse engineering. Naively, one can fix a choice of the complex matrix-valued

quantity P . The requirement that Eq. (3.11) be satisfied can be rearranged to obtain the

quadratic part of the trapping potential M

M = −P−1P̈ , (3.12)

in terms of the complex matrix-valued quantity P . Such a procedure always results in a unique

choice for M , which rectifies the issue raised in Sec. 3.2.1 that an inversion procedure ought

to be able to deliver at least one solution. Unfortunately, there exists a further problem. The

quadratic part of the trapping potentialM must be real symmetric, as discussed in Sec. 2.4, and

it is not clear that obtaining the quadratic part of the trapping potential M through Eq. (3.12)

is guaranteed to be real symmetric. By imposing further conditions on the complex matrix-

valued quantity P , one can obtain a physically appropriate quadratic part of the trapping

potential M .
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3.3.1 Matrix polar decomposition

The quadratic part of the trapping potential M is determined uniquely from the complex

matrix-valued quantity P . Since an arbitrary choice of P complex matrix-valued quantity is

not guaranteed to give that the quadratic part of the trapping potential M is real symmetric,

it is necessary to choose the complex matrix-valued quantity P in such a way that guarantees

that it is. In this section I outline how the complex matrix-valued quantity P may thusly be

specified.

I introduce a matrix polar decomposition for the complex matrix-valued quantity P ,

P = UR, (3.13)

where the matrix U is unitary and the matrix R is positive. Substituting this decomposition

into Eq. (3.11) leads eventually to a prescription in which R may be chosen freely in such a

way to determine the unitary matrix U in terms of the positive matrix R, and the resulting

quadratic part of the trapping potential M is both real and symmetric, which I proceed to

detail.

3.3.2 Derivation of the matrix Ermakov equation

It will prove useful to introduce the matrix A defined by

A = U †U̇ . (3.14)

It follows directly from the definition that the matrix A is anti-Hermitian, as it is a member of

the unitary Lie algebra.

Eq. (3.11) determines the evolution of the complex matrix-valued quantity P . By substituting

its matrix polar decomposition given in Eq. (3.13), the evolution of the positive matrix R that

appears in its decomposition may be deduced. Substituting Eq. (3.13) into Eq. (3.11), and
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premultiplying by the matrix U †, one obtains that the quantity K defined by

K = ȦR + A2R + 2AṘ + R̈ +RM = 0, (3.15)

must vanish.

Although Eq. (3.15) is equivalent to Eq. (3.11), it is not immediately clear how it may be of

use, as it mixes up the matrix-valued quantities A, Ȧ, R, Ṙ, R̈, and the quadratic part of the

trapping potential M that I aim to deduce.

We note that the matrix-valued quantitiesM , R and the time derivatives of the positive matrix

R are Hermitian, while the quantity A and its derivative Ȧ are anti-Hermitian matrices. As

such, the Hermitian conjugate of Eq. (3.15) to find another relation

K† = −RȦ+RA2 − 2ṘA+ R̈ +MR = 0. (3.16)

I have derived two separate relations Eqs. (3.15) and (3.11) that relate the matrix-valued

quantities M , A, Ȧ, R, Ṙ and R̈, though it is still not clear how one could hope to obtain the

quadratic part of the trapping potential M in terms of the positive matrix R and the anti-

Hermitian matrix A. By taking appropriate combinations of these two relations, it is possible

to integrate the resulting equation, resulting in a useful expression for the matrix A which will

facilitate inverse engineering of the quadratic part of the trapping potential M .

Firstly, the relation RK − K†R = 0 holds as the matrix K vanishes. Substituting for the

matrices K and K† using Eqs. (3.15) and (3.16) in RK −K†R = 0 gives that

d

dt
RAR =

1

2

(

[R̈, R] + [M,R2]
)

. (3.17)

The right hand side of Eq. (3.17) can be rewritten in terms of a total derivative to obtain

d

dt
RAR =

1

2

d

dt

(

[Ṙ, R] + J
)

, (3.18)
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with

J =

∫ t

0

dτ [M(τ), R(τ)2] . (3.19)

This can be directly integrated, resulting in the explicit solution

A = R−1CR−1 +
1

2
[R−1, Ṙ] +

1

2
R−1JR−1, (3.20)

for the matrix-valued quantity A.

Eq. (3.20) gives the matrix-valued quantity A entirely in terms of the positive matrix R and

quadratic part of the trapping potential M . This is rather surprising, considering that the

matrix A is defined in Eq. (3.14) only in terms of the unitary matrix U and its time derivative

U̇ . Indeed, the unitary matrix U itself is no longer explicitly present in these equations.

The matrix C is a constant of integration that must be anti-Hermitian in order to be consistent

via Eq. (3.20) with the requirement that the matrix A is anti-Hermitian. There exist many

possible choices for the matrix C. I will make the simple choice C = i✶, as it will turn out that

this leads one to recover in one spatial dimension the usual Ermakov-Lewis invariant [137, 143],

and it is sufficient for invariant-based inverse engineering to be carried out successfully. The

consequences of different choices of the matrix C are not explored here.

Substituting C = i✶ in Eq. (3.20) gives

A = iR−2 +
1

2
[R−1, Ṙ] +

1

2
R−1JR−1. (3.21)

Eq. (3.21) was derived by considering the identity RK − K†R = 0. By considering another

combination of Eqs. (3.15) and (3.16), it is possible to derive an evolution equation for the

positive matrix R that will allow for the specification of an inverse engineering procedure.

This may be done by eliminating the quantity Ȧ from Eqs. (3.15) and (3.16) to obtain an

equation involving only the quantities A, M , R and the time derivatives of the positive matrix

R may be derived. Forming the Hermitian combination RK +K†R = 0 and rearranging gives

that
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{R̈, R}+ {R2,M} = 2[Ṙ, R]A − 2RA2R. (3.22)

Eq. (3.22) relates the positive matrix R and its time derivatives Ṙ and R̈ to the quadratic part

of the trapping potential M . Although the unitary matrix U enters into the analysis through

the definition of the anti-Hermitian matrix A in Eq. (3.14), the anti-Hermitian matrix A itself

is determined in Eq. (3.21) in terms of the positive matrix R the quadratic part of the trapping

potential M without any reference to the unitary matrix U at all. Indeed, the unitary matrix

U may then be determined up to an initial condition by integrating the anti-Hermitian matrix

A in Eq. (3.14).

The unitary matrix U may therefore be regarded as determined by the positive matrix R and

the quadratic part of the trapping potential M . By fixing a choice of positive matrix R, it

is possible to deduce an expression for the quadratic part of the trapping potential M , which

hence allows for the unitary matrix U to be calculated via integration. Hence, from now on I

will regard the positive matrix R as the quantity that characterises the quadratic part of the

invariant Γ via Eqs. (3.9) and (3.13), and proceed to describe how the quadratic part of the

trapping potential M may be deduced from the positive matrix R.

It is possible to integrate Eq. (3.19) to determine the quadratic part of the trapping potential

M in terms of the positive matrix R. Eq. (3.19) reads in differential form

J̇ (t) = [M(t), R2(t)] (3.23)

Given the anti-symmetric matrix J (t), it is possible to calculate its time derivative J̇ (t), which

allows for the numerical integration of Eq. (3.23) in such a way that will also determine the

quadratic part of the trapping potential M(t).

Eq. (3.21) is first used to evaluate the anti-Hermitian matrix A(t) in terms of the anti-symmetric

J (t). Since Eq. (3.22) is a matrix anticommutator equation for the quadratic part of the

trapping potential M , and since the matrix R(t) is positive, it is possible to solve Eq. (3.22)
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uniquely for the quadratic part of the trapping potential M(t) after substituting for the anti-

Hermitian matrix A(t), as detailed in Sec. 2.7. With the quadratic part of the trapping potential

M(t), one can then use Eq. (3.23) to calculate the quantity J̇ (t). One can then integrate the

anti-symmetric J (t) numerically, obtaining all the while the quadratic part of the trapping

potential M(t), which completes the specification of the inverse engineering procedure.

Although this numerical integration is feasible, there remains one final problem. Deriving the

quadratic part of the trapping potential M in this manner does not guarantee that it is real

symmetric, only that it is Hermitian. In the next section we will demonstrate that, under some

further restrictions on the positive matrix R, it is in fact possible to derive a real symmetric

quadratic part of the trapping potential M from the positive matrix R without the need for

numerical integration at all.

3.4 Proof of the reality of M

From now on, I will assume that the positive matrix R is real-valued, and that its time derivative

at initial time vanishes,

Ṙ(0) = 0, (3.24)

as this is sufficient to prove that the quadratic part of the trapping potentialM thusly obtained

from the positive matrix R, as outlined in the previous section, is real symmetric.

I will proceed by deriving a number of necessary conditions for the quadratic part of the trapping

potential M to be real symmetric, and work through the implications of these. I will show that

these necessary conditions are in fact met in all cases.
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3.4.1 Necessary conditions for the reality of the quadratic part of

the trapping potential M

Under the assumption that the quadratic part of the trapping potentialM is real and symmetric,

the imaginary part of Eq. (3.22) may be rearranged to obtain

{J , R−2} = [Ṙ, R−1] + [R,R−2]Ṙ, (3.25)

having used the fact that the quadratic part of the potential M , the positive matrix R and its

time derivatives are all real.

This relation allows one to obtain the antisymmetric matrix J in terms of the positive matrix R

and its time derivative Ṙ by solving the matrix anticommutator equation as detailed in Sec. 2.7.

This stands in contrast to the definition of the antisymmetric matrix J in Eq. (3.19), in which

the antisymmetric matrix J is defined as an integral over the history of the positive matrix R

and the quadratic part of the trapping potential M .

Although solving the matrix anticommutator equation is a matter of straightforward linear

algebra, it cannot be expressed easily in closed form. It will prove advantageous to work in

a basis in which it is simple to express the solution to such anticommutator equations. In

particular, this will allow one to reformulate Eq. (3.25) obtaining the antisymmetric matrix J

directly in terms of the positive matrix R and its time derivative Ṙ.

In order to do this, I introduce the eigendecomposition

R =
∑

j

λj|Φj⟩⟨Φj| (3.26)

of the positive matrix R, which certainly exists as the matrix R is real positive and hence

Hermitian. Both the eigenvalues λj and the eigenvectors |Φj⟩ are real.

Eq. (3.25) can be solved in terms of the matrix elements with respect to the eigenstates |Φj⟩
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of the positive matrix R,

Jjk =
(λj − λk)(λj + λk)

2

λ2j + λ2k
Ṙjk , (3.27)

where

Ojk = ⟨Φj|O|Φk⟩, (3.28)

denotes the matrix elements of the operator O. The quantity

Ȯjk = ⟨Φj|Ȯ|Φk⟩ (3.29)

does not coincide in general with the quantity ∂
∂t
Ojk owing to the time-dependence of the

eigenstates |Φj⟩.

Working in terms of these matrix elements will allow for the derivation of expressions for

the anti-Hermitian matrix A and the quadratic part of the trapping potential M that are as

similarly compact as Eq. (3.27).

Expressing Eq. (3.22) in this basis leads to, after rearranging and solving for the matrix elements

Mjk,

Mjk =
1

λ2j + λ2k

(

2
∑

l

(

λkṘjlAlk − λjAjlṘlk − λjλkAjlAlk

)

− R̈jk (λj + λk)

)

. (3.30)

Eq. (3.21) expressed similarly in terms of matrix elements reads

Ajk =
1

2λjλk

(

2iδjk − (λj − λk)Ṙjk + Jjk

)

. (3.31)

Eq. (3.30) is a closed-form expression for the matrix elements Mjk. It is possible to derive a

closed-form expression for the matrix elementsMjk that depends only on the positive matrix R

and its time derivatives, which will be of use in proving that the quadratic part of the trapping

potential M is real.
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Substituting Eq. (3.27) into Eq. (3.31) yields

Ajk =
i

λjλk
δjk +

λj − λk
λ2j + λ2k

Ṙjk. (3.32)

Substituting Eq. (3.32) into Eq. (3.30) yields

Mjk =
δjk
λ4j

− (λj + λk)

λ2j + λ2k
R̈jk + 2

∑

l

ṘjlṘlkp(λj, λk, λl) , (3.33)

with

p(λj, λk, λl) =
λ3l (λj + λk)− λ2l

(
λ2j + λ2k − λjλk

)
− λ2jλ

2
k

(λ2j + λ2k)(λ
2
j + λ2l )(λ

2
k + λ2l )

, (3.34)

where the matrix elements Mjk are determined entirely in terms of the positive matrix R and

its time derivatives as promised.

The closed-form expressions for the antisymmetric matrix J , the anti-Hermitian matrix A and

ultimately the quadratic part of the trapping potential M , in terms of their matrix elements,

given in Eqs. (3.27), (3.32) and (3.33), hold if the quadratic part of the trapping potential M

is real symmetric.

Conversely, if Eqs. (3.27), (3.32) and (3.33) hold, then the quadratic part of the trapping

potential M is guaranteed to be real symmetric since Eq. (3.33) is manifestly symmetric and

defined solely using real quantities. As a consequence, the quadratic part of the trapping

potential M is real symmetric if and only if these expressions hold. I will complete the proof

by showing that Eqs. (3.27), (3.32) and (3.33) hold in all cases.

3.4.2 Direct proof of the reality of the quadratic part of the trapping

potential M

What remains is thus to verify directly that taking Eqs. (3.27), (3.32) and (3.33) as defining

relations for the antisymmetric matrix J , the anti-Hermitian matrix A and the quadratic part

of the trapping frequency M , implies that Eqs. (3.14), (3.19) and (3.22) are satisfied. Doing
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this completes the proof that the quadratic part of the trapping potential M is real symmetric.

Henceforth it is assumed that Eqs. (3.27), (3.32) and (3.33) hold. As Eq. (3.32) is derived using

Eq. (3.31) which is Eq. (3.14) expressed in terms of the matrix elements of the eigenstates

of the positive matrix R, Eq. (3.14) holds by construction. Similarly, Eq. (3.33) is derived

from Eq. (3.30), which itself is Eq. (3.22) expressed in terms of matrix elements, so Eq. (3.22)

additionally holds.

It remains to show that Eq. (3.19), or its equivalent differential form

J (0) = 0 , and (3.35)

J̇ = R2M −MR2 . (3.36)

is satisfied. Noting that the quantity Ṙ(0) vanishes, as stated in Eq. (3.24), Eq. (3.35) follows

directly from inspection of Eq. (3.27).

Eq. (3.36) reads in terms of matrix elements

J̇jk = (λ2j − λ2k)Mjk. (3.37)

In order to complete the proof, it is sufficient to show that Eq. (3.37) is satisfied. As the

antisymmetric matrix J is defined in terms of its matrix elements Jjk in Eq. (3.27), it is

necessary to relate these to the time derivative of the matrix elements ˙Jjk that appear in

Eq. (3.37).

The time-derivative of the matrix elements Jjk reads

d

dt
Jjk =

∑

l

WjlJlk −
∑

l

JjlWlk + J̇jk (3.38)

with

Wjk = ⟨Φ̇j|Φk⟩. (3.39)
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Substituting this expression into Eq. (3.37) gives

d

dt
Jjk =

∑

l

WjlJlk −
∑

l

JjlWlk + (λ2j − λ2k)Mjk, (3.40)

which is equivalent to Eq. (3.37).

The next step is to differentiate Eq. (3.27) and use the result to show that Eq. (3.40) is satisfied

identically.

Defining, motivated by Eq. (3.40),

Ξ =
d

dt
Jjk −

∑

l

WjlJlk +
∑

l

JjlWlk + (λ2k − λ2j)Mjk, (3.41)

the remaining task is to show that the quantity Ξ vanishes.

Substituting for the matrix elements Jjk and Mjk using Eqs. (3.27) and (3.33) in Eq. (3.41)

gives

Ξ =
d

dt

(
(λ2j − λ2k)(λj + λk)

λ2j + λ2k

)

Ṙjk +
(λ2j − λ2k)(λj + λk)

λ2j + λ2k

d

dt

(

Ṙjk

)

−
∑

l

(λ2l − λ2k)(λl + λk)

λ2l + λ2k
WjlṘlk +

∑

l

(λ2j − λ2l )(λj + λl)

λ2j + λ2l
ṘjlWlk

+
(λj + λk)(λ

2
k − λ2j)

λ2j + λ2k
R̈jk − 2

(
λ2k − λ2j

)
p(λj, λk, λl)ṘjlṘlk . (3.42)

Given that the states |Φi⟩ are the eigenvectors of the positive matrix R, the explicit expressions

for the matrix elements Rij, Ṙij and R̈ij read

Rjk = λjδjk , (3.43)

Ṙjk = (λj − λk)Wjk + λ̇jδjk , (3.44)

R̈jk =
∑

l

(λj + λk − 2λl)WjlWlk + (λj − λk)Ẇjk + 2(λ̇j − λ̇k)Wjk + λ̈jδjk . (3.45)
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Substituting Eq. (3.44) and Eq. (3.45) into Eq. (3.42) gives

Ξ = Wjkr(λj, λk, λ̇j, λ̇k) +
∑

l

WjlWlks(λj, λk, λl), (3.46)

where

r(λj, λk, λ̇j, λ̇k) = (λj − λk)
d

dt

(
(λ2j − λ2k)(λj + λk)

λ2j + λ2k

)

−
(λ2j − λ2k)(λj + λk)(λ̇j − λ̇k)

λ2j + λ2k

− 2(λj − λk)(λ
2
k − λ2j)

(

λ̇jp(λj, λk, λj) + λ̇kp(λj, λk, λk)
)

, (3.47)

and

s(λj, λk, λl) = −(λ2l − λ2k)
2

λ2l + λ2k
+

(λ2j − λ2l )
2

λ2j + λ2l
+

(λj + λk)(λ
2
k − λ2j)(λj + λk − 2λl)

λ2j + λ2k

− 2(λj − λl)(λk − λl)(λ
2
j − λ2k)p(λj, λk, λl) . (3.48)

Both the functions r and s are rational functions of their arguments, and they are indeed

identically vanishing. Therefore, the quantity Ξ vanishes which completes the proof.

3.4.3 Review

Having proved that the quadratic part of the trapping potentialM is real symmetric given that

R is real positive, I have in fact during the course of the proof discovered some new relations

between the antisymmetric matrix J and the positive matrix R that simplify the inversion

procedure considerably.

In Sec. 3.3.2, I outlined how to obtain the quadratic part of the trapping potential M by

numerically integrating Eq. (3.19) in order to obtain the antisymmetric matrix J . It is no

longer necessary to use numerical integration. One can obtain the antisymmetric matrix J

directly by solving the matrix anticommutator equation in Eq. (3.25). Having obtained the

antisymmetric matrix J , one can compute the anti-Hermitian matrix A using Eq. (3.14), and

then the quadratic part of the trapping potential M by solving the matrix anticommutator
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equation in Eq. (3.22). Such a procedure involves only linear algebraic manipulations that

can be performed to very high precision on a computer. As such, not only is it likely to be

faster than the previous numerical integration method, it also lacks the issue of having some

numerical error associated to the integration, which can grow over time.

This completes the specification of the procedure that allows one to determine the quadratic part

of the trapping potential M entirely in terms of the positive matrix R and its time derivatives.

Although the positive matrix R was first considered merely as one part of the matrix polar

decomposition of the complex-valued matrix P , it has now taken on a central importance, in

that appropriate real symmetric quadratic parts of the trapping potential M can be obtained

entirely in terms of it. As such, we will regard the positive matrix R as the quantity of interest

that characterises the quadratic part of the invariant Γ through the relation given in Eq.(3.9).

Indeed, as will be seen later, it is possible to express Eq.(3.9) explicitly in terms of the positive

matrix R and its time derivatives using the results of this section. For now, however, we

turn our attention to inverse-engineering the vector-valued quantity W⃗ and the scalar-valued

quantity θ that appear in the invariant I.

3.5 Linear and scalar parts of the invariant

I have derived a functional form of the quadratic part of the invariant Γ that is consistent with

the desired form of the quadratic part of the Hamiltonian Ω given in Eq. (3.3), and ensure that

Eq. (3.6), which governs the relationship between the quantities Γ and Ω, is satisfied.

It remains to deal with the vector-valued quantity W⃗ and the scalar-valued quantity θ, in

order to complete the description of a useful quantum invariant I. I present in this section

expressions for the vector-valued quantity W⃗ and the scalar-valued quantity θ that will allow

for the inverse engineering of the Hamiltonian H from the invariant I, all the while ensuring

that Eqs. (3.7) and (3.8) are satisfied.

Introducing an ansatz in Eq. (3.9) for the quadratic part of the invariant Γ allowed for much

progress to be made in inverse engineering the quadratic part Γ of the invariant I. Similarly, I
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introduce another ansatz here for the quantity W⃗ .

The quantity W⃗ takes the following form

W⃗ = −Γ






L⃗

m
˙⃗
L




 , (3.49)

where the vector-valued quantity L⃗ is a d-dimensional vector-valued function of time.

By substituting Eq. (3.49) into Eq. (3.7), the vector-valued quantity V⃗ may be derived directly

in terms of the vector-valued quantity W⃗ . The substitution gives, after rearranging,

V⃗ = S−1Γ−1
(

ΩSW⃗ − ˙⃗
W
)

. (3.50)

This relation gives the vector-valued quantity V⃗ in terms of the matrix-valued quantity Γ, the

vector-valued quantity W⃗ and the matrix-valued quantity Ω. At first sight, we have achieved the

goal of inverse engineering to obtain the vector-valued quantity V⃗ in terms of the matrix-valued

quantity Γ and the vector-valued quantity W⃗ , as the matrix-valued quantity Ω can be obtained

in terms of the matrix-valued quantity Γ using the techniques of the previous section. However,

just as the matrix-valued quantity Ω is constrained to be of the form given in Eq. (3.3), so the

vector-valued quantity V⃗ must be of the form given in Eq. (3.4). I will determine conditions

on the vector-valued quantity L⃗ that ensure that this will be the case.

Eq. (3.50) involves the matrix-valued quantity Γ explicitly. Although Eq. (3.9) contains an

expression for the matrix-valued quantity Γ, it is a rather cumbersome object to work with

directly. By performing a change of variables, it is possible to eliminate the matrix-valued

quantity Γ to obtain a more compact expression that will be much more illuminating.

By making the substitution W⃗ = −ΓZ⃗, and noting that the matrix-valued quantity Γ satisfies

Eq. (3.6), one obtains that

V⃗ = S−1 ˙⃗
Z − ΩZ⃗. (3.51)

The matrix valued quantity Ω is required to be of the form specified in Eq. (3.3). In order to
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make contact with Eq. (3.3), I note that Eq. (3.49) gives the following block vector decompo-

sition for the vector-valued quantity Z⃗

Z⃗ =






L⃗

m
˙⃗
L




 . (3.52)

The vector-valued quantity Z⃗ may be interpreted as defining a trajectory in phase space.

Substituting this decomposition into Eq. (3.51) gives that

V⃗ =






−mML⃗−m
¨⃗
L

0




 . (3.53)

By comparison with Eq. (3.4), one can see that the vector-valued quantity V⃗ is of precisely of

the desired form, provided that the identification

−F⃗ = −mML⃗−m
¨⃗
L (3.54)

is made.

It is convenient to rearrange this into the following form

¨⃗
L+ML⃗ =

F⃗

m
, (3.55)

which will sometimes be called the vector Newton equation, as it generalises the Newton equation

Eq. (2.56) to vector-valued quantities L⃗ and F⃗ .

As long as Eq. (3.55) is satisfied, then the expression for the vector-valued quantity W⃗ given

in Eq. (3.49) will satisfy Eq. (3.7), with the vector-valued quantity V⃗ being of the desired form

given in Eq. (3.3). We now outline how this equation may be employed in the context of inverse

engineering to obtain the vector-valued quantity F⃗ .

From the point of view of inverse engineering, we would like to choose the vector-valued quantity

W⃗ and obtain a choice of vector-valued quantity V⃗ that is consistent with it. Using the results
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of the previous section, one is able to choose the positive matrix R subject to the appropriate

conditions and obtain the quadratic part of the trapping potential M from it. A choice of

vector-valued quantity L⃗ is then fixed. One can then substitute for the vector valued quantity

L⃗ and the quadratic part of the trapping potential M into Eq. (3.55) and rearrange to obtain

a unique expression for the trap displacement term F⃗ . In such a way, one is able to finally

obtain the quadratic part of the trapping potential M and the trap displacement F⃗ ultimately

from the quadratic part of the invariant Γ and the scalar part of the invariant W⃗ , which are

completely determined via the quantities L⃗ and R.

Although this procedure is enough in practice to inverse engineer the invariant I to obtain a

Hamiltonian H, there remains the issue of the scalar term θ in the invariant I, which we now

turn to.

3.5.1 Scalar component

Although I have exhibited expressions for the quadratic part of the invariant Γ and the linear

part of the invariant W⃗ that satisfy Eq. (3.6) and Eq. (3.7), it is necessary that Eq. (3.8) is

also satisfied, otherwise the operator I cannot be said to be an invariant.

In this section I exhibit an expression for the scalar-valued quantity θ given in terms of pre-

viously defined quantities that will achieve this and complete the description of the invariant

I.

We define

θ(t) =
1

2
Z⃗TΓZ⃗ = −1

2
Z⃗T W⃗ =

1

2
W⃗ TΓ−1W⃗ . (3.56)

Using the fact that the quadratic part of the invariant Γ satisfies Eq. (3.6), and the linear part

of the invariant W⃗ satisfies Eq. (3.8), it may be verified directly that Eq. (3.8) is satisfied.
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3.5.2 Alternate expression for the invariant

During the construction of the invariant I, the quadratic, linear and scalar parts Γ, W⃗ and θ

were dealt with in turn. It is possible to recast the invariant I into a form which will prove

useful in shedding physical insight into the interpretation of the quantities Γ, W⃗ and θ that

characterise the invariant I.

Eqs. (3.49) and (3.56) give expressions for the quantities W⃗ and θ in terms of the quantities

Γ and Z⃗. By substituting these into Eq. (3.5), an expression for the invariant I that depends

only on these two quantities may be obtained, and will prove amenable to simplification. The

full expression for the invariant I reads

I =
1

2
X̂TΓX̂ − ΓZ⃗ · X̂ +

1

2
Z⃗TΓZ⃗. (3.57)

Completing the square in Eq. (3.57) gives

I =
1

2
(X̂ − Z⃗)TΓ(X̂ − Z⃗). (3.58)

Since the linear term Z⃗ appears alongside the phase-space trajectory X̂, this rather suggests

that it has the form of a phase space trajectory, as suggested previously. I return to this point

in the discussion of the interpretation of the quantities that characterise the invariant I. For

now, I turn to the question of imposing boundary conditions on the invariant I, which must

be addressed in order to demonstrate successful inverse engineering with this invariant.

3.6 Boundary conditions

I have exhibited a way to inverse engineer the invariant I to obtain a Hamiltonian H of the

required form given in Eq. (3.1). In order for this to be useful, it is necessary to be able to impose

that the invariant I and the Hamiltonian H commute at initial and final times, in accordance

with the requirements of invariant-based inverse engineering as detailed in Sec. 2.5.2. In this
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section I derive sufficient conditions on the quantities L⃗ and R that achieve this.

Since Eqs. (3.22) and (3.55) are satisfied by construction during the inverse engineering proce-

dure, the operator I is an invariant, which is to say that

dI
dt

= i[I, H]. (3.59)

In order to impose that the quantities [I(0), H(0)] and [I(T ), H(T )] both vanish, one need only

additionally impose that the time derivative of the invariant İ vanishes at initial time t = 0

and final time t = T .

Although one can calculate the time derivative of the invariant İ explicitly, a much simpler

argument gives conditions that, when met, guarantee that the time derivative of the invariant

İ vanishes.

The invariant I may be viewed as a function of the quantities L⃗,
˙⃗
L, R and Ṙ,

I = f(L⃗,
˙⃗
L,R, Ṙ). (3.60)

Using the chain rule, one concludes that if the quantities
˙⃗
L,

¨⃗
L, Ṙ and R̈ all vanish, then the

time derivative of the invariant İ vanishes also. One therefore imposes that
˙⃗
L,

¨⃗
L, Ṙ and R̈ all

vanish at initial time t = 0 and final time t = T .

Although these ensure commutativity of the Hamiltonian H and invariant I, the initial and

final values of L⃗ and R remain undetermined. These can be obtained by evaluating Eqs. (3.22)

and (3.55) at initial time t = 0 and final time t = T .

One obtains from Eq. (3.22), after rearranging

R =M− 1

4 , (3.61)

and from Eq. (3.55) that

L⃗ =
1

m
M−1F⃗ , (3.62)
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at initial time t = 0 and final time t = T .

Together with requiring that the quantities
˙⃗
L,

¨⃗
L, Ṙ and R̈ vanish, Eqs. (3.61) and (3.62) form

all of the boundary conditions on the invariant I at initial time t = 0 and final time t = T that

ensure that the invariant I and the Hamiltonian H commute as required.

3.7 Inverse engineering the invariant

All of the results necessary to carry out invariant-based inverse engineering have been derived.

In this section, I present for clarity’s sake the full procedure that is employed to obtain a

Hamiltonian H(t).

First of all, a choice of initial and final Hamiltonians H(0) and H(T ) is fixed by the problem at

hand, between which the aim is to obtain a suitable interpolating Hamiltonian. These determine

the values of the quadratic part of the trapping potential M and the trap displacement term

F⃗ at initial time t = 0 and final time t = T . Using Eqs. (3.61) and (3.62), one can obtain the

values of the matrix-valued quantity R and the trajectory L⃗ at initial time t = 0 and final time

t = T .

Using the fact also that the first and second derivatives of the matrix-valued quantity R and

the trajectory L⃗ must also vanish, one is free to interpolate smoothly between these initial and

final values to obtain any choice of the quantities R and L⃗.

Finally, one obtains the quadratic part of the trapping potential M and the trap displacement

term F⃗ as functions of time. By substituting the matrix-valued quantity R into Eq. (3.22),

one can solve the matrix anticommutator equation to obtain the quadratic part of the trapping

potential M , and then substitute for the trajectory L⃗ and the quadratic part of the trap-

ping potential M in Eq. (3.55) to obtain the trap displacement term F⃗ , which completes the

specification of the Hamiltonian H(t).
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3.8 Interpretation of physical quantities

I present in this section a natural physical interpretation of the various quantities introduced in

the description of the invariant I, in terms of the dynamical quantities of the system. This will

not only assign a useful physical interpretation to those quantities, but provide insight later on

in how to design choices of the invariant I that may be employed in invariant-based inverse

engineering.

In order to relate the invariant I to the dynamics of the system, it is necessary to calculate

the dynamics of the system. Given a suitable choice of invariant I that satisfies the relevant

boundary conditions outlined in the previous section, one can determine the Hamiltonian H,

and then solve the Schrödinger equation to determine the dynamics. Since the initial state of

the system is Gaussian, and the Hamiltonian H is quadratic in position and momentum, the

dynamics may be characterised compactly in terms of the expected position and momentum of

the state, as well as its covariance matrix.

However, there exists a much simpler way of deducing the dynamics of the system. In the

framework of invariant-based inverse engineering, the dynamics of the system are always in the

ground state of the invariant, provided that the invariant has a non-degenerate ground state.

I therefore proceed by calculating the ground state of the invariant I. As this ground state is

Gaussian, it is naturally expressed in terms of the expected location in phase space ⟨X⟩ and

the covariance matrix Σ. The ground state of the invariant must minimise the expected value

of the invariant

⟨I⟩ =
〈
1

2
XTΓX + W⃗ ·X + θ

〉

. (3.63)

In order to make a connection with Gaussian states, one can re-express this in terms of the

phase space expectation ⟨X⟩ and covariance matrix Σ to obtain

⟨I⟩ = 1

2
ΩijΓij +

1

2
Γij ⟨X⟩i ⟨X⟩j + W⃗i ⟨X⟩i + θ. (3.64)

Since the expected value of the invariant ⟨I⟩ must be minimised by the ground state of the
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system, we can find the phase space expectation ⟨X⟩ and covariance matrix Σ that correspond

to the ground state by finding those values of the phase space expectation ⟨X⟩ and covariance

matrix Σ that minimise Eq. (3.64).

As the covariance matrix Σ is that of a pure Gaussian state, its determinant must be equal to

2−2d [167]. This constraint may be included using a Lagrange multiplier λ,

⟨I⟩ = 1

2
ΩijΓij +

1

2
Γij ⟨X⟩i ⟨X⟩j + W⃗i ⟨X⟩i + θ + λ

(
detΣ− 2−2d

)
. (3.65)

Carrying out the minimisation gives that

⟨X⟩ = −Γ−1W⃗ , (3.66)

Σ =
1

2
Γ−1. (3.67)

There exists a subtlety in that the covariance matrix Σ must satisfy the uncertainty principle

for covariance matrices, namely that [168, 167]

Σ + i
S
2
≥ 0. (3.68)

Rather than proving this directly, it is easier to simply prove directly that the matrix Σ = 1
2
Γ−1

is the true covariance matrix of the system. We begin by noting that the matrix valued quantity

1
2
Γ−1 is in fact a valid solution of the first order equation of motion for the covariance matrix

Σ given in Eq. (2.24). Since the Hamiltonian H(0) and invariant I(0) commute at initial time

t = 0, they share the same ground state. One can therefore compute the ground state covariance

Σ(0) directly from the initial Hamiltonian H(0) and compare with the initial invariant Γ(0) to

see that

Σ(0) =
1

2
Γ(0)−1 =

1

2






M−
1
2

m
0

0 mM
1

2




 . (3.69)

As the covariance matrix Σ and the quantity 1
2
Γ−1 coincide at initial time t = 0, and they
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satisfy the same first order differential equation, we conclude that

Σ =
1

2
Γ−1 (3.70)

for all time.

Now that expressions for the dynamical quantities have been obtained, I will now relate them

more directly to the quantities that appear in the invariant in order to give those quantities a

physical interpretation.

Eq. (3.66) gives the expected position in phase space ⟨X⟩ in terms of the quadratic part of the

invariant Γ and the linear part of the invariant W⃗ , though a much more helpful expression is

possible. By substituting in Eq. (3.49) one obtains

⟨X⟩ = Z⃗ =






L⃗

m
˙⃗
L




 , (3.71)

from which it is clear that the vector-valued quantity L⃗ and its time derivative
˙⃗
L together

define the expected phase space trajectory over time. Since, from the point of view of inverse

engineering, the quantity L⃗ is a quantity that we are free to choose subject to boundary con-

ditions, the implication is that we are free to choose the trajectory of the particle over time by

designing the quantity L⃗ appropriately.

We turn now to the covariance matrix Σ. The covariance matrix Σ is given in terms of the

inverse of the matrix-valued quantity Γ by Eq. (3.67). Since the matrix-valued quantity Γ

is given in terms of a block matrix decomposition in Eq. (3.9), it is possible to compute the

quantity Γ−1 directly, though this is likely to be a lengthy and complex expression. There in

fact exists a compact expression for the covariance matrix Σ.

Although Eq. (3.9) gives the matrix-valued quantity Γ, it is not particularly useful in practical

purposes given that the complex-matrix valued quantity P appears explicitly in it, while it

would be more helpful to have an expression involving the positive matrix R. By substituting

for the complex-matrix valued quantity P = UR in Eq. (3.9), and using Eq. (3.21) to substitute
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for the anti-Hermitian matrix A, one can derive an expression for the matrix-valued quantity

Γ in terms of the positive matrix R and its time derivatives only. One obtains

Γ =







m
(

Ṙ2 + Re
(

[Ṙ, R]A −RA2R
)) J − {R, Ṙ}

2

−J − {R, Ṙ}
2

R2

m






. (3.72)

It is possible to show that the quantity Γ is a symplectic matrix, which is to say that it satisfies

the relation ΓTSΓ = S. Since symplectic matrices may be inverted using a simple algebraic

procedure, this allows for the inverse of the matrix Γ to be calculated straightforwardly. I

proceed to prove that Γ is symplectic before exhibiting the final expression for Σ.

Since the matrix Γ is symmetric, we may replace the matrix ΓT with the matrix Γ to obtain

that the relation ΓSΓ = S must be satisfied for the matrix Γ to be symplectic. An equivalent

condition for the matrix Γ to be symplectic is that the quantity Γ−1 + SΓS must vanish.

The quantity Γ satisfies the first order equation of motion given in Eq. (3.6). As the quantity

Γ−1 + SΓS depends on the quantity Γ, a differential equation governing the evolution of the

quantity Γ−1 + SΓS may be obtained using Eq. (3.6). Eq. (3.6) reads

dΓ

dt
= ΩSΓ− ΓSΩ. (3.73)

Noting additionally that

dΓ−1

dt
= −Γ−1Γ̇Γ−1, (3.74)

one can evaluate the derivative of the quantity Γ−1 + SΓS.

One obtains via application of Eqs. (3.73) and (3.74) that

d

dt

(
Γ−1 + SΓS

)
= SΩ(Γ−1 + SΓS)− (Γ−1 + SΓS)ΩS, (3.75)

which is to say that the quantity Γ−1 + SΓS satisfies a differential equation in Eq. (3.75).
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Evaluating the quantity Γ at time t = 0 gives that

Γ(0) =







mR−2(0) 0

0
R2(0)

m






. (3.76)

The quantity Γ−1(0) + SΓ(0)S vanishes. Since the quantity Γ−1 + SΓS satisfies a linear first

order equation Eq. (3.75), and it vanishes at initial time t = 0, one concludes that the quantity

Γ−1 + SΓS vanishes for all time t, which is to say that the quantity Γ is always symplectic.

Using this fact, we may finally invert the quantity Γ to obtain

Σ =
1

2
Γ−1

=
1

2







R2

m

{R, Ṙ} − J
2

{R, Ṙ}+ J
2

m
(

Ṙ2 + Re([Ṙ, R]A −RA2R)
)






, (3.77)

which determines the covariance matrix Σ explicitly in terms of the positive matrix R and its

time derivative Ṙ.

The uppermost left block of the covariance matrix Σ, which contains the position-position

correlations, depends only on the positive matrix R. This leads to a natural interpretation of

the positive matrix R as determining the value of these correlations to equal to the quantity

R2

2m
.

As the positive matrix R is one of the parameters, alongside the trajectory L⃗, that is chosen

up to appropriate boundary conditions, this means that one can effectively design the position-

position correlations of the state throughout time.

3.9 Relation to Ermakov-Lewis invariant

I have presented an invariant I that can be used to obtain Hamiltonians H(t) corresponding to

harmonic potentials in any number of spatial dimensions d. Since the Ermakov-Lewis invariant
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presented in Sec. 2.6.1 has been used to achieve this in one spatial dimension d = 1, it is

natural to speculate on the relationship between the two invariants. In this section I prove

that in the case d = 1, the invariant I that is derived in this chapter reduces to that of the

Ermakov-Lewis invariant. The invariant I may therefore be viewed as a useful generalisation

of the Ermakov-Lewis invariant to more than one spatial dimension d > 1.

I start by investigating the behaviour of the invariant I in one spatial dimension d = 1. In this

case, many quantities become scalar and hence commute with each other, allowing for many

simplifications. I write Rs and Ms for the quantities R and M , and so on, to distinguish them

as scalars in the one-dimensional case.

The quantity J is antisymmetric, as may be seen by inspection of Eq. (3.19). It therefore

vanishes in the case d = 1 when it is a scalar. This allows for further simplifications. In

particular Eq. (3.21) simplifies considerably to

As = iR−2
s . (3.78)

Substituting Eq. (3.78) into Eq. (3.22) and exploiting the fact that all objects commute, gives

that

R̈sRs +MsR
2
s = R−2

s . (3.79)

From Eq. (3.76), the scalar quantity Γ reads in terms of the scalar quantities

Γs =






m
(

Ṙ2
s +R−2

s

)

−RsṘs

−RsṘs
1
m
R2

s




 . (3.80)

By writing the invariant I out explicitly in terms of the position operator r̂ and the momen-

tum operator p̂, it will prove possible to recover the Ermakov-Lewis invariant directly. Using

Eq. (3.80), one obtains that

Is =
1

2m

(

Rs(p̂−mL̇)−mṘs(r̂ − L)
)2

+
1

2
m

(
r̂ − L

Rs

)2

, (3.81)
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which is the Ermakov-Lewis invariant [137] in Eq. (2.54).

Dividing both sides of Eq. (3.79) by the quantity Rs gives

R̈s +RsMs = R−3
s , (3.82)

which is the Ermakov equation Eq. (2.30) where the symbol ρ is used instead of the symbol Rs,

and the symbols ω2 and α are used to denote the quantities Ms and Ls. It is for this reason

that Eq. (3.22) is called the matrix Ermakov equation, as it is the natural generalisation of the

Ermakov equation to matrix valued quantities.

Similarly, the vector Newton equation Eq. (3.55) reduces to

L̈s +MsLs =
Fs

m
, (3.83)

which is the Newton equation given in Eq. (2.56).

3.9.1 Degeneracy of the invariant

Since the invariant I derived in this chapter generalises the Ermakov-Lewis invariant, the two

invariants share many properties. One area in which they differ however is the degeneracy of

their eigenstates, which has some practical significance for the employment of invariant-based

inverse engineering.

The Ermakov-Lewis invariant given in Eq. (3.81) takes the form of a Hamiltonian of a harmonic

oscillator, albeit one with mixed position and momentum terms and terms proportional to the

position and momentum operators. As a result, each eigenstate of the Ermakov-Lewis invariant

is non-degenerate, just as those of the simple harmonic oscillator. Since the eigenstates are

non-degenerate, the results of Sec. 2.5.2 may be applied while considering the excited states

of the invariant in place of the ground state. The consequence is that, provided that the

appropriate boundary conditions are satisfied and the system starts in the n-th excited state

of the Hamiltonian H(0) at initial time t = 0, then the population is transferred to the n-th
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excited state of the final Hamiltonian H(T ), which is to say that not only the ground state is

transferred by invariant-based inverse engineering, but all of the excited states are as well.

However, this result does not hold for the invariant I obtained in this chapter, as the eigenstates

of the invariant are highly degenerate. The only non-degenerate eigenstate of the invariant is

that of the ground state, which is to say that one is only guaranteed to successfully perform

ground state to ground state shuttling with this invariant. If the initial state of the system

is an excited state of the initial Hamiltonian H(0), then the subsequent dynamics lie within

a degenerate eigenspace of the invariant, and it is not guaranteed that one will end up in the

desired excited state of the Hamiltonian H(T ).

As a result, the degeneracy of the invariant I presents some difficulties that must be overcome

if invariant-based inverse engineering is to succeed in transferring excited state populations

from the initial Hamiltonian H(0) to the final Hamiltonian H(T ), while the Ermakov-Lewis

invariant carries out this task without additional effort.



Chapter 4

Ion shuttling through an X-junction

4.1 Introduction

The problem of shuttling ions through X-junctions in a QCCD is of prime importance to

proposals to carry out scalable quantum computing with trapped ions, as discussed in Sec. 2.2.2.

In this chapter, I present how the invariant-based inverse engineering techniques derived in Ch. 3

can be used to perform fast ion shuttling through X-junctions by giving a worked example of

the procedure. I demonstrate the shuttling of an ion around a corner in the plane, which models

the transfer of an ion around a corner in an X-junction.

This chapter is based on work published in [1].

4.2 Motivation and formulation of problem

As explored in Sec. 2.6.1, previous results in invariant-based control of trapped ion motional

states have usually assumed that the dynamics of the ion are confined to one dimension d = 1

[127, 153, 150, 156, 157, 158]. This is a valid approximation provided that the ion is confined to

a linear trap. In this case, the radial modes of motion are decoupled from the axial mode, and

they may be neglected under the assumption that only the axial mode undergoes non-trivial
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dynamics during a linear shuttle.

However, as discussed in Sec. 2.2.2, most proposals for scalable quantum computing revolve

around a QCCD which has junctions connecting many different ion traps. The ions must travel

through junctions and around corners as they are routed to different parts of the architecture.

In such a case, the assumption that the motional dynamics are effectively one-dimensional

breaks down and in this case one expects all of the three spatial degrees of freedom to play a

role in the motional dynamics of the ion. The invariant derived in Ch. 3 may then be used to

inverse engineer Hamiltonians that can be realised experimentally.

I present here an employment of invariant-based inverse engineering that realises ion shuttling

around a corner, in order to demonstrate this technique. I will exhibit the shuttling of a trapped

ion around a corner in the plane, which is to say that only two spatial dimensions d = 2 will be

considered instead of the more natural three d = 3. This is done in order to make the resulting

dynamics of the ion and trap easier to visualise, though the example demonstrated here may

straightforwardly be extended to three spatial dimensions d = 3.

In order to carry out invariant-based inverse engineering, the problem must be stated explicitly.

The problem of shuttling an ion around a corner implies that one has initial and final trapping

configurations that are separated in space, with respective trapping frequencies that are to be

fixed. In an ion trap, the radial frequency ωr is often greater than the transverse frequency ωt.

I therefore write down initial and final trapping potentials

V (0) =
1

2
m
(
ω2
t x̂

2 + ω2
r(ŷ − r)2

)
, (4.1)

and

V (T ) =
1

2
m
(
ω2
r(x̂− r)2 + ω2

t ŷ
2
)
, (4.2)

that naturally determine an initial Hamiltonian H(0) and final Hamiltonian H(T ),

H(0) =
p̂2x + p̂2y
m

+ V (0),

=
p̂2x + p̂2y
m

+
1

2
m
(
ω2
t x̂

2 + ω2
r(ŷ − r)2

)
, (4.3)
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and

H(T ) =
p̂2x + p̂2y
m

+ V (T ),

=
p̂2x + p̂2y
m

+
1

2
m
(
ω2
r(x̂− r)2 + ω2

t ŷ
2
)
. (4.4)

The position operators x̂ and ŷ index the spatial coordinates in the plane, while the operators

p̂x and p̂y are the corresponding momentum operators.

Eq. (4.1) defines a trap centred at the position (0, r), while Eq. (4.2) defines one centred at

position (r, 0), as over the course of a shuttling operation through a junction, one expects the

ion to perform a 90 degree turn. The origin may accordingly be thought of as the centre of the

junction. The roles of the radial frequency ωr and the transverse frequency ωt are exchanged

at the conclusion of the operation at final time t = T , as a 90 degree rotation of the trapping

potential will necessarily exchange the radial and trapping axes.

The goal is to derive Hamiltonians H(t) that interpolate the initial and final Hamiltonians

given in Eqs. (4.3) and Eq. (4.4) that realise fast ground state to ground state transfer.

4.3 Choosing the invariant

In this section, I will illustrate the selection of a quantum invariant that can be used to in-

verse engineer to obtain Hamiltonians that realise the shuttling of an ion around a corner, in

accordance with the principles set out in Ch. 3.

The initial Hamiltonian H(0) and final Hamiltonian H(T ) given in Eqs. (4.3) and (4.4) are of

the form given in Eq. (3.1). By the results of Ch. 3, it is possible to choose a quantum invariant

I that allows the Hamiltonian H(t) to be inverse engineered at intermediate times.

As discussed in Sec. 3.7, the invariant I is parameterised in terms of the positive matrix

valued quantity R(t) and the trajectory L⃗(t). By choosing these quantities appropriately, the

Hamiltonian can be inverse engineered following the techniques of Sec. 3.7.
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4.3.1 Boundary conditions

As detailed in Sec. 3.6, the positive matrix valued quantity R(t) and the trajectory L⃗(t) must

satisfy certain boundary conditions in order for the resulting invariant I to be suitable for

inverse engineering.

Eqs. (3.61) and (3.62) give the appropriate boundary conditions on the quantities L⃗ and R.

They read

R(0) =M− 1

4 (0), (4.5)

R(T ) =M− 1

4 (T ), (4.6)

and

L⃗(0) =
1

m
M−1(0)F⃗ (0), (4.7)

L⃗(T ) =
1

m
M−1(T )F⃗ (T ), (4.8)

Eqs. (4.5)-(4.8) are given in terms of the initial and final quadratic parts of the trapping

potentialM and the initial and final trap displacements F⃗ . By substituting for these quantities,

explicit expressions for the boundary conditions that the real matrix valued quantity R(t) and

the trajectory L⃗(t) must satisfy can be obtained.

The initial and final Hamiltonians given in Eqs. (4.3) and (4.4) determine the initial and final

values of the quadratic part of the Hamiltonian

M(0) =






ω2
t 0

0 ω2
r




 , (4.9)

M(T ) =






ω2
r 0

0 ω2
t




 , (4.10)
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F⃗ (0) =






0

mrω2
r




 , (4.11)

F⃗ (T ) =






mrω2
r

0




 .

By substituting these expressions into Eqs. (4.5)-(4.8), one gets

R(0) =






1√
ωt

0

0 1√
ωr




 , (4.13)

R(T ) =






1√
ωr

0

0 1√
ωt




 , (4.14)

L⃗(0) =






0

r




 , (4.15)

L⃗(T ) =






r

0




 . (4.16)

As stated in Sec. 3.6, the positive matrix valued quantity R(t) and the trajectory L⃗(t) may be

freely interpolated between their initial and final values given in Eqs. (4.13)-(4.16), provided

that their first and second derivatives vanish at initial time t = 0 and final time t = T .

4.3.2 Expressions for the positive matrix valued quantity R(t) and

the trajectory L⃗(t)

Any functional form for the trajectory L⃗ and positive matrix valued quantity R that interpolates

the boundary conditions derived in the previous section may be chosen. Since the boundary

conditions involve only the quantities L⃗, R and their first and second derivatives at initial and

final times, there are very many ways to do this. I will present here choices for the quantities



92 Chapter 4. Ion shuttling through an X-junction

L⃗ and R that are nevertheless physically motivated and realise non-trivial quantum dynamics.

In order to write down the expressions concisely, it will prove convenient to introduce the

polynomial, employed in earlier works [153, 159]

p(τ) = 10τ 3 − 15τ 4 + 6τ 5, (4.17)

where

τ =
t

T
. (4.18)

The polynomial p(τ) is the monic polynomial of lowest degree that satisfies p(0) = 0, p(1) = 1,

and ṗ(0) = ṗ(1) = p̈(0) = p̈(1) = 0.

I turn now to the choice of the trajectory L⃗. As discussed in Sec. 4.2, the ion trajectory is to

turn a corner in order to model the effect of ion shuttling. A simple choice of trajectory is for

the ion to trace out a quarter circle during the motion. I impose the following expression for

the choice of trajectory L⃗

L⃗(t) = r







sin
(π

2
p(τ)

)

cos
(π

2
p(τ)

)






. (4.19)

Eq. (4.19) defines a trajectory L⃗ that satisfies the boundary conditions Eqs. (4.15) and (4.16).

The presence of the polynomial p(τ) ensures that the first and second derivatives of the trajec-

tory L⃗ vanish at initial time t = 0 and final time t = T .

The positive matrix-valued quantity R(t) must be chosen as well. The quantity R(t) is related

to the covariance matrix Σ via Eq. (3.77). It is defined to be

R(t) = (1− p(τ))R(0) + p(τ)R(T ) + τ 3 (1− τ)3Rc , (4.20)

where

Rc = (ωtωr)
− 1

4






1 1

1 1




 . (4.21)
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Eq. (4.20) defines a positive-matrix valued quantity R that satisfies the boundary conditions

laid out in Eqs. (4.13) and (4.14).

The first two terms (1− p(τ))R(0) + p(τ)R(T ) in Eq. (4.20) perform an interpolation between

the initial value of the quantity R(0) and the final value R(T ). Again, the presence of the

polynomial p(τ) ensures that the first and second derivatives of the quantity R vanish at initial

time t = 0 and final time t = T .

The term Rc vanishes at initial time t = 0 and final time t = T . The effect of this term is

to ensure that the principal axes of the matrix R undergo some non-trivial rotations during

intermediate times 0 < t < T . Without this, the principal axes of the matrix R, and those of

the resulting trapping frequency matrix M are always aligned in the x and y directions. This

has the effect of reducing the problem of ion shuttling to that of two decoupled one-dimensional

problems. By choosing the term Rc according to Eq. (4.21), the ability of the invariant defined

in Ch. 3 to deliver non-trivial Hamiltonians that undergo some rotation in the trapping potential

is demonstrated.

The choice of the term Rc turns out to have some significant implications for the problem of the

degeneracy of the invariant I discussed in Sec. 3.9.1. Although I do not explore the possibility

here, recent work [144] indicates that it is possible to perform transfer of excited states by

choosing the term Rc to have greater magnitude.

Now that the quantities L⃗ and R have been defined, one can deduce the quadratic part of the

trapping potential M and the trap displacement term F⃗ using the techniques of Sec. 3.7.

4.4 Presentation of results

In this section, I will present some realisations of the invariant based inverse engineering pro-

cedure described previously, and discuss their qualitative features.

The shuttling problem described in earlier chapters is parametrised by quantities including the

radius r of the path of the ion, the initial transverse frequency ωt, the initial radial frequency ωr
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and the duration of the shuttling T . By varying these quantities, different shuttling procedures

may be obtained, which are illustrated in Fig. 4.1. I will now outline the choices made for these

quantities.

The ratio of the transverse and radial frequencies ωr

ωt
is rarely unity in an experimental trap,

which is to say that ion traps are rarely isotropic. This quantity was set to be equal to 2 in

insets (a), (c) and (e) and equal to 10 in insets (b), (d) and (f) to model the effects of differing

trap anisotropies on the resulting dynamics.

The quantity Tωt was varied to model the effect of changing the duration T of the shuttling

procedure, which allows one to compare slow and fast ion shuttles. Insets (a) and (b) illustrate

fast shuttling procedures with ωtT = 3. Insets (c) and (d) illustrate slower procedures with

ωtT = 5, and insets (e) and (f) are slower still with ωtT = 10.

Fig. 4.1 presents the dynamics of the level sets of the trapping potential in orange, which are

determined by the quadratic part of the trapping potential M and the centre of the trap C⃗,

which is plotted in blue, defined by

C⃗ =
1

m
M−1F⃗ . (4.22)

The shuttling problem is also determined by the mass of the ion m and the radius r of the

path of the ion. One can determine the effect of varying the mass m and the radius of the

path of the ion r on the quadratic part of the trapping potential M and the centre of the

trap C⃗ by carrying out the inverse engineering procedure outlined in Sec. 3.7. The resulting

quadratic part of the trapping potential M has no dependence on the mass of the ion m and

the radius r of its path. One can apply Eq. (4.22) to obtain the centre of the trap C⃗. As the

trajectory L⃗ defined in Eq. (4.19) is proportional to the radius r, the resulting trap centre C⃗ is

also proportional to the radius r, and has no dependence on the mass m. The effect of varying

the radius r is only to vary the extent of the trajectory of the centre of the trap C⃗ and not its

shape. Accordingly, varying the mass m and radius r does not produce examples distinct to

those presented in Fig. 4.1.

In all of the insets, the trajectory of the ion traces out the same quarter circle as specified
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by Eq. (4.19), plotted in purple. The faster shuttling protocols presented in insets (a) and

(b) display substantial deviation between the trap centre and the ion trajectory. Despite these

significant deviations, and the wild trajectory the ion takes, the shuttling procedure still delivers

ground state to ground state transfer. The slower shuttling procedures presented in insets (c)-

(f) display much smaller deviations, and the trap centre and ion trajectory almost coincide.

This is symptomatic of the adiabatic regime, in which the state of the ion is close to the

instantaneous ground state of the trap.

The trap trajectories presented in insets (a) and (c) differ from their less isotropic counterparts

in insets (b) and (d), while this is much less pronounced when comparing insets (c) and (f).

One concludes that changing the isotropy has only a minor effect on the trap protocols at slower

times.

The orange ellipses indicate level sets of the trapping potential taken at equidistant times

t = jT/8 with j = 0, . . . , 8. The shape of the ellipses is determined by the quadratic part of the

trapping potential M . Even in the faster shuttling protocols presented in insets (a) and (d),

the orange ellipses perform gradual changes in shape, which lies in contrast to the exaggerated

motions of the trap centres.

The ellipses tend to be aligned with the principal axes x and y. As a result, the dynamics

they undergo tends to be composed mostly of stretching and squeezing, though some rotation

is visible in inset (c). By increasing the magnitude of the term Rc defined in Eq. (4.20), it

is possible to observe a greater degree of rotation in the trapping potential, which is to say

that the dominance of the stretching and squeezing here is not a general characteristic of the

invariant-based inverse engineering techniques.

4.5 Outlook

There exist very many possible choices of invariant I to inverse-engineer a Hamiltonian for this

control task, of which only one is presented in Fig. 4.1. Nevertheless, several general conclusions

can be drawn from this example.
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The substantial deviation of the trap centre and the centre of the ion demonstrates that the

inverse engineering procedure is capable of finding highly nontrivial Hamiltonians that realise

the required control task. In particular, the paths of the trap centre trajectories, which are

significantly different from those of the ions, suggest that invariant-based inverse engineering

is capable of discovering experimental protocols that would not easily be guessed at otherwise.

This implies that invariant-based inverse engineering is likely to be a useful guide for experi-

mental implementations of fast ion shuttling, in which there is no obvious a priori choice for

the path of the trapping potential.

Although relatively simple expressions for the quantities that parametrise the invariant I were

chosen in Sec. 4.3.2, the traps display significant deformation in shape throughout the shuttling

protocol, yet still ensure that the ion returns to its motional ground state at the end of the pro-

cedure. This implies that the ion undergoes non-trivial quantum dynamics during the procedure

in addition to the classical motion of the centre of the ion. This indicates that invariant-based

inverse engineering is capable of discovering with ease Hamiltonians that produce interesting

quantum evolution from a theoretical perspective.

By choosing different forms for the real matrix valued quantity R(t) and the trajectory L⃗(t)

that are consistent with the boundary conditions set out in Sec. 4.3.1, it is possible to inverse

engineer many different HamiltoniansH and compare their features. This opens up the prospect

of optimising over invariants I to find the Hamiltonian H that performs best with regard to

some set of criteria, such as minimising the separation of ion and trap centre, or ensuring that

the ion and trap centre take physically realisable paths within an experimental trap geometry.

Such a possibility allows for more experimental considerations to be taken into account when

designing a shuttling procedure, which demonstrates again the experimental utility of invariant-

based inverse engineering.





Chapter 5

A many-particle quantum invariant

5.1 Introduction

The results presented in Ch. 3 allow one to control the motional state of a trapped ion in

any number of spatial dimensions d. This lets one perform fast, ground state to ground state

shuttling of trapped ions, as demonstrated in Ch. 4. However, these results are limited to the

analysis of a single ion. In a QCCD, one is interested in controlling the motion of two or several

strongly interacting ions at a time, to perform tasks such as separation of trapped ions. In

this chapter, I derive another quantum invariant which corresponds to a system of any number

of trapped ions strongly interacting under the Coulomb potential. I explore the possibility of

inverse engineering Hamiltonians that can perform tasks such as separation of trapped ions,

and discuss some of the limitations encountered. I demonstrate how the invariant may be

inverse engineered to obtain Hamiltonians in a simplified regime in which there are only two

ions moving in trapping potentials of equal shape.

This chapter is based on work to be published in [2].
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5.2 Interacting particles: challenges

In this section, I will introduce a Hamiltonian that is used in the results of this chapter and

summarise the challenges associated with controlling more than one ion at a time.

Trapped ions interact under the Coulomb potential. Although this interaction may be neglected

when the ions are well-separated in space, there exist many scenarios in which it cannot. During

the operation of a QCCD, ions are periodically made to interact by bringing them together in

the same trap, in which they are held apart solely by the effect of their Coulomb interaction.

The Coulomb potential cannot be neglected in such a situation, as without it the ions would

occupy the same position in space, which is absurd.

In ion traps, the Coulomb potential between two ions tends to vary on scales that are much

larger than the spatial extent of the wavepackets of the ions. As a result, the relevant quantum

effects of the Coulomb potential are expected to be limited to stretching and squeezing of the

quantum state, and changes in the expected displacements of the wavepackets.

As discussed in Sec. 2.4, trapped ions move in potentials that may be taken to be quadratic in

position. The Hamiltonian governing n ions, trapped in potentially distinct traps in d spatial

dimensions, interacting under the Coulomb potential, may be written as

H(t) =
n∑

i

ˆ⃗pi
2

2mi

+
1

2

n∑

i

mi
ˆ⃗xi

T
Mi(t)ˆ⃗xi −

n∑

i

F⃗i(t) · ˆ⃗xi +
∑

1≤i<j≤n

e2

4πϵ0|ˆ⃗xi − ˆ⃗xj|
, (5.1)

where the d-by-d matrix valued quantity Mi and the d-dimensional vector valued quantity F⃗i

characterise the quadratic parts of the trapping potentials and the trap displacements for the

i-th ion. The operators ˆ⃗xi and ˆ⃗pi are the position and momentum operators respectively of the

i-th ion, and are both d-dimensional vector-valued operators.

The quadratic parts of the trapping potentials Mi and the trap displacement F⃗i are ultimately

determined by local Taylor expansions of the pseudopotential, as explained in Sec. 2.3.2. They

may be altered by changing the pseudopotential, which can be performed by modulating the

voltages that are applied to the electrodes. As a result, the quantities Mi and F⃗i may be
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regarded as parameters which are imposed by experimental control and are free to vary in

time.

The Hamiltonian given in Eq. (5.1) reduces to that of a single ion given in Eq. (3.1) when

the number of ions n is taken to be one. As such, it may be considered as a generalisation of

Eq. (3.1) to higher numbers of ions. In Ch. 3, an invariant was constructed that ultimately

allowed the Hamiltonian given in Eq. (3.1) to be obtained via inverse engineering of a quantum

invariant, which allowed for the construction of experimentally realisable Hamiltonians that

perform fast, ground state to ground state shuttling of a trapped ion.

The ability to construct a quantum invariant for the Hamiltonian given in Eq. (5.1) would

similarly allow one to realise tasks involving the motional states of more than one ion such as

fast ion separation, ion crystal rotation and mixed-species shuttling of several ions in a unified

manner. However, there exist some challenges associated with the construction of an invariant

corresponding to the Hamiltonian given in Eq. (5.1) that are not encountered in the analysis

of a single ion.

In Ch. 3, the fact that the Hamiltonian was quadratic in both position and momentum operators

motivated the ansatz of an invariant that was also quadratic in position and momentum in

Sec. 3.2, which was crucial to progress. In contrast, the Coulomb terms that appear in Eq. (5.1)

are not quadratic in position, which precludes the approach used in Ch. 3 to construct the

invariant. Indeed, it is very difficult to write down, even in one spatial dimension d = 1, useful

quantum invariants that contain a Coulomb potential term [155]. Additionally, the Coulomb

terms are not experimentally controllable, so there is no prospect of mitigating their effect.

5.3 Multipole expansion of the Coulomb potential

Although it is difficult to write down a quantum invariant corresponding to a Hamiltonian

containing Coulomb terms, it is possible to make progress by means of an approximation.

In this section I will present an expansion of the Coulomb potential that will facilitate the

construction of a quantum invariant corresponding to the Hamiltonian defined in Eq. (5.1).
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The Coulomb interaction between the i-th and j-th ion is given by

e2

4πϵ0|ˆ⃗xi − ˆ⃗xj|
=

C

|ˆ⃗xi − ˆ⃗xj|
, (5.2)

where the prefactor e2

4πϵ0
has been absorbed into the constant C for notational brevity.

As discussed in Sec. 5.2, one of the obstacles to writing down an invariant associated with

the Coulomb term given in Eq. (5.2) is that it is not quadratic in position. It is possible to

obtain an operator quadratic in position that approximates Eq. (5.2) by performing a Taylor

expansion of Eq. (5.2) to second order and discarding higher order terms.

Eq. (5.2) is a function of the operators ˆ⃗xi and ˆ⃗xj. In the case that the Coulomb potential does

not vary considerably in the region over which the wavefunction of the two ions is significant,

then one can replace the Coulomb term given in Eq. (5.2) with the expected value

C

|ˆ⃗xi − ˆ⃗xj|
≈
〈

C
∣
∣
∣ˆ⃗xi − ˆ⃗xj

∣
∣
∣

〉

≈ C
∣
∣
∣

〈
ˆ⃗xi

〉

−
〈
ˆ⃗xj

〉∣
∣
∣

. (5.3)

The right hand side of Eq. (5.3) involves no operators at all, and is simply a real number. As

such, it may be regarded as a zeroth-order approximation of the Coulomb potential. Neverthe-

less, it is not particularly useful for present purposes, as it depends explicitly on the expected

positions of the ions
〈
ˆ⃗xi

〉

and
〈
ˆ⃗xj

〉

, and it is not clear whether this approximation is valid.

However, it motivates an expansion of the Coulomb potential that can be employed usefully.

Performing a Taylor expansion of Eq. (5.2) around the expected positions of the ions
〈
ˆ⃗xi

〉

and
〈
ˆ⃗xj

〉

gives

C

|ˆ⃗xi − ˆ⃗xj|
=

C

rij
+
C(∆ˆ⃗xi −∆ˆ⃗xj) · r⃗ij

r3ij
− C∆ˆ⃗xi ·∆ˆ⃗xi

2r3ij
+

3C(∆ˆ⃗xi · r⃗ij)(∆ˆ⃗xi · r⃗ij)
2r5ij

+
C∆ˆ⃗xi ·∆ˆ⃗xj

r3ij
− 3C(∆ˆ⃗xi · r⃗ij)(∆ˆ⃗xj · r⃗ij)

r5ij
− C∆ˆ⃗xj ·∆ˆ⃗xj

2r3ij
+

3C(∆ˆ⃗xj · r⃗ij)(∆ˆ⃗xj · r⃗ij)
2r5ij

+ O

(
C

r4ij

)

, (5.4)

having defined x⃗i = ⟨ˆ⃗xi⟩, x⃗j = ⟨ˆ⃗xj⟩, ∆ˆ⃗xi = ˆ⃗xi − x⃗i, ∆ˆ⃗xj = ˆ⃗xj − x⃗j and r⃗ij = x⃗i − x⃗j.
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Eq. (5.4) is an expansion of the Coulomb potential in a series of terms that are of order 1
rn
,

where the distance r is the expected separation of the i-th and j-th ion. It is an example of a

multipole expansion. By discarding the remainder term of order O
(
C
r4

)
, an operator quadratic

in the position operators ˆ⃗xi and ˆ⃗xj may be obtained. However, such a truncation must be

justified.

As discussed in Sec. 5.2, the Coulomb potential cannot be neglected in ion traps. However, as

the Coulomb potential varies on length scales that are large compared with the spatial extents

of the wavepackets, the remainder term O
(
C
r4

)
, which contributes to non-Gaussian excitations

in the quantum states, is expected to be small. From now on, this remainder term is neglected

completely.

One can obtain a Hamiltonian that is quadratic in position and momentum operators, and

hence more amenable to inverse engineering, by substituting for the expansion of the Coulomb

potential in Eq. (5.4). Substituting Eq. (5.4) into Eq. (5.1) gives, after absorbing terms into

each other and relabelling,

H =
n∑

i=1

⃗̂p2i
2mi

+
1

2

n∑

i=1

mi
⃗̂xTi Mi

⃗̂xi −
n∑

i=1

F⃗i · ⃗̂xi +
∑

1≤i<j≤n

⃗̂xTi D(r⃗ij)⃗̂xj, (5.5)

where

Mi =Mi +
∑

i ̸=j

3Cr⃗ij r⃗
T
ij

mir5ij
− C✶

mir3ij
, (5.6)

F⃗i = F⃗i +
∑

i ̸=j

Cr⃗ij
r3ij

, (5.7)

and

D(r⃗) =
C✶

r3
− 3Cr⃗r⃗T

r5
. (5.8)

Eq. (5.5) is the Hamiltonian of n interacting time-dependent displaced d-dimensional harmonic

oscillators that are coupled together via the terms D(r⃗ij). The Coulomb interaction induces the

couplings via the definition of the coupling constants in Eq. (5.8). Constant terms have been

discarded, as they contribute only an irrelevant global time-dependent phase to the dynamics.



5.4. Coupled harmonic oscillators 103

Eq. (5.5) bears a resemblance to Eq. (5.1) in that the quantitiesMi and F⃗i that characterise the

ion traps in Eq. (5.1) have been replaced by Mi and F⃗i in Eq. (5.5). As a result, the quantities

Mi and F⃗i may be thought of as defining trapping potentials of their own, which are defined

via Eqs. (5.6) and (5.7).

The Hamiltonian given in Eq. (5.5) is quadratic in position and momentum operators, as the

Coulomb interaction has been replaced with coupling terms of the form ⃗̂xTi D(r⃗ij)⃗̂xj, which are

quadratic in position. It is hence amenable to inverse engineering as hoped. Nevertheless, a

cause for concern is that the quantities Mi and F⃗i that characterise this Hamiltonian are given

in terms of the as-yet-unknown expected positions of the ions via Eqs. (5.6) and (5.7). I will

address this later, and turn for now to the question of deriving an invariant for the Hamiltonian

given in Eq. (5.5).

5.4 Coupled harmonic oscillators

In this section, I will present a quantum invariant that corresponds to the Hamiltonian defined

in Eq. (5.5).

As noted, the Hamiltonian given in Eq. (5.5) is quadratic in position and momentum operators.

Following the example of Sec. 3.2, I will write down an ansatz for the proposed invariant that

is also quadratic in position and momentum operators.

To facilitate this, it is helpful to specify the phase-space operator X̂ that is used here. It is

given by

X̂ =

(

ˆ⃗x1, ˆ⃗x2, . . . , ˆ⃗xn, ˆ⃗p1, ˆ⃗p2, . . . , ˆ⃗pn

)

. (5.9)

Since the position operators ˆ⃗xi and momentum operators ˆ⃗pi are themselves d-dimensional vec-

tors, the phase space operator X̂ is now a 2nd-dimensional vector.

The Hamiltonian H can now be written in terms of the phase space operator X̂, which will

motivate the explicit form of the invariant.
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Following the example of Sec. 2.4, one writes the Hamiltonian as in Eq. (2.17) as a quadratic

form in the phase space operator X,

H =
1

2
XTΩX + V⃗ ·X, (5.10)

where this time the quantities Ω and V⃗ are defined to be

Ω =

























m1M1 D(r⃗12) . . . D(r⃗1n) 0 0 . . . 0

D(r⃗12) m2M2 . . . D(r⃗2n) 0 0 . . . 0

...
...

. . .
...

...
...

...

D(r⃗1n) D(r⃗2n) . . . mnMn 0 0 . . . 0

0 0 . . . 0 ✶

m1

0 . . . 0

0 0 . . . 0 0 ✶

m2

. . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0 0 0 . . . ✶

mn

























, (5.11)

and

V⃗ =

(

−F⃗1, −F⃗2, . . . , −F⃗n, 0, 0, . . . , 0

)

. (5.12)

The quantities Ω and V⃗ are given in terms of block matrix and vector decompositions that are

consistent with the definition of X̂ in Eq. (5.9).

It is now possible to write down a quantum invariant that is quadratic in the phase space

operator X̂. However, motivated by the analysis of the single ion invariant in Sec. 3.5.2, a

slightly different form of the invariant will be chosen. The invariant I derived in Ch. 3 can

be compactly represented by completing the square in Eq. (3.58). Doing so leads to a helpful

physical interpretation of the quantity Z⃗ as the expected position of the ion in phase space.

Anticipating this, I choose an ansatz in which the square is already completed, as in Eq. (3.58),

I =
1

2
(X̂ − Z⃗)TΓ(X − Z⃗). (5.13)

The quantity Γ is a 2nd-by-2nd square matrix valued function of time, and the quantity Z⃗ is
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a vector-valued function of time of size 2nd.

As the Hamiltonian H and invariant I are defined in a similar way to those in Ch. 3 through

Eqs. (5.10) and (5.13), the quantities Ω, V⃗ , Γ and Z⃗ satisfy similar relations to those given in

Ch. 3.

The operator I is an invariant for the Hamiltonian H if and only if

Γ̇ = ΩSΓ− ΓSΩ, (5.14)

˙⃗
Z = SV + SΩZ⃗, (5.15)

where the symplectic matrix S is now a 2nd-dimensional square matrix

S =






0 ✶

−✶ 0




 . (5.16)

Eq. (5.14) is identical to Eq. (3.6), and Eq. (5.15) is equivalent to Eq. (3.51) after rearranging.

Any choice of the quantities Γ and Z⃗ that satisfy equations Eqs. (5.14) and (5.15) defines a

quantum invariant I. One may attempt to inverse engineer the invariant I by choosing the

quantities Γ and Z⃗ and attempting to deduce the quantities Ω and V⃗ via substitution of the

quantities Γ and Z⃗ into Eqs. (5.14) and (5.15). However, this attempt is doomed to fail for

reasons similar to those laid out in Sec. 3.2.1, namely that it is not clear how to deduce functional

forms for the quantities Ω and V⃗ that are consistent with their definitions in Eqs. (5.11) and

(5.12).

5.5 Restricted forms for the quantities Γ and Z⃗

In this section, I will introduce functional forms for the matrix-valued quantity Γ and the

vector-valued quantity Z⃗, that will allow for the invariant I defined in Eq. (5.13) to be inverse

engineered to obtain Hamiltonians of the form given in Eq. (5.5). I will start by choosing a
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functional form for the vector-valued quantity Z⃗ before turning to the matrix-valued quantity

Γ.

5.5.1 An ansatz for the quantity Z⃗

The vector-valued quantity Z⃗ obeys Eq. (5.15), which are simply Hamilton’s equations written

in vector form for the Hamiltonian H. This suggests that the quantity Z⃗ has the interpretation

of a trajectory in phase space. Motivated by this, I choose the ansatz for Z⃗

Z⃗ =

(

L⃗1, L⃗2, . . . , L⃗n, m1
˙⃗
L1, m2

˙⃗
L2, . . . , mn

˙⃗
Ln

)

, (5.17)

where the quantities L⃗i are d-dimensional vector-valued functions of time.

By substituting Eq. (5.17) into Eq. (5.15), some necessary conditions can be found involving

the quantities L⃗i that ensure that the ansatz given in Eq. (5.17) obeys Eq. (5.15).

Introducing the shorthand notation

D[i, j] = D(r⃗ij), (5.18)

performing the substitution and rearranging gives that

˙⃗
Z − SV + SΩZ⃗ =

























0

0

...

0

m1
¨⃗
L1 +m1M1L⃗1 − F⃗1 +

∑

j ̸=1D[1, j]L⃗j

m2
˙⃗
L2 +m2M2L⃗2 − F⃗2 +

∑

j ̸=2D[2, j]L⃗j

...

mn
˙⃗
Ln +mnMnL⃗n − F⃗n +

∑

j ̸=nD[n, j]L⃗j

























. (5.19)
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One concludes that if

¨⃗
Li +MiL⃗i =

F⃗i −
∑

j ̸=iD[i, j]L⃗j

mi

(5.20)

for all i, then Eq. (5.15) is satisfied. Eq. (5.20) will sometimes be referred to as the coupled

vector Newton equation, as it generalises the vector Newton equation given in Eq. (3.55) to

multiple quantities L⃗i that are coupled together via the D[i, j] that enter into the right hand

side of Eq. (5.20).

Since the vector-valued quantity Z⃗ satisfies Hamilton’s equations in Eq. (5.15), the quantities

L⃗i are in fact the classical trajectories of the i-th ion. This not only gives a useful physical

interpretation of the quantities L⃗i, but resolves the issue raised at the end of Sec. 5.3 that

the quantities Mi and F⃗i that characterise the Hamiltonian through Eqs. (5.6) and (5.7) are

defined in terms of the as-yet-unknown expected positions of the ions x⃗i.

During inverse engineering, the quantities L⃗i are first chosen to specify, along with a choice of

Γ, a choice of invariant I through Eq. (5.13). Since the quantities L⃗i are in fact the expected

positions of the ions x⃗i, the coupling terms D(r⃗ij) may be calculated by substituting r⃗ij =

L⃗i− L⃗j. The quadratic parts of the trapping potential Mi and trap displacement terms F⃗i may

be related to the quantities Mi and F⃗i via substitution of r⃗ij = L⃗i− L⃗j in Eqs. (5.6) and (5.7).

5.5.2 An ansatz for the quantity Γ

The ansatz that will be employed for the quantity is

Γ = Re

(

G†G

)

, (5.21)

defined in terms of the d× nd dimensional matrix

G =

(

m1Ẏ1 . . . mnẎn −Y1 . . . −Yn
)

, (5.22)

which is defined in terms of complex, d-by-d square matrices Yi each corresponding to the i-th
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ion.

Substituting Eq. (5.22) into Eq. (5.14) gives, after simplifying

Re

(

G†
(

Ġ+GSΩ
)

+
(

Ġ+GSΩ
)†
G

)

= 0, (5.23)

from which one concludes that Eq. (5.14) is satisfied if the quantity Ġ+GSΩ vanishes.

This quantity may be computed by substituting for the quadratic part of the Hamiltonian Ω

using Eq. (5.11) and the definition of the matrix G in Eq. (5.11). One obtains

Ġ+GSΩ =

(

Q1 Q2 . . . Qn ❖ . . . ❖

)

, (5.24)

where

Qi = mi

(

YiMi + Ÿi

)

+
∑

j ̸=i

YjD[i, j]. (5.25)

Eq. (5.14) is therefore satisfied if all the matrices Qi vanish, which is equivalent to requiring

that for all i,

Ÿi + YiMi = −
∑

j ̸=i

YjD[i, j]

mi

. (5.26)

If Eqs. (5.20) and (5.26) are satisfied, then the invariant I is an invariant for the Hamiltonian

H of the form given in Eq. (5.5) as required. In order to apply the techniques of invariant-

based inverse engineering, one would like to be able to deduce the quantities Mi and F⃗i from

Eqs. (5.20) and (5.26), given a choice of invariant I. In the next section I will address how to

carry this out.

5.6 Towards inverse engineering

In this section, I will outline the difficulties associated with employing the invariant charac-

terised in Sec. 5.5 for invariant-based inverse engineering, and present a way to surpass them.
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The invariant I defined in Eq. (5.13) is characterised in terms of matrix-valued quantities

Yi and vector-valued quantities L⃗i through Eqs. (5.17), (5.21) and (5.22). One can attempt

to perform invariant-based inverse engineering using this invariant. Firstly, by specifying the

matrix-valued quantities Yi and vector-valued quantities L⃗i, a choice of operator I may be fixed.

A Hamiltonian may be deduced by requiring that Eqs. (5.26) and (5.20), which are equivalent

to the requirement that the operator I be an invariant, are satisfied at all time.

This can be done by rearranging Eqs. (5.20) and (5.26). Rearranging Eq. (5.26) gives

Mi = −Y −1
i

(

Ÿi +
∑

j ̸=i

YjD[i, j]

mi

)

, (5.27)

which allows for the straightforward determination of the quadratic parts of the trapping po-

tential Mi in terms of the quantities Yi.

Having determined the quadratic parts of the trapping potential Mi, it is possible to deduce

the trap displacement terms F⃗i. Rearranging (5.20) gives

F⃗i = mi
¨⃗
Li +miMiL⃗i +

∑

j ̸=i

D[i, j]L⃗j, (5.28)

which completes the derivation of the quadratic parts of the trapping potential Mi and the

trap displacement terms F⃗i which characterise the Hamiltonian H.

5.6.1 Matrix polar decomposition of Yi

Unfortunately, the determination of the quadratic parts of the trapping potential Mi using

Eq. (5.27) is not guaranteed to ensure that the quadratic parts of the trapping potential Mi

are Hermitian, as they ought to be. A similar issue was encountered in Ch. 3 and tackled

in Sec. 3.3.1 by employing a matrix polar decomposition for P . Similarly, by performing a

matrix polar decomposition for the matrices Yi, it is possible to derive equations in terms of

new quantities that ensure that the resulting quadratic parts of the trapping potentials Mi

obtained via inverse engineering are Hermitian.
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The matrix polar decompositions read

Yi = UiRi, (5.29)

where the matrices Ui are unitary and the matrices Ri are positive.

The matrix valued quantities Yi satisfy Eq. (5.26). Expressing Eq. (5.26) in terms of this

decomposition will lead to equations involving the unitary matrices Ui and the positive matrices

Ri that are amenable to inverse engineering. Substituting Eq. (5.29) into (5.26) yields

ÜiRi + 2U̇iṘi + UiR̈i + UiRiMi = −
∑

j ̸=i

UjRjD[i, j]

mi

. (5.30)

It will prove useful, just as in Sec. 3.3.2, to introduce the anti-Hermitian matrices

Ai = U †
i U̇i. (5.31)

Eq. (5.30) may be expressed in terms of the anti-Hermitian matrices Ai. Premultiplying both

sides of Eq. (5.30) by the unitary matrix U †
i gives

U †
i ÜiRi + 2U †

i U̇iṘi + R̈i +RiMi = −
∑

j ̸=i

U †
i UjRjD[i, j]

mi

, (5.32)

into which the quantities Ai and Ȧi may be substituted. Substituting Eq. (5.31) in Eq. (5.32)

gives

ȦiRi + A2
iRi + 2AiṘi + R̈i +RiMi = −

∑

j ̸=i

U †
i UjRjD[i, j]

mi

. (5.33)

The left hand side of Eq. (5.33) is defined in terms of the positive matrix valued quantities Ri

and their time derivatives Ṙi and R̈i, and the anti-Hermitian matrix Ai and its time derivative

Ȧi. By taking the Hermitian conjugate of this equation, one can obtain another relation between

the quantities Ri, and their derivatives that will assist in ensuring that the determination of

the quadratic parts of the trapping potentials Mi gives that they are Hermitian.
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It will prove helpful to premultiply Eq. (5.33) by Ri before taking the Hermitian conjugate.

This yields

RiȦiRi +RiA
2
iRi + 2RiAiṘi +RiR̈i +R2

iMi = −
∑

j ̸=i

RiU
†
i UjRjD[i, j]

mi

. (5.34)

Taking the Hermitian conjugate of Eq. (5.34) gives

−RiȦiRi +RiA
2
iRi − 2ṘiAiRi + R̈iRi +MiR

2
i = −

∑

j ̸=i

D[i, j]RjU
†
jUiRi

mi

. (5.35)

Eqs. (5.34) and (5.35) both involve the quantities Ai and Ȧi. By forming the sum of them, one

can obtain an equation involving only the anti-Hermitian matrices Ai. Taking the difference

leads to a useful expression for the quantities Ȧi, which may be integrated.

The sum yields, after rearranging,

{Ri, R̈i}+{R2
i ,Mi} = 2[Ṙi, Ri]Ai

−2RiA
2
iRi−

∑

j ̸=i

D[i, j]RjU
†
jUiRi +RiU

†
i UjRjD[i, j]

mi

, (5.36)

and the difference gives

2RiȦiRi +2{Ri, Ṙi}Ai
+ [Ri, R̈i] + [R2

i ,Mi] =
∑

j ̸=i

D[i, j]RjU
†
jUiRi −RiU

†
i UjRjD[i, j]

mi

. (5.37)

Eq. (5.36) will sometimes be referred to as the coupled matrix Ermakov equation, as it reduces

to the matrix Ermakov equation given in Eq. (3.22) in the case of a single ion n = 1.

Eq. (5.36) takes the form of a matrix anticommutator equation for the quadratic parts of the

trapping potentials Mi, which is to say that it can be solved to obtain the quadratic parts of

the trapping potentials Mi using the results of Appendix A. However, the solutions depend on

the quantities Ai which evolve over time in a manner consistent with Eq. (5.37).

By rearranging Eq. (5.37), it is possible to obtain an expression for the quantities Ȧi that gives

rise to a system of differential equations that may be integrated to obtain the quadratic parts

of the trapping potentials Mi entirely in terms of the positive matrix valued quantities R and
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its time derivatives.

5.6.2 Inversion of the invariant

Eqs. (5.36) and (5.37) define a system of first order differential equations

U̇i = f(Ui, Ai), (5.38)

Ȧi = g(Ui, Ai). (5.39)

Such a system of equations may be integrated, thus determining the unitary matrices Ui and

antisymmetric matrices Ai in terms of the positive matrices Ri. The integration also determines

the quadratic parts of the trapping potential Mi in a way that ensures that they are Hermitian.

The function g(Ui, Ai) is difficult to write in closed form. An explicit procedure will be given in-

stead that uses Eqs. (5.36) and (5.37) to determine the quantities U̇i and Ȧi given the quantities

Ui and Ai, which is the content of Eqs. (5.38) and (5.39).

First of all, rearranging the definition of Ai in Eq. (5.31) gives that

U̇i = UiAi, (5.40)

allowing one to determine the matrices U̇i from the unitary matrices Ui and antisymmetric

matrices Ai via matrix multiplication.

The problem of determining the quantities Ȧi remains. This may be done by rearranging

Eq. (5.37) to obtain,

Ȧi = −{Ai, R
−1
i }Ṙi

− 1

2
[R̈i, R

−1
i ]− 1

2
[Ri, R

−1
i ]Mi

+
1

2

∑

j ̸=i

R−1
i D[i, j]RjU

†
jUi − U †

i UjRjD[i, j]R−1
i

mi

. (5.41)

Eq. (5.41) can be used to obtain the quantities Ȧi. However, it involves the quadratic parts of
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the trapping potential Mi. These may be determined by solving the matrix anticommutator

equation in Eq. (5.36). Substituting them into Eq. (5.41) allows one to determine the quantities

Ȧi, completing the specification of the system of differential equations contained in Eq. (5.39).

This system of equations can be integrated. In doing so, the quadratic parts of the trapping

potential Mi, the unitary matrices Ui and the anti-Hermitian matrices Ai are determined,

solely in terms of positive matrix valued quantities Ri and their time derivatives. As a result, it

is possible to characterise the quadratic part of the invariant Γ entirely in terms of the positive

matrix valued quantities Ri instead of the complex matrix valued quantities Yi. The quantities

Yi may be obtained from the positive matrix valued quantities Ri simply by integrating to

obtain the unitary matrices Ui and evaluating the matrix polar decompositions in Eq. (5.29)

5.6.3 Numerical issues

Integrating the system of equations in Eq. (5.39) may be carried out using any standard nu-

merical method, such as the classic Runge-Kutta method of order four [169]. There exists a

subtlety in that this numerical integration is not guaranteed to determine that the matrices Ui

are exactly unitary as required at every time step. Over time, the matrices Ui could drift and

become highly non-unitary, which would be unlikely to lead to sensible numerical results.

There are various ways of dealing with this issue. There exist unitary numerical integrators

[170] that ensure that numerical integration of the system

V̇ (t) = V (t)S(t), (5.42)

where the matrix S(t) is anti-Hermitian, produces solutions V (t) that are unitary at every time

step. The Gauss-Legendre methods [171] are unitary integrators [170].

It is plausible that using a unitary integrator [170] such as one of the Gauss-Legendre methods

would preserve the unitarity of the matrices Ui at each time step, considering that Eq. (5.40)

is of the form given in Eq. (5.42). However, the analysis is complicated by the fact that the



114 Chapter 5. A many-particle quantum invariant

system of differential equations in Eq. (5.39) involves integrating the anti-Hermitian matrices Ai

in conjunction with the unitary matrices Ui, and the computational cost of the Gauss-Legendre

methods is considerably higher given that they are implicit methods that require the solution

of a set of nonlinear algebraic equations at each time step [171]. Alternatively, one can use any

numerical integrator and project the matrices Ui onto the space of unitary matrices after each

time step in the numerical integration [170]. However, this also adds overhead to the numerical

integration.

5.6.4 Further issues in inverse engineering

Although the aforementioned numerical difficulties must be addressed, they do not present in

principle an insurmountable barrier to inversion of the invariant. However, there exist other

issues to deal with. It is not clear that the quadratic parts of the trapping potential Mi

obtained via this procedure are real symmetric as required, though they are guaranteed to

be Hermitian due to the fact that they are obtained by solving the matrix anticommutator

equation in Eq. (5.36).

Nevertheless, it is plausible that the integration does yield that the quadratic parts of the

trapping potential Mi are real. Some preliminary numerical investigations suggest that this is

the case, though no proof exists yet. The proof techniques of Sec. 3.4, which prove that the

quadratic part of the trapping potential M in the single-ion case is real, could be generalised

to apply here.

Of greater concern is the fact that there does not seem to be any way to impose useful boundary

conditions on the invariant I. In order for the invariant I to be used to perform ground state

to ground state transfer, it is necessary to impose that the invariant I and Hamiltonian H

commute at initial time t = 0 and final time t = T . As discussed in Sec. 3.6, this is achieved

when the time derivative of the quantum invariant İ vanishes at initial time t = 0 and final

time t = T .

The present quantum invariant I is a function not only of the positive matrix valued quantities
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Ri, the vector-valued quantities L⃗i, and their time derivatives, but also the unitary matrices Ui

and the anti-Hermitian matrices Ai that are obtained by integrating the system of differential

equations in Eqs. (5.38) and (5.39), which is to say that

I = g(Ui, Ai, Ri, Ṙi, L⃗i,
˙⃗
Li). (5.43)

The time derivative of the invariant İ vanishes if the quantities U̇i, Ȧi, Ṙi, R̈i,
˙⃗
Li and

¨⃗
Li all

vanish, via the chain rule. Since the unitary matrices Ui are obtained via numerical integration

of the system of differential equations in Eq. (5.39), it is very difficult to see how to ensure that

the time derivatives of the unitaries U̇i vanish at final time t = T .

As a result, it is not possible to ensure that the Hamiltonian H and invariant I commute at

final time t = T , which means that it is not possible to establish the precepts of invariant-based

inverse engineering. Unless a way can be found to surmount this obstacle, it is not possible to

employ this invariant I to carry out invariant-based inverse engineering. However, there exists a

simplified physical regime in which invariant-based inverse engineering becomes possible, which

I will now outline.

5.7 Symmetric trapping potentials

Without a procedure to fix the boundary conditions of the invariant I, it is not possible to

use it to perform useful invariant-based inverse engineering. In this section, I will demonstrate

that imposing the requirement that the quadratic parts of the trapping potentials Mi are equal

results in a practical inverse engineering procedure, and discuss its limitations.

Under the assumption that the Mi are all equal, a much simpler inversion procedure results in

which it is no longer necessary to carry out any numerical integration. Concretely, the analysis

will be limited to the case of two ions n = 2 from now on and it is imposed that M1 = M2.

Both M1 and M2 will be denoted as M, and since there is only one coupling constant D[1, 2],

the indexing will be omitted altogether in favour of D.
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These assumptions allow for considerable simplifications to be made. Eq. (5.26) now yields,

Ÿ1 + Y1M = −Y2D
m1

, (5.44)

Ÿ2 + Y2M = −Y1D
m2

. (5.45)

Eqs. (5.44) and (5.45) are similar in form. By choosing the matrix valued quantities Y1 and Y2

appropriately, Eqs. (5.44) and (5.45) reduce to a single equation which will prove much easier

to manipulate. The choice is made that

Y =
√
m1Y1 =

√
m2Y2. (5.46)

Eqs. (5.44) and (5.45) then both reduce to

Ÿ + Y

(

M+
D√
m1m2

)

= 0. (5.47)

For convenience, the scaled coupling term will be introduced

D =
D√
m1m2

. (5.48)

The invariant I is characterised by the quantities U1, U2, R1 and R2 that form the matrix

polar decompositions of the matrix valued quantities Y1 and Y2, as discussed in Sec. 5.6. As

the quantities Y1 and Y2 are related to the quantity Y via Eq. (5.46), it is possible to express

the quantities U1, U2, R1 and R2 in terms of the matrix polar decomposition of Y , which allows

for further simplifications to be made. Writing

Y = UR, (5.49)

for the matrix polar decomposition of the quantity Y , one gets by comparing decompositions

that

R =
√
m1R1 =

√
m2R2, (5.50)
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and

U = U1 = U2. (5.51)

Eqs. (5.36) and (5.37) govern the evolution of the quantities U1, U2, R1 and R2. They may

be written in terms of the unitary matrix U and positive matrix R by substituting Eqs. (5.50)

and (5.51), which yields, after simplification,

{R̈, R}+ {R2,M+D} = 2[Ṙ, R]A − 2RA2R. (5.52)

and

d

dt
RAR =

1

2

(

[R̈, R] + [M+D, R2]
)

. (5.53)

These equations have already been encountered during the derivation of the single ion invariant

in Ch. 3. Eq. (5.52) is the matrix Ermakov equation defined in Eq. (3.22) identifying the

quadratic part of the trapping potential M with the term M+D, and Eq. (5.53) is Eq. (3.17)

again having made the identification of the quadratic part of the trapping potential M with

the term M+D.

As a result, from this point on, the analysis of Secs. 3.3 and 3.4 may be applied here, identifying

the quadratic part of the trapping potential M with the term M + D throughout. The term

M + D is guaranteed to be real symmetric by the results of Sec. 3.4. Both Eqs. (3.21) and

(3.25) hold, which allows for the deduction of the term M+D by substituting for the quantities

R, Ṙ and R̈ in Eq. (5.52), and solving the matrix anticommutator equation to obtain the term

M + D. One can then subtract off the coupling term D to finally obtain the quadratic part

of the trapping potential M as required, which is guaranteed to be real symmetric. The trap

displacement terms F⃗1 and F⃗2 may then be determined via substitution in Eq. (5.27), which

completes the specification of the Hamiltonian.
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5.7.1 Boundary conditions

Now that the invariant I can be inverse engineered to obtain Hamiltonians, it is necessary to

address the boundary conditions that the invariant must satisfy.

In order for the ions to be transferred from their motional ground state at initial time t = 0 to

their motional state t = T at final time, the invariant I must commute with the Hamiltonian

H at initial time t = 0 and final time t = T , as discussed in Sec. 2.5.2. As the invariant I

satisfies the defining relation for a quantum invariant

dI(t)
dt

= i[I(t), H(t)], (5.54)

the Hamiltonian H and invariant I commute when the derivative of the invariant İ vanishes.

As pointed out in Sec. 5.6.2, this is not straightforward to arrange in general. However, it

is possible in the present case, as the invariant I can be written as a regular function of the

quantities Ri and L⃗i.

The invariant is characterised by the matrix-valued quantity Γ and the vector-valued quantity Z⃗.

The quantity Z⃗ may already be written as a function of the trajectories L⃗i via Eq. (5.17). The

quantity Γ may be evaluated by substituting the matrix polar decompositions Y1 =
√
m1UR

and Y2 =
√
m2UR into Eqs. (5.21) and (5.22) to obtain

Γ =












m1

(

Ṙ2 +K
) √

m1m2

(

Ṙ2 +K
)

J−{R,Ṙ}
2

√
m1(−J−{R,Ṙ})

2
√
m2

√
m1m2

(

Ṙ2 +K
)

m2

(

Ṙ2 +K
) √

m2(−J−{R,Ṙ})
2
√
m1

J−{R,Ṙ}
2

−J−{R,Ṙ}
2

√
m2(−J−{R,Ṙ})

2
√
m1

R2

m1

R2

√
m1m2√

m1(−J−{R,Ṙ})
2
√
m2

−J−{R,Ṙ}
2

R2

√
m1m2

R2

m2












, (5.55)

where

K = Re
(

[Ṙ, R]A −RA2R
)

. (5.56)

The unitary matrix U does not enter at all into Eq. (5.55), which expresses Γ entirely in terms

of R and its time derivatives. Since the invariant may be thus be written in terms of the
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quantities R and L⃗i, and their time derivatives,

I = f(R, Ṙ, L⃗i,
˙⃗
Li), (5.57)

the derivative of the invariant vanishes when Ṙ, R̈,
˙⃗
Li and

¨⃗
Li all vanish by the chain rule. As a

result, it is required that Ṙ ,R̈,
˙⃗
Li and

¨⃗
Li all vanish at initial time t = 0 and final time t = T .

The initial and final Hamiltonians H(0) and H(T ) are fixed by the choice of problem at hand,

which is to say that the quantities M(0), M(T ), F⃗i(0) and F⃗i(T ) are fixed.

Eqs. (5.20) and (5.52) must be satisfied at all times, including initial time t = 0 and t = T . By

evaluating them at initial time t = 0 and final time t = T , an initial set of boundary conditions

can be determined which involve the quantities R, L⃗1 and L⃗2.

Substituting into Eq. (5.20) gives that

ML⃗2 = F⃗2 −DL⃗1. (5.58)

and

ML⃗1 = F⃗1 −DL⃗2. (5.59)

Substituting into Eq. (5.52) gives that

R = (M+D)−
1

4 . (5.60)

Eqs. (5.58)-(5.60) must be satisfied at initial time t = 0 and final time t = T .

Interpolating the quantities R and L⃗i between these boundary conditions at initial and final

times gives a valid choice of invariant for inverse engineering.
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5.7.2 Degeneracy of the invariant

Although this scheme for inverse engineering satisfies the necessary boundary conditions, it

does not perform true ground-state to ground state transfer. As discussed in Sec. 2.5.2, a

requirement of any invariant used to perform ground state to ground state transfer is that it

has a non-degenerate ground state.

Unfortunately, the expression given for Γ in Eq. (5.55) is not invertible, as the columns of

the matrix Γ are not linearly independent. For example, the second column of the matrix

Γ is proportional to the first column. This means that the ground state of the invariant is

degenerate. As a result, the Hamiltonians derived via inverse engineering of this invariant are

not guaranteed to achieve full ground state to ground state transfer. However, as will be seen

in the next chapter, it is possible to quantify their performance numerically.



Chapter 6

Ion separation

6.1 Introduction

Separating trapped ions is a key challenge to be overcome in scalable trapped ion quantum

computing, as discussed in Sec. 2.2.2. In this chapter, I will demonstrate how the invariant

derived in Ch. 5 may be used to separate trapped ions, by means of an explicit demonstra-

tion with experimental relevance. Two trapped ions are separated in the plane to model the

separation of ions in a X-junction trap.

This chapter is based on work to be published in [2].

6.2 Motivation and formulation of problem

As discussed in Sec. 2.2.2, the separation of trapped ions is an important task that must be

implemented during the operation of a QCCD. Most theoretical [81] and experimental [106]

investigations have to date focused on the separation of ions in a linear trap, in which only one

motional mode is considered.

Using the results of Ch. 5, it is possible to construct ion separation protocols that work in more

than one spatial dimension. I present here a demonstration of ion shuttling in the plane. As
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in Ch. 4, the choice of d = 2 dimensions is made to illustrate the ability to control the ions in

more than one spatial dimension, while making it easy to visualise the dynamics at hand.

The problem of ion separation involves the determination of Hamiltonians H(t) that interpolate

an initial Hamiltonian H(0), corresponding to two ions trapped together, and a final Hamilto-

nian H(T ), corresponding to two ions that are well-separated in space. In order to do this, one

must certainly specify the initial Hamiltonian H(0) and final Hamiltonian H(T ).

The ions are initially trapped together at the origin. Concretely,

H(0) =
2∑

i=1

ˆ⃗pi
2

2mi

+
1

2

2∑

i=1

mi
ˆ⃗xi

T
Mi(0)ˆ⃗xi +

e2

4πϵ0|ˆ⃗x2 − ˆ⃗x1|
, (6.1)

where

M1(0) =M2(0) =






ω2
t 0

0 ω2
r




 . (6.2)

The transverse frequency ωt and the radial frequency ωr determine the shape of the initial

trapping potential. The trap displacement terms F⃗i(0) all vanish to reflect the fact that the

ions are trapped at the origin.

The final Hamiltonian H(T ) must correspond to ions that are well-separated in space, if the

ions are indeed to be separated. The final Hamiltonian is

H(T ) =
2∑

i=1

ˆ⃗pi
2

2mi

+
1

2

2∑

i=1

mi
ˆ⃗xi

T
Mi(T )ˆ⃗xi −

2∑

i=1

F⃗i(T ) · ˆ⃗xi +
e2

4πϵ0|ˆ⃗x2 − ˆ⃗x1|
, (6.3)

where

M1(T ) =M2(T ) =






ω2
r 0

0 ω2
t




 , (6.4)

F⃗1(T ) =






rω2
r

m1

rω2
t

m1




 , (6.5)
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and

F⃗2(T ) =






− rω2
r

m2

rω2
t

m2




 . (6.6)

The roles of the transverse frequency ωt and radial frequency ωr are interchanged in the final

quadratic parts of the trapping potentialsM1(T ) and M2(T ), compared to the initial quadratic

parts of the trapping potentials M1(0) and M2(0) in Eq. (6.2). This is to model the effect

of a rotation of the trap by 90 degrees, in order to demonstrate the ability of the inverse

engineering procedure to deliver trapping potentials that rotate non-trivially over time. The

trap displacement terms F⃗1(T ) and F⃗2(T ) are chosen to ensure that the centres of the traps

Ci(T ), which are given by

Ci(T ) =
1

mi

Mi(T )
−1F⃗i(T ), (6.7)

are equal to

C1(T ) =






r

r




 , (6.8)

and

C2(T ) =






−r

r




 , (6.9)

which is to say that the ions are separated into distinct traps with a separation of d = 2r.

6.3 Choice of invariant

In this section, I will illustrate how to use the invariant-based inverse engineering scheme of 5.7

to inverse engineer Hamiltonians that carry out separation of trapped ions.

In order to use the invariant-based inverse engineering scheme of Sec. 5.7, it is imposed that

M1 = M2 = M at all times. As detailed in Sec. 5.7, a Hamiltonian of the form may be

inverse-engineered using an invariant I that is determined in terms of quantities R, L⃗1 and L⃗2

via Eqs. (5.13), (5.17) and (5.55).
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The quantities L⃗1, L⃗2 and R that characterise the invariant I may be chosen freely as long as

they satisfy the boundary conditions laid out in Sec. 5.7.1, namely that

R = (M+D)−
1

4 , (6.10)

ML⃗1 = F⃗1 −DL⃗2, (6.11)

and

ML⃗2 = F⃗2 −DL⃗1, (6.12)

at initial time t = 0 and final time t = T , and that the first and second derivatives of the

quantities L⃗1, L⃗2 and R all vanish.

Eqs. (6.10)-(6.12) relate the quantities L⃗1, L⃗2 and R that characterise the invariant I at initial

and final time to the quantities M, F⃗1 and F⃗2 that characterise the Hamiltonian H at initial

and final time. The quantities M, F⃗1 and F⃗2 are ultimately determined by the choices of initial

and final Hamiltonian made in Sec. 6.2.

In order to interpolate the quantities L⃗1, L⃗2 and R, one must certainly needs to solve Eqs. (6.10)-

(6.12) in order to determine their initial and final values. As the coupling constant D depends

on L⃗1 and L⃗2 via Eq. (5.8), Eqs. (6.10)-(6.12) are non-linear.

Additionally, the first and second time derivatives of these quantities Ṙ, R̈,
˙⃗
Li and

¨⃗
Li must all

vanish.

The quantities M, F⃗1 and F⃗2 are determined at initial time t = 0 and final time t = T by the

initial and final Hamiltonians laid out in Sec. 6.2. Eqs. (6.10)-(6.12) may be solved numerically

using a nonlinear solver such as differential evolution [172] to obtain values of L⃗1, L⃗2 and R

that satisfy Eqs. (6.10)-(6.12).

The quantities L⃗1, L⃗2 and R must be interpolated between their initial and final values in such

a way that their first and second derivatives vanish at initial time t = 0 and final time t = T

in order to complete the specification of the invariant I.
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Using again the polynomial introduced in Sec. 4.3.2,

p(τ) = 10τ 3 − 15τ 4 + 6τ 5, (6.13)

where

τ =
t

T
. (6.14)

it is possible to construct simple expressions for the quantities L⃗1, L⃗2 and R that interpolate

their initial and final values appropriately. I choose

R(t) = (1− p(τ))R(0) + p(τ)R(T ), (6.15)

L⃗1(t) = (1− p(τ))L⃗1(0) + p(τ)L⃗1(T ), (6.16)

and

L⃗2(t) = (1− p(τ))L⃗2(0) + p(τ)L⃗2(T ), (6.17)

which completes the specification of the invariant I.

Now that the invariant I has been chosen, the Hamiltonian H may be inverse engineered using

the procedures outlined in Sec. 5.7, to obtain the quantities M, F⃗1 and F⃗2. The quantities Mi

and F⃗i that characterise the Hamiltonian may be determined via substitution into Eqs. (5.6)

and (5.7).

6.4 Presentation of results

In this section, I will present some numerical demonstrations of the inverse engineering proce-

dure set out in Secs. 6.3.

The numerical examples presented use the explicit choices

ωr = 10ωt, (6.18)
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numerically and the ground state of the final Hamiltonian H(T ). The resulting fidelities exceed

96% for a wide range of durations T , including those in the diabatic regime, and increase as the

duration T increases. In the limit of large times T , it is expected that the fidelity approaches

100%, as any slowly changing Hamiltonian H(t) will transfer the ground state population of

the initial Hamiltonian H(0) to that of the final Hamiltonian H(T ) by the adiabatic theorem.

As the dynamics of the motional state of the ions are Gaussian, they are characterised by the

covariance matrix Σ and the phase space expectation X. The covariance matrix Σ is visualised

in Fig. 6.4, in the case that the duration T is equal to 3ω−1
t . The initial covariance at time

t = 0 is shown in inset (a), the covariance matrix halfway through the dynamics in inset (b),

and at the end of the dynamics in inset (c). Inset (d) shows the covariance matrix of the true

ground state of the Hamiltonian H(T ) at final time t = T .

The elements of the covariance matrices of the initial and final states of the system are deter-

mined by the shape of the initial trapping potential. In particular, the spatial uncertainty in the

x-direction is larger than that in the y-direction for the initial covariance matrix, and reversed

for the final covariance matrix. The initial covariance matrix in inset (a) has significant x1-x2

and px1
-px2

covariances owing to the presence of the Coulomb potential. The desired ground

state of the final Hamiltonian H(T ) is diagonal as the ions are sufficiently well-separated for

the Coulomb potential to be neglected.

The position-momentum correlations are non-negligible in inset (b), which is indicative of the

fact that the ion is not at rest. The covariance matrices in insets (c) and (d) differ in some

places, which accounts for the observed infidelities of the final motional state of the ions.

Fig. 6.5 shows the behaviour of some of the individual covariances of the dynamics. Inset

(a) depicts the time-dependence of the px1
-px1

correlation. This correlation is non-vanishing

at both the start and the end of the protocol. Over time, it develops some oscillations, and

eventually settles on a much higher value than it had at the start of the protocol. Nevertheless,

some deviation with the expected value is observed at the end of the protocol. Inset (b) depicts

the time-dependence of the px1
-px2

-covariance. This value is expected to become negligible at

the end of the separation procedure, as may be seen by inspecting Fig. 6.4. Physically, this is
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due to the fact at large ion separations the Coulomb potential is negligible and one may expect

there to be no correlations between the two ions in their ground state. Nevertheless, as one

can see from inset (b), some oscillations build up over time and at the end of the protocol, the

covariance does not attain a value close to 0 as it should.

6.5 Outlook

The ion separation procedure presented here allows one to conclude several things about the

efficacy of invariant-based inverse engineering to deal with more than one ion. Although the

invariant I was constructed using simple functional forms for the quantities L⃗1, L⃗2 and R in

Sec. 6.3, it still delivered high transfer fidelities in excess of 96%, even at fast times. Accordingly,

one can conclude that the degeneracy of the ground state of the invariant used here need not

pose a significant obstacle in general.

As in Ch. 4, the Hamiltonian presented here gives trap centre trajectories that are significantly

different from the trajectories of the trapped ions. This suggests that invariant-based inverse

engineering leads to non-obvious ion separation protocols that are not what one would take

as a starting guess for Hamiltonians that realise ion separation. As a result, invariant-based

inverse engineering is likely to be of use in designing experimental protocols.

As the covariance matrix of the motional state of the ions undergoes significant changes through-

out the procedure, one concludes that invariant-based inverse engineering is capable of pro-

ducing Hamiltonians that realise inherently quantum dynamics, which is of interest from a

theoretical point of view, just as in Ch. 4.



Chapter 7

Beyond the harmonic approximation

7.1 Overview

The harmonic approximation, in which ion traps are assumed to be perfectly quadratic in

position, has been essential in deriving invariant-based control techniques for trapped ions in

Chs. 3 and 5. Although this approximation is often assumed to hold to a very high degree, there

exist situations in which it may not. For example, as ion traps become smaller, anharmonic

terms in the trapping potential are expected to become significant [173]. In such a situation,

the anharmonic contributions to the trapping potential must be taken into account in designing

ion shuttling and separation procedures.

A further assumption that has been made so far is that one has perfect control of the exper-

imental apparatus. More concretely, I have assumed that it is possible to apply any desired

trapping potential. Of course, this is not always a valid assumption in real-world experimental

conditions. One is limited in the possible potentials that can be constructed by the finite pre-

cision of the voltages that end up being applied to the electrodes, and applied voltages in any

case may always experience some fluctuating noise, or undergo some static drift over time. The

effect of these phenomena is ultimately to introduce noise and imperfections into the trapping

potential that an ion experiences. These can potentially destroy the efficacy of any invariant-

based shuttling protocol that one constructs, so they must be considered when designing an
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experimental implementation.

In this chapter, I outline a method that may be used to model the dynamical effects of noise and

anharmonic contributions, using time-dependent perturbation theory. I explore its advantages

and list further work that needs to be done in order to successfully implement it.

7.2 Statement of problem

As detailed in Sec. 7.1, I aim to work beyond the harmonic approximation. In this section,

I explain how the invariants derived so far may be used to deal with dynamics beyond the

harmonic approximation for a single ion using time-dependent perturbation theory.

There exist very many different anharmonic potentials and sources of noise that a trapped ion

may experience. In order to deal with them in a general way, I write down the Hamiltonian

H = H0 + V (x⃗, t) (7.1)

where the Hamiltonian H0 is quadratic and of the form given in Eq. (3.1). The potential term

V contains terms that are higher than quadratic in the position term x⃗, and any noise terms

that are due to imperfection of implementation of the experimental controls.

As the HamiltonianH0 is quadratic, it may be determined using the invariant-based engineering

as detailed in Ch. 3. Given a choice of initial and final Hamiltonian H0(0) and H0(T ), that

correspond to idealised quadratic trapping potentials, I assume that a choice of appropriate

invariant I, as specified in Ch. 3 has been selected and the Hamiltonian H0(t) obtained for all

values of t between 0 and T .

In the case that the potential term V vanishes, one recovers the results of Ch. 3, in which the

ion is transferred to the ground state of the final Hamiltonian H(T ) at the end of the motion.

In the case that the potential term V does not vanish, this no longer holds. The dynamics

must be obtained by simulating the true dynamics under the time evolution of H.
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I assume further that the magnitude of the potential term V is small compared to the quadratic

part of the trapping potential H0. This certainly holds in the limit of weak noise, and assuming

that any anharmonicities are not too large. Such a condition is the quantitative justification

for the validity of a perturbative treatment, in which the dynamics under the full Hamiltonian

H are derived in terms of those under H0, treating the potential term V as a perturbation.

In order to carry out a perturbative treatment, it is usually required that the eigenstates and

eigenvalues of the unperturbed Hamiltonian H0 are known. However, as in this case H0 is free

to vary in time, the requirements are somewhat more stringent. The perturbative solution of

the dynamics under the full Hamiltonian H requires the solutions of the Schrödinger equation

for H0. These are in general difficult to determine for a time-dependent system. However, one

is greatly aided by the fact that one has access to a quantum invariant I that corresponds to

H0. As the eigenstates of the invariant I may be chosen to be solutions of the Schrödinger

equation for H0, as detailed in Sec. 2.5.1, the perturbative treatment may be carried out in

terms of the eigenstates of the invariant I.

7.3 Time-dependent perturbation theory

In this section I will detail how to employ time-dependent perturbation theory to determine

the dynamics of the full Hamiltonian H, and illustrate how they relate to the invariant I.

First of all, it is necessary to derive the dynamics under the Hamiltonian H0. As detailed in

Sec. 2.5.1, the eigenstates of the invariant I may be chosen to satisfy the Schrödinger equation

for H0. One writes

I(t) |χi⟩ = λi |χi⟩ (7.2)

for the eigenstates |χi⟩ of the invariant I, and they satisfy the Schrödinger equation for H0

i
d

dt
|χi⟩ = H0 |χi⟩ . (7.3)

As is typical of time-dependent perturbation theory, I choose as an ansatz for the solution of
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the dynamics under the full Hamiltonian H,

|ψ⟩ =
∑

i

ci(t) |χi⟩ (7.4)

where the coefficients ci vary in time. Since the states |χi⟩ form an eigenbasis of the invariant

I, they are complete. As a result, the right hand side of Eq. (7.4) can express any desired state

|ψ⟩, which is to say that one has lost no generality in taking Eq. (7.4) as an expression for the

true dynamics of the system |ψ⟩.

The state |ψ⟩ must satisfy the time-dependent Schrödinger equation for H,

i
d

dt
|ψ⟩ = H0 |ψ⟩+ V |ψ⟩ . (7.5)

By substituting Eq. (7.4) into Eq. (7.5), one can obtain conditions on the coefficients ci that

ensure that Eq. (7.5) is satisfied. One gets that

∑

i

ici(t)
d

dt
|χi⟩+ iċi(t) |χi⟩ =

∑

i

ci(t)H0(t) |χi⟩+ ci(t)V |χi⟩ . (7.6)

As the eigenstates |χi⟩ satisfy Eq. (7.3), a great simplification may be made. Both sides of

Eq. (7.3) may be eliminated from Eq. (7.6) to obtain

∑

i

iċi(t) |χi⟩ =
∑

i

ci(t)V |χi⟩ . (7.7)

By taking the inner product of Eq. (7.7) with the state ⟨χj|, one may obtain a set of first-order

differential equations for the coefficients ci,

iċj(t) =
∑

i

ci(t) ⟨χj|V |χi⟩ . (7.8)

Up until this point, no approximations have been made, which is to say that any solution of

Eq. (7.8) gives rise to an exact solution of Eq. (7.5). Eq. (7.8) may be integrated numerically
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by truncating the sum at a suitably large cutoff. In such a way, one can obtain a numerical

solution to Eq. (7.5) simply by integrating Eq. (7.8) to obtain the coefficients ci. This presents

much less difficulty than solving the time-dependent Schrödinger equation numerically directly,

as it is a partial differential equation.

7.4 Eigenstates of the quantum invariant

In order to perform the integration of Eq. (7.8), one must calculate the matrix elements

⟨χj|V |χi⟩. Such a calculation requires the determination of the eigenstates |χj⟩ of the invariant

I. In this section, I will present a method by which the eigenstates |χj⟩ may be obtained.

The invariant I defined in Eq. (3.5) reads

I =
1

2
XTΓX + W⃗ ·X + θ. (7.9)

The invariant I contains many terms of Lorentz form x̂ip̂i+p̂ix̂i, and terms linear in momentum

pi. As such, it is not clear how to diagonalise it to obtain the eigenstates |χj⟩, despite the fact

that it is quadratic in position and momentum operators.

In contrast to the invariant I, the Hamiltonian of the isotropic harmonic oscillator

1

2
XTX =

d∑

i=1

x̂2i + p̂2i
2

, (7.10)

being a sum of d independent one-dimensional harmonic oscillators, has a well-known basis

[174] in terms of Fock states,

1

2
XTX |n1, ..., nd⟩ =

(

n1 + ...+ nd +
d

2

)

|n1, ..., nd⟩ . (7.11)

There exists a way to relate the invariant I to the Hamiltonian of the isotropic harmonic

oscillator 1
2
XTX that allows for the determination of the eigenstates |χj⟩ of the invariant I in

terms of those of the isotropic harmonic oscillator.
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Concretely, there exists a unitary operator T such that

TIT † =
1

2
XTX. (7.12)

The unitary transformation in Eq. (7.12) defined using the unitary operator T has the effect of

removing terms of Lorentz form such as x̂ip̂i + p̂ix̂i and terms linear in momentum pi from the

invariant I to yield the isotropic harmonic oscillator 1
2
XTX. As the eigenstates of the isotropic

harmonic oscillator are given in Eq. (7.11), it is possible to obtain the eigenstates |χj⟩ of the

invariant I also by means of a unitary transformation.

Operating on both sides of Eq. (7.11) with the operator T † gives

1

2
T †XTX |n1, ..., nd⟩ =

(

n1 + ...+ nd +
d

2

)

T † |n1, ..., nd⟩ , (7.13)

while operating on both sides of Eq. (7.12) with the operator T † yields

IT † =
1

2
T †XTX. (7.14)

Substituting for the term 1
2
T †XTX in Eq. (7.13) using Eq. (7.14) gives

IT † |n1, ..., nd⟩ =
(

n1 + ...+ nd +
d

2

)

T † |n1, ..., nd⟩ , (7.15)

which is to say that the eigenstates |χj⟩ of the invariant I are given precisely by the expression

T † |n1, ..., nd⟩.

7.5 Proof of validity of the unitary transformation

In this section, I will present the form of the unitary operator T , and prove that it satisfies

Eq. (7.12).
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The unitary operator T is given by

T = U3U2U1, (7.16)

where

U3 = exp





i

2
X̂T






0 log R√
m

log R√
m

0




 X̂




, (7.17)

U2 = exp

(

− im
4
⃗̂xT (R−2J +R−1Ṙ +R−2ṘR)⃗̂x

)

, (7.18)

and

U1 = exp
(

iL⃗ · ⃗̂p− im
˙⃗
L · ⃗̂x

)

. (7.19)

In order to show that the unitary operator T satisfies Eq. (7.12), it is necessary to evaluate the

quantity TIT † that appears on the left hand side of Eq. (7.12).

This quantity reads, in terms of the Ui,

TIT † = U3U2U1IU †
1U

†
2U

†
3 . (7.20)

The right hand side of Eq. (7.20) may be evaluated more easily by introducing additional

quantities. Defining

I1 = U1IU †
1 , (7.21)

I2 = U2I1U
†
2 , (7.22)

I3 = U3I2U
†
3 , (7.23)

one obtains that TIT † = I3. In order to show that Eq. (7.12) is satisfied, it is necessary to

show that

I3 =
1

2
XTX. (7.24)
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7.5.1 Matrix lemmas

In order to show that Eq. (7.12) is satisfied, some useful lemmas must be first introduced.

The identities

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ..., (7.25)

eABeA = B + {A,B}+ 1

2!
{A, {A,B}}+ ..., (7.26)

hold [175], which may be shown by performing series expansions of the exponentials that appear

in the left hand sides of Eqs. (7.25) and (7.26) and comparing the results with the right hand

sides of Eqs. (7.25) and (7.26).

In the case that the operators A and B are quadratic forms in X, Eq. (7.25) may be reduced

to a useful form in terms of an infinite sum. One obtains

e−
i
2
XTCXXTDXe

i
2
XTCX = XT

( ∞∑

n=0

Mn

n!

)

X, (7.27)

where the matrices Mn are defined inductively as

M0 = D, (7.28)

Mn = CSMn−1 −Mn−1SC. (7.29)

7.5.2 Computation of the transformed invariant I1

I start by using the form of the invariant given in Eq. (3.58),

I =
1

2
(X − Z⃗)TΓ(X − Z⃗). (7.30)

In order to bring the invariant to the form of an isotropic harmonic oscillator, in accordance

with Eq. (7.12), the linear and scalar terms in I must certainly be removed. This can be done

using a displacement operator.
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The operator U1 takes the form

U1 = exp
(

iQ · X̂
)

. (7.31)

By choosing the vector Q appropriately, it is possible to ensure that the transformed invariant

I1 = U1IU †
1 has no scalar or linear terms.

In order to compute the transformed invariant I1, it is simplest to compute the effect of the

unitary operator U1 on the phase space operator X̂. This can be done by applying Eq. (7.25),

with A = iQ · X̂ and B = X̂ to give that

U1X̂U
†
1 = X̂ + SQ, (7.32)

as all higher order terms in the expansion given in Eq. (7.25) vanish.

The transformed invariant I1 may now be computed to get

I1 =
1

2
(X − Z⃗ + SQ)TΓ(X − Z⃗ + SQ). (7.33)

It may be seen directly that if Z⃗ = SQ, then I1 will contain no linear or scalar terms as desired.

Rearranging gives that Q = −SZ⃗, which is to say that

Q =






−m ˙⃗
L

L⃗




 , (7.34)

giving finally that

U1 = exp
(

iL⃗ · p̂− im
˙⃗
L · x̂

)

, (7.35)

which is of the form given in Eq. (7.19) as required. One now obtains for the transformed

invariant I1

I1 =
1

2
XTΓX. (7.36)

Eq. (7.36) gives that I1 contains no linear or scalar terms as desired.
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7.5.3 Computation of the transformed invariant I2

Although the linear and scalar terms have been removed, the transformed operator I1 given in

Eq. (7.36) still contains terms of Lorentz type proportional to x̂ip̂i+ p̂ix̂i. In this section, I will

derive an expression for the unitary transformation U2 that ensures that these are removed in

the transformed operator I2 = U2I1U2†.

Concretely, the goal is to take the transformed invariant I1 to a new transformed invariant I2

I2 = U2I1U
†
2 =

1

2
X̂Γ′X̂ (7.37)

where Γ′ is in block diagonal form,

Γ′ =






• 0

0 •




 . (7.38)

This block diagonal form ensures that the transformed invariant I2 possesses no terms of Lorentz

type x̂ip̂i + p̂ix̂i.

In order to affect such a transformation, the unitary matrix U2 must take the form of a squeezing

operator, which is quadratic in position and momentum operators. I write down the ansatz for

the unitary matrix U2

U2 = exp
(
iXTAX

)
, (7.39)

where the matrix A is a Hermitian matrix. The transformed invariant I2 = U2I1U
†
2 may be

computed by applying the matrix lemma in Eq. (7.27). However, a source of great difficulty

results from the fact that the series in Eq. (7.27), given in terms of the series Mn, is infinite in

general, making it difficult to calculate a closed form expression for I2.

This may be dealt with by considering a restricted form for U2 that will ensure that the series
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eventually terminates. I make the choice

U2 = exp




− i

2
X̂T






G 0

0 0




X






= exp

(

− i

2
x̂TGx̂

)

, (7.40)

where G is a d by d square real symmetric matrix.

The transformed invariant I2 may be calculated using Eq. (7.27). Setting

C =






G 0

0 0




 , (7.41)

and

D = Γ, (7.42)

in Eq. (7.27), one gets that

I2 =
1

2
X̂T

∞∑

n=0

Mn

n!
X̂, (7.43)

where

M0 =






m
(

Ṙ2 + Re
(

[Ṙ, R]A −RA2R
))

J−{R,Ṙ}
2

−J−{R,Ṙ}
2

R2

m




 , (7.44)

M1 =






[J ,G]−{G,{R,Ṙ}}
2

GR2

m

R2G
m

0




 , (7.45)

M2 =






2GR2G
m

0

0 0




 , (7.46)

M3 = 0. (7.47)

Since the matrix M3 vanishes, it follows that all other Mi for i > 3 vanish as a result of

the recurrence relation given in Eq. (7.29). As a result, the infinite sum given in Eq. (7.43)

terminates. The transformed invariant I2 may be obtained by evaluating the sum in Eq. (7.43)
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to obtain

I2 =
1

2
X̂T






m
(

Ṙ2 + Re
(

[Ṙ, R]A −RA2R
))

+ [J ,G]−{G,{R,Ṙ}}
2

+ GR2G
m

J−{R,Ṙ}
2

+ GR2

m

−J−{R,Ṙ}
2

+ R2G
m

R2

m




 X̂.

(7.48)

The goal is to ensure that I2 possesses no terms of Lorentz type. As may be seen by inspection

of Eq. (7.48), this is obtained if

G =
mR−2

2

(

J + {R, Ṙ}
)

=
m

2

(

R−2J +R−1Ṙ +R−2ṘR
)

. (7.49)

One concern is that it is required that the matrix G be real symmetric. Yet it is not clear that

the right hand side of Eq. (7.49) defines a real symmetric matrix.

Taking Eq. (7.49) to define the matrix G, it follows that

G−GT =
m

2

(

{R−2,J }+ [R−1, Ṙ] + [R−2, R]Ṙ

)

. (7.50)

However, it may be seen readily by substituting Eq. (3.25) that the right hand side of Eq. (7.50)

vanishes. It follows that G is a real symmetric matrix as required, and so it defines a valid

choice of U2 through Eq. (7.40).

Eq. (7.40) yields, after substituting for the matrix G using Eq. (7.50),

U2 = exp

(

− im
4
x̂T
(

R−2J +R−1Ṙ +R−2ṘR
)

x̂

)

, (7.51)

which is the desired expression for the unitary operator U2 given in Eq. (7.18).

Although this choice of unitary operator U2 guarantees that the transformed invariant I2 given

in Eq. (7.48) possesses no terms of Lorentz type, it remains to determine what the transformed

invariant I2 actually is. As the matrix G is specified in Eq. (7.49), the transformed invariant

I2 can be determined by substituting for the matrix G in Eq. (7.48). One eventually obtains,
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after much simplification, that

Γ′ =






mR−2 0

0 R2

m




 , (7.52)

and so

I2 =
1

2
X̂






mR−2 0

0 R2

m




 X̂. (7.53)

7.5.4 Computation of the transformed invariant I3

The transformed invariant I2, given in Eq. (7.53) contains no terms of Lorentz type as desired.

By introducing an additional squeezing transformation determined by the unitary operator

U3, it is possible to ensure that the transformed invariant I3 takes the form of the isotropic

harmonic oscillator 1
2
X̂T X̂.

Choosing the matrix in Eq. (7.40) to have non-zero support in the upper left block led to the

elimination of terms of Lorentz type in I2. Since these terms have already been eliminated, it

makes little sense to choose a similar functional form for the unitary operator U3. I instead

choose the form

U3 = exp




− i

2
X̂T






0 H

H 0




 X̂




, (7.54)

where H is a real symmetric matrix of size d. Choosing the matrix H appropriately will achieve

the desired transformation that I3 =
1
2
X̂T X̂.

The transformed invariant I3 may be calculated by applying the matrix lemma in Eq. (7.27).

One sets

C =






0 H

H 0




 , (7.55)

and

D =






mR−2 0

0 R2

m




 . (7.56)

The stem of the lemma in Eq. (7.27) may be applied to obtain the Mi. One may calculate the
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first few to obtain

M1 =






−{H,mR−2} 0

0 {H, R2

m
}




 (7.57)

M2 =






{H, {H,mR−2}} 0

0 {H, {H, R2

m
}}




 (7.58)

M3 =






−{H, {H, {H,mR−2}}} 0

0 {H, {H, {H, R2

m
}}}




 (7.59)

and so on.

Inspection of M1, M2 and M3 suggests a general form for the Mi in terms of nested anticom-

mutators. Indeed, it is straightforward to prove inductively that

Mi =









{−H, {−H, . . . , {−H
︸ ︷︷ ︸

i times

,mR−2} . . .}} 0

0 {H, {H, . . . , {H
︸ ︷︷ ︸

i times

, R
2

m
} . . .}}









. (7.60)

In order to compute the transformed invariant I3, the sum
∑∞

n=0
Mn

n!
must be formed in accor-

dance with Eq. (7.27). One obtains that

∞∑

n=0

Mn

n!
=






mR−2 − {H,mR−2}+ 1
2
{H, {H,mR−2}}+ . . . 0

0 R2

m
+ {H, R2

m
}+ 1

2
{H, {H, R2

m
}}+ . . .




 .

(7.61)

Although Eq. (7.61) can be used to evaluate the transformed invariant I3, it is given in terms

of an infinite series. In particular, it is not clear how to choose the matrix H in such a

way that ensures that the transformed invariant I3 is of the form of an isotropic harmonic

oscillator. However, one can obtain a closed form for these infinite series to yield a more

tractable expression. The infinite series take the form of those appearing on the right hand

side of the matrix lemma given in Eq. (7.26). By equating them with the left hand side of the
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lemma in Eq. (7.26), one obtains that

∞∑

n=0

Mn

n!
=






me−HR−2e−H 0

0 eH R2

m
eH




 , (7.62)

giving finally that

I3 =
1

2
X̂T






me−HR−2e−H 0

0 eH R2

m
eH




 X̂. (7.63)

By choosing the matrix D appropriately, one can ensure that I3 =
1
2
X̂T X̂. This is the case if

me−HR−2e−H = ✶, (7.64)

and

eH
R2

m
eH = ✶. (7.65)

Both conditions are met if

e2H = mR−2. (7.66)

Taking the principal matrix logarithm and dividing by two gives that

H =
1

2
logmR−2 = − log

R√
m
. (7.67)

Taking Eq. (7.67) to define H, one gets finally that

U3 = exp





i

2
X̂T






0 log R√
m

log R√
m

0




 X̂




, (7.68)

and

I3 =
1

2
X̂T X̂, (7.69)

which completes the proof of Eq. (7.12).

It follows that the eigenstates of the invariant I are given by the expression T † |n1, ..., nd⟩,
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as discussed in Sec. 7.4. As the eigenstates have now been determined, the time-dependent

perturbation theory outlined in Sec. 7.3 may be implemented.

7.6 Outlook

In this section, I will outline some future technical directions that must be pursued in order for

the perturbation theory approach outlined in Sec. 7.3 to be implemented, and future potential

applications.

The determination of the eigenstates of the invariant I given so far is only a first step in the

implementation of the perturbation theory outlined in Sec. 7.3. There exists a subtlety in that

the eigenstates T † |n1, n2, ..., nd⟩ of the invariant I do not necessarily satisfy the Schrödinger

equation. The results of Sec. 2.5.1.2 show only that the eigenstates of the invariant I may

be chosen in such a way that they satisfy the Schrödinger equation, with attention paid in

particular to the determination of the correct phases of the eigenstates. The eigenbasis of the

invariant in which the Schrödinger equation is solved must hence be determined in accordance

with the technique outlined in Sec. 2.5.1.2, using the eigenbasis T † |n1, n2, ..., nd⟩ of the invariant

I as a starting point.

If the numerical use of time-dependent perturbation theory is to be of practical use, then one

must evaluate the computational requirements with respect to some experimental problem,

which would likely be an in-depth investigation itself. One is encouraged, however, by the

fact that in one spatial dimension, similar numerical methods have proven orders of magnitude

more robust and efficient than the alternatives [136]. It is also plausible that the results of this

chapter, pertaining as they do to systems that are approximately harmonic, have applicability

outside of the realm of quantum control of trapped ions. In particular, such nearly harmonic

potentials are found in the field of intramolecular dynamics, in which electronic wavepackets

move in potentials that, as in the case of trapped ion dynamics, often vary on length scales

much larger than those of the electronic wavepackets. The results of this chapter could be used

to simulate dynamics beyond the Gaussian approximation in complicated molecules that are
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not limited to a linear structure, as in the one-dimensional case [136].



Chapter 8

Conclusion

In this thesis, I derived and presented work relating to invariant-based inverse engineering of

quantum systems, applied principally to the control of motional states of trapped ions, in a

number of contexts. I will present here some of the implications of this work, outlining in

particular future lines of research and potential experimental implementations of the results

presented in this thesis.

In Ch. 2, the notions of quantum invariants and invariant-based inverse engineering were intro-

duced, as well as a review of the field of ion shuttling and separation.

In Ch. 3, I derived a quantum invariant corresponding to a Hamiltonian that controls the

dynamics of a trapped ion in any number of spatial dimensions. To the best of my knowledge,

this is the first quantum invariant to be derived that corresponds to a physical system in any

number of spatial dimensions, and as such represents a significant addition to the library of

quantum invariants. From a theoretical point of view, this opens up a new field of investigation

into the possibility of deriving other invariants that correspond to physical systems that exist

in more than one spatial dimension. A procedure to inverse engineer Hamiltonians using this

invariant was presented in this chapter, which shows that the invariant presented in this chapter

is not only of theoretical interest, but a useful addition to the toolkit of invariant-based inverse

engineering that promises to be of use in designing experimental procedures to control the

motion of single trapped ions in more than one spatial dimension.
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In Ch. 4, I demonstrated the ability of the invariant derived in Ch. 3 to carry out shuttling

of trapped ions within a X-junction trap. The resulting dynamics contain many interesting

features, and show that inverse engineering Hamiltonians using the invariant of Ch. 3 leads

to dynamics which are non-trivial from a theoretical point of view and carry out a physically

relevant task in quantum control. The successful numerical demonstration of ion shuttling

raises the possibility of experimental implementation in a X-junction trap. This is the subject

of an active collaboration with the University of Sussex, which hopefully should deliver fruitful

results in the near future. A realisation of fast ground-state to ground-state ion shuttling in

a X-junction trap would be an experimental first, in which the invariant of Ch. 3 promises to

play a key role.

In Ch. 5, I tackled the problem of generalising the invariant derived in Ch. 3 to control more than

one ion. Although much progress was made in deriving an invariant corresponding to more than

one ion, there remain several unanswered theoretical questions relating to the invariant which

may form a productive line of enquiry in the future. An open question is whether the quadratic

parts of the trapping potential Mi obtained via inverse engineering are all real and symmetric,

which must certainly be settled in the affirmative if invariant-based inverse engineering is to

succeed. It is also not yet clear how to ensure that the invariant and Hamiltonian commute

at final time. If these problems are settled successfully, then it may be possible to carry out

inverse engineering of more than one ion. Since this would allow one to carry out shuttling of

more than one ion at a time, as well as ion separation and ion crystal rotation, there exists the

possibility of one day carrying out all of these tasks within a single coherent picture, which is

an exciting prospect both theoretically and experimentally.

In Ch. 6, I demonstrated how one can use the invariant derived in Ch. 5 to carry out separation

of trapped ions in a T-junction trap. Despite the limitations of using this invariant for quantum

control, transfer fidelities of above 96% were observed in all cases, showing that the degeneracy

of the invariant does not pose a problem in practice when separating trapped ions. This

numerical demonstration also raises the possibility of separating trapped ions using invariant-

based inverse engineering in experiment.
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In Ch. 7, I addressed the problem of working with noise and anharmonic potentials, which

are typically encountered in experimental conditions. I proposed a variant of time-dependent

perturbation theory that is tightly integrated with the quantum invariant proposed in Ch. 3,

that allows one to deal with these phenomena in a general manner numerically. I derived an

expression for the eigenstates of the invariant by means of a unitary transformation that relates

the invariant to the Hamiltonian of the isotropic harmonic oscillator. There remain theoretical

issues to be resolved, but it seems likely that the techniques proposed in Ch. 7 will in fact

permit the use of time-dependent perturbation theory to investigate noise and anharmonicities.

Although similar techniques have been used to investigate dynamics beyond the harmonic

approximation before [136], they are generally limited to one spatial dimension. The use of

a quantum invariant here to facilitate time-dependent perturbation theory is to the best of

my knowledge a novel application of quantum invariants, that may lead to investigations of

dynamics beyond the harmonic approximation in multidimensional systems. This may be of

use in studying the dynamics not only of trapped ions but also of electronic wavepackets in

complicated molecules.

Finally, it is to be remembered that the field of trapped ion quantum computing continues

to demonstrate significant experimental advances and remains one of the premier platforms

for the implementation of a scalable quantum computer. The use of invariant-based inverse

engineering, still in its relative infancy, promises to facilitate many important tasks that must

be carried out in the construction of such a device. It is to be hoped that future progress in

invariant-based engineering drives forward the capabilities of trapped ion quantum processing,

pushing forward experimental frontiers to new heights that until recently lay in the domain of

pure theoretical speculation.



Appendix A

Numerical methods

This thesis contains not only theoretical results, but numerical investigations that demonstrate

how one may employ the theory usefully in experiment. In this section I will detail how such

investigations were carried out.

Most of the numerical work done during my studies, and all of the work presented here, was

developed in Common Lisp [176]. I made use of a large number of open source libraries for tasks

such as linear algebra [177], numerical integration [178] and array manipulation [179]. In order

to carry out the invariant inversion outlined in Chs. 4 and 6, I developed a computer algebra

system in order to perform the necessary manipulation of matrix and vector-valued functions

and their time derivatives. The graphs presented in this thesis were all generated using gnuplot

[180], an open-source plotting library. Integration of systems of ODEs was performed with the

Runge-Kutta family of numerical integrators.

The numerics and graphics presented here were produced on my personal computer, though at

times during my studies I made use of the Imperial HPC facility [181].

Mathematica was used to carry out some of the algebraic manipulations in Sec. 3.4.2.
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