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measurements), and events for which geographical location and time are recorded. We

develop effective approaches for modelling spatial data in an interpretable manner, thus

making it suitable for application domains where the transparency of a model is a desired

property. We demonstrate the developed approaches with empirical simulation studies.
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Chapter 1

Introduction

Data collection for many phenomena studied in science and engineering involves recording

spatial information for the purposes of providing more context for the rest of the collected

data. Examples of such processes include recording census data, mapping crime locations

in a city, measuring properties of a material at specified locations, and collecting sensor

measurements for air equality monitoring. Data with spatial information is not a new

concept (Krige 1951, Ripley 1977, Cressie 1993), but the increasing availability of this

kind of data calls for effective techniques to leverage its full potential (Gelfand 2010,

Girolami 2020). Despite advances in making these measurements more available, the

collected spatial data is still ‘sparse’: census takes place only once every 10 years; data

with sensitive information must be aggregated to protect anonymity; for many social

phenomena there are no repeated measurements; deploying numerous sensors can be

costly; in domains where the object of interest is continuous such as physical materials, we

can take measurements only in a finite number of locations. For these reasons, we require

careful methodology to build effective spatial models. This thesis aims to contribute to

the methodology of modelling spatial data with strong emphasis on interpretability of the

resulting models, motivated by application domains such as criminology and materials

science, where interpretability is desired.

In Section 1.1, we introduce the main tenets of spatial models, different forms of spa-

tial data, and the approaches to model them in an interpretable manner. Section 1.2

summarises the contributions made in my doctoral research. The rest of the thesis is

structured as follows. In Chapter 2, we give an overview of statistical inference and give

14



Introduction 15

details of the methods used in this thesis. Chapters 4 and 6 include two original contri-

butions, while Chapters 3 and 5 provide prerequisite background for Chapters 4 and 6,

respectively. Chapter 7 concludes the thesis.

1.1 Spatial Models

Spatial information provides context for collected data. Using this information effec-

tively can improve modelling of phenomena occurring over a spatial domain. Below, we

discuss two important aspects of the spatial context – spatial dependence and spatial

heterogeneity. Subsequently, we discuss relevant modelling approaches.

1.1.1 Spatial Dependence and Spatial Heterogeneity

The overarching principle for building spatial models is the first law of geography: “ev-

erything is related to everything else, but near things are more related than distant

things” (Tobler 1970). This principle of spatial dependence manifests itself in different

ways. The most common way is through clustering as a result of most phenomena not

occurring with complete spatial randomness (Gelfand 2010). An example of this is in-

creased intensity of crime at a neighbourhood of a city due to socio-economic factors.

Spatial dependence can also be a result of interaction between events – an event trigger-

ing subsequent events. Similarly, in physical systems, the physical properties of systems

often behave continuously – they do not change rapidly from one location to the next.

For example, atomic structure of a material imposes spatial dependence of the properties

of the material.

Another important aspect of spatial data that needs to be carefully considered is het-

erogeneity. This encompasses accounting for systematic differences across space without

relying on spatial dependence. Generally, we expect to see different regimes in differ-

ent parts of the modelling domain, especially if the domain is large, but there are also

phenomena where the regime change is sudden and non-smooth. For example, natural

boundaries such as rivers may produce two neighbourhoods that have distinctly differ-

ent social composition (Piquero & Weisburd 2010) or a crack in a material can create

discontinuities in the properties of the material.
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As part of the modelling approach, interpretability and uncertainty quantification are

key tenets of the methodology we develop in this thesis. We emphasise the importance

of positing models with interpretable data-generating processes which are driven by the

domain knowledge, and of quantifying uncertainty of the inferences being made.

1.1.2 Modelling

In many contexts, the typical modelling assumptions such as independence no longer

hold, and the methodology needs to account for that. The measurements of spatial

phenomena we would like to model, or use as part of the model, come in different forms

and this determines the choice of methodology. We consider three types of spatial data:

point patterns, sensor measurements, and aggregated areal data.

1. Point patterns. This form of data records the location, and potentially the time,

of an event that has occurred, for example, a crime occurrence for which the loca-

tion and the time is recorded. These measurements are a realisation of a spatial

point process (Daley & Vere-Jones 2003). A common objective of modelling point

processes is inferring the intensity of the events across the space or space-time.

Additionally, one may also be interested in understanding what factors, such as ex-

ogenous environmental indicators, are driving the variation in the intensity across

the space. One of the drivers could be interactions between the events themselves

– this class of models is called self-exciting point processes (Hawkes 1971).

2. Sensor measurements. The quantity of interest is measured by a set of sensors

at fixed locations. The measurements are often repeated. An example of sensor

measurements in a spatial context is monitoring air quality in a city through sensor

networks. In structural mechanics experiments, material properties are measured at

a pre-specified set of locations. Depending on the context, the modelling objectives

are either predicting a quantity of interest at locations where measurements are

not available (interpolation or extrapolation), or inferring a quantity of interest

of which we can take only indirect measurements. The latter class of problems is

called inverse problems.

3. Aggregated areal data: as is very common in social sciences, individual measure-

ments of the quantity of interest are aggregated into areal units. This is often done
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to ensure privacy and security of individual citizens. The field of spatial economet-

rics and social sciences relies heavily on this form of data (Anselin 2010). The data

measured at areal level are either the quantity of interest that we would like to

model, or they are an input to another spatial model. For example, one may want

to regress the unemployment rate on other socio-economic indicators. A popular

class of models of this kind is spatial linear regression analysis.

In this thesis, our primary focus will be modelling phenomena for which the data are

collected as the first two categories: point process realisations, and sensor measurements

of a physical system. If relevant, we will also leverage areal data as input to the models.

Next, we summarise relevant modelling approaches for both point patterns and sensor

measurements.

1.1.2.1 Point Patterns

A point process is a stochastic process for which an observation is a finite or countably

infinite set of points in the domain, D, on which the process is defined (Daley & Vere-

Jones 2003). We assume that observed data consists of spatial locations of events that

occur over a fixed period of time (spatial point pattern). In general, data may consist of

a set of events where both the location and the timestamp are recorded for each event

(spatio-temporal point pattern). An intuitive definition of a point process that extends

to spaces of higher dimensions is using a counting measure. For any given measurable

subset A of D, the counting measure counts the number of events (points) in the set A.

It is denoted by N(A) and it is a non-negative integer- (possibly ∞-) valued quantity.

Then, a point process is defined if the joint probability distributions are known for N(A)

for all finite disjoint subsets A (Daley & Vere-Jones 2003, ch. 1, ch. 5). In the spatial-

only case where D = R2, subsets A represent surface areas; in the spatio-temporal case,

subsets A refer to the space-time-discretised volumes.

By assuming independence of the number of events in the disjoint subsets of D and the

assumption that an event may occur at any point in (space-)time, N(A) for any subset

A follows Poisson distribution (Cox 1955, Ripley 1977, Diggle 1985, Gelfand 2010). The

resulting point process is then referred to as the Poisson process, where the intensity

function λ(·) is the object of interest. The intensity is either constant or varies across
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the domain – it is assumed that conditional on the intensity function, event locations /

times within a given subset A are i.i.d. with density proportional to the intensity function.

In real world, there are phenomena where this assumption is invalid – an earthquake

event causing aftershocks, a criminal event may spark a new vengeful crime event, or

an increase in activity on financial markets can be a catalyst for further events (Hawkes

1971, Ogata 1988, Laub et al. 2015). For these phenomena, the intensity also depends

on the past events, and as a result, the process is not Poisson process any more. In this

thesis, we do not consider such triggered events.

We may be interested in the intensity itself, or we may want to find out what factors or

drivers contribute to the intensity. In the former case, having a model of the intensity

can help us predict the intensity in parts of the domain with non-existent or limited

observations. In the latter case, determining factors that contribute to the variations in

the intensity are of interest for modellers and decision makers. From the macroscopic

point of view, they may be interested in the effect of an explanatory variable on the

intensity of specific event types, such as crime. On the microscopic level, they may be

interested in the interactions between the individual events themselves and how that

contributes to the overall intensity.

The choice of the form of the intensity function determines how spatial dependence and

spatial heterogeneity are accounted for in the model. In line with interpretability as one

of the tenets of this work, the specification for the intensity function will be motivated

by the application domain. Throughout Chapter 4, we will work with point patterns of

criminal offences. The objective will be to model the intensity of burglary occurrences

and quantifying the effect that different socio-economic indicators have on the intensity.

Even though this kind of models cannot prevent individual occurrences of crime, we can

learn what potential drivers of certain behaviours are and use it for operational insights

and policy changes (Felson & Clarke 1998, Taddy 2010, Mohler et al. 2011, Aldor-Noiman

et al. 2016, Flaxman et al. 2019, PredPol 2019).

1.1.2.2 Sensor Measurements of Physical Systems

Another approach to modelling spatial dependence and heterogeneity is through par-

tial differential equations (PDEs) which provide a mechanistic and interpretable way of

specifying the relationship between different quantities. The partial derivatives encode



Introduction 19

how a quantity changes as we move through the domain D, which can be specified as

spatial-only or spatio-temporal.

Let x ∈ D, f(·) and κ(·) be suitable functions (full details provided in Chapter 5) and

let L be an operator involving partial derivatives, parametrised by κ(·), and acting on a

function u(·). Then a general form for the modelled systems we consider here is

L(κ(·))u(x) = f(x), (1.1)

with given boundary and/or initial conditions. Solving (1.1) means finding u(·). The

operator L, characterised by κ(·), encodes how the solution u(·) and f(·) are related.

In a spatial-only context, where D ⊂ R2, one could for example model u(x) as the

solution of the following elliptic PDE:

∇ · (exp(κ(x))∇u(x)) = f(x), (1.2)

where ∇ = [∂/∂x1, ∂/∂x2]
⊤, and the divergence operator ∇ · ([v1, v2]⊤) = ∂v1/∂x1 +

∂v2/∂x2. Informally, this particular form of L measures how much the average value of

u over the neighbourhood of x deviates from the value of u at x. If we assume that

exp(κ(x)) = 1, the operator L is the Laplacian operator. By choosing f(x) and allowing

exp(κ(x)) to change over the domain D, we can control the spatial dependence of u(x)

as well as model different regimes in different parts of the domain, thus enabling incor-

poration of both spatial dependence and spatial heterogeneity. Concrete applications of

systems modelled by PDEs of this form include electrostatics (Jackson 1999), steady-

state flow of groundwater through an aquifer (Wang & Anderson 2014), and elasticity

equations (Bauchau & Craig 2009). More recently, PDEs of this form have proven to be

an effective way of scaling models in spatial statistics (Lindgren et al. 2011, Lindgren &

Rue 2015).

We focus on problems where we observe a noisy version of the solution u(x) at a specified

number of locations, and we assume that for a given κ(x), the dynamics of u(x) are

controlled by an elliptic PDE of the form given in (1.1). For the observations of u, our

objective will be to infer the properties of the unknown parameter κ. This problem is

termed the inverse problem (Tarantola 2005, Kaipio & Somersalo 2005, Stuart 2010).

Once the unknown parameter is inferred, the model can be used to perform simulations
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of the studied system under different scenarios, such as how different choices of f affect

the solution u. The ability to infer system properties and then use it for simulations

under different scenarios has been an indispensable tool in building the so-called digital

twins (Grieves 2015, Jones et al. 2020).

1.2 Contributions

The thesis is concerned with advancing methodology for modelling spatially correlated

phenomena in an interpretable manner and with focus on uncertainty quantification. We

make two contributions to this area.

1.2.1 Spatial Poisson Mixture for Modelling Point Patterns

Analysis of the intensity of point patterns is a central task in spatial statistics. Building

a model of the intensity as well as understanding what possible factors contribute to

its variation are the two main objectives. To make models practically useful, especially

on large spatial domains, both spatial dependence and spatial heterogeneity need to be

accounted for. This poses several challenges to estimation and simulation of these models.

Most notably, computational scalability. We propose a spatial extension to mixtures of

generalised linear models to model crime events. The mixture formulation allows for

incorporating spatial heterogeneity, while spatial dependence is imposed through the

mixture allocation component. The main contributions include:

• We discretise the domain of interest into a grid of cells and develop a Bayesian

model for the counts of points in cells using a mixture of Poisson regressions where

mixture membership allocation is modelled in a probabilistic manner.

• We leverage findings from criminology literature to shortlist socio-economic vari-

ables that are relevant to criminal activity and estimate their effect on the intensity

of the observed point pattern.

• Compared to the go-to model of spatial point patterns (log-Gaussian Cox pro-

cess), our proposed model achieves superior predictive performance, is more com-

putationally scalable, and the mixture components can be interpreted to provide

criminological insights.
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The core of this contribution is presented in Chapter 4, with necessary technical back-

ground discussed in Chapters 2 and 3. This work has been published as Povala et al.

(2020) and the code that replicates the analysis is available for public use.

1.2.2 Assimilation of Sensor Measurements into PDEs Using Varia-

tional Bayes

Partial differential equations provide a mechanistic way for incorporating spatial depen-

dence and spatial heterogeneity into models. The inverse problems involving PDEs are

of great importance in science and engineering. Although such problems are generally

ill-posed, regularisation is used to ameliorate this problem. One of the viewpoints in

which to view regularised solutions is the Bayesian formulation, where a prior proba-

bility measure is placed on the quantity of interest. The resulting posterior probability

measure is usually analytically intractable. The Markov Chain Monte Carlo (MCMC)

method has been the go-to method for sampling from those posterior measures. MCMC

is computationally infeasible for large-scale problems that arise in engineering practice.

Lately, variational Bayes (VB) has been recognised as a more computationally tractable

method for Bayesian inference, approximating a Bayesian posterior distribution with a

simpler trial distribution by solving an optimisation problem. We argue, through an

extensive empirical assessment, that Variational Bayes methods, when appropriately pa-

rameterised, are a preferable alternative to MCMC methods. The main contributions

include:

• We propose a variational Bayes parametrisation that leverages sparsity arising from

the discretisation of PDE models using finite elements.

• We assess the expected error in the mean, as well as the ability to quantify the

uncertainty of the estimate.

• Our results on examples of elliptic PDEs show that variational Bayes methods

provide a good estimate for the mean and variance of the posterior distribution in

a time that is an order of magnitude faster than MCMC methods.

The main part of this contribution is in Chapter 6. Prerequisite technical material can

be found in Chapters 2 and 5. This work has been published as Povala et al. (2022).



Chapter 2

Statistical Inference

This chapter provides an overview of the statistical inference methods we use in sub-

sequent chapters. After general introduction of statistical inference, we shift focus to

Bayesian inference methods and give detailed explanations of the schemes we employ in

the thesis.

2.1 Introduction

This introductory section closely follows Young & Smith (2005). Statistical inference

provides a framework where observational or experimental data are modelled as observed

values of random variables to allow for inductive conclusions to be drawn about the

mechanism giving rise to the data.

Given a vector of n possibly vector-valued observations y = (y1, . . . ,yn), we regard y as

the observed value of a random variable Y = (Y1, . . . ,Yn) with (unknown) probability

measure, often specified by a probability density, or probability mass function, f(y).

In parametric statistical inference, f(y) is of known analytic form, but involves a finite

number of real unknown parameters θ = (θ1, . . . , θp). We specify the region Θ ⊆ Rp

of possible values of θ, the parameter space. For a parametric model, we write f(y;θ).

Alternatively, the observed data, y, could be modelled non-parametrically.

The objective of statistical inference is to assess some aspect of θ, having observed

y, by considering a suitable family of distributions, F = {f(y;θ) : θ ∈ Θ}. Common

22
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types of inference include: point estimation, hypothesis testing, confidence set estimation,

prediction of a yet unobserved random variable, and examination of model specification

by F ,Θ.

There are two broad approaches to statistical inference: Bayesian and frequentist (Cox

2006). The differentiating property is the interpretation of probability, whereas common

to both approaches is the concept of likelihood. Likelihood measures the probability that

different values of the parameter θ assign to the actual observed data y. After observing

y, the likelihood function is given by

L(θ) ≡ L(θ;y) = f(y;θ), (2.1)

where f is a probability density function, or probability mass function if Y is a discrete

random variable.

In the frequentist approach, no further probabilistic assumptions are made. The pa-

rameter θ is treated as an unknown constant, and statistical inferences about θ must

be based on probabilities with direct experimental interpretation. Central to this ap-

proach is the repeated sampling principle: the inference drawn about θ from observing

y should be based on an analysis of how the conclusions change with variations in the

data samples which would be obtained through hypothetical repetitions, under the same

conditions of the experiment which generated data y (Young & Smith 2005). Through

the repeated sampling principle, we derive long-run behaviour to allow for sound conclu-

sions to be made from the particular instance of data under analysis, y. The challenge

here is ensuring the relevance of the derived long-run behaviour to the observed par-

ticular instance (Cox 2006). This approach was spearheaded by Ronald A. Fisher who

used the likelihood to develop the maximum likelihood estimate (MLE) methodology.

He provided a description of the optimum that is achievable in a given estimation prob-

lem. He derived the asymptotic standard error of the MLE estimate and has shown that

no other consistent and sufficiently regular estimator can do better (Fisher 1922, Efron

1998, Young & Smith 2005). A further fundamental element of Fisher’s viewpoint is

that inference about θ, to be as relevant as possible to the data y, must be carried out

conditional on everything that is known and uninformative about θ (Fisher 1934, Young

& Smith 2005). For example, conditioning on an ancillary statistic for θ.
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The appeal of the frequentist methodology lies in no a priori assumptions about the

parameter θ. Any inferences that we draw about θ are based on the observed data y.

This is in contrast with the Bayesian paradigm, where we treat the parameter θ as a

random variable itself and we place a prior probability distribution over θ before any

data analysis. For reasons which will become clear later on, we will adopt the Bayesian

approach to inference. We give a detailed review of the main ideas in the next sections.

2.2 Bayesian Methods

The Bayesian paradigm of statistical inference goes back to the ideas developed by Rev-

erend Thomas Bayes and P. S. Laplace (Bayes 1763, Laplace 1812). The fundamental

concept in this approach is that the unknown parameter θ should itself be treated as a

random variable, as opposed to a fixed value. In the frequentist approach, the model

expresses the natural randomness or uncertainty by treating data y as a sample from

random variables Y, whose law is parametrised by fixed parameter θ. This type of uncer-

tainty is referred to as aleatory uncertainty. Bayesian paradigm, in addition, advocates

for using random variables for uncertainty due to our lack of knowledge about a past or

present fact or number, which could be in principle known, but we do not have access

to it (van der Bles et al. 2019). This type of uncertainty is referred to as epistemic.

We specify the epistemic uncertainty about the unknown parameter θ before the data

analysis through a prior probability distribution which reflects our current knowledge (or

lack thereof) and it may be subjective. The subjectivity of the prior is the main source

of disagreement between the Bayesian approach and the frequentist one (Young & Smith

2005). The likelihood of the data is conditional on the random variable θ, and we denote

it as p(y mod θ.

To simplify notation in the subsequent sections, we often do not distinguish between θ

as a random variable, and θ as a particular realisation of that random variable. This

will be clear from the context.

Bayesian inference is the formalisation of how the prior probability distribution over an

unknown quantity changes into the posterior probability density in the light of evidence

from data y. This update of the probability distribution is expressed through Bayes’
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formula:

p(θ | y) = p(θ)p(y | θ)
p(y)

, (2.2)

where p(y | θ) is the conditional density of Y given θ (often referred to as the likelihood

function), and p(y) =
∫︁
Θ p(θ

′)p(y | θ′)dθ′ is the marginal likelihood. The specification

of p(y | θ) is often a straightforward task and agrees with the frequentist approach. It

expresses any discrepancy between the model and the data. Specification of p(θ) is more

controversial and different approaches have been proposed in the literature, as we discuss

below. Given that we employ the Bayesian framework in the subsequent chapters of this

thesis, we give a detailed exposition of the Bayesian methods and the associated issues.

2.2.1 Prior Distribution

Firstly, we give a summary of the main approaches for specifying the prior distribution

p(θ) as discussed in Young & Smith (2005):

(a) Physical reasoning priors – advocated for and used by Bayes, but too restrictive

for many practical situations.

(b) “Non-informative priors” – the view adopted by Jeffreys and Laplace (Laplace

1812, Jeffreys 1998) and a widely used method in practice. Following this proce-

dure may lead into improper priors, which cannot be normalised to form a proper

density. However, the resulting posterior is often a proper probability density. It

is important to note that all prior are informative.

(c) Subjective priors – an approach promoted by B. de Finetti, L.J. Savage, and D.V.

Lindley. According to their theory of subjective probability, each individual be-

haves in such a way as to maximise his/her expected utility according to his/her

own judgement of probabilities of different outcomes. It is used in applications

where subjective prior information, e.g., from an expert, may be important.

(d) Convenient priors – often chosen to simplify the calculations. For example, choosing

priors that form a conjugate pair with f(y;θ). In Example 2.1 below, we give an

illustrative example of the prior that forms a conjugate pair with the binomial

density. This choice makes p(θ | y) being available in closed form.
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Example 2.1 (Analytic posterior distribution). Let y be the number of times a coin

lands heads in a series of n independent coin tosses. We model the number of head

outcomes by the binomial probability distribution, with the probability of an individual

toss landing heads given by θ. We have Y ∼ Bin(n, θ) with known n and unknown θ.

Suppose that the prior density is Beta(a, b) on (0, 1),

p(θ) =
Γ(a+ b)θa−1(1− θ)b−1

Γ(a)Γ(b)
, 0 < θ < 1,

where a > 0, b > 0, and Γ(·) is the gamma function, Γ(t) =
∫︁∞
0 xt−1e−xdx. The density

for y is given by

f(y; θ) =

(︃
n

x

)︃
θy(1− θ)n−y. (2.3)

Applying (2.2), we obtain

p(θ | y) ∝ θa+x−1(1− θ)n−x+b−1,

which is proportional to the Beta density with parameters a + y and n − x + b, which

gives the posterior distribution.

The analytic tractability of the posterior in the example above is enabled by the con-

jugacy of the Beta density with the binomial density. Although there are several useful

examples of conjugate pairs (see Gelman et al. (2013) for more examples), most of the

time the posterior distribution is not analytically available, and we must resort to ap-

proximation methods which we discuss in Section 2.2.2.

2.2.1.1 Hierarchical Models

We can use the specification of the prior distribution to incorporate dependence struc-

ture into the model by making the components of θ related to one another, as opposed

to imposing that structure in the specification of f(y;θ). We add the dependence by

assuming that different components of θ are sampled from a common probability dis-

tribution with its own parameters of which we place another prior distribution, hence

‘hierarchical’. Apart from inducing a prior dependence structure in the components of

θ, hierarchical specification allows for deferring the specification of prior parameters to
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another stage: the prior parameter values are themselves given a prior distribution, often

an uninformative one.

2.2.2 Approximation Techniques

As mentioned above, most of the choices of f(y;θ) and p(θ) will not lead to a closed-form

expression for the posterior distribution. As a consequence, approximation methods need

to be used when making inferences about the posterior. We categorise approximation

techniques into two categories: 1) simulation-based and 2) those comibining direct nu-

merical integration with optimisation. In the following sections, we will give details of

only methods we use in subsequent chapters: Markov Chain Monte Carlo method as an

example of a simulation-based approximation scheme and variational Bayes, also known

as variational inference, as an example of an optimisation-based scheme.

2.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo method overcomes the analytical intractability of p(θ | y)
by drawing samples from approximate distributions and then correcting those draws to

better approximate the posterior. The output is a set of sequential draws (not i.i.d.),

{θt}Tt=1, such that the sequence forms a discrete-time Markov Chain whose stationary

distribution is p(θ | y). For the purposes of this section, we denote π(θ) ≡ p(θ | y), and

πu(θ) its unnormalised version, i.e., π(θ) ∝ πu(θ). The exposition below largely follows

Roberts & Rosenthal (2004). A discrete-time Markov Chain is a stochastic process

{θt ∈ Θ: t ∈ I}, with I ⊂ N and Θ ⊂ Rd that satisfies the Markov property,

P(θn ∈ A | θn−1, . . . ,θ1) = P(θn ∈ A | θn−1),

where A ∈ σ(Θ) and σ(Θ) is the Borel σ-algebra on Θ. In other words, the only relevant

distribution for the next state is the one at the current state. We emphasise again that

it is clear from the context whether θn refers to a random variable or its particular

instantiation.
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To ensure that π(·) is the stationary distribution of the chain on Θ, the evolution of the

chain must satisfy transition probabilities P (θi,dθj) for θi,θj ∈ Θ, such that

∫︂
θi∈Θ

π(θi)P (θi,dθj) = π(dθj),

i.e., the transition kernel P (θi, dθj) leaves π(·) invariant. A sufficient, but not necessary,

condition for this is the reversibility condition.

Definition 2.2 (Reversibility). A Markov chain on a state space Θ is reversible with

respect to a probability distribution π(·) on Θ, if

π(dθi)P (θi, dθj) = π(dθj)P (θj ,dθi), θi,θj ∈ Θ. (2.4)

To ascertain that a constructed Markov chain indeed converges to the required posterior

π(·), we define n-step transition law of the Markov chain,

Pn(θ0, A) = P(θn ∈ A | θ0) (2.5)

and the total variation distance between two probability measures ν1(·) and ν(·):

∥ν1(·)− ν2(·)∥TV = sup
A
|ν1(A)− ν2(A)|. (2.6)

Using these definitions, we formulate the asymptotic convergence in total variation-

distance as

lim
n→∞

∥Pn(θ, ·)− π(·)∥TV = 0, θ ∈ Θ. (2.7)

For this to hold, the following two conditions are sufficient:

1. φ-irreducibility : a chain is φ-irreducible if there exists a non-zero σ-finite measure

φ on Θ such that for all A ⊂ Θ with φ(A) > 0, and for all θ ∈ Θ, there exists a

positive integer n = n(θ, A) such that Pn(θ, A) > 0.

2. Aperiodicity : A Markov chain with stationary distribution π(·) is aperiodic if there

do not exist d ≥ 2 and disjoint subsets Θ1,Θ2, . . . ,Θd ⊂ Θ with P (θ,Θi+1) = 1

for all θ ∈ Θi(1 ≤ i ≤ d−1), and P (θ,Θ1) = 1 for all θ ∈ Θd, such that π(Θ1) > 0

(and hence π(Θi) > 0 for all i).
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These two properties lead to the following theorem.

Theorem 2.3. If a Markov chain on a state space with countably generated σ-algebra is

φ-irreducible and aperiodic, and has a stationary distribution π(·), then for π-a.e., and

any θ ∈ Θ,

lim
n→∞

∥Pn(θ, ·)− π(·)∥TV = 0 (2.8)

In particular, limn→∞ Pn(θ, A) = π(A) for all measurable A ⊂ Θ.

To assess the convergence rate of (2.8), geometric ergodicity, which is defined as follows,

gives the convergence rates of the Markov chain to the true distribution π(·).

Definition 2.4 (Geometric ergodicity).

∥Pn(θ, ·)− π(·)∥TV ≤M(θ)ρn, n = 1, 2, 3, . . . (2.9)

for some ρ < 1, where M(θ) <∞ for π-a.e., and θ ∈ Θ.

Note that this rate depends on the initial position x, where the stronger version, referred

to as uniform ergodicity, is independent of the initial state, but its assumptions are rarely

found to hold in practice (Roberts & Rosenthal 2004).

2.2.3.1 Metropolis-Hastings Algorithm

One of the most popular algorithms for constructing reversible Markov Chains which

have the required stationary probability distribution is the Metropolis-Hastings algo-

rithm (Metropolis et al. 1953, Hastings 1970). The algorithm defines the transition

probabilities P (θi, dθj) using a proposal distribution Q(θi, ·) with its own (possibly un-

normalised) density, i.e., Q(θi,dθj) ∝ q(θi,θj)dθj and the acceptance ratio α(θi,θj)

which is defined as

α(θi,θj) = min

[︃
1,
π(θj)q(θj ,θi)

π(θi)q(θi,θj)

]︃
. (2.10)

Given the current state θn, we generate a proposal θ∗
n+1 from Q(θn, ·). We flip a coin

whose probability of heads is α(θn,θ∗
n+1). If the coin lands heads, we accept the proposal

and set θn+1 = θ∗
n+1. The transition kernel is then given as

P (θi, dθj) = q(θi,θj)α(θi,θj)dθj . (2.11)
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To prove correctness, we need to show reversibility

π(dθi)P (θi,dθj) = π(dθj)P (θj , dθi). (2.12)

For θi ̸= θj (if θi = θj then the equation is trivial), we have

π(dθi)P (θi,dθj) = [c−1πu(θi)dθi][q(θi,θj)α(θi,θj)dθj ] (2.13)

= c−1πu(θi)q(θi,θj)min

[︃
1,
πu(θj)q(θj ,θi)

πu(θi)q(θi,θj)
dθidθj

]︃
(2.14)

= c−1min

[︃
πu(θi)q(θi,θj), πu(θj)q(θj ,θi)

]︃
dθidθj , (2.15)

which is symmetric in θi and θj , showing that (2.12) holds.

We conclude the discussion with the following remarks.

• Only the unnormalised posterior density, πu(·), is necessary as the normalising

constants cancel out in the acceptance ratio α.

• There is a trade-off between the acceptance rate and the distance between succes-

sive samples. Larger moves get rejected more frequently, but smaller moves lead

to higher autocorrelation of the Markov Chain.

• A number of Metropolis-Hastings steps can be applied in succession or at random,

and these do not need to update all variables at the same time so long as the result-

ing chain is ergodic with respect to the target distribution (Roberts & Rosenthal

2004)

2.2.3.2 Gibbs Sampler

For some problems, especially in higher dimensions, constructing an MH updating scheme

which jointly updates all components of θ is challenging as the proportion of accepted

samples would be low. It may be possible to split θ into non-overlapping groups of

random variables, each of which is updated separately. This is the main idea behind the

Gibbs sampler (Geman & Geman 1984).
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Gibbs sampler can be viewed as a special case of the MH transition kernel, in which only

a subset I of θ is updated at a time, whilst the remaining variables, θi ̸∈I , are held fixed:

q(θ,θ′) = q(θi∈I ,θ′
i∈I)δθi̸∈I

(θ′
i ̸∈I), (2.16)

where δθ0(θ) = δ(θ − θ0) is the Dirac delta function.

If one is able to draw from full conditionals, i.e., q(θi∈I ,θ′
i∈I) = π(θ′

i∈I | θi ̸∈I), the

acceptance ratio in (2.10) becomes

α(θ,θ′) =
π(θ′)q(θ′,θ)
π(θ)q(θ,θ′)

=
π(θ′)
π(θ)

q(θ′
i∈I ,θi∈I)δθi ̸∈I

(θ′
i ̸∈I)

q(θi∈I ,θ′
i∈I)δθ′

i ̸∈I
(θi ̸∈I)

=
π(θ′

i∈I | θ′
i ̸∈I)π(θ

′
i ̸∈I)

π(θi∈I | θi ̸∈I)π(θi ̸∈I)
q(θ′

i∈I ,θi∈I)
q(θi∈I ,θ′

i∈I)

=
π(θ′

i∈I | θ′
i ̸∈I)π(θ

′
i ̸∈I)

π(θi∈I | θi ̸∈I)π(θi ̸∈I)
π(θi∈I | θ′

i ̸∈I)

π(θ′
i∈I | θi ̸∈I)

= 1, (2.17)

implying that updates to variables with indices in I will always get accepted.

We conclude the discussion of Gibbs sampling with the following remarks.

• Although the proposals in Gibbs sampling are always accepted, the exploration of

the posterior distribution π(θ) may be slow due to strong correlations between the

groups of variables. Techniques such as rescaling or transformation of θ have been

shown to alleviate issues related to strong correlations (Gelman et al. 2013).

• Selecting the group of non-overlapping variables (each of which is a subset of θ) is

done either deterministically in a sequential manner (also known as deterministic-

scan Gibbs sampler) or one group is chosen at random for each iteration (often

referred to as random-scan Gibbs sampler) (Roberts & Rosenthal 2004).

• For scenarios where drawing directly from full conditionals is not available for

a group of variables, a Metropolis-Hastings update step can be used to propose

samples which are accepted as per the acceptance ratio in (2.10). This is known as

Metropolis-within-Gibbs scheme.
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2.2.3.3 Hamiltonian Monte Carlo

One of the most effective ways of exploring high-dimensional posterior distribution is to

leverage gradient information of the posterior into the proposal mechanism of an MCMC

scheme. Hamiltonian Monte Carlo (HMC), introduced into the statistics community

by Duane et al. (1987), is a MH variant where the proposals are made by comput-

ing a trajectory according to Hamiltonian dynamics, implemented with the leapfrog

method (Neal 2011). A new state proposed in this manner can be distant from the

current state of θ but nevertheless have a high probability of acceptance.

The core of the method lies in defining a Hamiltonian function H in terms of the prob-

ability distribution we wish to sample from, π(θ), and artificially introduced auxiliary

‘momentum’ variables, ϕ, which have density π(ϕ), and are often defined as independent

Gaussians. One momentum variable is added for every component of θ. The MCMC

updates are performed on the joint distribution of θ and ϕ, and the extra variables are

subsequently discarded. The joint distribution is given by

π(θ,ϕ) ∝ exp
(︁
−H(θ,ϕ)

)︁
, (2.18)

where

H(θ,ϕ) = U(θ) +K(ϕ), (2.19)

where U(θ) = − log π(θ) is called the potential energy, and K(ϕ) = − log π(ϕ) is called

the kinetic energy, which for the independent Gaussians reads as

K(ϕ)
const
= ϕ⊤M−1ϕ/2, (2.20)

with M , referred to as ‘mass matrix’, being diagonal.

The Hamiltonian dynamics describe how θ and ϕ change over time, t:

dθ

dt
=
∂H

∂ϕ
(2.21)

dϕ

dt
= −∂H

∂θ
, (2.22)
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which for the case of π(ϕ) being Gaussian density reads as

dθ

dt
= M−1ϕ (2.23)

dϕ

dt
=
∂ log π(θ)

∂θ
. (2.24)

For any time interval of size s, these equations define a mapping Ts, from the state at

any time t to the state at time t + s (note that H, and hence Ts are assumed to not

depend on t). Several properties of Hamiltonian dynamics are crucial to its use as an

update mechanism for MCMC which we discuss next.

Reversibility: The Hamiltonian dynamics can be reversed as the mapping Ts from

the state at time t, (θ(t),ϕ(t)) to the state at time t + s, (θ(t + s),ϕ(t + s)),

is one-to-one, and hence has an inverse T−s. If K(p) = K(−p), which is the

case for the independent Gaussians case, the inverse mapping can be obtained by

negating ϕ, applying Ts, and then negating ϕ again (Neal 2011). The reversibility

of Hamiltonian dynamics implies the reversibility of the corresponding Markov

chain, which is used to show that MCMC updates based on Hamiltonian dynamics

leave the target distribution invariant.

Conservation of Hamiltonian: The update dynamics conserve the Hamiltonian as

dH

dt
=

dθ

dt

∂H

∂θ
+
∂H

∂ϕ

dϕ

dt
=
∂H

∂ϕ

∂H

∂θ
− ∂H

∂ϕ

∂H

∂θ
= 0. (2.25)

If the Hamiltonian, H, is kept invariant, the acceptance probability for updates

based on Hamiltonian dynamics is one. In practice, H can only be approximately

invariant. We discuss this in the discretisation section below.

Volume preservation: The Hamiltonian dynamics preserve the volume in the (θ,ϕ)

space. As a consequence of Liouville’s theorem, applying the mapping Ts to the

points in some region R of the (θ,ϕ) space with boundary S, the image of R under

Ts will have the same volume:

d

dt

∫︂
R
dθdϕ =

∫︂
S

(︃
dθ

dt
,
dϕ

dt

)︃
· n̂dS =

∫︂
R
∇ ·
(︃
dθ

dt
,
dϕ

dt

)︃
dθdϕ = 0. (2.26)
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We used the fact that the flow in the (θ,ϕ) space is divergence free:

∇ ·
(︃
dθ

dt
,
dϕ

dt

)︃
=

∂2H

∂θ∂ϕ
− ∂2H

∂ϕ∂θ
= 0. (2.27)

As a consequence of volume preservation, which means that the determinant of

the Jacobian matrix of the mapping T· has absolute value one, we do not need to

account for any change in volume in the acceptance probability for the updates.

Discretising Hamiltonian dynamics: In practice, Hamiltonian dynamics are dis-

cretised using a leapfrog integrator scheme for a length of time ϵL, where ϵ is the step

size and L is the number of leapfrog step. A single leapfrog step is given as:

ϕ(t+ ϵ/2) = ϕ(t)− (ϵ/2)
∂

∂θ
U(θ(t)) (2.28)

θ(t+ ϵ) = θ(t) + ϵ
∂

∂ϕ
K(ϕ(t+ ϵ/2)) (2.29)

ϕ(t+ ϵ) = ϕ(t+ ϵ/2)− (ϵ/2)
∂

∂θ
U(θ(t+ ϵ)) (2.30)

The leapfrog integrator exactly preserves the volume as the equations above correspond

to shear transformations with the determinant of the Jacobian equal to one, and it is

also reversible. After running these updates for L steps and changing the sign of the

momentum variables, ϕ, the proposal, (θ′,ϕ′), is accepted with the Metropolis-Hastings

acceptance probability given by

α((θ,ϕ), (θ′,ϕ′)) = min

{︃
1, exp

(︁
H(θ,ϕ)−H(θ′,ϕ′)︁}︃. (2.31)

The full steps of the algorithm are given in Algorithm 1.

The performance of the algorithm can be tuned in three ways: (i) choice of the momentum

distribution p(ϕ), which in the version with independent Gaussians requires specifying

the mass matrix, M , (ii) adjusting the scaling factor of the leapfrog step, ϵ, and (iii)

the number of leapfrog steps, L. Gelman et al. (2013) suggest setting ϵ and L so that

ϵL = 1. They suggest tuning these so that the acceptance rate is about 65%. As for

the mass matrix, the authors suggest that it should approximately scale with the inverse

covariance matrix of the posterior distribution, (Cov(θ | y))−1. This can be achieved by

a pre-run from which the empirical covariance matrix can be computed.
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Algorithm 1: Hamiltonian Monte Carlo as presented in Gelman et al. (2013)
Input: πu(θ): unnormalised target density and its gradients , π(ϕ): momentum

density, L: leapfrog steps, ϵ: scaling factor
Output: A list of samples from π(θ).

1 for t← 1, 2, . . . do
2 Sample ϕ from p(ϕ)
3 θ∗ ← θt−1

4 for i← 1 to L do
5 ϕ← ϕ+ 1

2ϵ
∂ log πu(θ∗)

∂θ

6 θ∗ ← θ∗ + ϵ ∂∂ϕK(ϕ)

7 ϕ← ϕ+ 1
2ϵ
∂ log πu(θ∗)

∂θ

8 r ← πu(θ∗)π(ϕ∗)
πu(θt−1)π(ϕt−1)

9 θt ←
{︄
θ∗ with probability min(r, 1)

θt−1 otherwise
10 return [θ1,θ2, . . . ]

Recently, the no-U-turn sampler has been proposed as a way of determining L adap-

tively (Hoffman & Gelman 2014). Further efficiency gains can be achieved by incorpo-

rating the geometry of the posterior into the proposal (Girolami & Calderhead 2011).

2.2.3.4 Example

Example 2.5 (highly-correlated bivariate posterior). We show simulations for obtain-

ing samples from a target probability distribution that exhibits high correlations. We

compare three methods: Metropolis-Hastings MCMC, Gibbs sampler, and Hamiltonian

Monte Carlo. The distribution we wish to sample from is given by

⎡⎣θ1
θ2

⎤⎦ = N
(︄⎡⎣0

0

⎤⎦ ,
⎡⎣1 ρ

ρ 1

⎤⎦)︄ (2.32)

where we set ρ = 0.9. We show the sampling process for all three methods in Figure 2.1.

It is clear that HMC can explore the posterior most effectively, while the samples made

using MH and Gibbs show high autocorrelation. The MH proposals are based on a scaled

identity matrix, where the scaling parameter is tuned to achieve acceptance rate of 0.23.
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Figure 2.1: Comparison of the performance of MCMC algorithms for a strongly
correlated bivariate example (see Example 2.2.3.4). The true distribution is shown in

light blue in the plots on the left.
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2.2.3.5 MCMC Methods for Functions

The MCMC algorithms presented so far are defined for finite-dimensional θ. If one

is interested in inferring probability distribution of infinite-dimensional objects such as

functions, care needs to be taken as such distributions do not have probability den-

sity functions. Although one could discretise the problem at hand and proceed with

the derivation of an inference scheme on a finite-dimensional approximation, infinite-

dimensional MCMC schemes derive the inference procedure on infinite-dimensional ob-

jects directly on probability measures, as opposed to probability density functions. Such

methods are robust and scalable as the dimensions increases to infinity (Hairer et al.

2014).

For the purposes of Chapter 6, we consider the pre-conditioned Crank-Nicholson MCMC

scheme proposed by Cotter et al. (2013). The objective is to sample from the posterior

measure µy(θ) given a finite-dimensional observation y and a prior measure µ0. Note that

θ denotes a function in this section. We assume that a Gaussian prior measure is placed

on θ. The posterior measure is related to the prior measure through Radon-Nikodym

derivative.

The Markov Chain proposals are a combination of the current state and a sample from the

prior, weighted by the parameter β. The uniform value of β may lead to slow convergence

if the prior µ0(θ) is different from the posterior µy(θ). An example of this is when for

two different points in the domain, xi and xj , we have that Varµ0θ(xi)

Varµ0θ(xj)
̸= Varµy θ(xi)

Varµy θ(xj)
. To

alleviate such problems, Rudolf & Sprungk (2018) developed an extension which accounts

for the anisotropy in the covariance of the posterior or the local curvature of Φ(θ,y) when

MCMC proposals are made.

We summarise the procedure in Algorithm 2. For further details, we refer the reader

to Cotter et al. (2013).

2.2.4 Variational Bayes

Variational Bayes is an optimisation-based technique for inferring posterior distribution

p(θ | y). The true posterior is approximated by a variational distribution q(θ) which is

the minimiser of the discrepancy between a chosen variational family Dq and the true
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Algorithm 2: pre-conditioned Crank-Nicholson MCMC (Cotter et al. 2013)
Input: Φ(θ,y) = − log p(y | θ): negative likelihood of the data, µ0(θ): prior

measure, β: corresponds to the amount of innovation in the proposal. If the
value is small, there is little innovation and the proposed sample will be
close to the previous sample.

Output: A list of samples from µy(θ).
1 for t← 1, 2, . . . do
2 Sample ξ(t) ∼ µ0(θ)
3 v(t) ←

√︁
(1− β2)θ(t) + βξ(t)

4 θ(t+1) ←

⎧⎨⎩v(t) with probabilitymin

(︃
1, exp

(︁
Φ(θ(t);y)− Φ(v(t);y)

)︁)︃
θ(t) otherwise

5 return [θ(1), θ(2), . . . ]

posterior p(θ | y) (Jordan et al. 1999, Jordan & Wainwright 2007). A typical choice for

the measure of discrepancy between distributions is the Kullback-Leibler (KL) divergence

(which due to the lack of symmetry is not a metric). To find the approximate posterior

distribution we have:

q∗(θ) = argmin
q(θ)∈Dq

KL(q(θ) ∥ p(θ | y)). (2.33)

Expanding the KL divergence term we obtain

KL(q(θ) ∥ p(θ | y)) =
∫︂
q(θ) log

q(θ)

p(θ | y)d(θ)

= Eq
[︁
log q(θ)

]︁
− Eq

[︁
log p(θ | y)

]︁
= Eq

[︁
log q(θ)

]︁
− Eq

[︁
log

p(y,θ)

p(y)

]︁
= Eq

[︁
log q(θ)

]︁
− Eq

[︁
log p(y,θ)

]︁
+ log p(y)

(2.34)

The last term of the KL divergence, the log-marginal likelihood log p(y), is usually not

known. However, we use the fact that the KL divergence is non-negative to obtain the

bound

log p(y) ≥ Eq
[︁
log p(y,θ)

]︁
− Eq

[︁
log q(θ)

]︁
. (2.35)

This inequality becomes an equality when the trial density q(θ) and the posterior p(θ | y)
are equal. To minimise the KL divergence, it is sufficient to maximise Eq

[︁
log p(y,θ)

]︁
−

Eq
[︁
log q(θ)

]︁
, which is commonly referred to as the evidence lower bound (ELBO). The
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ELBO term can be rewritten as

ELBO(q) = Eq
[︁
log p(y | θ) + log p(θ)

]︁
− Eq

[︁
log q(θ)

]︁
= Eq

[︁
log p(y | θ)

]︁
−KL(q(θ) ∥ p(θ)).

(2.36)

To summarise, the task now becomes:

q∗(θ) = argmax
q(θ)∈Dq

Eq
[︁
log p(y | θ)

]︁
−KL(q(θ) ∥ p(θ)). (2.37)

To maximise the ELBO with a gradient-based optimiser, we need to evaluate the ELBO

and its gradients with respect to the parameters of q(θ). Although the KL divergence

term of the ELBO is often available in closed form, Eq
[︁
log p(y | θ)

]︁
involving the like-

lihood is generally not available. It can be approximated using a Monte Carlo approxi-

mation with NSVI samples from the trial density q(θ) as follows:

Eq
[︁
log p(y | θ)

]︁
≈ 1

NSVI

NSVI∑︂
i=1

log p(y | θ(i)), (2.38)

where θ(i) is the i-th sample from q(θ). The computations of gradients with respect to

parameters of q(θ) is problem-dependent. A common technique is the reparametrisation

trick, as described in Section 2.2.4.1. The choice of NSVI which leads to fast convergence

of the optimisation has been shown in the literature to be in the range of 2–5 (Kingma

& Welling 2014). This approach is often referred to as stochastic variational inference

(SVI).

2.2.4.1 Reparametrisation Trick

The reparametrisation trick allows computing the gradients of quantities derived from

samples from a probability distribution with respect to the parameters ϕ of that probabil-

ity distribution. This holds for probability distributions where samples can be obtained

by a deterministic mapping, parametrised by ϕ, of other random variables.

Let ϵ be a set of random variables. We assume that samples of θ ∼ q(θ;ϕ) are given by

a deterministic mapping

θ = t(ϕ, ϵ). (2.39)
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The KL divergence between approximating distribution q(θ) and the prior p(θ) is often

available in closed form and so are its gradients with respect to ϕ. To estimate the

gradients of the Monte Carlo estimate of the log-likelihood of the data,

Eq
[︁
log p(y | θ)

]︁
≈ N−1

SVI

NSVI∑︂
i=1

log p(y | θ(i)), (2.40)

we can use the chain rule of differentiation to obtain

∇ϕ

[︄
N−1

SVI

NSVI∑︂
i=1

log p(y | θ(i))

]︄
= N−1

SVI

NSVI∑︂
i=1

∇θ log p(y | θ(i)) · ∇ϕt(ϕ, ϵ
(i)). (2.41)

2.2.4.2 Variational Bayes Remarks

• The choice of the approximating distribution is task-dependent, but a multivariate

Gaussian distribution has been a popular choice due to analytical tractability (Blei

et al. 2017). Different parametrisations of the Gaussian distribution and other

non-Gaussian options such as mixture distributions are discussed in Section 6.3.

• To maximise the ELBO in (2.37), the ADAM algorithm (Kingma & Ba 2015) has

been widely used, and it is what we use in this thesis. One may wish to employ a

different optimisation algorithm, and this choice should be made depending on the

problem-specific requirements. This is discussed in more detail in Section 6.3.4.



Chapter 3

Spatial Point Processes

3.1 Definition

Point processes are mathematical models for random point patterns over a domain D

which we assume to be a complete separable metric space (Daley & Vere-Jones 2003).

We consider planar point patterns, i.e., D ⊂ R2. Let X denote a point process. For a

given Borel set A ⊂ D, the counting measure N(A) is the random number of points of

X contained in A (Stoyan & Stoyan 1994). We only consider simple processes, i.e., no

multiple points. Thus, the set of distinct points x1,x2, . . . is a random countable set

X = {xi}i, (3.1)

where X is referred to as a configuration. Each xi lies in D, and a set of n points lies in

Dn.

If the number of points is not finite, we require that configurations place at most a finite

number of points in any bounded Borel set A ⊂ D:

NX (A) =
∞∑︂
i=1

1(xi ∈ A) <∞. (3.2)

We denote the family of locally finite configurations as N lf and we equip it with the

smallest σ-algebra N lf such that the mapping X ↦→ NX (A) is measurable. The formal

definition of a point process then follows.

41
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Definition 3.1 (Point process (van Lieshout 2010)). Let (D, d) be a complete, separable

metric space equipped with its Borel σ-algebra B. A point process on D is a mapping X

from an abstract probability space (Ω,A,P) into N lf such that for all bounded Borel sets

A ⊂ D, the number N(A) = NX(A) of points falling in A is a finite random variable. In

other words, a point process X is a random variable with values in the measurable space

(N lf,N lf).

The induced probability measure P on N lf is the distribution of the point process. For

F ∈ N lf, we have

P(F ) = P({ω ∈ Ω: X(ω) ∈ F}). (3.3)

If P is translation invariant, i.e., the distribution does not change if all points xi ∈ X are

translated over y into (xi+y), then X is stationary. Similarly, if P is rotation invariant,

X is isotropic.

The probability measure P is induced by integer-valued random variables N(A) counting

the number of points in a bounded Borel set A. Thus, it is natural to characterise P by

specifying the properties of N(A). One can do so through the family of finite-dimensional

distributions which are a collection of joint distributions (N(A1), N(A2), . . . , N(Am)),

where (A1, . . . , Am) ranges over the bounded Borel sets Ai ⊂ D, i = 1, . . . ,m, and

m ∈ N. It has been shown that if two point processes have identical finite-dimensional

distributions, they also share the same distribution (van Lieshout 2010, Theorem 16.1).

In other words, the distribution of a point process X is completely specified by its

finite-dimensional distributions. If the point process is simple (no multiple points), as

we assume throughout the thesis, void probabilities of bounded Borel sets A ⊂ D also

completely determine the distribution of the process:

P(N(A) = 0). (3.4)

Before we proceed with further summary of point process methodology, we show an

example of a point pattern observed in real life.

3.1.1 Point Process Example

We present an example of an observed point pattern of the locations of trees in a tropical

rain forest (Baddeley & Turner 2005).
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Figure 3.1: A point pattern of 3605 trees on Barro Colorado Island together with
the corresponding elevation and the norm of the elevation gradient. This figure was

produced using an R package provided by Baddeley & Turner (2005).

Example 3.2. Figure 3.1 shows the locations of 3605 trees of the species Beilschmiedia

pendula in a 1000 by 500 metre region in the tropical rainforest of Barro Colorado Island.

The figure also shows the elevation (in metres) as well as the norm of the elevation

gradient. One may for example be interested in analysing the relationship between the

intensity of the point pattern and the elevation, or its gradient.

3.2 Summary Statistics

Summary statistics provide a concise characterisation of an observed point pattern, which

may then be used for further analysis. Firstly, we consider moment measures of the

finite-dimensional distributions used to specify the distribution of point process X. The

first-order measure, often called intensity measure, is a set function M such that

M(A) = EN(A) <∞ (3.5)



Point Processes Methodology 44

for all bounded Borel sets A ⊂ D. If M is absolutely continuous with respect to the

Lebesgue measure ν on D, then

M(A) =

∫︂
A
λ(x)dν(x), (3.6)

for Borel sets A, and λ(·) is referred to as the intensity function of the point process X.

As a consequence of this, we can write

∫︂
A
dM(a) = E

[︃ ∑︂
x∈X

1{x ∈ A}
]︃

(3.7)

for all A ∈ B(D). Thanks to linearity and monotonicity we obtain the Campbell theorem:

E
[︃ ∑︂
x∈X

g(x)

]︃
=

∫︂
D
g(x)dM(x) (3.8)

for any measurable function g : D → R. This allows computing expectations of random

sums using integrals involving the mean measure M .

The moment measures may be refined to restrict attention to configurations with specific

properties, for example the Campbell measure of the first order is defined as follows.

Definition 3.3 (Campbell measure). Let X be a point process on D. The first-order

Campbell measure is defined as

C(A× F ) = E
[︁
N(A)1{X ∈ F}

]︁
(3.9)

for all bounded Borel sets A ⊂ D and all F ∈ N lf.

Higher-order moment measures are defined by considering tuples of (N(A1), N(A2), . . . )

jointly. The n-th order moment measure is defined as

Mn(A1 × · · · ×An) = E
[︁
N(A1), . . . , N(An)

]︁
. (3.10)

The Campbell theorem involving nth order measure in the integral representation reads

as

E
[︃ ∑︂
x1,...,xn

g(x1, . . . ,xn)

]︃
=

∫︂
D
· · ·
∫︂
D
g(x1, . . . ,xn)dMn(x1, . . . ,xn) (3.11)
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For example, the covariance of the random variables N(A) and N(B) can be written as

Cov(N(A), N(B)) =M2(A×B)−M(A)M(B). (3.12)

In (3.11), we considered tuples which include both identical and distinct points. By

considering only distinct points, we obtain the n-th order factorial moment measure µn,

defined by the integral representation:

E
[︃ ̸=∑︂
x1,...,xn

g(x1, . . . ,xn)

]︃
=

∫︂
D
· · ·
∫︂
D
g(x1, . . . ,xn)dµn(x1, . . . ,xn), (3.13)

for all measurable functions g : Dn → R. The n-th order factorial moment measure

exists if µn(A) is finite for all bounded Borel sets A ⊂ D (van Lieshout 2010). If µn is

absolutely continuous with respect to some n-fold product measure νn on Dn, the we

can rewrite (3.13) as

E
[︃ ̸=∑︂
x1,...,xn

g(x1, . . . ,xn)

]︃
=

∫︂
D
· · ·
∫︂
D
g(x1, . . . ,xn)ρn(x1, . . . ,xn)dν(x1) . . . dν(xn),

(3.14)

where the Radon-Nikodym derivative ρn(x1, . . . ,xn) is referred to as product density.

The expression ρn(x1, . . . ,xn)dν(x1) . . . dν(xn) may be interpreted as the join proba-

bility of a point falling in each of the infinitesimal regions centred at x1, . . . ,xn. The

product density is used for deriving likelihood for point processes, as we shall see below

in (3.23).

Further summary statistics such as Campbell reduced measures or Palm conditioning

are often used for analysis of point processes. In this thesis, we will not make use of

such techniques and therefore omit them from this review. For the interested reader, we

recommend Daley & Vere-Jones (2003), van Lieshout (2010).

3.3 Finite Point Processes

Most of the point patterns in practice are finite in the number of points and are observed

on a bounded region, which is either dictated by the application or a smaller observation

‘window’ is chosen for convenience. The distribution of a point process which is finite
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(with probability 1) can be conveniently described as follows. Suppose thatD is equipped

with the Lebesgue measure ν and 0 < ν(D) <∞, then it is sufficient to specify:

1. A discrete probability distribution, (pn)n∈N0 for the total number N of points.

2. A family of symmetric probability densities πn(x1, . . . ,xn)n∈N0 with respect to the

n-fold product of ν for the point locations.

The symmetry requirement for πn is necessary to ensure that the patterns generated by

πn are permutation invariant, i.e., not dependent on the order in which they are listed.

This formulation is the basis for the models we consider in this thesis.

3.4 Models and Estimation

We limit this exposition to finite point processes which are observed on a bounded

observation window D. After observing a sample of a point pattern, the goal is to

describe the distribution of points and build a statistical model explaining the variation

in the observed pattern. We assume that the data consists of exactly one observation of

the point pattern. We use the inference methods described in Chapter 4, where we focus

on inferring the first moment of the point process, and specifically, the intensity function

(which we assume exists, see (3.6) above).

3.4.1 Non-parametric Models

The first class of models which is mostly used for exploratory analysis is non-parametric

models. One of the objectives of exploratory analysis is to ascertain whether the observed

point pattern is spatially random, commonly referred to as complete spatial randomness

(CSR). A point process with CSR property is a stationary Poisson process which we

discuss in one of the subsequent sections. From a finite sample of n points, {xi}ni=1, it is

not trivial to understand whether the underlying process which gave rise to the observed

point pattern is CSR or not. Additional context is often required to make this assump-

tion. A common approach to test this assumption is to perform a statistical hypothesis

test using statistics based on various distances such as K-function or L-function (Stoyan

& Stoyan 1994, Ripley 1976).
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For the estimation of the intensity function in a non-parametric way, kernel estimators

are a powerful tool (Diggle 1985). An elementary estimator is given as

λ̂h(x) =
N(b(x, h)

ν(b(x, h))
, (3.15)

where b(x, h) is the ball of radius h around x, and ν is the Lebesgue measure on D. This

histogram-like estimator can be smoothed out by applying a smoothing kernel kh:

λ̂h(x) =
n∑︂
i=1

kh(x− xi). (3.16)

Popular choices of kh include Epanechnikov kernel and Gaussian kernel (Stoyan & Stoyan

1994). After a family of kernel functions has been chosen, the quality of the estimator is

mostly determined by the choice of h, which is often referred to as bandwidth.

For stationary processes, the intensity can be simply estimated by

λ̂ = n/|D|. (3.17)

This estimator is always unbiased, and if the underlying point process is a stationary

Poisson process, it is also the maximum likelihood estimator with variance equal to

λ/|D| (Gelfand 2010).

3.4.2 Parametric Models

The second class of models assumes a parametric form for the distribution of the point

process. Once a class of models has been chosen, the objective is to infer the parameter(s)

and validate the model specification. The most fundamental model in spatial statistics

is the stationary Poisson process, often called homogeneous. It is used for modelling

point patterns where locations of points are completely random and independent of each

other. If such independence conditions do not hold, then a Poisson process is often used

as either a rough approximation, or as a null hypothesis model. Below, we give a formal

definition, discuss the non-homogeneous case, as well as the case where the intensity

function is stochastic.
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3.4.2.1 Homogeneous Poisson Process

Definition 3.4 (Homogeneous Poisson process (Stoyan & Stoyan 1994)). The homoge-

neous Poisson process is defined by two properties:

1. If k is any integer and A1, . . . , Ak are any disjoint Borel sets on D then the random

variables N(A1), . . . , N(Ak) are stochastically independent.

2. The number of points N(A) in any bounded Borel set A has a Poisson distribution

with the intensity parameter equal toM(A) = EN(A). For a finite Poisson process,

we have M(A) = λν(A), where ν(A) denotes the Lebesgue measure on D, which

throughout this thesis represents an area in R2 space.

This definition implies that the field is stationary and isotropic. More specifically, if a

bounded set A ⊂ D has exactly n points in it, then these points are distributed uniformly

and independently in A. This property is useful for the simulation of homogeneous

Poisson point processes.

The probability of observing k points in a bounded Borel set A is then given by the

probability mass function of Poisson distribution:

P(N(A) = k) =

[︁
λν(A)

]︁k
k!

e−λν(A). (3.18)

The variance of N(A) follows from the properties of the Poisson distribution:

VarN(A) =M(A) = λν(A). (3.19)

The estimate of the intensity for an observed sample {xi}ni=1 on a bounded domain D

simply reads as

λ̂ =
N(D)

ν(D)
. (3.20)

3.4.2.2 Non-homogeneous Poisson Process

In situations where the intensity of points is not constant throughout the domain, non-

homogeneous Poisson process may be a suitable alternative. The definition follows simi-

larly to the homogeneous case, except that the intensity measure for a bounded Borel set
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A, M(A), is no longer dependent only on the Lebesgue measure ν(A), but also considers

the spatially varying intensity function as defined below.

Definition 3.5 (Non-homogeneous Poisson Process (Stoyan & Stoyan 1994)). Non-

homogeneous Poisson process can be defined by changing the second property of Defini-

tion 3.4 to:

2. The number of points N(A) in a bounded Borel set A has a Poisson distribu-

tion with parameter M(A) = EN(A). Provided the intensity function λ(·) exists

(see (3.6)), we have

M(A) =

∫︂
A
λ(x)dν(x). (3.21)

Similarly to the homogeneous case we have

VarN(A) =M(A). (3.22)

The product density (see (3.14)) takes a simple form for an inhomogeneous Poisson

process (due to the independence property in Definition 3.5 (Møller & Waagepetersen

2007)):

ρn(x1, . . . ,xn) =
n∏︂
i=1

λ(xi), (3.23)

which implies that there are no interactions between the points themselves.

While the intensity can be estimated in a non-parametric manner as described in Sec-

tion 3.4.1, we can perform likelihood-based inference of λ(·). The likelihood is given as

the probability of obtaining a given number of points n on a bounded domain D times the

joint conditional density for the locations of these points, given the number of observed

points n. While the probability of obtaining n points follows from the probability mass

function of Poisson distribution, (
∫︁
D λ(x)dν(x))n

n! exp(−
∫︁
D λ(x)dν(x))

, each of the n points at locations

x1, . . . ,xn is distributed across D with density

λ(x)∫︁
D λ(x

′)dν(x′)
. (3.24)

This is a consequence of the independence property of the Poisson processes which allows

for the factorisation of the product density as in (3.23). Taken together, the likelihood
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follows as

L(λ;x1, . . . ,xn) =

(︁ ∫︁
D λ(x)dν(x)

)︁n
n! exp(−

∫︁
D λ(x)dν(x))

n∏︂
i=1

λ(xi)∫︁
D λ(x)dν(x)

∝ exp

(︃
−
∫︂
D
λ(x)dν(x)

)︃ n∏︂
i=1

λ(xi).

(3.25)

Finding the λ(·) which maximises the likelihood is the central task of likelihood-based

inference for inhomogeneous Poisson processes (Møller & Waagepetersen 2004, 2007,

Gelfand 2010).

3.4.2.3 Cox Process

The Cox process is an extension of the inhomogeneous Poisson process. This model is

used when the aggregation of points in a point pattern is due to stochastic environmen-

tal heterogeneity (Diggle et al. 2013, Stoyan & Stoyan 1994). The intensity of a Cox

process X is driven by a non-negative process Λ = (Λ(x))x∈D, such that conditional

on Λ(x) = λ(x), X is a non-homogeneous Poisson process with intensity function λ(x).

The properties of Λ determine the properties of X. Most importantly, if Λ is a stationary

process, then so is X. One cannot distinguish the Cox process X from its corresponding

Poisson process X | Λ when only one realisation of X is available. The likelihood is, in

general, unknown while the product densities may be tractable (Gelfand 2010, Møller &

Waagepetersen 2007).

Of particular interest are Cox processes, where log Λ is defined to be a Gaussian pro-

cess (Møller et al. 1998). If we include the fixed-effects term with spatial covariates z,

the log-intensity is then given as

log Λ(x) = z(x)⊤β + f(x), (3.26)

where β are coefficients, f is a zero-mean Gaussian process (see a summary of Gaus-

sian processes in Section 6.2.4 of Chapter 6, where we use them extensively) with the

covariance function c(x,y) = Cov[f(x), f(y)].

Estimation of this process is non-trivial due to the doubly-stochastic nature of the pro-

cess. For example, each likelihood computation requires integration over the process Λ,

i.e., evaluating EΛ L(Λ;x1, . . . ,xn). In Chapter 4, we use a log-Gaussian Cox process
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as the baseline model. Our estimation procedure follows the Bayesian framework where

we sample the posterior distribution of f and β using MCMC methods. For details,

see Section A.2.



Chapter 4

Burglary in London: Insights from

Statistical Heterogeneous Spatial

Point Processes

4.1 Introduction

Use of statistical models for understanding and predicting criminal behaviour has be-

come increasingly relevant for police forces, and policymakers (Felson & Clarke 1998,

Bowers & Hirschfield 1999, PredPol 2019). While short-term forecasting of criminal ac-

tivity has been used to better allocate policing resources (Taddy 2010, Mohler et al.

2011, Aldor-Noiman et al. 2016, Flaxman et al. 2019, PredPol 2019), understanding the

criminal behaviour and target selection process through statistical models has a poten-

tial to be used for designing policy changes and development programs (Felson & Clarke

1998). In this work, we consider the problem of burglary crime in London. In the UK,

burglary is a well-reported crime, but the detection rate remains at the 10-15% level

(Smith et al. 2013). Rather than being concerned with short-term forecasting, we focus

on understanding the effects of spatially varying explanatory variables on the target se-

lection through descriptive regression models. Inferences made using these models help

us understand the underlying mechanisms of burglary. The main contribution of this

work is the integration of statistical methods in spatial modelling with the findings from

the criminological literature.

52



Spatial Poisson Mixtures 53

Instances of burglary can be represented as a spatial point pattern – a finite or countably

infinite set of points in the study region. Understanding the intensity of the occurrences

through spatially varying covariates is the main objective of this work. The task of es-

timating the effects of the covariates on the intensity can be classified as a multivariate

regression modelling, in which systematic effects of the explanatory variables are of in-

terest while taking into account other random effects such as measurement errors and

spatial correlation (McCullagh & Nelder 1998). In the context of spatial data, it has

been widely recognised that multivariate regression modelling techniques which do not

account for spatial dependence and spatial heterogeneity can lead to biased results and

faulty inferences (Anselin et al. 2000). Spatial dependence refers to the Tobler’s first

law of geography: “everything is related to everything else, but near things are more

related than distant things”(Tobler 1970). Spatial dependence manifests itself mostly in

the spatial correlation of the residuals of a model. In non-spatial settings, the residuals

are often assumed to be independent and identically distributed (McCullagh & Nelder

1998). Spatial heterogeneity is exhibited when the object of interest, in our case, the

intensity of a point pattern, shows location-specific behaviour. For example, properties

of the burglary point pattern in a city centre are going to be different from the proper-

ties in a residential area. Formalising these two concepts and incorporating them into

modelling methodology results in more accurate spatial models (Anselin et al. 2000).

Log-Gaussian Cox process (Møller et al. 1998, Møller & Waagepetersen 2007) has been

a common approach for modelling intensity of spatial point patterns (Diggle et al. 2013,

Serra et al. 2014). The flexibility of the model is due to the Gaussian process part through

which complex covariance structures, including spatial dependence and heterogeneity, can

be accounted for. In practice, stationary covariance functions are used for computational

and identifiability reasons (Diggle et al. 2013). Identifiability of non-stationary covariance

models is challenging without the knowledge of problem-specific structure. As a result,

log-Gaussian Cox process models with stationary covariance functions handle spatial

dependence but do not account for spatial heterogeneity.

Mixture based approaches have been adopted as a way of enriching the collection of

probability distributions to account for spatial heterogeneity often observed in practice

(Green 2010, Fernández & Green 2002). Notably, Knorr-Held & Raßer (2000), Fernández

& Green (2002), Green & Richardson (2002) used mixtures for modelling the elevations

of disease prevalence. While these methods improve the model fit by accounting for



Spatial Poisson Mixtures 54

spatial heterogeneity as wells as spatial dependence, they provide little interpretation as

to why the level is elevated in certain areas. Also, these three methods have been tested

only at a modest scale. Following this line of work, Hildeman et al. (2018) proposed

a method in which each mixture component can take a rich representation that may

include covariates. Although this model is very rich in representation, the empirical

study in the paper was limited to the case of two mixtures, with one of the components

being held constant. Their study of a tree point pattern and its dependence on soil type

was carried out on a region discretised into a grid with 2461 cells.

A very different approach to controlling for spatial heterogeneity has been taken by

Gelfand et al. (2003) who allow regression coefficients to vary across the spatial region.

The method treats the coefficients of the covariates as a multivariate spatial process.

The process is, however, very challenging to fit and is often limited to 2 or 3 covariates

(Banerjee et al. 2015, p.288). A simpler version of the same idea is geographically-

weighted regression (Brunsdon et al. 1996), where the regression coefficients are weighted

by a latent component whose properties have to be specified a priori or learned through

cross-validation.

Motivated by the computational challenges and limited interpretability of the aforemen-

tioned approaches, we propose a mixture based method that takes into account spatial

dependence and is able to discover latent groups of locations and characterise each group

by group-specific effects of spatially varying covariates. To estimate the model param-

eters from the limited data and to quantify the uncertainty of the estimates, we follow

the Bayesian framework.

More specifically, our approach builds upon the mixtures of generalised linear models

(Grün & Leisch 2008), in which observations are modelled as a mixture of different

models. We cater for spatial dependence using an approach inspired by Fernández &

Green (2002) and Knorr-Held & Raßer (2000). Our model probabilistically assigns each

location to a particular mixture component, while imposing spatial dependence through

prior information. The prior information will suggest that locations that are close to each

other are likely to belong to the same component. We define a pair of locations to be

close if both of them are in the same block. We use the blocking structure predefined by

the census tracts, but our method allows defining custom ones. We further model spatial

dependence of the blocks using latent Gaussian processes, following Fernández & Green
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(2002). The posterior inferences for the individual components consisting of regressions

coefficients and the assignments of locations to clusters are used to draw conclusions and

provide insights about the heterogeneity of the spatial point pattern across the study

region.

In contrast to Fernández & Green (2002) and Green & Richardson (2002), this work

considers including the covariates into each mixture component, rather than having

intercept-only components. Compared to the approach of Hildeman et al. (2018) who

model the log-intensity of a point pattern as a mixture of Gaussian random fields, our

model is more constrained but provides better scalability.

We show that the proposed methodology effectively models burglary crime in London.

By comparing our approach to log-Gaussian Cox process (LGCP), a standard model for

spatial point patterns (Diggle et al. 2013), we show that our method outperforms LGCP

and is more computationally tractable. Lastly, the interpretation of inferred quantities

provides useful criminological insights.

The rest of the paper is structured as follows. Section 4.2 defines the model and details

the inference method, Section 4.3 elaborates on our application and gives the discus-

sion of model choices specific to our application. The obtained results are discussed in

Section 4.4. Section 4.5 concludes the chapter.

4.2 Modelling methodology

It is widely recognised that burglary crime is spatially concentrated (Brantingham &

Brantingham 1981, Clare et al. 2009, Johnson & Bowers 2010). It is also apparent that

some areas in the study region will exhibit extreme behaviour. For example, areas with

no buildings such as parks will have no burglary for structural reasons. To effectively

model burglary, these phenomena need to be accounted for using spatial effects. The two

important spatial effects are spatial dependence and spatial heterogeneity (Anselin et al.

2000).

For our modelling framework, we choose the Bayesian paradigm because it allows us to

formalise prior knowledge, and to quantify uncertainty in the unknown quantities of our

model. In our application, burglary data are given as a point pattern over a fixed period
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of time. Chapter 3 provides the prerequisite background on point patterns and discusses

several modelling approaches and related issues. In this chapter, we discretise the point

pattern onto a grid of N cells by counting the points in each cell. Although any form of

discretisation is allowed, throughout this paper, we work with a regular grid.

We model the count of points in a cell n, yn, conditioned on the mixture component k

as a Poisson-distributed random variable, with the logarithm of the intensity driven by a

linear term, which is specific for each mixture component, indexed by k = 1, . . . ,K. The

linear term is a linear combination of J covariates for cell n, Xn, and the corresponding

coefficients, βk. The covariates need to be specified for the application of interest and

usually include the intercept. To specify the prior distribution for the regression coef-

ficients, we use a prior that shrinks the estimate towards zero. For each coefficient, we

set βk,j ∼ N (0, σ2k,j), where σ2k,j ∼ InvGamma(1, 0.01). We put the uniform prior on the

intercepts, if present.

Each cell n is probabilistically allocated to one of theK components through an allocation

variable, zn, which is a categorical random variable with event probabilities given by the

mixture weights prior, πb[n]. The value of πb[n] is shared for all locations within cell n’s

block, b[n]. The blocks for the study region are defined as non-overlapping spatial areas

spanning the whole study region. In many practical applications, the block structure

is already defined by administrative units or census tracts. Block b[n] is the block that

contains the centroid point of cell n. The block-specific event probabilities will express

the belief that the effect of the covariates is the same within the block unless evidence

from the observed data outweighs this information. Note that conditional predictors

(conditional on the allocations (zn)
N
n=1) only use the fixed covariate effects.

To model the mixture weights prior for block b, πb = (π1,b, . . . , πK,b), we allow for dif-

ferent choices provided that πk,b ≥ 0 and
∑︁K

k=1 πk,b = 1, i.e., it is a valid probability

measure. One possible choice which also takes into account the spatial dependence be-

tween the blocks is to model the mixture weights prior for block b and mixture component

k as

πk,b =
exp(fk,b)∑︁K
l=1 exp(fl,b)

,

where fk,b is the shorthand for the evaluation of fk(·) at the centroid of the block b,

and fk(·) is an independent zero-mean Gaussian Process defined over x ∈ D ⊂ R with

hyper-parameters θk. The prior for θk is specified depending on the kernel function used.
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We will use the squared exponential kernel throughout this work (Rasmussen & Williams

2006).

We refer to the proposed model as a spatially-aware mixture of Poisson generalised linear

models (SAM-GLM). The formulation is summarised in the equation and the graphical

representation shown in Figure 4.1. In the proposed model, we handle spatial heterogene-

yn|zn = k,β1, . . . ,βK ,Xn ∼ Poisson
(︂
exp

(︂
X⊤
n βk

)︂)︂
zn|π ∼ Cat(π1,b[n], . . . , πK,b[n])

πk,b|fk(·) =
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

fk(·)|θk ∼ GP(0, κθk(·, ·))
θk ∼ kernel-dependent prior

βk,j |σ2k,j ∼ N (0, σ2k,j)

σ2k,j ∼ InvGamma(1, 0.01).

yn

Xn zn πk,b fk θk

βk,j σk,j

N = 2, 461 K = 1− 8J = 8− 22

Figure 4.1: Summary of the SAM-GLM model and its graphical representation.

ity using the mixture components, each of which specifies a set of J regression coefficients,

βk. Spatial dependence is considered first within each block and also through inter-block

dependence imposed by K Gaussian processes. Modelling the spatial dependence using

Gaussian processes with the training points defined by the coarse block centroids instead

of finer cell centroids allows for more efficient estimation procedures, as we discuss later.

4.2.1 Excess of Zeros, Overdispersion

Two common challenges encountered when modelling count data using standard Poisson

generalised linear models (GLM) are excess of zeros and overdispersion (McCullagh &

Nelder 1998, Breslow 1984). The former refers to the presence of zeros that are struc-

tural, rather than due to chance. In the context of burglary, structural zeros occur in

locations with no buildings, e.g., parks. The latter issue refers to the situation when the

variability of the observed data is higher than what would be expected based on a par-

ticular statistical model. The standard Poisson GLM for the burglary point pattern, a

special case of our model (K = 1), suffers from overdispersion for different specifications

of the covariates term – see Section A.1 in the appendix. The flexibility of our pro-

posed model can account for the excess of zeros by identifying a low-count component to
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which areas of low intensity will be assigned. Similarly, introducing mixtures can reduce

overdispersion. Two cells with similar values for the covariates, but with very different

observed counts are likely to have the same expected count under the standard Poisson

GLM. Under the mixture model, each cell would be allowed to follow a different model.

4.2.2 Inference

Statistical inference in the Bayesian setting involves inferring the posterior probability

distribution for the quantities of interest. In this work, we choose the Markov Chain

Monte Carlo (MCMC) method to sample from the posterior distributions (Gelman et al.

2013). We introduced the MCMC methods in Chapter 2.

Firstly, the scale parameter for the regression coefficients, σ2kj , is analytically integrated

out to simplify the inference (see (A.14) in the supplementary material). The quantities

of interest are the allocation vector z, regression coefficient vector for each mixture

component, βk, unnormalised mixture weights priors at the centroids of the blocks, fk,b,

and its hyper-parameters. For brevity, let β be a K × J matrix of regression coefficients

for all mixture components and each covariate, X be an N × J matrix of all covariates

for each location, F be a B×K matrix such that Fb,k = fk,b, and θ the vector of kernel

hyperparameters for all fk’s. The unnormalised joint posterior probability distribution

is given as

p(β, z,F ,θ|y,X) ∝ p(y|β,X, z)p(z|F )p(F |θ)p(θ)p(β) (4.1)

We employ the Metropolis-within-Gibbs scheme (see Chapter 2 and Geman & Geman

(1984), Metropolis et al. (1953)) and sample from the posterior in three steps:

1. We sample the regression coefficients βk,j jointly for all k = 1, . . . ,K and j =

1, . . . , J . The unnormalised density of the conditional distribution is given as

p(β|X,y, z) ∝ p(y|β,X, z)p(β). (4.2)

Equation (4.2) is sampled using the Hamiltonian Monte Carlo method (see Sec-

tion 2.2.3.3 and Duane et al. (1987)), for which efficient sampling schemes are

available, e.g., Girolami & Calderhead (2011).
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2. Mixture allocation is sampled cell by cell directly using the following equation

p(zn = k|zn̄, α,Xn,β,y,F ) ∝ p(yn|zn = k,Xn,βk)
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

, (4.3)

where zn̄ are the components of z without zn.

3. We sample all K functions with the GP prior and their hyperparameters jointly

using the Hamiltonian Monte Carlo. The joint posterior density is proportional to

the expression below

p(F ,θ|y, z) ∝
N∏︂
n=1

K∏︂
k=1

(︄
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

)︄I(zn=k) K∏︂
k=1

p(fk|θk)p(θk), (4.4)

where I(·) is the indicator function.

For the full expansion of the conditional distributions in equations (4.2), (4.3), and (4.4),

see Section A.3 in the online supplementary material.

In terms of computational tractability, (4.2) takesO(N + J) steps, (4.3) requiresO(N ×K)

steps, and (4.4) requires O
(︁
B3 ×K

)︁
steps due to matrix inversions of size B×B for each

of theK components. To contrast it with a standard model for spatial point patterns, one

sample from a log-Gaussian Cox process involves matrix inversions that require O
(︁
N3
)︁

steps (Diggle et al. 2013). Thanks to our blocking, the inference requires inversions of

smaller matrices. Note that other approximation methods of Gaussian Processes such as

Gaussian Markov Random Fields (Lindgren et al. 2011), or low-rank GPs (Rasmussen

& Williams 2006, Chapter 8) may be utilised to reduce the standard computational cost

of O
(︁
N3
)︁

mentioned above.

4.2.3 Special Case: Independent Blocks

The model and the associated inference introduced in this section provide a very flexible

framework for modelling the spatial dependence of cells via blocks that are also spatially

dependent. However, this comes at a high cost – inferring posterior distribution over K

Gaussian processes that are combined using the logistic function is challenging at scale

as each sample requires O
(︁
B3 ×K

)︁
operations.
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If we assume that the mixture weights priors (πb) for all blocks are independent and,

conditioned on α, distributed as

πb|α ∼ Dirichlet(α, . . . , α), (4.5)

the inference becomes more tractable. Specifically, (4.4) is not needed anymore, (4.2)

stays the same, and (4.3) is replaced by

p(zn = k|zn̄, α,Xnβ,y) ∝ p(yn|zn = k,Xnβk)
cn̄b[n]k + α

Kα+
∑︁K

i=1 c
n̄
b[n]k

. (4.6)

As a result, the time complexity to take one sample from the unknown quantities is

dominated by resampling zn’s in (4.6), which can be computed in O(N ×K) steps. For

the full derivation of (4.6), see Section A.3.2.4 in the supplementary material.

In the literature, α = 1/K is a recommended choice, see, e.g., Alvares et al. (2018).

This prior formulation induces sparsity and is able to cancel out the components in an

overfitted mixture (Rousseau & Mengersen 2011). In the experiments, we compare the

trade-off between computational complexity and modelling flexibility.

4.2.4 Identifiability

Specifying a mixture model means that the model likelihood is invariant under the rela-

belling of the mixture components (Celeux et al. 2000). This issue is commonly referred

to as lack of identifiability. In the context of SAM-GLM model, p(y|z,X,β) is invariant

under the relabelling of βk and fk’s, which are the component-specific model parameters.

Exploration in high dimensional spaces is, in general, hard for an MCMC sampler. As

the dimension of the parameter space for the mixture model increases, the sampler is

likely to explore only one of the K! possible modes. For the sampler to switch to a

different mode, it would have to get past the area of low probability mass surrounding

the chosen mode. However, note that as the number of mixture components increases,

the chance of the sampler switching to a different mode increases as the shortest distance

between a pair of component-specific parameters is likely to decrease.
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Since the identifiability issue poses a problem only for the interpretation of the param-

eters, we inspect the trace plot of the Markov chain for each identifiable parameter to

assert that relabelling is not present when interpreting the mixtures.

4.3 Application: London Burglary Crime

The methodology above has been developed to enable the analysis of our application –

burglary in London. We discuss the data, criminological background and how we use

them to inform model selection.

4.3.1 Data Description

The data, published online by the UK police forces (police.uk 2019), are provided monthly

as a spatial point pattern over the area of 1572 km2 of both residential and non-residential

burglary occurrences. The non-residential burglary refers to instances where the target

is not a dwelling, e.g., commercial or community properties. We discretise our study

area into a regular grid by counting the number of burglary occurrences within each cell.

We choose a grid for computational reasons when comparing to competing methods (see

Section A.2 in the supplementary material). Given our focus on spatial modelling, we

temporally aggregate the point pattern into two datasets: the one-year dataset, starting

01/2015 and ending 12/2015, with 70,234 burglaries, and the three-year dataset, starting

01/2013 and ending 12/2015, with 224,747 burglaries.

Our analysis uses land use data, socioeconomic census data from 2011, and points of

interest data from 2018 to estimate their effect on the intensity of the burglary point

pattern. Land use data are available as exact geometrical shapes. The census variables

are measured with respect to census tracts, called output areas (OA). The OAs have

been designed to have similar population sizes and be as socially homogeneous as possible,

based on the tenure of households and dwelling types. Each of the 25,053 OAs in London

has between 100 people or 40 households and 625 people or 250 households. The OAs are

aggregated into 4,835 lower super output areas (LSOA), which in turn are aggregated

into 983 middle super output areas (MSOA). An LSOA has at least 1,000 people or 400

households and at most 3,000 people or 1,200 households. For an MSOA, the minimum is

5,000 people or 2,000 households, and the maximum is 15,000 people or 6,000 households.
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The points of interest data are given as a point pattern. To project the data measured

at non-grid geometries (the census and land use data) onto the grid we use weighted

interpolation. The method assumes that the data is uniformly distributed across the

OA. For cells that have an overlap with more than one OA, we compute the value for

each such cell by combining the overlapping OAs and adjusting for the size of the overlap.

4.3.2 Criminology Background

We use existing criminology studies to identify explanatory variables and formulate hy-

potheses about burglary target selection. The target choice is a decision-making process

of maximising reward with minimum effort, and managing the risk of being caught (a

process analogous to optimal foragers in wildlife (Johnson & Bowers 2004)). Therefore,

we categorise the explanatory variables into these three categories: reward, effort, and

risk.

4.3.2.1 Reward, Opportunities, Attractiveness

Theoretically supported by rational choice theory (Clarke & Cornish 1985), offenders seek

to maximise their reward by choosing areas of many opportunities and attractive targets.

Firstly, the number of dwellings is used in the literature as a measure of the abundance

of residential targets (Bernasco & Nieuwbeerta 2005, Clare et al. 2009, Townsley et al.

2015, 2016). Real estate prices and household income have been used in previous works

as a proxy for the attractiveness of targets. The significance of their positive effect on

residential burglary victimisation rate has been mixed and varied depending on the study

region and the statistical method used (Bernasco & Luykx 2003, Bernasco & Nieuwbeerta

2005, Clare et al. 2009, Townsley et al. 2015, 2016). The finding that the effect of affluence

was weak in some studies can be explained by the fact that most burglars do not live in

affluent areas and hence are not in their awareness spaces, i.e. operating in an affluent

neighbourhood is for them an unfamiliar terrain and the risk of being caught is higher

(Evans 1989, Rengert & Wasilchick 2010). Other measures of affluence that have been

used include house ownership rates (Bernasco & Luykx 2003).

With regard to non-residential burglary, the literature is more sparse. An analysis of

non-residential burglary in Merseyside county in the UK by Bowers & Hirschfield (1999)
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shows that non-residential facilities have a higher risk of both victimisation and repeat

victimisation. In particular, sport and educational facilities have a disproportionately

higher risk of being targeted compared to other types of facilities. In the crime survey of

business owners in the UK, the retail sector is the most vulnerable to burglaries (gov.uk

2017). For our application, we will use points of interest database from Ordnance Survey

which include retail outlets, eating and drinking venues, accommodation units, sport and

entertainment facilities, and health and education institutions (Ordnance Survey 2018).

4.3.2.2 Effort, Convenience

Using the framework of crime pattern theory (Brantingham & Brantingham 1993) and

routine activity theory (Cohen & Felson 1979), offenders will prefer locations that are

part of their routine activities or are convenient to them, i.e. they are in their activity or

awareness spaces. The studies performed using the data on detected residential burglaries

unanimously agree that areas close to the offender’s home are more likely to get targeted

(Bernasco & Nieuwbeerta 2005, Townsley et al. 2015, Menting et al. 2019, Clare et al.

2009). In the study based on a survey of offenders, Menting et al. (2019) argue that other

awareness spaces than their residence play a significant role in target selection. These

include previous addresses, neighbourhoods of their family and friends, as well as places

where they work and go about their recreation and leisure.

As confirmed by numerous studies, the spatial topology of the environment plays a

significant role in the choice of a target. Brantingham & Brantingham (1975) have shown

that houses in the interior of a block are less likely to get burgled. Similarly, Townsley

et al. (2015), Bernasco & Nieuwbeerta (2005) showed that single-family dwellings are

more vulnerable to burglaries than multi-family dwellings such as blocks of flats. Beavon

et al. (1994) studied the effects of the street network and traffic flow on residential

burglary and found that crime was higher in more accessible and more frequented areas.

Similarly, Johnson & Bowers (2010) show that main street segments are more likely to

become a burglary target. Clare et al. (2009), Bernasco et al. (2015) showed that the

presence of connectors such as train stations increases the likelihood of being targeted,

while the so-called barriers such as rivers or highways decrease it.
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4.3.2.3 Risk, Likelihood of Completion

In the social disorganisation theory of crime (Shaw & McKay 1942, Sampson & Groves

1989), it is argued that social cohesion induces collective efficacy. The effect of collective

efficacy on crime is twofold. First, strong social control deters those who are thinking

of committing one. Second, it decreases the chance of a successful completion once an

offender has chosen to do so. This theory focuses on the impact that social deprivation,

economic deprivation, family disruption, ethnic heterogeneity, and residential turnover

have on the crime rates within an area. Most offenders live in disadvantaged areas and

often commit a crime in their awareness spaces (minimise effort). The attraction to

‘prosperous targets’ applies mostly to the local context (maximise gain). On the other

hand, when a neighbourhood has high social cohesion (also known as ‘collective efficacy’),

there is mutual trust among neighbours and residents are more likely to intervene on

behalf of the common good (Sampson et al. 1997).

In the context of residential burglary, ethnic diversity has been shown to be positively re-

lated to burglary rates (Sampson & Groves 1989, Bernasco & Nieuwbeerta 2005, Bernasco

& Luykx 2003, Clare et al. 2009). Residential turnover is another measure of collective

efficacy. Although Bernasco & Luykx (2003) document a positive relationship between

residential turnover and the burglary rates, results in Bernasco & Nieuwbeerta (2005),

Townsley et al. (2015) do not confirm that hypothesis. Socio-economic variation among

residents has been shown to be positively related to general crime rates (Sampson et al.

1997, Johnson & Summers 2015), but it was either not considered or shown insignificant

in the studies on burglary we have reviewed. Other indicators of social disorganisation

and their effect on general crime rates (not only burglary) are the high rate of single-

parent households, one-person households as well as younger households Bernasco (2014),

Sampson et al. (1997), Andresen (2010).

4.3.3 Covariates Selection

Based on the criminological overview above and the availability of covariates, we form

four model specifications, from very rich representations to sparse ones. Table 4.1 shows

the covariates used in each of the specifications.



Spatial Poisson Mixtures 65

Variables that represent density, i.e. given by the count per cell, are log-transformed to

improve the fit. For the same reason, mean household income and mean house price are

in log form. Indicators of heterogeneity are computed using the index of variation intro-

duced in Agresti & Agresti (1978). These include ethnic heterogeneity and occupation

variation within an area. Both are indicators of the lack of social cohesion. Subsequently,

all variables were standardised to have zero mean and standard deviation of one.

The first specification, specification 1, is the richest representation and includes variables

that are a proxy for the same phenomenon. For example, both household income and

house price are a measure of affluence. This choice is deliberate as we use a shrinkage

prior for the regression coefficients to choose the most relevant variables.

The second specification, specification 2, removes covariates that are strongly correlated

to others or lack strong evidence in the criminological literature. We remove owner-

occupied dwellings for its strong correlations with the house dwellings and the fraction

of houses that are detached or semi-detached. We remove house dwellings due to high

correlation with (semi-)detached houses and stronger theoretical backing for the lat-

ter (Bernasco & Nieuwbeerta 2005). We remove the urbanisation level because of little

empirical evidence found in the literature. Naturally, it acts as a proxy for where build-

ings are, which is accounted for to a large extent by households and points of interest

variables. We remove single-parent households due to a high correlation with social

housing and unemployment rate, and the latter two being preferable indicators of social

disorganisation.

In the third specification, specification 3, we exclude the following variables on top of

those excluded in specification 2. Median age, as a proxy for collective efficacy, is re-

moved due to weak evidence in previous studies and other measures of collective efficacy

already present: ethnic and socio-economic heterogeneity. One-person households and

accommodation POIs are removed because of weak empirical evidence from previous

studies. Mean household income is removed due to insufficient evidence from previous

studies and an already present and more preferable measure of affluence – house price.

Social housing variable is removed because of weak empirical evidence and a high corre-

lation with unemployment.

In the last specification, specification 4, we additionally remove unemployment rate due

to weak empirical support from previous studies. This specification aggregates all POIs
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Table 4.1: Models specifications that are used throughout the evaluation of the pro-
posed model.

1 2 3 4

log households (count per cell) • • • •
log retail POIs (count per cell) • • •
log eating/drinking POIs (count per cell) • • •
log edu/health POIs (count per cell) • • •
log accommodation POIs (count per cell) • •
log sport/entertainment POIs (count per cell) • • •
log POIs (all categories count per cell) •
houses (fraction of dwellings) •
(semi-)detached houses (fraction of dwellings) • • • •
social housing (fraction of dwellings) • •
owner-occupied dwelling (fraction of dwellings) •
single-parent households (fraction of households) •
one-person households (fraction of households) • •
unemployment rate • • •
ethnic heterogeneity measure (index of variation) • • • •
occupation variation measure (index of variation) • • • •
accessibility (estimated by Transport for London) • • • •
residential turnover (ratio of residents who moved in/out) • • • •
median age • •
log mean household income • •
log mean house price • • • •
urbanisation index (proportion of urban area) •

into a single variable (including accommodation POIs). This is to remove the strong

correlations between them. As a single variable, it signifies the level of social activity:

retail, education, entertainment, etc.

4.4 Results

After discussing the modelling choices and experimental settings, we compare SAM-GLM

model to the log-Gaussian Cox process (LGCP), based on the out-of-sample generali-

sation and crime hotspot prediction. For LGCP, we use the standard formulation with

a Matèrn covariance function (see Section A.2 in the online supplementary material for

full details). Lastly, we interpret the results obtained using the proposed method and

show the relevance for obtaining criminological insights.
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4.4.1 Evaluation and Interpretation

We give the details of the evaluation criteria for assessing the predictive power of the

model and discuss how we interpret the model components.

4.4.1.1 Out-of-sample Performance

Firstly, we evaluate the performance of the proposed and competing models using the

Poisson likelihood of one-period-ahead data given the model parameters obtained from

training data. The likelihood denotes how likely the observed data are for given param-

eters. For a given sample from the posterior distribution of the model parameters, ϕ(s),

the average pointwise held-out log-likelihood is defined as

Held-out log likelihood(s) =
1

N

N∑︂
n=1

log p(ỹn|ϕ(s)), (4.7)

where p(·) is the Poisson density function with the intensity parameter being a function

of ϕ(s) determined by the model we use (LGCP or a SAM-GLM formulation), ỹn is the

realised next-period value for cell n. Log-likelihood is a relative measure used for model

comparison and can only be used to compare models within the same family of models,

in our case, Poisson-based models. A higher value indicates superior predictive power.

Next, we use the root mean square error (RMSE) metric. It is independent of the model

and is measured at the same scale as the target variable. Given a sample from the

posterior distribution of the model parameters, ϕ(s), we obtain the expected count of

events for all N locations, ȳ(s), which is simply the value of the cell-specific intensity

parameter. Then, using the realised next-period value, ỹ = (ỹ1, . . . , ỹN ), the RMSE is

defined as

RMSE(s) =

⌜⃓⃓⎷ 1

N

N∑︂
n=1

(ȳ
(s)
n − ỹn)2. (4.8)

A lower value of RMSE indicates a better predictive performance.

4.4.1.2 Hotspot Prediction

Given that burglary is our object of interest, we also evaluate models with respect to

their ability to effectively model areas of high intensity, so-called hotspots. The predictive
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accuracy index (PAI) and predictive efficiency index (PEI) are two standard approaches

in criminology for assessing the ability to predict crime hotspots. These measures are

driven by the objective of identifying where to deploy limited resources (police officers)

to capture as many crime events as possible.

For a given area size a that a model is allowed to flag as hotspots, PAI (Chainey et al.

2008) is defined as

PAI =
ca/C

a/A
,

where ca is the number of crimes in areas (of total size a) where crimes are predicted to

occur by the model, A is the total area of the study region, and C is the total number of

crimes in the study region. The objective of this index is to assess the ability to capture

as many crime instances as possible with the as little area as possible.

PEI measures how effective the given model’s forecasts are compared to those of a perfect

model, which exactly predicts all events and their locations (Hunt 2016). For a given

size of the area to be marked as hotspots, a, it is defined as

PEI =
ca
c∗a
,

where ca is defined the same as above, and c∗a is the number of crimes in areas (of total

size a) where crimes are predicted to occur by the perfect model. The c∗a term can be

thought of as the maximum possible number of crimes that could have been captured

using an area of size a. PEI measures performance relating to what would the perfect

model predict, whereas PAI focuses on what proportion of the overall crime the model

can ‘cover’ with a finite area a.

In our context of a regular grid, we use both measures to compare competing models

when up to n cells are flagged as hotspots. More concretely, for n cells to be flagged,

ca corresponds to the number of crimes in n cells (with total area a) with the highest

predicted count of events; c∗n corresponds to the number of crimes in n cells (with total

area a) with the highest realised count of events. For a given n, a higher value of PAI or

PEI indicates superior hotspot prediction.



Spatial Poisson Mixtures 69

4.4.1.3 Interpretation of Results

Estimating the effects of different spatial covariates helps us understand the underlying

mechanisms of the point pattern.

In the mixtures of regressions literature, the interpretation of the individual regression

coefficients is of no interest, or the focus is on reporting the regression coefficients (βk)

for each component and quantifying their uncertainty so that their significance can be

assessed (Frühwirth-Schnatter et al. 2019, ch. 8). To further interpret the coefficients,

one could look at each mixture component specifically and interpret the coefficients in a

classical way, conditional on the partitioning of observations. For example, for a GLM

with the exponential link function, increasing a covariate by 1 unit multiplies the mean

value of the observed variable by the exponential of the regression coefficient for that

covariate, provided other covariates are held constant. However, this approach only

allows component-specific conclusions as it depends on the distribution of the covariate

for the associated component. For example, one mixture component may be active in

areas with very small values for a specific covariate, while some other component is

active in areas with high values. Comparing regression coefficients for that covariate

across different components would not be appropriate.

Instead, to be able to compare the covariates across mixture components, we derive a

covariate importance measure (IMP) that is motivated by the coefficient of determination,

R2. The objective of this measure is to assess the magnitude and the sign (positive/neg-

ative) of the effect of a covariate for a specific mixture component on the data fit. We

measure the magnitude of the effect for a covariate j of the mixture component k as the

ratio of the sum of squared residuals for the full model and the sum of squared residu-

als for the same model without covariate j, which is then subtracted from one. For a

component k and a covariate j,

IMPkj = 1−
∑︁

n I (zn = k)(yn − ŷnβ̃)2∑︁
n I (zn = k)(yn − ŷnβ̄j )2

, (4.9)

where, I (zn = k) is the indicator function of whether cell n is allocated to component

k, ŷnβ̃ is the predicted count using the full vector of inferred regression coefficients, and

ŷ
nβ̄

j is the predicted count using the regression coefficients with the jth coefficient set

to zero. The magnitude of IMP is interpreted as a measure of the relative importance of
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the corresponding covariate for the model fit. A value of IMP closer to 1 represents that

removing the corresponding covariate is more detrimental to model fit.

We determine the sign of IMP for a given covariate and a mixture component by inspecting

the distribution of the covariate for the given component. We need to be careful with

negative values as our covariates are centred around zero and standardised. To obtain

the sign, we take the mean of the covariate across the cells that are allocated to the given

component, and if that is positive, we take the sign of the corresponding βkj estimate.

Otherwise, we take the negative of the sign of the βkj estimate.

4.4.2 Simulation Study Details

For the methodology developed in Section 4.2, we need to choose the grid size, blocking

structure, number of mixture components (K) and model specification.

4.4.2.1 Model Choices

To choose grid size, we take into account the precision of the burglary point pattern. The

published data have been anonymised by mapping exact locations to predefined (snap)

points (police.uk 2018). We follow the recommendations in Tompson et al. (2015) who

assess the accuracy of the anonymisation method by aggregating both the original and

obfuscated data to areal counts at different resolutions and looking at the difference.

They show that the aggregation at lower super output area (LSOA) level does not suffer

from the bias introduced by the anonymisation process. Therefore, for our cell size,

we approximately match an average-size LSOA to avoid the loss of precision caused by

the anonymisation process. As a result, our grid has N = 9824 cells, each of which

corresponds to an area of 400× 400 metres.

For the blocking structure, we take advantage of the existing census output areas, that

are designed to group homogeneous groups of households and people together (Office

for National Statistics 2019). Given that our grid is approximately at the LSOA level,

we choose MSOAs as the blocking structure. We assess the sensitivity of this choice in

Section 4.4.4.
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Table 4.2: Model performance comparison of two variants of the model – dependent
blocks using the logistic transform of K Gaussian processes, and independent blocks
with Dirichlet prior. Reported values are a mean and standard deviation obtained
from MCMC samples. Blocking: MSOA, training data: burglary 2015, test data: 2016,

model specification 4.

K Held-out log-likelihood RMSE

Independent Dependent Independent Dependent

2 −2.607± 0.010 −2.605 ± 0.010* 4.999 ± 0.028* 5.010± 0.028
3 −2.598± 0.012 −2.593 ± 0.011* 4.973± 0.036 4.950 ± 0.031*
4 −2.588 ± 0.011* −2.606± 0.012 4.964 ± 0.034* 4.988± 0.031

The number of components, K, is a crucial parameter of our model. We run our model for

varying K and use the performance measures introduced above to decide on the optimal

number of components. From our experience, after a certain number of components,

interpretation becomes harder while performance does not significantly improve.

We choose model specification based on the four options mentioned in Section 4.3.3.

4.4.2.2 Dependence of Blocks

In Section 4.2 we have proposed two possible formulations for the prior on the mixture

weights: the multinomial logit transformation of K Gaussian random fields and indepen-

dent Dirichlet random variables. To assess whether assuming block dependence has a

major effect on the quality of the model, we compare the out-of-sample performance for

both variants of the model. For this comparison, we set the blocking scheme to MSOA,

use model specification 4, and estimate the model on the burglary 2015 dataset. To fit

the model with dependent blocks, we use the squared exponential kernel (Rasmussen &

Williams 2006) where we choose the lengthscale parameter by optimising out-of-sample

RMSE using grid search. Table 4.2 shows the mean and the standard deviation of the

samples of held-out log-likelihood and RMSE for both variants of the model, and for

different values of K. The bold typeface signifies which method performed better for the

given K and for the given metric. The star indicates statistical significance with p-value

< 10−3 obtained from a two-sample t-test of samples of each metric for each variant of

the model.

The results in Table 4.2 show that the model with dependent blocks does not consistently

lead to improved performance. This indicates that block dependence structure in the
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burglary point pattern data that we consider is not a major effect. These findings

highlight some aspects of the data structure in terms of capturing these effects and

suggest that the point pattern data at a higher precision would be needed to uncover

these effects, if they are present. For this reason, in the rest of the paper we only consider

independent blocks with Dirichlet prior weights as described in Section 4.2.3.

4.4.2.3 Identifiability

As mentioned in Section 4.2, the traceplot of the log-likelihood can be inspected for

label-switching. From our experience, the sampler would choose one of the K! modes,

that are a consequence of the likelihood invariance, and is unlikely to switch to another

mode due to the high dimensionality of the parameter space.

4.4.3 SAM-GLM Performance

Figures 4.2 and 4.3 report performance for the 2015 and 2013-2015 datasets, respectively.

On the left panels of the figures, we report the box-plot of the posterior distribution of the

average held-out log-likelihood. We show the box-plot for different model specifications

for both SAM-GLM with an increasing number of components (K) and LGCP models.

On the right panels, we report analogous plots for the root mean square error metric

(RMSE).

For the one-year dataset, SAM-GLM model matches the predictive performance of the

LGCP model for K = 2 components on both metrics. For the three-year dataset, K = 3

components are enough to match the LGCP model using the held-out log-likelihood, but

at least K = 4 components are required for RMSE. The extra components required to

match the performance of LGCP could be explained by the fact that the three-year point

pattern will naturally be smoother and thus easier to interpolate non-parametrically using

the Gaussian random field part of LGCP. The probability distribution for both metrics

and for all models are more concentrated for the three-year dataset. For the one-year

dataset, it is clear that K = 2 or K = 3 is the optimal number of components. For the

three-year counterpart, the range between 3 and 5 components would be an appropri-

ate choice. For both datasets, the performance does not vary significantly for different



Spatial Poisson Mixtures 73

1 2 3 4 5 6 7 8

−2.65

−2.6

−2.55

K

Held-out log-likelihood

1 2 3 4 5 6 7 8

100.68

100.7

100.72

K

RMSE

Figure 4.2: Evaluation of the performance of SAM-GLM ( ), compared to LGCP
( ) for the one-year dataset. The box plot of the log-likelihood and root mean square
error for the held-out data with respect to the posterior samples of model parame-
ters ϕ(s) (as described in Section 4.4.1.1) are shown for different model specifications:
specification 1 ( ), specification 2 ( ), specification 3 ( ), specification 4 ( ).
Blocking: MSOA, training data: burglary 2015, test data: burglary 2016. Note that

the axis with the value of K does not apply to the LGCP results.
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Figure 4.3: Evaluation of the performance of SAM-GLM ( ), compared to LGCP
( ) for the three-year dataset. The box plot of the log-likelihood and root mean
square error for the held-out data with respect to the posterior samples of model param-
eters ϕ(s) (as described in Section 4.4.1.1) are shown for different model specifications:
specification 1 ( ), specification 2 ( ), specification 3 ( ), specification 4 ( ).
Blocking: MSOA, training data: burglary 2013-2015, test data: burglary 2016-2018.

Note that the axis with the value of K does not apply to the LGCP results.

model specifications. Consequently, in the following sections, we limit our attention to

specification 4 due to its parsimony.

While out-of-sample performance, measured by the held-out log-likelihood or RMSE,

takes into account all locations, practitioners might only be interested in predicting

crime hotspots. To this end, we evaluate PAI and PEI (see Section 4.4.1) as measures
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Figure 4.4: PAI/PEI performance SAM-GLM ( ) and LGCP ( ) models, using
specification 4. For the SAM-GLM results, the colour of the line represents the number
of components: K = 1( ), K = 2( ), K = 3( ), K = 4( ), K = 5( ),
K = 6( ), K = 7 ( ). Blocking: MSOA, training data: burglary 2015, test data:

burglary 2016, model specification: 4.

of hotspot prediction. Figures 4.4 and 4.5 show the plots of PAI and PEI measures for

both models with specification 4, using the 2015 and 2013-2015 datasets, respectively.

The plots show the score for when up to 500 cells (around 5% of the study region) are

flagged as hotspots. Hotspots are chosen as the n cells with the highest expected value

of burglaries. For the one-year dataset, the SAM-GLM model with K = 2 components is

enough to outperform LGCP on PEI measure when between 50 and 500 cells are flagged

as hotspots. For PAI measure, no significant difference can be seen for K > 2. The

results based on the three-year data favour LGCP model when up to 150 cells are flagged

as hotspots and K < 5. After adding more components, the SAM-GLM performance

matches that of LGCP. When between 150 and 500 cells are flagged, K ≥ 3 components

is enough to outperform LGCP. These results are consistent with the previous finding

that outperforming LGCP on the three-year dataset requires more components.

4.4.4 Block Size Sensitivity

The proposed model requires a specification of the blocking structure for the mixture

weights prior. To assess sensitivity of this choice, we compare to local authority districts

(LAD), as well as a single block for the whole study region. In the latter case, the model

reduces to a non-spatial mixture of Poisson GLMs. There are 946 MSOAs, and 33 LADs



Spatial Poisson Mixtures 75

100 200 300 400 500

101

Number of cells marked as hotspots

PAI

100 200 300 400 500

10−0.2

100

Number of cells marked as hotspots

PEI

Figure 4.5: PAI/PEI performance SAM-GLM ( ) and LGCP ( ) models, using
specification 4. For the SAM-GLM results, the colour of the line represents the number
of components: K = 1( ), K = 2( ), K = 3( ), K = 4( ), K = 5( ),
K = 6( ), K = 7 ( ). Blocking: MSOA, training data: burglary 2013-2015, test

data: burglary 2016-2018, model specification: 4.

in the study region. The structure is hierarchical – multiple non-overlapping contiguous

MSOAs constitute single LAD region.

Figures 4.6 and 4.7 show the box-plots of the held-out log-likelihood and RMSE for

the one-year and the three-year datasets, respectively. The results for both metrics

indicate that imposing spatial information using more localised prior results in better

out-of-sample performance for the one-year dataset. To confirm that the difference is

statistically significant, we performed an unpaired two-sample t-test comparing RMSE

samples obtained using MSOA blocking structure to those obtained using the LAD and

single blocks, respectively. Table 4.3 summarises the t-statistics and p-values. For the

three-year dataset, there is no evident difference, and spatial prior does not improve

predictive performance of the model. This is not surprising as the 3-year observation

window will provide more information and thus the model is less likely to overfit even if

we do not impose spatial dependence within the blocks.

4.4.5 Interpretation

For this analysis, we choose the three-year dataset because more data will lead to more

robust inferences of the parameters. We choose specification 4 with K = 3 components

because of its parsimony and the excellent performance shown above – for the three-

year dataset and specification 4, there does not seem to be a significant improvement
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Figure 4.6: The box plot of the log-likelihood and root mean square error for the held-
out data with respect to the posterior samples of model parameters ϕ(s) (as described
in Section 4.4.1.1) are shown for different block sizes: MSOA( ), LAD( ), single

block( ). Training data: 2015, test data: 2016, model specification 4
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Figure 4.7: The box plot of the log-likelihood and root mean square error for the
held-out data with respect to the posterior samples of model parameters ϕ(s) (as de-
scribed in Section 4.4.1.1) are shown for different block sizes: MSOA( ), LAD( ),
single block( ). The error bars represent the standard deviation obtained from the
respective MCMC samples. Training data: 2013-2015, test data: 2016-2018, model

specification 4

after K > 3 components. Figure 4.8 shows the component allocation maps and the IMP

measure with the effect sign (+/−) for each covariate for all the three components. The

allocation map for each component shows the proportion of the MCMC samples a cell is

allocated to that component. The alphanumeric labels on the allocation plots are used

in the discussion below when referring to specific locations. IMP is computed for each

sample and component separately and then averaged over the MCMC samples. We also

report the standard deviation of the IMP estimate in brackets.
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Table 4.3: Sensitivity analysis of block sizes. p-values comparing whether the dif-
ference in RMSE performance is significant. Training data: burglary 2015, test data:

burglary 2016, specification 4.

K MSOA vs LAD MSOA vs SINGLE

t-statistic p-value t-statistic p-value

2 -68.732 < 10−3 -115.042 < 10−3

3 -76.260 < 10−3 -87.534 < 10−3

4 -39.016 < 10−3 -35.207 < 10−3

5 -26.858 < 10−3 -52.991 < 10−3

6 -41.913 < 10−3 -76.152 < 10−3

7 -12.173 < 10−3 -56.847 < 10−3

8 -31.547 < 10−3 -66.688 < 10−3

The first component is active throughout the study region, with large clusters around

residential areas. These include areas around Kensington, Fulham, and Shepherd’s Bush

(A); Hounslow, Kingston, Richmond, and Twickenham (2); Hayes and Southall (C); Har-

row and Edgware (D); East Barnet, Enfield, Walthamstow, Wood Green (E); Barking

and Dagenham (F); Bexley (G); Orpington (H); Bromley (I); Croydon, and Purley (J);

New Malden, and Morden (K). In this component, the number of households and points

of interest have the strongest effect (excluding the intercept) – burglaries happen where

targets are. Accessibility has also been inferred as an important covariate, consistent

with the past criminological studies. In this component, house price is inferred as having

a positive effect on the intensity of burglary, suggesting that offenders choose attractive

targets. The positive effect of ethnic heterogeneity confirms the hypothesis from the

social disorganisation theory. The other indicators of social disorganisation – occupation

variation, residential turnover – are weaker but are consistent with the existing crimi-

nology literature. House price as a measure of reward and the proportion of houses that

are detached and semi-detached have low IMP value.

Component 2 is active in the city centre and in the high streets of neighbourhoods:

Soho, Mayfair, Covent Garden, Marylebone, Fitzrovia (L); Shoreditch and Stratford

(M); Streatham and Tooting Bec (N); Wembley, and Brent (O); Enfield, Hampstead

(P); Romford (Q); Orpington (R); Wembley, Harrow (S). Burglary rates in these lo-

cations are largely driven by points of interest and households. Compared to the first

component (residential), the magnitudes of IMP values for these covariates are different -

points of interest are more important for this component, and the number of households

is more important for the first component. Accessibility measure is inferred to have
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high importance in this component. This measure is high in the city centre and around

the high streets, which are usually well-connected to the public transport system. This

confirms findings from crime pattern theory and routine activity theory which suggest

that offenders choose locations that are part of their usual routine and in their awareness

spaces. Ethnic heterogeneity and occupation variation have strong positive effect and

signify the lack of social cohesion. Unexpectedly, our model infers a negative relation-

ship between residential turnover and burglary intensity. Association of high residential

turnover with the reduced risk of burglary apprehension has been shown as significant

in only a few studies and was limited to residential burglary (Bernasco & Luykx 2003,

Bernasco & Nieuwbeerta 2005, Townsley et al. 2015). Areas that are less residential such

as high streets have a higher proportion of flats. Dwellings with shared premises such

as flats have been shown to less likely become a target than one-household buildings

(Beavon et al. 1994). Another possible reason could be the staleness of the data for the

covariates which are taken from the 2011 census. Also, house price has been inferred to

have a negative effect, i.e. more affluent locations are less likely to get targeted. This is

contrary to the first component. A possible explanation mentioned in previous studies

is that offenders often live in disadvantaged areas and choose targets within their aware-

ness spaces, which are less likely to be affluent areas (Evans 1989, Rengert & Wasilchick

2010).

The last component is active in the areas of low intensity. These include Hyde Park,

Regent’s Park, Hampstead Heath (1); Richmond and Bushy parks (2); Osterley Park and

Kew botanic gardens (3); Heathrow airport (4); RAF Northolt, and parks near Harrow

(5); Edgware fields (6); Lee Valley (7); industrial zone in Barking and Rainham Marshes

(8); parks around Bromley and Biggin Hill airport (9); and other non-urban areas located

on the edges of the map. This component explains locations with little criminal activity,

signified by negative IMP for the number of households and points of interest. Occupation

variation, as a measure of socioeconomic heterogeneity, is strongly positive, which would

support the hypothesis from social disorganisation theory. However, this is more likely

due to the very low population in those areas which results in high occupation variation

measure. Accessibility measure also has a positive effect on burglary rates in these

locations. This is expected and in line with the hypotheses from the crime pattern

theory. Other covariates have very small IMP values.

The allocation of cells partitions the map into three clusters. By aggregating the number
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log POIs (all) 0.399 (0.022) +
accessibility 0.225 (0.024) +
log house price 0.100 (0.017) +
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IMP, component 2
intercept 0.955 (0.001) +
log households 0.840 (0.003) +
accessibility 0.554 (0.012) +
log POIs (all) 0.510 (0.017) +
ethnic heterogeneity 0.192 (0.017) +
occupation variation 0.098 (0.021) +
population turnover 0.032 (0.006) -
log house price 0.020 (0.011) -
(Semi-)detached houses 0.003 (0.002) +

Pposterior(zn = 3)
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IMP, component 3
log households 0.946 (0.003) -
intercept 0.906 (0.004) +
log POIs (all) 0.808 (0.015) -
occupation variation 0.719 (0.060) +
log house price 0.680 (0.027) +
accessibility 0.435 (0.086) +
ethnic heterogeneity 0.050 (0.024) +
(Semi-)detached houses 0.002 (0.007) +
population turnover 0.001 (0.007) +

Figure 4.8: Mixture model, allocations and IMP table for each mixture component.
Training data: 2013-2015, specification 4.
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of observed crimes that occurred in each cluster we get that components 1, 2, and 3

cover 46%, 42%, 12% of all burglaries during the 2013-2015 period, respectively. Official

aggregated police data for this period make the split of 64% and 36% for residential

and non-residential burglary (police.uk 2019). Our inference agrees that there is more

residential burglary than non-residential burglary and that approximately 35-45% of

burglaries are non-residential. It is unclear whether the crime in low-count areas, which

according to our model accounts for 12%, is residential or non-residential.

The support for the presence of spatial heterogeneity is further given by inspecting the

inferences made by the LGCP model (for LGCP details see Section A.2 in the supplemen-

tary material). The left panel of Figure 4.9 shows standard deviations of the marginal

posterior distributions of the Gaussian random field component (f). It is clear that the

variance of the field component is clustered, where the regions with higher values are

easily identifiable as those less urbanised. In contrast, SAM-GLM model has pickled

up this heterogeneity by allowing a separate component for it (see component 3 in Fig-

ure 4.8). The right panel of Figure 4.9 shows IMP computed for all components of the

LGCP model. IMP measure for the field component of the model is computed by treating

it as a covariate with the coefficient equal to one. The IMP value for the latent field com-

ponent is the third-highest, after the intercept and the number of households. A large

contribution from the latent component indicates that the linear term in the Poisson

regression model cannot on its own sufficiently explain the variation in the intensity of

burglary.

4.4.6 Overdispersion, Excess of Zeros

The discussion of the inferences above shows that our model effectively handles excess

of zeros by allocating low-count cells (non-urban areas) its own cluster, which has its

own regression coefficients. Similarly, the proposed mixture model is able to reduce

the overdispersion problem that is present in the standard Poisson GLM model (the

special case of SAM-GLM, with K = 1). The mixture model may allocate each cell

to a cluster that better describes the burglary count in that location. Inspecting the

Pearson χ2 statistic (χ2 =
∑︁N

i=1
(Observedi−Expectedi)

2

Expectedi
) provides supporting evidence for

this. Introduction of two extra components has resulted in the 81% decrease, from

106 942.43 to 20 028.99, showing a better model fit. This is further confirmed by a scatter
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ethnic heterogeneity 0.061 (0.029) +
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Figure 4.9: Left: Standard deviation of the posterior distribution of the latent field,
f , of the LGCP model. It is clear that, it is clustered and the elevated levels correspond
to non-urban locations, airports, and parks (see the discussion above). Right: IMP
measure for the component of the LGCP model. For both panels, training data: 2013-

2015, model specification: 4.

plot of expected vs observed counts for the Poisson GLM model and the proposed model

with K = 3 as shown in Figure A.2 in the supplementary material.

4.5 Conclusions

Spatial point patterns on large spatial regions, such as metropolitan areas, often exhibit

localised behaviour. Motivated by this, we propose a mixture model that accounts for

spatial heterogeneity as well as incorporates spatial dependence. Each component of the

mixture is a model in itself, and thus allows for different locations to follow a different

model, e.g., in the urban context, less-urbanised locations can assume a different model

from the city centre. Each component is an instance of the generalised linear model

(GLM) which includes covariates. We account for spatial dependence through the mix-

ture allocation part. The allocation of each location to one of the components is informed

by both the data and the prior information. By utilising existing blocks structure, or

defining a custom one, the prior supports locations within the same block to come from

the same component. This formulation attempts to find the right balance between the

ability to model sharp spatial variations and borrowing statistical strength for locations

within the same block. Additionally, the model allows for spatial dependence between

the blocks. Following the Bayesian framework, we present a Markov Chain Monte Carlo
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sampler to infer the posterior distributions. Inspection of the posterior distributions of

the model parameters allows us to learn new insights about the underlying mechanisms

of the point pattern.

Our results show that London burglary data are effectively modelled by the proposed

method. Using out-of-sample and crime hotspot prediction evaluation measures, we show

our model outperforms log-Gaussian Cox process (with Matèrn covariance function) that

is the default model for point processes and is more computationally tractable.

The focus of this work on burglary crime does not limit the potential uses of the proposed

model. We believe that the model can be applied in a wider setting of analysing spatial

point patterns that may show localised behaviour and heterogeneity.

Future analysis could consider several directions not explored in this work. Firstly, our

inference scheme for the model with block dependence produces an O
(︁
B3 ×K

)︁
algo-

rithm. To reduce this complexity, one could consider K level sets of a single Gaussian

random field for mixture weights, instead of K Gaussian fields, thus reducing dimension-

ality (Hildeman et al. 2018, Fernández & Green 2002). Another approach is assuming

Markovian structure of the Gaussian random fields, resulting in sparse computational

methods(Rue & Held 2005). A different approach is considering inference schemes that

are less computationally demanding than MCMC such as variational methods (Jordan

et al. 1999). Secondly, different options for specifying the term that involves covariates

could be explored. One could consider forcing certain covariates to share the coefficients

across all components if there is a strong prior belief for doing so. Another possible area

of investigation is spatially varying coefficient processes method, proposed by Gelfand

et al. (2003).

4.6 Implementation and Supplementary Material

The source code that implements the methodology and reproduces the experiments is

available at https://github.com/jp2011/spatial-poisson-mixtures. The supple-

mentary material with mathematical derivations and supporting figures is available in

the appendix at the end of this document.

https://github.com/jp2011/spatial-poisson-mixtures


Chapter 5

Spatial Modelling with Partial

Differential Equations

This chapter gives an introduction to building models of spatial variation using partial

differential equations (PDEs). Firstly, we give an overview of the models we consider

in this thesis. We then proceed by discussing how one may assimilate observed data

into this kind of models. Subsequently, we give a detailed and mathematically rigorous

definition of what it means to solve a PDE, as part of which we elaborate on one of

the most popular numerical schemes – the finite element method. Lastly, we discuss

different options for introducing randomness into PDE models. This chapter, combined

with Chapter 2, provides the necessary background for Chapter 6.

5.1 Models Based on Partial Differential Equations

For many phenomena in science and engineering, describing the rate of change in a

quantity of interest u is more tractable or desirable than expressing the absolute value

of the quantity itself. Many laws in natural sciences have been described in this manner.

To name a few: Newton’s laws, Hooke’s law, heat equation. Partial differential equa-

tions (PDEs), which impose relations between the partial derivatives of a multivariable

function, have been an invaluable tool in modelling and studying complex physical and

natural systems. Such relations express how a quantity of interest, which is represented

as a function, changes as we move through the domain D. In this thesis, we focus on

83
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spatial domains such that D ⊂ R2. As already outlined in Section 1.1.2.2, the general

form of partial differential equations that we study is given as

L(κ)u(x) = f(x), (5.1)

where L is an elliptic operator parametrised by a physical parameter κ, f is the input

term, and u is the solution of the given PDE. The operator L may be non-linear in κ

and defines the relationship between the solution u and the input f .

As an illustration of how L may impose spatial dependence or heterogeneity, we consider

the Laplace operator: L = (∇·∇). It expresses how much the average value of u over the

neighbourhood around a point x ∈ D differs from the value of u at x. The magnitude

of this change is controlled by the input f as follows:

∇ · ∇u(x) = f(x). (5.2)

It is evident that this formulation allows for imposing spatial correlation in u, and by

letting f vary across the domain, we can incorporate spatial variability of the strength

of spatial correlation.

We note that PDEs have also been used for time-dependent phenomena, however, in this

thesis we assume steady state and focus only on the spatial variation of u.

5.1.1 Elliptic Partial Differential Equations

We restrict our attention to second-order linear PDEs with x = (x1, x2) ∈ D ⊂ R2. For

such class of PDEs, the equation in (5.1) can be written as

Aux1x1 + 2Bux1x2 + Cux2x2 +Dux1 + Eux2 + Fu+G = 0, (5.3)

where ux1 = ∂
∂x1

, ux1x2 = ∂2

∂x1∂x2
. We omitted boundary conditions for brevity. Depend-

ing on A,B,C,D,E, F,G, we recognise three types of second-order linear PDEs: elliptic,

parabolic, and hyperbolic. In this thesis, we further limit our focus to PDEs for which

B2 − 4AC < 0. This class of PDEs is called elliptic, inspired by the equation for an

ellipse.
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Figure 5.1: Solution of the Poisson equation (right) for the given forcing function
f(x) (left) and different diffusion coefficients exp(κ(x)) (centre).

5.1.1.1 Running Example

As our main example, we consider the Poisson equation on domain D, as briefly intro-

duced in Section 1.1.2.2:

−∇ ·
(︁
exp(κ(x))∇u(x)

)︁
= −

2∑︂
j=1

∂

∂xj

(︃
exp(κ(x))

∂u(x)

∂xj

)︃
= f(x) (5.4)

where κ(x), f(x) : D → R are given functions, and Dirichlet boundary conditions are

given as

u(x) = g(x), x ∈ ∂D. (5.5)

For ease of notation, we set κ(x) = exp(κ(x)). We show the one-dimensional version

of (5.4) on unit line interval with boundary conditions set as u(0) = u(1) = 0 in Fig-

ure 5.1. The Poisson equation on the unit line has the following form:

− d

dx

(︃
exp(κ(x))

du(x)

dx

)︃
= f(x). (5.6)

Figure 5.1 shows the solution u(x) for a given f(x) and different options of κ(x) to

illustrate how the solution changes when κ(x) = exp(κ(x)) changes.

5.1.2 Forward Problem and Inverse Problem

Once a model has been posited, a number of questions can be asked of that model.

Firstly, we may use the model to determine the state of the system, u, for a given

physical parameter κ and input f . For example, in structural mechanics, by knowing
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material properties which correspond to κ in (5.1), and Hooke’s law, which corresponds

to L(κ), one may predict the displacements of a material when subjected to force f .

It can be used to predict what one would have observed had they done the physical

experiment. Determining the state of the system u from the physical parameter κ and

inputs f is termed a forward problem.

The second important class of problems entails determining κ from a finite number of

observations of the state of the system u for a given input f . This problem is referred to

as the inverse problem. For the structural mechanics example above, we may perform a

tensile test in which we apply different force f to the material and take measurements

of the resulting displacements, corresponding to the state of the system, u. We may

then infer the material properties, κ, using those measurements and Hooke’s law which

models the relations between material properties, applied force, and displacements.

Experiments and observations play a crucial role in PDE models. Recent developments

in sensor measurements and their wide availability enables study of systems that was not

possible before. For example, plastic deformation in bridges (Lin et al. 2019, Febrianto

et al. 2021). The obtained data is used to either calibrate the models (refining L to better

represent the phenomena in question) or solve inverse problems, where we are interested

in inferring a quantity of interest which is not directly observable (Biegler 2007, Stuart

2010). In this thesis, we restrict our attention to the inverse problem. We frame the

problem in a probabilistic setting, which allows for principled uncertainty quantification.

We discuss uncertainty pertaining to PDE models in the next section.

5.1.3 Uncertainty in PDE models

While a PDE is by itself a deterministic model, it is necessary that either due to the

experimental nature of a task at hand, or due to observational noise, or due to the lack

of knowledge, sources of uncertainty are accounted for and are appropriately quantified.

As discussed in Section 2.2, uncertainty may enter models in different ways. For PDE

models, uncertainty may come from the following sources:

1. Uncertainty in the input f(x) may occur especially in an experimental setting,

where input f(x) is applied to a subject of interest through an actuating device.

Due to noise, we may expect there to be variation in the input.
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2. Uncertainty in the parameter κ(x) often corresponds to the spatially varying prop-

erties of a system. For example, in a tensile test κ(x) corresponds to material

properties. Although these properties are physically deterministic (at a macro-

scopic level), due to the lack of knowledge about them, we may represent them

using a probability measure to express our current beliefs about them (see the

discussion on priors in Section 2.2).

3. Misspecification error refers to the mismatch between the posited model and the

true data generating process. One may introduce a model component that will

account for such misspecification. For example, Gaussian processes have been a

common way of accounting for model misspecification (Kennedy & O’Hagan 2001,

Girolami et al. 2021, Duffin et al. 2021).

4. Observation error is the uncertainty due to the random nature of how the data

are recorded – imprecise measuring equipment, external factors such as weather

impacting the readings, among others.

5.2 Solving Partial Differential Equations

The goal of this section is to discuss what it means to solve a PDE, and we make concrete

the required properties of f , κ for the solution u to exist. Throughout this section, we

closely follow Lord et al. (2014, ch. 2).

5.2.1 Variational Formulation

We use the running example of a 2D Poisson equation as defined in (5.4) with Dirichlet

boundary conditions as given in (5.5).

If the derivatives are interpreted in the classical sense, we require that f , exp(κ) are

continuous. The solution is then a smooth function with continuous first and second

derivatives.

Definition 5.1 (classical solution). Let f ∈ C(D̄) and κ ∈ C1(D̄). A function u ∈
C2(D) ∩ C(D̄) that satisfies (5.4) for all x ∈ D and the boundary conditions in (5.5) is

called a classical solution.
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Note that we require that u itself has a well-defined limit on the boundary, but not

necessarily its derivatives.

In practice, we want to solve problems where the choice of f is less restricted, e.g.,

f ∈ L2(D)1. In those situations, the notion of a classical solution may be too restrictive,

so we interpret the derivatives in the weak sense and seek solutions in a Sobolev space.

Definition 5.2 (Weak derivative (Lord et al. 2014)). Consider a function u : D → Y ,

where Y is a Banach space. Let Dj := ∂
∂xj

. Given a multi-index α = (α1, . . . , αd), we

define |α| := α1 + · · ·+ αd and Dα := Dα1
1 · · · Dαd

d , so that

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαd

d

We say a measurable function Dαu : D → R is the α-th weak derivative of a measurable

function u : D → Y if

∫︂
D
Dαu(x)ϕ(x)dx = (−1)|α|

∫︂
D
u(x)Dαϕ(x)dx, ∀ϕ ∈ C∞

c (D),

where C∞
c (D) is the space of infinitely differentiable functions with compact support.

Definition 5.3 (Sobolev spaces). Let D be a domain and Y be a Banach space. For

p ≥ 1, the Sobolev space W r,p(D,Y ) is the set of functions whose weak derivatives up

to order r ∈ N are in Lp(D,Y ):

W r,p(D,Y ) := {u : Dαu ∈ Lp(D,Y ) if |α| ≤ r}. (5.7)

If p = 2 and H is a Hilbert space, Hr(D,H) is used to denote W r,2(D,H).

Proposition 5.4 (Sobolev norm and semi-norm). W r,p(D,Y ) is a Banach space with

the norm

∥u∥W r,p(D,Y ) :=

(︄ ∑︂
0≤|α|≤r

∥Dαu∥pLp(D,Y )

)︄1/p

(5.8)

and Hr(D,H) is a Hilbert space with inner product

⟨u, v⟩Hr(D,H) :=
∑︂

0≤|α|≤r
⟨Dαu,Dαv⟩L2(D,H). (5.9)

1Lp(D) is the set of Borel measurable function u : D → R with ∥u∥Lp(D) < ∞ and |u|Lp(D) :=(︁∫︁
D
|u(x)|pdx

)︁1/p
.
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It is also convenient to define the Sobolev semi-norm:

|u|Hr(D) :=

(︄ ∑︂
|α|=r

∥Dαu∥2L2(D)

)︄1/2

. (5.10)

Due to boundary conditions, Sobolev spaces that incorporate boundary conditions are

necessary. We therefore define a Sobolev space of functions that are zero on the Dirichlet

boundary ∂D,

V := H1
0 (D) := {v ∈ H1 : v(x) = 0, ∀x ∈ ∂D}, (5.11)

and a Sobolev space of functions on D which satisfy the boundary conditions g(x) for

all x ∈ ∂D:

W := H1
g (D) := {w ∈ H1(D) : γw(x) = g(x), ∀x ∈ ∂D}, (5.12)

where γ : H1(D)→ L2(∂D) is a trace operator that maps functions on D onto functions

on the boundary ∂D. This implies that g must belong to the following subspace of

L2(∂D).

Definition 5.5 (H1/2(∂D) space). Let D ⊂ R2 be a bounded domain. The trace space

is defined as

H1/2(∂D) := γ(H1(D)) = {γw : w ∈ H1(D)}, (5.13)

where γ is a trace operator on H1(D). H1/2(∂D) is a Hilbert space and is equipped with

the norm

∥g∥H1/2(∂D) := inf
w

{︁
∥w∥H1(D) : γw = g and w ∈ H1(D)

}︁
. (5.14)

From now on, we will assume that the coefficients κ(x) = exp(κ(x)) satisfy the following

assumption.

Assumption 5.6 (ellipticity condition). The diffusion coefficient κ(x) = exp(κ(x))

satisfies

0 < κmin ≤ κ(x) ≤ κmax <∞, for almost all x ∈ D, (5.15)

i.e., we have κ ∈ L∞(D).
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Definition 5.7 (strong solution). Let f ∈ L2(D). A function u ∈ H2(D) ∩H1
0 (D) that

satisfies (5.4) for almost all x ∈ D with derivatives interpreted in the weak sense, and

the boundary conditions in (5.5) is called a strong solution.

We can relax assumptions on f by considering f ̸∈ L2(D), for example, the Dirac delta

function. In those circumstances, it may still be possible to solve the PDE on separate

intervals, as shown in the next one-dimensional example.

Example 5.8. Let D = [0, 1], κ(x) = 0 and f(x) = δ(x − 1
2). The following u(x)

satisfies (5.6) on separate intervals (0, 1/2) and (1/2, 1):

u(x) =

⎧⎪⎨⎪⎩
x
2 , 0 ≤ x < 1

2 ,

1
2 − x

2 ,
1
2 ≤ x ≤ 1.

(5.16)

For this solution, the weak derivative of D1u is not well-defined in L2(0, 1), i.e., u ̸∈
H2(0, 1). We only have that u ∈ H1

0 (0, 1), so u is neither a classical nor a strong

solution.

To overcome the limitations above, the PDE in (5.4) can be reformulated in a variational

form by introducing a sufficiently smooth test function with compact support and by

integrating over the domain D. This method has been introduced by Ritz (Strang & Fix

2008). For (5.4) and ϕ ∈ C∞
c (D), we have

−
∫︂
D
∇ ·
(︁
κ(x)∇u(x)

)︁
ϕ(x)dx =

∫︂
D
f(x)ϕ(x)dx. (5.17)

Applying the product rule for differentiation gives

∫︂
D
κ(x)∇u(x) · ∇ϕ(x))dx−

∫︂
D
∇ ·
(︁
ϕ(x)κ(x)∇u(x)

)︁
dx =

∫︂
D
f(x)ϕ(x)dx, (5.18)

and subsequently by the divergence theorem in two space dimensions we obtain

∫︂
D
κ(x)∇u(x) · ∇ϕ(x))dx−

∫︂
∂D

ϕ(x)
(︁
κ(x)∇u(x)

)︁
· nds =

∫︂
D
f(x)ϕ(x)dx, (5.19)

where n is the outwards pointing unit normal vector on ∂D and the second integral is a

line integral. Since ϕ ∈ C∞
c (D) and ϕ(x) = 0 for x ∈ ∂D, we have

∫︂
D
κ(x)∇u(x) · ∇ϕ(x)dx =

∫︂
D
f(x)ϕ(x)dx. (5.20)
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Any solution to (5.4) therefore satisfies the variational problem

a(u, ϕ) = ℓ(ϕ), ∀ϕ ∈ C∞
c (D), (5.21)

where

a(u, ϕ) :=

∫︂
D
κ(x)∇u(x) · ∇ϕ(x)dx, (5.22)

ℓ(ϕ) := ⟨f, ϕ⟩L2(D). (5.23)

This derivation, together with the definitions of spaces V and W , allows us to write the

definition of a weak solution.

Definition 5.9 (weak solution). A weak solution to (5.4) is a function u ∈ W that

satisfies

a(u, v) = ℓ(v), ∀v ∈ V. (5.24)

To show well-posedness of the variational formulation in Definition 5.9, one can show

that the variational problem in (5.24) is equivalent to the following variational problem:

find u0 ∈ V such that

a(u0, v) = ℓ(v)− a(ug, v), (5.25)

where ug ∈ H1(D) such that γug = g. The existence and uniqueness of u0 ∈ V satisfy-

ing (5.25) is a consequence of Lax-Milgram lemma.

Lemma 5.10 (Lax-Milgram lemma (Lax & Milgram 1955)). Let H be a real Hilbert space

with the norm ∥ · ∥ and let ℓ be a bounded linear functional on H. Let a : H ×H → R

be a bilinear form that is bounded and coercive (a(x, x) ≥ β∥x∥2 for all x ∈ H for some

β > 0). There exists a unique uℓ ∈ H such that a(uℓ, x) = ℓ(x) for all x ∈ H.

Due to the equivalence of variational problems in (5.25) and (5.24), the well-posedness

of (5.24) is established through the well-posedness of (5.25) as summarised in the next

theorem.

Theorem 5.11 (well-posedness of weak solution and upper bound). Let Assumption 5.6

hold, f ∈ L2(D) and g ∈ H1/2(∂D). Then (5.24) has a unique solution u ∈W = H1
g (D).
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Furthermore, we have

|u|H1(D) ≤ K
(︁
∥f∥L2(D) + ∥g∥H1/2(∂D)

)︁
, (5.26)

where K := max
{︁
Kpκ−1

min,Kγ(1+κmaxκ−1
min

}︁
. Kγ is the bounding constant in ∥ug∥H1(D) ≤

Kγ∥g∥H1/2(∂D) and Kp is the result of writing u = u0 + ug with u0 ∈ V and ug ∈ H1(D)

such that γug = g, and subsequently applying Poincaré’s inequality to u0: ∥u0∥L2(D) ≤
Kp|u0|H1(D). For a proof, see Lord et al. (2014, sec. 2.2).

5.2.2 Galerkin Approximation

Galerkin approximation technique gives appropriate methodology and error analysis for

approximating spaces V and W with their finite-dimensional counterparts.

We introduce two finite-dimensional subspaces, V h ⊂ V = H1
0 (D) and W h ⊂ W =

H1
g (D), and solve (5.24) as follows.

Definition 5.12 (Galerkin approximation). Let W h ⊂ W and V h ⊂ V and suppose

that

v − w ∈ V h, ∀v, w ∈W h. (5.27)

The Galerkin approximation for (5.4) and (5.5) is the function uh ∈W h satisfying

a(uh, v) = ℓ(v), ∀v ∈ V h. (5.28)

Similarly to showing well-posedness of (5.24), we may apply Lax-Milgram lemma to

V h × V h to show the existence and uniqueness of uh ∈W h as the solution of (5.28).

To quantify the approximation error between u and uh, the result due to Céa gives the

following error bound.

Theorem 5.13 (Galerkin approximation error). Suppose V h ⊂ V and W h ⊂W and let

u ∈W and uh ∈W h satisfy (5.24) and (5.28), respectively. If (5.27) holds, then

|u− uh|E = inf
w∈Wh

|u− w|E , (5.29)

where |u|E := a(u, u)1/2 =
(︁ ∫︁

D κ(x)∇u(x) · ∇u(x)dx
)︁1/2 is the energy norm, which is

equivalent to the Sobolev semi-norm | · |H1(D) (Lord et al. 2014, sec. 2.2), resulting in
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the following bound:

|u− uh|H1(D) ≤
√︃

κmax

κmin
|u− w|H1(D) ∀w ∈W h. (5.30)

5.2.2.1 Finite Elements for Galerkin Approximation

Finite elements are a popular option for building function spaces V h and W h introduced

above. In finite elements, D̄ is partitioned into ne elements, and W h and V h are chosen

to be sets of piecewise polynomials. We limit the discussion to triangular elements due to

their versatility – any domain with polygonal boundary can be partitioned with triangles.

We now define what an admissible shape-regular mesh is.

Definition 5.14 (admissible shape-regular mesh). Let T = {∆1, . . .∆ne} be a set of

non-overlapping triangles such that ∪n1
k=1∆̄k = D̄. Distinct triangles must meet only at

a vertex, or they must share an entire edge. Let hk be the length of the longest edge

of ∆k and let h := maxk hk. A mesh is shape-regular if there exists a constant C > 0

independent of h such that
ρk
hk
≥ C, ∀∆k ∈ T , (5.31)

where ρk is the radius of the largest inscribed circle in ∆k.

Given a triangular finite element mesh Th, we choose

Vh :=
{︁
v ∈ C(D̄) with v = 0 on ∂D and v|∆k

∈ Pr(∆k) for all ∆k ∈ Th
}︁
, (5.32)

where Pr(∆k) denotes polynomials in x = (x0, x1) of total degree r or less on the triangle

∆k. We use nodal basis functions, V h = span{ϕ1(x1), . . . , ϕJ(xJ)}, where each ϕj is a

continuous piecewise polynomial that satisfies

ϕj(xi) = δij , (5.33)

where δij is the Kronecker delta function and {x1, . . .xJ} is a set of J nodes placed

appropriately on D, depending on r. For example, for r = 1, the nodes are chosen to

correspond to non-Dirichlet vertices of the mesh. To construct W h, Dirichlet boundary

nodes, xJ+1, . . . ,xJ+Jb , need to be included, so we enrich the basis V h with polynomials

ϕj associated with Jb boundary nodes.
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0.0 1.00.80.60.40.2
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φ2(x) Node i

φi(x)

Figure 5.2: Examples of piecewise-linear nodal basis functions. On the left, two nodal
basis functions defined on the unit line are shown. The domain is discretised into five
elements. On the right, the domain is discretised using triangular elements and a single

nodal basis function is shown.

In Figure 5.2, we show examples of piecewise-linear basis functions used in approximat-

ing a space of functions defined on subsets of R and R2, respectively. The domain is

discretised into finite elements: triangles in 2D and line segments in 1D.

The Galerkin finite element approximation is then given as

uh(x) =
J∑︂
i=1

uiϕi(x) +

J+Jb∑︂
i=J+1

wiϕi(x) = u0(x) + wg(x), (5.34)

where wi := g(xi) for i = J + 1, . . . , J + Jb. Substituting (5.34) into (5.25) and setting

v = ϕj ∈ V h gives

J∑︂
i=1

uia(ϕi, ϕj) = ℓ(ϕj)−
J+Jb∑︂
i=J+1

wia(ϕi, ϕj), j = 1, . . . , J. (5.35)

In matrix-vector notation, we gather the equations in the Galerkin matrix A ∈ R(J+Jb)×(J+Jb)

and the vector b ∈ RJ+Jb :

Aij := a(ϕi, ϕj) =

∫︂
D
κ(x)∇ϕi(x) · ∇ϕj(x)dx, i, j = 1, . . . , J + Jb, (5.36)

bi := ℓ(ϕi) =

∫︂
D
f(x)ϕi(x)dx, i = 1, . . . , J + Jb. (5.37)

It is clear that aij is non-zero only when supp(ϕi) and supp(ϕj) intersect, implying that

A is sparse. Partitioning A and b as

A =

⎛⎝AII AIB

ABI ABB

⎞⎠ , b =

⎛⎝bI

bB

⎞⎠ , (5.38)

where I is the set of indices corresponding to the internal, i.e., non-Dirichlet boundary
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nodes, and B is the set of Dirichlet nodes indices. The Galerkin equations in (5.35) can

be written as

AIIuI = bI −AIBwB, (5.39)

where wB is the discrete boundary data.

One of the main advantages of the finite element formulation is that computation of

integrals in (5.36) and (5.37) can be broken up over the elements ∆k in Th, so that A

and b are assembled using the element arrays Ak ∈ Rnr×nr and vectors bk ∈ Rnr , where

nr is the number of terms in Pr and also the number of basis functions. The components

of Ak and bk are defined as follows:

Akpq =

∫︂
∆k

a(x)∇ϕkp(x) · ∇ϕkq (x)dx, p, q = 1, . . . , nr, (5.40)

bkp =

∫︂
∆k

f(x)ϕkp(x)dx, p = 1, . . . , nr, (5.41)

where {ϕk1, . . . , ϕknr
} are the local basis functions for ∆k. To avoid integration over dif-

ferent triangular elements, one can perform integration on a reference element, by ap-

propriately mapping from the reference element to each ∆k, taking into consideration

the Jacobian of the mapping. For more detail, see Lord et al. (2014, sec. 2.3). This

ability to perform computation on a per-element basis, makes solving (5.39) amenable

to parallelised implementation, and many successful software packages are available that

perform this task in a parallel manner out of the box (Logg et al. 2012).

The approximation error analysis of finite elements follows from the result in (5.29),

where the error energy norm2 is bounded as

|u− uh|E ≤ |u− w|E , ∀w ∈W h. (5.42)

To show that the approximation error is of O(h), further regularity is assumed.

Assumption 5.15 (H2-regularity). There exists a constant K2 > 0 such that, for every

f ∈ L2(D), the solution u to (5.25) belongs to H2(D) and satisfies

|u|H2(D) ≤ K2∥f∥L2(D). (5.43)
2|u|E := a(u, u)1/2 =

(︁∫︁
D
κ(x)∇u · ∇udx

)︁1/2
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Subsequently, using the equivalence of the Sobolev semi-norm and the energy norm, we

have

|u− uh|2E ≤ κmax|u− w|2H1(D) = κmax

ne∑︂
k=1

|u− w|2H1(∆k)
, ∀w ∈W h. (5.44)

Putting this analysis together, the following theorem holds (Lord et al. 2014, sec. 2.3).

Theorem 5.16 (finite elements error bound). Let u be the solution to (5.25) and let uh

be the piecewise linear finite element approximation satisfying (5.28). If Assumption 5.15

holds and the finite element mesh Th is shape regular, then

|u− uh|E ≤ K
√
κmaxh∥f∥L2(D), (5.45)

where K > 0 is a constant independent of h.

5.2.2.2 Finite Element Remarks

• The accuracy of the finite element method is increased by refining the mesh Th, on

top of making the basis functions of V h more complex.

• The per-element nature of assembling the Galerkin matrix A and the vector b

induces sparse structures. The sparsity allows for the corresponding linear system

to be solved in a parallel manner.

• Although the exposition in this thesis focuses on D ⊂ R2, complicated geometries

– corresponding to real-life structures such as bridges – are amenable to finite

elements discretisation and subsequent computations.

5.3 Stochastic PDEs

As discussed in Section 5.1.3, different kinds of uncertainty may be incorporated into a

PDE model: uncertainty in the parameters, uncertainty in the input, misspecification

error and the observation error. In this section, we discuss how uncertainty in the

parameter and in the input may be accounted for in the Poisson equation. This discussion

is based on Lord et al. (2014, chap. 9).
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The main change compared to (5.4) is that functions κ(x) and f(x) now depend on

ω ∈ Ω, where Ω is an abstract sample space used to define the appropriate probability

space. Let (Ω,F ,P) be such space, then the stochastic version of (5.4) requires that the

following holds almost surely (a.s.):

−∇ ·
(︁
exp(κ(x, ω)∇u(x, ω)

)︁
= f(x, ω), (5.46)

where Dirichlet boundary conditions may themselves depend on ω, but for simplicity we

assume that they are zero a.s.:

u(x, ω) = g(x, ω) = 0, x ∈ ∂D. (5.47)

It is assumed that exp(κ), f ∈ L2(Ω, L2(D)). The object of interest is to propagate

the uncertainty in the parameter κ and in the input f to the solution u and any derived

quantities. One may, for example, be interested in the expectation of the solution u taken

over all possible values of ω ∈ Ω. To proceed, different approaches may be employed.

1. Study individual realisations of the solution u based on the realisations of the input

κ(·, ω). To prove the existence of the solution and finite elements error bound,

Assumption 5.6 is replaced with the following assumption.

Assumption 5.17. For almost all ω ∈ Ω, realisations of κ(·, ω) = exp(κ(·, ω)) ∈
L∞(D) and satisfy

0 < ess infx∈Dκ(x, ω) ≤ κ(x, ω) ≤ ess supx∈Dκ(x, ω), a.e. in D. (5.48)

Such assumption allows for κ to be modelled as a Gaussian process, for example. To

study uncertainty propagation, one typically employs sampling-based approaches,

whereby for a set of samples of κ, the corresponding sample of solutions u is

obtained by solving the PDE for each κ. Different summary statistics such as

mean and variance may be obtained from that sample. See Lord et al. (2014, sec.

9.1) for proofs of existence of u and the finite element error analysis for Monte

Carlo simulations.
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2. The second approach proceeds by deriving a variational formulation on Ω×D, such

that solution is sought in W := L2(Ω, H1
g (D)) and satisfies

a(u, v) = ℓ(v), ∀v ∈ V = L2(Ω, H1
0 (D)), (5.49)

where

a(u, v) := E
[︃ ∫︂

D
κ(x, ·)∇u(x, ·) · ∇v(x, ·)dx

]︃
, (5.50)

ℓ(v) := E
[︃ ∫︂

D
f(x, ·)v(x, ·)dx

]︃
. (5.51)

Equations (5.50) and (5.51) involve integration over the abstract set Ω and prob-

ability measure P. If instead κ(·, ω) and f(·, ω) are made to depend on M (fi-

nite) number of random variables {ξk : Ω → Γk ⊂ R}Mk=1, then the expectations

in (5.50) and (5.51) are more tractable and can be approximated by a Galerkin

method.

3. There are other approaches such as stochastic collocation method (Lord et al. 2014,

sec. 9.6), but we omit the details.

In this thesis, we solely employ the first approach, where we solve a PDE with random

parameter for each realisation of the physical parameter κ(x) (further, we assume f is

deterministic).



Chapter 6

Variational Bayesian Approximation

of Inverse Problems using Sparse

Precision Matrices

6.1 Introduction

The increased availability of measurements from engineering systems allows for the de-

velopment of new and the improvement of existing computational models, which are

usually formulated as partial differential equations. Inferring model parameters from ob-

servations of the physical system is termed the inverse problem (Tarantola 2005, Kaipio

& Somersalo 2005, Stuart 2010). In this work, we consider the inverse problem where

the quantities of interest (for example, some material properties) and the observations

(e.g., the displacement field) are related through elliptic PDEs. Most inverse problems

are non-linear and ill-posed, meaning that the existence, uniqueness, and/or stability

(continuous dependence on the parameters) of the solution are violated (Stuart 2010,

Tarantola 2005, Kaipio & Somersalo 2005). These issues are often alleviated through

some regularisation, like Tikhonov regularisation (Tikhonov & Arsenin 1977), that im-

poses assumptions on the regularity of the solution. Alternatively, the specification of

the prior in the Bayesian formulation of inverse problems provides a natural choice for

regularisation, and any given regularisation can be interpreted as a specific choice of

priors in the Bayesian setting (Bishop 2006). Furthermore, the Bayesian formulation

99
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provides not only a qualitative but also a quantitative estimate of both epistemic and

aleatoric uncertainty in the solution. In particular, the mean of the posterior proba-

bility distribution corresponds to the point estimate of the solution while the credible

intervals capture the range of the parameters consistent with the observed measurements

and prior assumptions. For these reasons, Bayesian methods have gained popularity in

computational mechanics for experimental design and inverse problems with uncertainty

quantification; see, e.g., the recent papers by Abdulle & Garegnani (2021), Pandita

et al. (2021), Pyrialakos et al. (2021), Ni et al. (2021), Sabater et al. (2021), Huang et al.

(2021), Ibrahimbegovic et al. (2020), Tarakanov & Elsheikh (2020), Michelén Ströfer

et al. (2020), Carlon et al. (2020), Wu et al. (2020), Uribe et al. (2020), Rizzi et al.

(2019), Arnst & Soize (2019), Beck et al. (2018), Betz et al. (2018), Chen et al. (2017),

Asaadi & Heyns (2017), Huang et al. (2017), Karathanasopoulos et al. (2017), Babuška

et al. (2016), Girolami et al. (2021).

The Bayesian formulation of inverse problems is also the focal point of probabilistic ma-

chine learning, and in recent years significant progress has been made in adapting and

scaling machine learning approaches to complex large-scale problems (Lu & Tang 2015,

Solin et al. 2018). One of the leading models for Bayesian inverse problems are Gaus-

sian processes (GPs) which define probability distributions over functions and allow for

incorporating observed data to obtain posterior distributions. Given that most posterior

distributions in Bayesian inference are analytically intractable, approximation methods

need to be resorted to. Two classical approximation schemes are the Markov Chain Monte

Carlo (MCMC) and the Laplace approximation (LA). The MCMC algorithm proceeds

by creating a Markov Chain whose stationary distribution is the desired posterior distri-

bution. Although MCMC provides asymptotic convergence in distribution, devising an

efficient, finite-time sampling scheme is challenging, especially in higher dimensions (Gel-

man et al. 2013). Application-specific techniques such as parameter space reduction and

state space reduction have been proposed in the literature to help scale up MCMC meth-

ods, but these low-rank approximations are not specific to MCMC methods only (Cui

et al. 2016). Due to the asymptotic correctness of MCMC, we use it as a benchmark for

the experimental studies in this thesis. Meanwhile, the Laplace approximation finds a

Gaussian density centred around the mode of the true posterior, utilising the negative

Hessian of the unnormalised posterior log-density (Bishop 2006). The Hessian is a large

dense matrix, where forming each column requires multiple PDE solves; to make such
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calculations feasible, low-rank approximations are typically used (Villa et al. 2021, Bui-

Thanh et al. 2013). Evidently, the Laplace approximation is not suitable for multi-modal

posterior distributions due to the uni-modality of the Gaussian distribution.

6.1.1 Related Work

In recent years, advances in variational Bayes (VB) methods have allowed for Bayesian

inference to be successfully applied to large data sets. Variational Bayes translates a

sampling problem that arises from applying the Bayes rule into an optimisation prob-

lem (Jordan et al. 1999, Blei et al. 2017, Jordan & Wainwright 2007). The method finds a

solution that minimises the Kullback-Leibler (KL) divergence between the true posterior

distribution and a trial distribution from a chosen family of distributions, for instance,

multivariate Gaussian distributions with a specific covariance structure. The strong ap-

peal of VB is that one can explicitly choose the complexity of the trial distribution, i.e.,

its number of free parameters, such that the resulting optimisation problem is computa-

tionally tractable, and the approximate posterior adequately captures important aspects

of the true posterior.

Further scalability of VB methods is due to advancements in sparse approximations and

approximate inference. For instance, sparse GP methods such as Nyström approxima-

tion or fully independent training conditional method (FITC) rely on lower-dimensional

representations that are defined by a smaller set of so-called inducing points to represent

the full GP (Williams & Seeger 2001, Csató & Opper 2002, Seeger et al. 2003, Quiñonero-

Candela & Rasmussen 2005, Snelson & Ghahramani 2006, Titsias 2009, 2008). Using

this approximation for a data set of size N , algorithmic complexity is reduced from

O(N3) to O(NM2), while storage demands go down from O(N2) to O(NM), where

M is a user selected number of inducing variables. To widen the applicability of VB to

large datasets and non-conjugate models (combinations of prior distributions and likeli-

hoods that do not result in a closed-form solution), stochastic variational inference (SVI)

was proposed (Hensman et al. 2012, Hoffman et al. 2013, Hensman et al. 2013). Sub-

sampling the original data and Monte Carlo estimation of the optimisation objective

and its gradients, allows for calibrating complex models using large amounts of data.

Multiple further extensions to the sparse SVI framework were proposed, leveraging the
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Hilbert space formulation of VB (Cheng & Boots 2017), introducing parametric approx-

imations (Jankowiak et al. 2020), applying the Lanczos algorithm to efficiently factorise

the covariance matrix (Pleiss et al. 2018), transforming to an orthogonal basis (Salim-

beni et al. 2018, Shi et al. 2020), and adapting to compositional models (Salimbeni &

Deisenroth 2017).

The choice of prior is a central task in designing Bayesian models. If the prior is obtained

from a domain expert, it is not necessarily less valuable than the data itself; one way of

thinking about a prior is by considering how many observations one would be prepared

to trade for a prior from an expert – if the expert is very knowledgeable, then one might

be prepared to exchange a large part of a dataset to get access to that prior. Translating

the expert knowledge into a prior probability distribution is a challenging task, and due

to practical considerations, certain choices of priors are preferred for their simplicity and

analytic tractability. When inferring values of parameters over a spatial domain, as is

typically the case in finite elements, GP priors offer a natural way to incorporate the

information about the smoothness and other known properties of the solution. We note

that while other Bayesian models, such as Bayesian neural networks are gaining interest,

it is very difficult to impose functional priors in such models, challenging the effective

use of expert knowledge and leading to unrealistic uncertainty estimates (Sun et al. 2019,

Burt et al. 2021).

6.1.2 Contributions

In this work, we advocate for the use of GP priors with stochastic variational infer-

ence as a principled and efficient way to solve the inverse problems arising in compu-

tational mechanics. We show, through an extensive empirical study, that variational

Bayes methods provide a flexible and efficient alternative to MCMC methods in the con-

text of Bayesian inverse problems based on elliptic PDEs while retaining the ability to

quantify uncertainty. While similar directions have been explored in previous work, the

focus there is on specific applications, such as parameter estimation problems in mod-

els of contamination (Tsilifis et al. 2016) or proof-of-concept on particular 1D inverse

problems (Barajas-Solano & Tartakovsky 2019).
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We extend the previous works in multiple aspects, focusing on improving the utility

of VB in inverse problems arising from elliptic PDEs and providing a thorough dis-

cussion of the empirical results that can be used by practitioners to guide their use of

VB in applications. Specifically, we argue that the efficiency of the VB algorithms for

PDE based inverse problems can be improved by taking into account the structure of

the problem, as encoded in the FEM discretisation of the PDE. Motivated by previous

uses of precision matrices as a way of describing conditional independence (Tan & Nott

2018, Durrande et al. 2019), we leverage the sparse structure of the problems to impose

conditional independence in the approximating posterior distribution. This choice of

parametrisation results in sparse matrices, which improve the computational and the

memory cost of the resulting algorithms. Such parametrisation, combined with stochas-

tic optimisation techniques, allows the method to be scaled up to large problems on 2D

domains. Through extensive empirical comparisons, we demonstrate that VB provides

high-quality point estimates and uncertainty quantification comparable to the estimates

attained by MCMC algorithms but with significant computational gains. Finally, we

describe how the proposed framework can be seamlessly combined with existing solvers

and optimisation algorithms in the finite element implementations.

The main concern related to VB in statistics stems from the fact that it is constrained

by the chosen family of trial distributions, which may not approximate the true posterior

distribution well. If the choice of the trial distributions is too restrictive, the estimate

of the posterior mean is biased while the uncertainty may be underestimated (MacKay

2003, Wang & Titterington 2005, Turner & Sahani 2011). Furthermore, as noted in

previous work, the commonly used mean-field factorisation of the trial distributions does

not come with general guarantees on accuracy (Giordano et al. 2018). However, VB has

been demonstrated to work well in practice in a variety of settings (Kingma & Welling

2014, Damianou et al. 2016, Blei et al. 2017, Zhang et al. 2019). Recent work on VB has

provided some tools for assessing the robustness of the VB estimates (Giordano et al.

2018) .
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6.1.3 Overview

The rest of the chapter is structured as follows. In Section 6.2, we define Bayesian in-

verse problems and detail some inference challenges related to their ill-posedness. In Sec-

tion 6.3, we give a presentation of the variational Bayes framework, with strong focus on

sparse parametrisation resulting from conditional independence. We give details of the

experiments and the evaluation criteria, and discuss obtained results for each experiment

in Section 6.4. Lastly, Section 6.5 concludes the chapter and discusses some promising

directions for future work.

6.2 Bayesian Formulation of Inverse Problems

In this section, we review the Bayesian formulation of inverse problems by closely fol-

lowing Stuart (2010).

6.2.1 Forward Map and Observation Model

We are interested in finding κ ∈ K, a model parameter, given y ∈ Y, a noisy observation

of the solution of the model, where K,Y are Banach spaces1. The mapping, which is

conditioned on model input f , is given by

y = G(κ; f) + η, (6.1)

where G : K → Y, η ∈ Y is additive observational noise. We focus on problems where G
maps solutions of elliptic partial differential equations with parameter κ ∈ K and input

f into the observation space Y. For a suitable Hilbert space U , which we make concrete

later, let A : K → U be a possibly non-linear solution operator of the PDE, conditioned

on the input f . For a particular κ ∈ K, the solution u ∈ U is

u = A(κ; f). (6.2)
1Respective norms for Banach spaces K, Y are ∥ · ∥K and ∥ · ∥Y .
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To obtain observations y, we define a projection operator P : U → Y. Consequently, (6.1)

can be written out in full as

y = P(A(κ; f)) + η. (6.3)

6.2.2 Inference

We solve the inverse problem (6.1) for κ by finding κ such that the data misfit, ∥y −
G(κ; f)∥Y , is minimised. As already mentioned in the introduction, this is typically an

ill-posed problem: there may be no solution, it may not be unique, there may exist

a dimensionality mismatch between the observations and the quantity being inferred,

and it may depend sensitively on y. To proceed, we choose the Bayesian framework for

regularising the problem to make it amenable to analysis and practical implementation.

We describe our prior knowledge about κ in terms of a prior probability measure µ0 on

the subspace of K and use Bayes’ formula to calculate the posterior probability measure,

µy, for κ given y. The relationship between the posterior and prior is expressed as

dµy

dµ0
(κ) =

1

Z(y)
exp(−Φ(κ; y)), (6.4)

where dµy

dµ0
is the Radon-Nikodym derivative of µy with respect to µ0, and Φ is the poten-

tial function which is determined by the forward problem (6.1), specifically G and η. To

ensure that µy is a valid probability measure, we have Z(y) =
∫︁
K exp(−Φ(κ; y))dµ0(κ).

From here on, we assume that pointwise measurements of the modelled quantity such

that (Y, ∥ · ∥Y) = (Rny , ∥ · ∥), where ∥ · ∥ is the Euclidean norm, and we treat data y and

η as vectors, i.e. y and η. We specify the additive noise vector η as Gaussian such that

η ∼ N (0,Γ = σ2yI),

where σy is the standard deviation of the measurement noise and I is the identity matrix.

We can write Φ conveniently as

Φ(κ;y) =
1

2
∥G(κ; f)− y∥2Γ−1 , (6.5)

where ∥ · ∥Γ−1 is the norm induced by the weighted inner product2.
2For any self-adjoint positive operator T , weighted inner product is ⟨·, ·⟩T = ⟨T −1/2·, T −1/2·⟩, and

the induced norm is ∥ · ∥T = ∥T −1/2 · ∥
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We restrict the space of solutions K to be a Hilbert space and place a Gaussian prior

measure on κ with mean m and covariance operator Cκ such that

µ0(κ) ∼ N (m, Cκ). (6.6)

For detailed assumptions on µ0, G, and η that are required for deriving the posterior

probability measure, we refer the reader to Stuart (2010, Sec. 2.4).

6.2.2.1 Algorithms

The objective is to find the posterior measure µy conditioned on the observations, as

dictated by Bayes’s rule. The forward map (6.1) and the respective functions must

be discretised. In Bayesian inference there are two possible approaches for discretisa-

tion: 1) apply the Bayesian methodology first, discretise afterwards, or 2) discretise first,

then apply the Bayesian methodology (Stuart 2010).

The first approach develops the solution of the inference problem in the function space

before discretising it. A widely used algorithm of this form is the pre-conditioned Crank-

Nicholson (pCN) MCMC scheme, where proposals are based on the prior measure µ0 and

the current state of the Markov chain. The pCN method is a standard choice for high-

dimensional sampling problems, as its implementation is well-defined and is invariant to

mesh refinement (Cotter et al. 2013, Pinski et al. 2015, Hairer et al. 2014). Since we

will use this algorithm as one of the baselines, a summary of the algorithm is provided

in Section 2.2.3.5. More recently, infinite-dimensional MCMC schemes that leverage the

geometry of the posterior to improve the efficiency have been proposed, see Beskos et al.

(2017), Rudolf & Sprungk (2018). Such approaches can account for anisotropy of the

covariance of the posterior or the local curvature of Φ. Other than MCMC schemes, some

variational Bayes formulations in function space have been proposed (for example, Minh

(2017), Burt et al. (2021)), though currently they do not offer a viable computational

alternative to the finite-dimensional formulation of variational inference.

The second approach proceeds by first discretising the problem and then deriving the

inference method. This approach forms the basis of almost all inference procedures

developed in engineering: MCMC algorithms such as Metropolis-Hastings (Metropolis

et al. 1953, Hastings 1970) or Hamiltonian Monte Carlo (HMC) (Duane et al. 1987),



Variational Bayes for Inverse Problems 107

the Laplace approximation, or variational Bayes (Jordan et al. 1998, 1999) are used to

approximate the posterior. In the discretised formulation, HMC has achieved recognition

as the gold standard for its good convergence properties, favourable performance on high-

dimensional and poorly conditioned problems, and universality of implementation that

enables its generic use in many applications through probabilistic programming languages

(e.g., Stan (Carpenter et al. 2017)). Therefore, along with the pCN scheme mentioned

above, our baseline for inference methods includes the HMC method, and we provide a

summary of the HMC scheme in Section 2.2.3.3.

For the rest of the exposition in this chapter, we will focus on algorithms in the finite-

dimensional case, where we discretise κ to yield a vector κ. In finite dimensions, prob-

ability densities with respect to the Lebesgue measure can be defined, thus leading to a

more familiar form of the Bayes’s rule:

p(κ | y) = p(y | κ) p(κ)
p(y)

∝ p(y | κ) p(κ), (6.7)

where p(κ | y) is the posterior density, p(y | κ) is the likelihood of the observed data y

for a given discretised κ and is determined by the discretised forward problem (6.1) and

noise η. The prior density for κ, which itself may depend on some (hyper-) parameters ψ,

is denoted by p(κ). Next two sections focus on discussing p(y | κ) and p(κ), respectively.

6.2.3 Poisson Equation and Likelihood

Let us consider a specific forward problem where u = A(κ; f) is the solution to the

Poisson problem:

−∇ · (exp(κ(x))∇u(x)) = f(x), (6.8)

where x ∈ Ω ⊂ Rd, with d ∈ {1, 2, 3}, κ(x) ∈ R is the log-diffusion coefficient, u(x) ∈ R

is the unknown, and f(x) ∈ R is a deterministic forcing term. The boundary conditions

have been omitted for brevity. We are given ny noisy observations y ∈ Rny of the

solution u at a finite set of points, {xi}ny

i=1. The observation points are collected in the

matrix X ∈ Rny×d. Although this PDE is linear in u for a given κ, the methodology in

this work applies to non-linear cases and can be extended for time-dependent cases such

as the inverse problem of inferring initial conditions of a system given observations of

the system at a later time.



Variational Bayes for Inverse Problems 108

We discretise the weak form of the Poisson problem (6.8) with a standard finite element

approach (see Chapter 5 for background on solving PDEs). Specifically, the domain

of interest Ω is subdivided into a set {ωe} of non-overlapping elements of size h =

maxe diam(ωe) such that:

Ω =

ne⋃︂
e=1

ωe . (6.9)

The unknown field u(x) is approximated with Lagrange basis functions ϕi(x) and the

respective nodal coefficients u = (u1, . . . , unu)
⊤ of the nu non-Dirichlet boundary mesh

nodes by

uh(x) =

nu∑︂
i=1

ϕi(x)ui . (6.10)

The discretisation of the weak form of the Poisson equation yields the linear system of

equations

A(κ)u = f , (6.11)

where A(κ) ∈ Rnu×nu is the stiffness matrix, κ ∈ Rnκ is the vector of log-diffusion

coefficients, f ∈ Rnu is the nodal source vector. The stiffness matrix of an element with

label e is given by

Aeij(κe) =

∫︂
ωe

exp(κe)
∂ϕi(x)

∂x
· ∂ϕj(x)

∂x
dx , (6.12)

where the log-diffusion coefficient κe of the element is assumed to be constant within the

element. The source vector is discretised as:

fi =

∫︂
Ω
f(x)ϕi(x)dx . (6.13)

Hence, according to the observation model (6.5) the likelihood is given by

p(y | κ) = p(y | u(κ)) = N (PA(κ)−1f , σ2yI) , (6.14)

where the matrix P represents the discretisation of the observation operator P.

The mapping from the coefficients κ to the solution u is u(κ) = A(κ)−1f . The uncon-

ditional distribution of u is given by:

p(u) =

∫︂
p(u | κ)p(κ)dκ , (6.15)
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where p(u | κ) is deterministic as defined in (6.11) but κ appears in it non-linearly,

implying that the inference is not analytically tractable.

Throughout the experiments in the later sections, we either set Dirichlet (essential)

boundary conditions everywhere (for example u(x) = 0 on ∂Ω), or assume Neumann

(natural) boundary conditions on parts of the boundary. The choice will be made explicit

in each experiment. To compute the likelihood, we solve the Poisson problem (6.8) for

u(x) using the finite element method (FEM).

6.2.4 Prior

As discussed above, we place a Gaussian measure on κ, µ0(κ) ∼ N (m, Cκ). Properties

of samples from the measure depend on mean m and on the spectral properties of the

covariance operator Cκ. We restrict the space of prior functions to L2(Ω;R). Then,

operator Cκ can be constructed from the covariance function, k(x,x′) = E
[︁(︁
κ(x) −

m(x)
)︁(︁
κ(x′)−m(x′)

)︁]︁
as:

(Cκφ)(x) =
∫︂
Ω
k(x,x′)φ(x′)dx′, (6.16)

for any φ ∈ L2(Ω;R). This formulation is what is commonly referred to as a Gaussian

process (GP) with mean function m(·), which we assume to be zero, and covariance

function k(·, ·) such that

κ ∼ GP
(︁
m(·), k(·, ·)

)︁
. (6.17)

Even though the process is infinite-dimensional, an instantiation of the process is finite

and reduces to a multivariate Gaussian distribution by definition. The covariance func-

tion is typically parametrised by a set of hyperparameters ψ. One popular option, which

satisfies assumptions about µ0 as per Stuart (2010), is the squared exponential kernel:

kSE(x,x
′) = σ2κ exp

(︃
− r2

2ℓ2κ

)︃
, (6.18)

where r = ∥x − x′∥2 is the Euclidean distance between the inputs. It depends on two

hyper-parameters ψ = {σκ, ℓκ}, the scaling parameter σκ, and the length-scale ℓκ. Note

that, kSE(·, ·) is an infinitely smooth function, which implies that so is κ(·). The RBF

kernel imposes smoothness and stationarity assumptions on the solution; in addition,
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such choice of kernel offers a way to regularise the resulting optimisation problem. This

particular choice is driven more by convenience than real data: depending on the expert

knowledge of the true solution, other kernels may be used to impose other assumptions

such as periodicity.

Both conditioning and marginalisation of the GP can be done in closed form. In partic-

ular, consider the joint model of the values κ at training locations X and the unknown

test values κ∗ at test locations X∗:⎡⎣ κ

κ∗

⎤⎦ ∼ N
⎛⎝0,

⎡⎣Kψ(X,X) Kψ(X,X
∗)

Kψ(X
∗,X) Kψ(X

∗,X∗)

⎤⎦⎞⎠ , (6.19)

where Kψ(X,X
∗) is the matrix resulting from evaluating k(·, ·) at all pairs of training

and test points. The conditional distribution of the function values κ∗ given the values

κ at X is:

κ∗ | κ ∼ N
(︂
κ̃∗, K̃

)︂
, (6.20)

where
κ̃∗ = K (X∗,X) [K(X,X)]−1 κ

K̃ = K (X∗,X∗)−K (X∗,X) [K(X,X)]−1K (X,X∗) .
(6.21)

The marginal distribution can be recovered by finding the relevant part of the covariance

matrix; for example, the marginal of κ given X is κ ∼ N (0,Kψ(X,X)).

In this work, we place a zero-mean Gaussian process prior on κ(x) and assume the

squared exponential kernel with length-scale ℓκ and fixed variance σ2κ = 1. As mentioned

in the previous section, we assume that κ(x) is constant on each element of the mesh

(we use the same mesh as for discretising u(x) and f(x)). We place the prior on κ so

that the centroids of the elements are the training points of the GP:

p(κ) = N (0,Kψ(X,X)). (6.22)

6.3 Variational Bayes Approximation

We consider a variational Bayes approximation of the posterior distribution of κ. We

give the details below.
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6.3.1 Variational Bayes

We assume that any hyper-parameters ψ of the prior are fixed, and are only interested in

the posterior distribution of κ. The variational approach proceeds by approximating the

true posterior p(κ | y) according to (6.7) with a trial density q(κ), which is the minimiser

of the Kullback-Leibler (KL) divergence between a chosen family of trial densities Dq
and the true posterior distribution p(κ|y), as discussed in Section 2.2.4. To find the

approximate posterior distribution we have:

q∗(κ) = argmin
q(κ)∈Dq

KL(q(κ) ∥ p(κ | y)). (6.23)

Following the derivation in Section 2.2.4, the task can be reformulated as:

q∗(κ) = argmax
q(κ)∈Dq

Eq
[︁
log p(y | κ)

]︁
−KL(q(κ) ∥ p(κ)). (6.24)

To proceed, we compute Eq
[︁
log p(y | κ) using a Monte Carlo approximation using

NSVI samples, as described in Section 2.2.4. To compute the gradients qith respect

to the parameters of q(κ) we leverage the reparametrisation trick (see Section 2.2.4.1).

Our empirical tests in later sections of this chapter show that the value of NSVI in

the range of 2–5 provides fast convergence of the optimisation, agreeing with previous

literature (Kingma & Welling 2014). The Monte Carlo approximation of Eq
[︁
log p(y | κ)

is in line with the work in Barajas-Solano & Tartakovsky (2019) but in contrast with

the analytic approximation based on the Hessian calculations proposed in Tsilifis et al.

(2016).

Throughout this chapter, we assume that Dq is the family of multivariate Gaussian

distributions (see the discussion on the choice of Dq below). This assumption and the

fact that p(κ) is Gaussian implies that the second term of (6.24), KL(q(κ) ∥ p(κ)), is

available in closed form.

6.3.2 Specification of Trial Distribution

The specification of the approximating family of distributions determines how much

structure of the true posterior distribution is captured by the variational approximation.
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To model complex relationships between the components of the posterior, a more complex

approximating family of distributions is needed. As the richer family of distributions is

likely to require more parameters, the optimisation of the usually non-convex ELBO

becomes harder. A balance must be struck in this trade-off: the family should be rich

enough, but the optimisation task should still be computationally tractable.

A practical and widely used variational family is the multivariate Gaussian distribution,

parametrised by the mean vector and the covariance matrix. One of the key benefits of

this choice is that the KL divergence term of the ELBO in (2.36) is available in closed form

for a GP prior. The choice of the parametrisation of the covariance matrix determines

how much structure, other than the mean estimate, is captured by the variational family.

We discuss this in more detail in the next section.

Numerous approaches have been proposed to extend the trial distribution beyond the

Gaussian family. A standard approach in situations when the true posterior distribution

is likely to be multimodal is to consider mixtures of variational densities (Bishop et al.

1998). A more recent development is embedding parameters of a mean-field approxima-

tion in a hierarchical model to induce variational dependencies between latent variables

(Tran et al. 2015, Ranganath et al. 2016).

6.3.2.1 Gaussian Trial Distribution

Choosing the trial distribution q(κ) as a multivariate Gaussian N (µ,Σ) requires op-

timisation over the mean µ and the covariance matrix Σ. The flexibility in choosing

how we specify both of these parameters, especially the covariance matrix, enables us to

balance the trade-off between the expressiveness of the approximating distribution and

the computational efficiency.

The richest specification corresponds to parametrising the covariance matrix Σ using its

full Cholesky factor L, i.e.,

q(κ) ∼ N (µ,LL⊤). (6.25)

This choice results in a dense covariance matrix that may be able to capture the full co-

variance structure between the inputs (i.e. each input may be correlated with every other

input). Parametrising the components of L automatically ensures that the covariance

matrix Σ is positive definite as necessary. The number of parameters to optimise grows
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as O(n2κ) and this leads to a difficult optimisation task that needs to be carefully ini-

tialised and parametrised. We refer to this parametrisation as full-covariance variational

Bayes (FCVB).

A much more efficient choice is a diagonal covariance matrix, which is often referred to as

mean-field variational Bayes (MFVB). By limiting the number of parameters that need

to be optimised, the optimisation task becomes simpler and the number of parameters

grows only asO(nκ). While more computationally efficient and easier to initialise, MFVB

ignores much of the dependence structure of the posterior distribution.

6.3.3 Conditional Independence and Sparse Precision Matrices

Instead of parametrising the covariance matrix Σ, or its Cholesky decomposition L, in

physical systems it is often advantageous to parametrise the precision matrix, Q, where

Q = Σ−1. While a component of the covariance matrix Σ expresses marginal dependence

between the two corresponding random variables, the elements of the precision matrix

reflect their conditional independence (Rue et al. 2009). Or, more specifically, for two

components κi and κj of the random vector κ we note

p(κi, κj) = p(κi)p(κj) ⇔ Σij = 0 , (6.26)

where Σij denotes the respective component of Σ. Furthermore, defining the vec-

tor κ−{i,j} from the random vector κ by removing its i-th and j-th component, we

note

p(κi, κj | κ−{i,j}) = p(κi | κ−{i,j})p(κj | κ−{i,j}) ⇔ Qij = 0 . (6.27)

That is, Qij = 0 if and only if κi is independent from κj , conditional on all other

components of κ.

A succinct way to represent conditional independence is using an undirected graph whose

nodes correspond to the random variables (Bishop 2006). A graph edge is present between

two graph vertices i and j if the corresponding random variables are not conditionally

independent from each other, given all the other random variables. Or, expressed dif-

ferently, the edges between the graph vertices correspond to non-zeros in the precision

matrix. In our context, each graph vertex represents a finite element and graph edges are
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introduced according to geometric adjacency of the finite elements as determined by the

mesh. To this end, we define the 1-neighbourhood of a finite element as the union of the

element itself and of elements sharing a node with the element. The n-neighbourhood is

defined recursively as the union of all 1-neighbourhoods of all the elements in the (n−1)-

neighbourhood. We introduce an edge between two graph vertices when the respective

elements are in the same n-neighbourhood.

Figure 6.1 shows examples of adjacency graphs and the structure of the corresponding

precision matrices Q for 5 random variables resulting from a discretisation of a 1D domain

with 5 finite elements. In the considered examples the random variables represent the

constant log-diffusion coefficient in the elements. As shown in Figures 6.1b and 6.1c

choosing a larger n-neighbourhood for graph construction leads to a denser precision

matrix. For instance, from the structure of the precision matrix in Figure 6.1b, which

assumes a 1-neighbourhood structure, we can read for the log-diffusion coefficient of

element j the following conditional independence relationship:

Qik = 0 ∧Qil = 0 ∧Qim = 0⇒ p(κi | κj , κk, κl, κm) = p(κi | κj) . (6.28)

When the coefficient of element j is given, the coefficient of the neighbouring element i

is independent from all the remaining coefficients. This is intuitively plausible and in

line with physical observations. Clearly, the covariance matrices corresponding to the

given sparse precision matrices are dense. Hence, in the considered case the coefficient of

element i may still be correlated to the coefficient of element m, i.e. p(κi | κm) ̸= p(κi).

This correlation will most likely be relatively weak given the large distance between the

two elements, but knowing the coefficient of element m will certainly restrict the range

of possible values for the coefficient of element i.

After obtaining the structure of the precision matrix, which is sparse but, in general,

not banded, one can reorder the numbering of the elements in the finite element mesh

to reduce its bandwidth. This allows for efficient linear algebra operations. See Cuthill

& McKee (1969) for an example of a reordering algorithm. Once a minimum bandwidth

ordering with bmin has been established, we use the property that the bandwidth of the

Cholesky factor LQ of matrix Q is less than or equal to the bandwidth of Q (Rue &

Held 2005). Finally, the parameters we optimise are the components of the lower band
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i j k l m

(a) Labelling of the five elements.

i j k l l

⎛⎜⎜⎜⎜⎜⎜⎝

i j k l m
i × ×
j × × ×
k × × ×
l × × ×
m × ×

⎞⎟⎟⎟⎟⎟⎟⎠
(b) Adjacency graph (left) and the corresponding adjacency matrix (right) based on 1-neighbourhood

structure: there is an edge between two graph vertices if the corresponding elements share a node.

i j k l l

⎛⎜⎜⎜⎜⎜⎜⎝

i j k l m
i × × ×
j × × × ×
k × × × × ×
l × × × ×
m × × ×

⎞⎟⎟⎟⎟⎟⎟⎠
(c) Adjacency graph (left) and the corresponding adjacency matrix (right) based on 2-neighbourhood
structure: there is an edge between two vertices if the corresponding elements are in each others 2-

neighbourhoods.

Figure 6.1: An example of a 1D bar discretised with five elements and two different
conditional independence assumptions.

2D mesh
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Adjacency
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(reordered)
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LQ
(non-zeros)
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Q
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Figure 6.2: Sparse precision matrix parametrisation for a 2D problem. An order-2
neighbourhood structure is assumed for conditional independence. The structure of
the adjacency matrix depends on the specific element numbering. By renumbering the
elements, one can obtain a banded adjacency matrix, which is then used to parametrise

the Cholesky factor of the precision matrix, as described in Section 6.3.2.1.

of size bmin of matrix LQ, so that the approximating distribution reads

q(κ) ∼ N
(︂
µ, (LQL

⊤
Q)

−1
)︂
. (6.29)

This process of devising a parametrisation for the precision matrix for a more complex

mesh in 2D is illustrated in Figure 6.2. This approach is computationally efficient – the

number of parameters grows as O(nκ) – and is able to capture dependencies between all

the random variables.
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6.3.4 Stochastic Optimisation

To maximise the ELBO in (6.24), we use the ADAM algorithm (Kingma & Ba 2015).

ADAM is a member of a larger class of stochastic optimisation methods that have become

popular as tools for maximising non-convex cost functions. These methods construct

a stochastic estimate of the gradient to perform gradient descent-based optimisation.

ADAM, a stochastic gradient descent algorithm with an adaptive step size is one popular

algorithm that exhibits a stable behaviour on many problems and is easy to use without

significant tuning. The algorithm uses a per-parameter step size, which is based on the

first two moments of the estimate of the gradient for each parameter. Specifically, the

step size is proportional to the ratio of the exponential moving average of the 1st moment

to the square root of the exponential moving average of the non-centred 2nd moment. At

any point, the exponential moving average is computed with decay parameters β1 and

β2 for the 1st and 2nd moment, respectively. We adopt the parameter values suggested

in Kingma & Ba (2015): β1 = 0.9 and β2 = 0.99. The speed of convergence is further

controlled by the learning parameter α which is used to regulate the step size for all

parameters in the same way. In our experiments, we set it to 0.01 and let it decay

exponentially every 2,500 steps (1,000 for MFVB), with the decay rate of 0.96. While

the ADAM algorithm performs well on a variety of problems, it has been shown that the

convergence of this algorithm is poor on some problems (Reddi et al. 2018). We discuss

alternative approaches as potential future work in Section 6.5.

To monitor convergence, we use a rule that tracks an exponentially weighted moving

average of the decrease in the loss values between successive steps, and stops when that

average drops below a threshold. The use of such an adaptive rule gives us a way to

track the convergence of the algorithm and provides a conservative estimate for the time

it takes for the optimisation to converge. This rule can be adapted based on the available

computational budget.

6.3.5 The Algorithm

The maximisation of the ELBO in (2.36) involves finding the parameters of the trial dis-

tribution q(κ), i.e. its mean µ and Cholesky factor LQ, that minimise KL between q(κ)

and the posterior p(κ|y). Algorithm 3 shows the required steps to compute the ELBO



Variational Bayes for Inverse Problems 117

and its gradients with respect to the parameters of the trial distribution. Different from

the discussion so far, in Algorithm 3 it is assumed that there are multiple independent

observation vectors yi with i ∈ {1, 2, . . . , Ny}.

Algorithm 3: ELBO estimation and its gradient with respect to the parameters of
the trial distribution.
Input: Current parameters µ and LQ of q(κ)
Output: ELBO and its gradients with respect to the parameters of q(κ)

1 Sample [κ(1),κ(2), . . . ,κ(NSVI)] from q(κ)

2 for each κ(i) do
3 Solve for u(κ(i)) and obtain gradients with respect to κ using the FEM
4 p(y | κ(i))←∏︁Ny

j=1 p(yj ;u(κ
(i)), σ2y) and propagate its gradient with respect to

κ(i)

5 ELBO ← N−1
SVI
∑︁NSVI

i=1 log p(y | κ(i)) + KL(q(κ) ∥ p(κ)) and propagate the gradient
with respect to the parameters of q(κ) using the reparametrisation trick
(see Section 2.2.4.1 and Kingma & Welling (2014))

6 return ELBO, ∇ELBO

6.4 Examples

We evaluate the efficacy of variational inference first for 1D and 2D Poisson equation

examples and then a benchmark proposed by Aristoff & Bangerth (2021). We discre-

tise the examples with a standard finite element method using linear Lagrange basis

functions. We perform inference over κ and we keep the hyper-parameter of the prior,

ψ = {σκ, ℓκ}, fixed at a chosen value, described in each of the experiments. We compare

variational Bayes methods against two sampling-based inference schemes, Hamiltonian

Monte Carlo (HMC) and pre-conditioned Crank-Nicholson Markov Chain Monte Carlo

(pCN); both are known to be asymptotically correct as the number of samples increases.

The evaluation criteria we use focus on three aspects of an inference scheme: the accu-

racy with respect to capturing the mean and the variance of the solution; propagation

of uncertainty in derived quantities of interest; and the time until convergence of the

solution.

To assess the propagation of uncertainty in derived quantities of interest, we consider a

summary quantity for which a point estimate alone may not be informative enough for

downstream tasks. In particular, we compute the log of total boundary flux through the
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boundary Γb:

r(κ) = log

∫︂
Γb

eκ(s)∇u(s) · n ds, (6.30)

where n is a unit vector normal to the boundary Γb.

To quantitatively assess the inference of κ, we obtain S samples from the posterior

distribution of κ, {κ(s)}Ss=1. For synthetic experiments, where we know the true κ which

generated the observations, we compute the mean κ error norm. The computation is the

Euclidean norm of the error between the true value, κtrue, and the mean of the obtained

samples:

Mean κ error =
⃦⃦⃦⃦
1

S

S∑︂
s=1

κ(s) − κtrue

⃦⃦⃦⃦
2

. (6.31)

Further, we compute the expected error in the solution space. This measures how close

the solutions corresponding to the samples of κ are to the true solution u(κtrue). Specif-

ically, we compute

Mean u(κ) error =
1

S

S∑︂
s=1

⃦⃦
u(κ(s))− u(κtrue)

⃦⃦
2
. (6.32)

6.4.1 One-dimensional Poisson Equation Experiments

For this experiment, we assume the unit-line domain, which is discretised into 32 equal-

length elements. We impose Dirichlet boundary conditions on both boundaries, specif-

ically we set u(0) = u(1) = 0; the forcing is constant everywhere f(x) = 1. Unless

specified otherwise, all experiments in this section use Ny = 5 observations per sensor

and the sensor noise σy = 0.01. Sensors are located on each of the discretisation nodes.

For the prior on κ, we choose a zero-mean Gaussian process with squared exponential

kernel (see Section 6.2.4 for details). We compare the results for three specifications of

the prior length-scale, ℓκ ∈ {0.1, 0.2, 0.3}. The length-scale used to generate the data is

ℓκ = 0.2. For inferences made using data generated by a shorter length-scale, see Sec-

tion B.1.

6.4.1.1 VB Performs Competitively Based on Error Norms

Figure 6.3 shows the mean κ error norm (6.31) and the expected solution error norm (6.32)

obtained from 10,000 posterior samples of κ from Hamiltonian Monte Carlo (HMC),
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Figure 6.3: Mean κ error norm for the Poisson 1D problem (left), as defined in (6.31),
and expected solution error norm (right), as defined in (6.32). Both quantities are es-
timated using 10,000 samples from the inferred posterior distribution of κ. Quantita-
tively, the sampling methods (HMC and pCN) and VB produce comparable results in
both metrics. One can observe that the lower error in the parameter κ space does not
necessarily imply lower error in the solution u space. This is likely due to non-linear
dependence of u on κ. For a qualitative comparison, see Figure 6.4 where each row of

results corresponds to a different value of the true prior length-scale ℓκ.

pre-conditioned Crank-Nicholson MCMC (pCN), as well as VB inference with different

parametrisations of the covariance/precision matrix. It is evident that for prior length-

scales ℓκ ∈ {0.2, 0.3}, the mean κ error norms computed by the variational Bayes meth-

ods are very close to the estimates from HMC and pCN. For prior ℓκ = 0.1, the mean κ

error norm computed by MFVB is lower than other VB methods and MCMC methods.

This is most likely due to MFVB being a much easier optimisation task compared to

other VB methods with more optimisation parameters that capture dependencies. For

the expected solution error norm, MFVB posterior consistently underestimates the un-

certainty in κ, thus ignoring possible values of κ which are consistent with the data.

This is further confirmed in the qualitative assessment of uncertainty in the next sec-

tion. While MCMC methods are asymptotically correct, in practice, devising efficient

samplers for high-dimensional problems within a limited computational budget is still a

challenging task and requires substantial hand-tuning. To affirm that all the VB meth-

ods provide a good estimate of the mean of κ, as compared to MCMC methods, is

better demonstrated by inspecting Figure 6.4 which shows not only the mean but also

the posterior uncertainty, which we discuss next.
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Figure 6.4: Top row in each of the three panels show true values of κ (red), posterior
means (black) and plus and minus two times the standard deviation (blue shaded
regions) for HMC, pCN, and VB variants for different values of prior length-scales ℓκ.
The bottom rows show the data (black), true solution u (green), solutions for different

samples of κ (blue). For the PMVB estimate, the bandwidth is set to 10.

6.4.1.2 VB Adequately Estimates Posterior Variance

Figure 6.4 shows the true values of κ (red), the posterior means (black) and plus and

minus two times the standard deviation (blue shaded regions) estimated by HMC, pCN,

and variational inference with mean-field (MFVB), full covariance (FCVB), and precision

matrix (PMVB) parametrisations for different values of prior length-scales. We observe



Variational Bayes for Inverse Problems 121

0.50 0.45 0.40 0.35 0.30
0

20

40

60

80

100

120

140
Prior = 0.1

0.50 0.45 0.40 0.35 0.30

Prior = 0.2

0.50 0.45 0.40 0.35 0.30

Prior = 0.3

HMC pCN Mean-field VB Full-covariance VB Precision VB

Figure 6.5: Log of the boundary flux at the left boundary node (x = 0) for the 1D
Poisson example. For PMVB, the precision matrix bandwidth of 10 is used.

that the posterior variance estimates computed by HMC, pCN, and full covariance VB

are qualitatively very similar, with the estimated uncertainty increasing with increasing

distance from the fixed boundary. However, the MFVB solution greatly underestimates

posterior variance while computing a reasonable estimate of the posterior mean. The

over-confidence of MFVB means that values of κ that are consistent with the observed

data are ignored; this may lead to poor calibration if the MFVB posterior is used as the

true κ in downstream tasks or in other contexts. For the PMVB parametrisation, the

uncertainty is underestimated to a much lesser extent.

The observations above are further confirmed by the density plot of our quantity of in-

terest: the log of the total flux on the boundary, shown in Figure 6.5. For this example,

we compute the flux on the left boundary at x = 0 and show the posterior distribution of

this quantity. For longer prior length-scales, FCVB and PMVB agree with the estimates

obtained from pCN and HMC, whereas mean-field VB underestimates the uncertainty.

For the short prior length-scale (ℓκ = 0.1), both PMVB and MFVB underestimate the

uncertainty as compared with HMC, pCN, and FCVB schemes. The posterior distribu-

tion of FCVB approximately agrees with the MCMC schemes.

For the results obtained using the PMVB scheme, we used the 10-neighborhood structure

to define the adjacency matrix and the non-zero elements of the precision matrix, Q

(see Section 6.3.3). The order of the neighbourhood structure, which corresponds to the

precision matrix bandwidth, determines how much dependence within κ is captured by

the approximating posterior distribution. In Figure 6.6, we show how the estimate of the

mean and the variance of κ changes for different orders of neighbourhood structure. As

expected, with the increasing bandwidth, the posterior estimate of κ gets closer to the
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Figure 6.6: True values of κ (red), posterior means (black) and plus and minus two
times the standard deviation (blue shaded region) for different matrix bandwidths of
the precision matrix parametrisation of VB. Bandwidth corresponds to the order of

neighbourhood structure considered when parametrising Q.

estimate of FCVB, HMC, and pCN (shown in Figure 6.4). While there is a significant

change in the uncertainty estimate when we increase the bandwidth from 2 to 10, it is

less pronounced when we change it from 10 to 20. For this reason, we choose the value

of 10 for the PMVB parametrisation in 1D.

6.4.1.3 VB Estimates Improve with More Observations and Decreasing Ob-

servational Noise

The consistency of the posterior refers to the contraction of the posterior distribution to

the truth as the data quality increases, i.e. either the number of observations increases or

observation noise tends to zero. A recent line of work (Abraham & Nickl 2020, Monard

et al. 2020, Giordano & Nickl 2020) showed the posterior consistency for the estimates

obtained using popular MCMC schemes such as pCN or unadjusted discretised Langevin
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algorithm for Bayesian inverse problems based on PDE forward mappings. While sim-

ilar results are not available for VB methods in infinite-dimensional case, consistency

and Bernstein-von Mises type results have been shown for the finite-dimensional case,

including Bayesian inverse problems (Wang & Blei 2019, Lu et al. 2017). Empirically,

our experiments show that for the given family of trial distributions the VB posterior

distribution contracts to the true κ.

Firstly, we show that increasing the number of observations, Ny, results in a more ac-

curate estimate. Given that the observations, {yi}Ny

i=1, are independent of each other,

the likelihood term of the ELBO (see (2.36)) is the product of the individual likelihood

terms:

p(y1, . . . ,yNy | κ) =
Ny∏︂
i

p(yi | κ). (6.33)

Secondly, by decreasing the observational noise σy we expect the posterior distribution

to get closer to the ground truth and with lower uncertainty. Figure 6.7 shows the true

values of κ (red), the posterior mean estimates (black) and plus and minus two times

the standard deviation (blue shaded regions) obtained by different variants of variational

Bayes for varying numbers of observations (top panel) and different values of obser-

vational noise (bottom panel). We can see that MFVB underestimates the posterior

variances and these estimates do not depend on the number of observations (top panel

in Figure 6.7) or the amount of observational noise (bottom panel in Figure 6.7). How-

ever, the FCVB and PMVB uncertainty estimates get narrower with increasing number

of observations and with decreasing observational noise, which is a desirable behaviour

that should be exhibited by any consistent uncertainty estimation method. We can also

see that the true solution is contained within the uncertainty bounds for all numbers of

observations and noise levels for the full covariance parametrisation. This is not the case

for the mean-field VB, providing another indication of uncertainty underestimation for

this parametrisation.

6.4.1.4 VB Is an Order of Magnitude Faster than HMC

For HMC estimates, we obtain 200,000 samples out of which the first 100,000 are used

to calibrate the sampling scheme and are subsequently discarded. Table 6.1 provides the

run-times for HMC, MFVB, FCVB, and PMVB. For the HMC column, we also report

(shown in brackets) the range of effective sample sizes (ESS) across different components



Variational Bayes for Inverse Problems 124

1

0

M
FV

B
(x

)

n= 1 n= 10 n= 100

1

0
FC

VB (x
)

0.0 0.5 1.0

1

0

PM
VB (x
)

0.0 0.5 1.0 0.0 0.5 1.0

True = 0.2, Prior = 0.2

0.0

2.0

M
FV

B
(x

)

= 0.1 = 0.01 = 0.001

0.0

2.0

FC
VB (x
)

0.0 0.5 1.0

0.0

2.0

PM
VB (x
)

0.0 0.5 1.0 0.0 0.5 1.0

True = 0.2, Prior = 0.2

Figure 6.7: True values of κ (red), posterior means (black) and plus and minus two
times the standard deviation (blue shaded regions) for VB with different parametrisa-
tions for different number of observations per sensor, Ny ∈ {1, 10, 100} (top panel), and

for different values of sensor noise σϵ ∈ {0.1, 0.01, 0.001} (bottom panel).

of κ. For details on ESS, we refer the reader to (Gelman et al. 2013, Ch. 11). Even

with conservative convergence criteria (described in Section 6.3.4), the computational

cost of VB algorithms is up to 25 times lower than that of HMC. To emphasise the

computational efficiency of the variational inference, we show the posterior estimates

for different number of Monte Carlo samples in the estimation of ELBO. Figure 6.8

shows that on a qualitative level, a low number of samples is sufficient to obtain a good

estimate. In particular, even with 2 Monte Carlo samples, the estimates are very similar

to the case where NSVI = 20. However, a lower number of samples may result in slower

convergence of the optimisation scheme. Figure 6.9 shows that for the FCVB and PMVB

parametrisations, where the number of optimised parameters is larger than for MFVB,

increasing the number of SVI samples may speed up the convergence of the optimisation.
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Figure 6.8: True values of κ (red), posterior means (black) and plus and minus two
times the standard deviation (blue shaded regions) of VB with different parametri-
sations for varying number of Monte Carlo samples when computing ELBO. Three

different length-scales for the prior are shown: 0.1, 0.2, 0.3.
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true ℓκ prior ℓκ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 15.2 (871–3244) 1.1 3.6 2.1
0.2 11.1 (1043–4006) 0.7 2.7 2.1
0.3 7.2 (1130–5408) 0.6 2.3 2.0

0.2 0.1 15.2 (1600–4700) 0.6 2.2 1.8
0.2 10.4 (1067–3468) 0.6 2.3 2.0
0.3 7.0 (1487–3969) 0.5 1.7 1.8

Table 6.1: Run-times for different inference schemes in hours for the Poisson 1D
problem. For VB methods, NSVI = 3. The column for HMC includes the range of

effective sample sizes (ESS) across different components of κ.
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Figure 6.9: Negative ELBO trace plot for both MFVB and FCVB for different values
of NSVI. For this example, true ℓκ = 0.2 and prior ℓκ = 0.1.

The effect is not as strong for the MFVB parametrisation.

6.4.2 Two-dimensional Poisson Equation Experiments

We consider a 2D Poisson problem on the unit-square domain with a circular hole as

shown in Figure 6.10, with boundary conditions as indicated in the same figure. The

problem is discretised with 208 linear triangular elements and 125 nodes. The forcing

term is assumed to be constant throughout the domain, f(x) = 1. Unless specified

otherwise, all experiments in this section use Ny = 5 observations per sensor and the

sensor noise σy = 0.001 (note that for the 1D example we used σy = 0.01). The sensors

are located at each node of the mesh. As in the 1D example, we assume a zero-mean

GP prior on κ with square exponential kernel with varying length-scale, ℓκ, as discussed

in Section 6.2.4.

Firstly, the results in Figure 6.11 show that the mean κ error of VB methods is very

similar to the sampling methods (pCN and HMC). Similarly to the 1D case, the expected

solution error norm is highest for MFVB estimate, indicating the lack of capturing the
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Figure 6.10: Left: Specification of the domain for the 2D Poisson problem. Note
that we impose Dirichlet boundary conditions u(x, y) = 0 when x = 1 or y = 1. We
impose Neumann boundary conditions on the rest of the boundary. Right: a triangular

discretisation of the domain.
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Figure 6.11: Mean κ error norm for the Poisson 2D problem (left), as defined in (6.31),
and expected solution error norm (right), as defined in (6.32). Both quantities are es-
timated using 10,000 samples from the inferred posterior distribution of κ. Quantita-
tively, the sampling methods (HMC and pCN) and VB produce comparable results in
both metrics. One can observe that the lower error in the parameter κ space does not
necessarily imply lower error in the solution u space. This is likely due to non-linear

dependence of u on κ. For a qualitative comparison, see Figures 6.12 – 6.14.

possible values of κ for which the solutions, u(κ), are consistent with the observed data.

The results also show that both errors are lowest when the prior ℓκ matches the length-

scale used to generate the data.

Figures 6.12 – 6.14 show the results for the posterior mean and the standard deviation

of κ, and the solution u(κ) corresponding to the mean of the posterior. We consider

three configurations with prior length-scale ℓκ ∈ {0.1, 0.2, 0.3}, where the length-scale

used to generate the data is ℓκ = 0.2. In all cases, the estimates of the posterior mean

of κ and the corresponding solutions u are very close to the true values. Similarly to

the 1D case discussed in Section 6.4.1, the variance estimates between HMC and FCVB

are consistent, especially for longer prior length-scales. There seems to be a discrepancy
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Figure 6.12: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale ℓκ = 0.1.

True HMC pCN MFVB FCVB PMVB

1
0
1

SD( )

0.025
0.050
0.075

u( )

0.0

0.2

Figure 6.13: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale ℓκ = 0.2.
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Figure 6.14: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale ℓκ = 0.3.

between the estimates obtained using MFVB and those obtained by other methods. The

estimates obtained using precision-matrix parametrisation are qualitatively very close to

the FCVB and MCMC estimates.

For the quantity of interest, we compute the log of the total flux along the right boundary

of the domain (x = 1), and the results are shown in Figure 6.15. Unlike the 1D case,
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Figure 6.15: Log of the total flux computed along the right boundary (x = 1). For
PMVB, the precision matrix is parametrised using the second-order neighbourhood

structure, as shown in Figure 6.2.

true ℓκ prior ℓκ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 240.6 (930–11200) 6.4 29.6 28.1
0.2 295.5 (1537–11067) 6.6 32.6 28.9
0.3 242.0 (1057–6068) 7.3 27.3 30.6

0.2 0.1 242.7 (1102–18235) 6.2 34.3 27.2
0.2 264.3 (1304–9848) 7.4 33.7 34.0
0.3 221.9 (1192–6356) 7.8 31.3 34.0

Table 6.2: Run-times for different inference schemes in seconds. The number of Monte
Carlo samples is NSVI = 5 for all MFVB, FCVB, and PMVB. The column for HMC

includes the range of effective sample sizes (ESS) across different components of κ.

the posterior estimates of the boundary flux are approximately the same for all the

considered methods, except for the mean-field estimate when prior ℓκ = 0.1, where the

MFVB estimate is biased as compared to the other methods.

The empirical computational cost for these experiments is given in Table 6.2. For the

HMC experiments, we obtained 250,000 samples, out of which the first 125,000 were used

to calibrate the sampling scheme and discarded afterwards. The timing results show that

HMC takes an order of magnitude longer than variational Bayes, with some variation

that depends on the parametrisation.

6.4.3 Inverse Problem Benchmark

We evaluate the effectiveness of VB methods on a recently proposed benchmark for

Bayesian inverse problems (Aristoff & Bangerth 2021). The benchmark aims to provide

a test case that reflects practical applications, but at the same time is easy to replicate.
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Like above, the test case is a Poisson inverse problem where the task is to recover log-

diffusion, κ, from a finite set of noisy observations. The problem domain is a unit square,

the forcing function f(x) = 10 is constant throughout the domain, and the solution of

the PDE is imposed to be zero on all four boundaries.

The benchmark discretises κ using 64 quadrilateral elements, such that κ is constant for

each individual element as shown in Figure 6.16. The forward solution of the PDE is

obtained after discretising u using 32× 32 bilinear quadrilateral elements. The locations

where the solution is observed are placed on a uniform grid of 169 points (13× 13). The

measurements are corrupted by the Gaussian noise with standard deviation σy = 0.05.

The authors of the benchmark provide the measurements as well as the true log-diffusion

coefficient κ which generated the observations. The true log-diffusion coefficient, shown

in Figure 6.16, is zero throughout the domain, except two regions, where the value is

log(10) and log(0.1). It is these two jumps that make it a non-trivial test case.

Unlike in the previous examples, we place a prior on κ which does not induce any spatial

correlation between any of the κ coefficients. The role of the prior is to express our

belief about the ranges of the coefficients, rather than any dependencies. Although

authors place N (µ = 4, σ2 = 4) for each component of κ independently, we choose

N (µ = 0, σ2 = 1) as most of the coefficients of the true κ are at the baseline level equal

to zero, and the fact that the κ corresponds to the diffusion parameter on the log-scale,

a priori we do not expect such high variance.

We performed the inference using HMC, MFVB, FCVB, and PMVB. The means and

standard deviations of inferred log-diffusion coefficients, together with the PDE solutions

corresponding to the inferred means, are shown in Figure 6.16. The results suggest that

the mean estimates of all three methods do capture the jumps and the overall structure

of κ. Specifically, the FCVB estimate of the mean of κ is closest to the true value.

As for uncertainty quantification, the MFVB and PMVB estimates are closer to the

HMC estimate (our assumed ground truth for the uncertainty) than the FCVB estimate.

The FCVB estimate seems to overestimate the uncertainty at a few locations. This is

potentially due to being stuck in a local optimum during the optimisation procedure,

which for FCVB involves high-dimensional exploration.
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Figure 6.16: Posterior mean and standard deviation for κ and the corresponding u for
the benchmark example with independent prior for each coefficient of κ: κi ∼ N (0, 1).

6.5 Conclusions

In this chapter, we have presented the variational inference framework for Bayesian

inverse problems and investigated its efficacy on problems based on elliptic PDEs. Com-

putationally, variational Bayes offers a tractable alternative to the intractable MCMC

methods, and provides consistent mean and uncertainty estimates on the problems in-

spired by questions in computational mechanics. VB recasts the integration problem

associated with Bayesian inference into an optimisation problem. As such, it is naturally

integrated with existing FEM solvers, using the gradient calculations from the FEM

solvers to optimise the ELBO in VB. Furthermore, the geometry of the problem encoded

in the FEM mesh is utilised through the use of a sparse precision matrix that defines

the conditional independence structure of the problem. Our results on the 1D and 2D

Poisson problems support the claims of accuracy and scalability of VB. We note that the

inferred variance is important in uncertainty quantification with a probabilistic forward

model (for a different load case).

More specifically, our results show that

• the mean of the variational posterior provides an accurate point estimate irrespec-

tive of the choice of the parametrisation of the covariance structure,
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• the variational approximation with a full-covariance or precision matrix structure

adequately estimates posterior uncertainty when compared to HMC and pCN which

are known to be asymptotically correct,

• parametrising the multivariate Gaussian distribution using a sparse precision ma-

trix provides a way to balance the trade-off between computational complexity and

the ability to capture dependencies in the posterior distribution,

• variational Bayes provides a good estimate for the mean and the variance of the

posterior distribution in a time that is an order of magnitude faster than HMC or

pCN,

• the multivariate Gaussian variational family is flexible enough to capture the true

posterior distribution with high accuracy,

• the VB estimates may be used effectively in downstream tasks to estimate various

quantities of interest, and

• variational Bayes method is flexible enough to model multimodal posteriors, as

illustrated on a preliminary truss example, see Section B.2.

Our work may be extended in a number of natural ways that allows for greater adaptiv-

ity to the specific problems encountered in applications and integration within existing

frameworks. Firstly, taking advantage of fast implementations of sparse linear algebra

routines would further improve the scalability of VB with the structured precision ma-

trix, as proposed in our work. Secondly, casting the inverse problem in a multi-level

setting and taking advantage of low-dimensional projections has potential to further im-

prove computational efficiency (Nagel & Sudret 2016, Ghattas & Willcox 2021). Thirdly,

the results provided in this work use standard off-the-shelf optimisation routines; further

computational improvements may be achieved using customised algorithms. As a further

extension, in some applications it may be informative to consider the uncertainty in the

forcing function so that the forward mapping is stochastic, as discussed in (Girolami

et al. 2021). Finally, one of the aims of our work is to take advantage of the advances in

Bayesian inference and adapt the novel algorithms to inverse problems in computational

mechanics. As such, any further developments in VB as applied to machine learning and

computational statistics problems may be directly applied using the framework proposed

in this chapter.
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6.6 Implementation

Codes for performing all forms of variational Bayes inference presented in this chapter

are available on Github at https://github.com/jp2011/bip-pde-vi. The user must

provide their own PDE solver which accepts κ as input parameter and computes log p(y |
κ), together with its gradient with respect to κ.

https://github.com/jp2011/bip-pde-vi


Chapter 7

Summary and Further Work

Spatial information has played a crucial role in the development of models in science

and engineering. In spatial statistics, spatial information is used to improve models by

leveraging spatial context of observations. In natural sciences, many laws are formulated

with respect to spatial location. Motivated by the importance of spatial information in

modelling, we have made two methodological contributions, which we summarise in the

next section. Afterwards, we discuss limitations and potential directions for future work.

7.1 Summary

In Chapter 4, we developed methodology for effectively modelling heterogeneous spatial

point patterns over large domains such as cities. We considered estimation of the inten-

sity of point patterns and analysed the factors contributing to its variation. Motivated

by the application of burglary crime in Greater London, we proposed a model that ac-

counts for spatial heterogeneity and imposes spatial dependence effectively. Events can

refer to either residential or commercial burglaries, each with different empirical spatial

patterns: commercial burglary occurrences cluster around the city centre, high streets

and industrial parks, and residential burglary clusters around residential areas. This mo-

tivated our choice of a mixture model, which allows for different locations to be modelled

by different components. The proposed Bayesian model is a finite mixture of Poisson

generalised linear models such that each location is probabilistically assigned to one of

the mixture components. Each component is characterised by the regression coefficients,

134
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which we used to interpret the localised effects of the covariates. By using a block struc-

ture of the study region, our approach allows specifying spatial dependence between

nearby locations. We estimated the proposed model using Markov Chain Monte Carlo

(MCMC) method, giving the posterior distribution of quantities of interest. Compared

to log-Gaussian Cox processes, which are the go-to model for point patterns, the pro-

posed model has better predictive performance, including the ability to predict hotspots,

and can be estimated at a lower computational cost. In addition, the interpretability of

the model components can provide operational insights.

The second contribution, presented in Chapter 6, concerns the inverse problem for models

involving partial differential equations (PDEs). PDEs provide a mechanistic way for

incorporating spatial dependence and spatial heterogeneity into models. The inverse

problem involves assimilating observations, such as sensor measurements, into a PDE

model to infer a physical parameter of the PDE. Such problems are generally ill-posed

and must be regularised. Having chosen the Bayesian approach for the regularisation,

we advocated for the use of variational Bayes methods as an alternative to Markov

Chain Monte Carlo (MCMC) methods for inferring the posterior distribution of the

physical parameter of a PDE. We showed that variational Bayes methods provide scalable

inference that adequately propagates uncertainty. We proposed a family of Gaussian trial

distributions parametrised by precision matrices, thus taking advantage of the inherent

sparsity of the inverse problem encoded in its finite element discretisation. We utilised

stochastic optimisation to efficiently estimate the variational objective and assess not only

the error in the solution mean but also the uncertainty of the estimate. We performed

an extensive empirical assessment on examples based on the Poisson equation, which

is a fundamental model in science and engineering. The experiments included different

regimes, such as different prior assumptions or varying the number of observations and

measurement noise levels.

7.2 Limitations and Future work

This thesis has provided several new modelling approaches to leveraging spatial informa-

tion. As with many modelling methods, the challenge lies in trading off model quality

and cost. To reduce the cost, measured in computational terms, we had to make choices
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that imply a restricted or simplified model. Below, we summarise these choices, discuss

their implications, and suggest several directions for future work.

In Chapter 4, we presented an inference algorithm for inferring point pattern intensities

and their constitutive parts. One of the main limitations of our approach is the restriction

to spatial-only settings. Although this choice was dictated by the low temporal resolution

of the data, from an algorithmic standpoint, future work could develop the use of mixture

models for modelling heterogeneous phenomena over spatio-temporal domains. Related

to spatial heterogeneity, an approach different from mixture models could be taken. One

possible candidate are spatially varying processes, proposed by Gelfand et al. (2003),

but their scalability properties would have to be further investigated. To reduce the

computational cost of our proposed method, we suggest several options. Firstly, one

could impose Markovian structure in the mixture allocation component which is currently

driven by K Gaussian processes, where K is the number of mixtures. The mixture

allocation component could alternatively be modelled by K level sets of a single Gaussian

process, thereby significantly reducing the dimension of the model. Lastly, alternative

Bayesian inference methods such as variational Bayes methods could be explored.

Similarly to above, the methodology we presented in Chapter 6 is applied to linear el-

liptic PDEs in 2D. A natural extension would be to consider non-elliptic or non-linear

PDEs, such as time-dependent heat equation. Although the methodology we developed

is applicable in general, solving more complex PDEs which include non-linearity and

time dimension poses its challenges. To further increase the flexibility of the proposed

methodology so that it is applicable to a wider range of applications, one could assume

that the input, function f , is itself a stochastic process. To tackle the problem of compu-

tational efficiency, several directions are possible. One could cast the inverse problem in

a multi-level setting and solve the inference problem at multiple resolutions. This would

reduce the computational cost at fine-resolution levels. Further improvements to the

proposed methodology could come from alternative parametrisations of the approxima-

tion distribution. Another possible direction to take this work further is to characterise

the bias introduced by the finite element discretisation, similarly to Papandreou et al.

(2022). Lastly, one could investigate using more tailored optimisation schemes and linear

algebra routines that better leverage sparse structure arising from the discretisation of

PDEs using finite elements.
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7.3 Concluding Remarks

Incorporating spatial information into models remains an important problem in science

and engineering. Several challenges are at the forefront of the spatial modelling research.

Firstly, the increasingly numerous and non-homogeneous sources of data, such as from

the internet of things devices, call for novel methods to be developed to leverage the

data. Secondly, as we have seen in this thesis, the computational cost of many spatial

modelling methods is prohibitive, which renders the methods unable to cope with real-

world problems. The ever-increasing computing capabilities will hopefully mean that

many of the existing problems, and also new ones as a result of new data sources,

will become more tractable. Recent successes of artificial intelligence research in which

computational power played a crucial role suggest that we can expect that to be the

case (Vinyals et al. 2019, Jumper et al. 2021). This is not to imply that domain expert

knowledge is not essential to address the challenges above. On the contrary, expert

knowledge should guide the modelling task at every step.
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Appendix A

Supplementary Material for

Chapter 4

A.1 Poisson Regression Model: Excess of Zeros, Overdis-

persion

In this section we demonstrate that the standard Poisson regression (McCullagh & Nelder

1998) is not a suitable model for the London burglary point pattern.

Firstly, the dataset consists of areas with no buildings in it, e.g. parks, airports, which

results in counts equal to zero due to structure rather than due to chance. This is

further supported by the plot of the observed count and the corresponding histogram,

both shown in Figure A.1. This phenomenon is often referred to as excess of zeros.

Secondly, we fit Poisson GLM with all four specifications of covariates to the 2015 bur-

glary dataset, as described in the paper. Then we use the overdispersion test proposed

in Cameron & Trivedi (1990), and implemented in the AER package (Kleiber & Zeileis

2008). For the standard Poisson GLM model, Var(yn) = µn. The overdispersion test

uses it as the null hypothesis, where the alternative is Var(yn) = µn + c× g(µn), where

g(·) must be specified. For our test, we choose g(·) = 1. Table A.1 shows the estimated c

values and the p-values for each estimate, given that null hypothesis is c = 0. The data

clearly show the presence of overdispersion in all four models.
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Figure A.1: Observed count on the map (left) and the corresponding histogram
(right) for the point pattern of burglary aggregated over the grid for the time period

1/2015-12/2015.

Table A.1: Overdispersion test for Poisson GLM model of burglary counts.

Specification c p-value
1 1.905 2.2e-16
2 1.897 2.2e-16
3 1.910 2.2e-16
4 1.911 2.2e-16

A.1.1 Poisson Regression vs SAM-GLM

Figure A.2 shows the scatter plot of expected vs observed counts for the Poisson regres-

sion model (SAM-GLM with K = 1) and the proposed model with K = 3. It is evident

from the plot that adding extra components to the standard Poisson regression reduces

the overdispersion issue.
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Figure A.2: Scatter plot of predicted counts vs observed counts (training data) for
the Poisson GLM model (left), and SAM-GLM K=3 (right). Blocking: MSOA, training

data: 2015, using specification 4.

A.2 Log-Gaussian Cox Process

Dicretising the spatial domain to a regular grid, the full Bayesian formulation of the

model is given as follows:

yn|β, f ,X ∼ Poisson
(︂
exp(X⊤

n β + fn)
)︂

(A.1)

f(·)|θ ∼ GP (0, kθ(·, ·)) (A.2)

βj ∼ N (0, σ2j ) (A.3)

σ2j ∼ InvGamma(1, 0.01) (A.4)

θ ∼ weakly-informative log-normal prior, (A.5)

where n = 1, . . . , N is the index over the cells on the map, j = 1, . . . , J is the index over

the covariates, f() is a zero-mean Gaussian process with covariance function kθ(·, ·), and

hyperparameters θ, fn is the value of f(·) in the centre of cell n, Xn is the vector of the

covariates at cell n, and βj is the jth regression coefficient with a scale hyperparameter

σ2kj . A plain Poisson generalised linear model (GLM) formulation assumes no spatial

correlation, i.e. fn = 0 for all n. Compared to the Poisson GLM model, LGCP allows

for modelling the variation in the intensity that cannot be explained by the covariates

X.



Appendices 156

In order to allow for Kronecker product factorisation of the covariance matrix of the

Gaussian process, we specify kθ(·, ·) as a product of two Matérn covariance functions,

one for the easting (E) coordinate, the other for the northing (N) coordinate. If the

GP is trained using n points of a regular grid, the computational cost of inverting the

covariance matrix goes down from O
(︁
n3
)︁

to O
(︁
2n3/2

)︁
.

Matérn covariance function is a standard choice in spatial statistics as it allows specifying

smoothness of the function (Stein 1999). It is given as follows

kMatern(x,x
′) =

21−ν

Γ(ν)

(︄√
2ν|x− x′|

ℓ

)︄ν
Kν

(︄√
2ν|x− x′|

ℓ

)︄
, (A.6)

where ℓ is the characteristic lengthscale, ν is the smoothness parameter, and Kν is a

modified Bessel function (Rasmussen & Williams 2006). It can be shown that that the

Gaussian processes with Matérn covariance functions are k-times mean-square differen-

tiable if and only if ν > k. Abramowitz & Stegun (1965) show that if ν is a half-integer,

i.e. for an integer p, ν = p+ 1
2 , the covariance function becomes especially simple, giving

kℓ,ν=p+1/2(x,x
′) = exp

(︄
−
√
2ν|x− x′|

ℓ

)︄
Γ(p+ 1)

Γ(2p+ 1)

p∑︂
i=0

(p+ i)!

i!(p− i)!

(︄√
8ν|x− x′|

ℓ

)︄p−i
.

(A.7)

For this reason, we set ν = 3/2. The final covariance function, including the σ2 parameter

to control the range of f() therefore becomes

kθ((xE, xN), (yE, yN)) = σ2kℓ,ν=3/2(xE, yE)× kℓ,ν=3/2(xN, yN), (A.8)

where θ = [σ2, ℓ]⊤.

A.2.1 Inference

To infer posterior distribution of the regression coefficients, β, latent field f , and its

hyperparameters θ, we use a Hamiltonian Monte Carlo sampler. The scale parameters

σ21, . . . , σ
2
J are analytically integrated out (see (A.14) in the appendix). Due to positivity

constraint of the hyperparameters, we sample from ϕ = log θ (applied component-wise).
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The density function of the joint posterior distribution we are sampling from is propor-

tional to the product of likelihood and the priors, i.e.

p(f ,β,ϕ|y) ∝ p(y|f ,β)p(f | exp(ϕ))p(β)pθ(exp(ϕ))
∏︂
i

⃓⃓⃓⃓
d

dϕi
exp(ϕi)

⃓⃓⃓⃓
. (A.9)

To effectively use HMC sampler, log-likelihood of the posterior and its gradient need to be

tractable. Thanks to the grid structure of our study region, we utilise Kronecker product

structure that is present in the covariate matrix in p(f |θ) if the covariance function kθ(·, ·)
is assumed to be a product of covariance functions, one per each dimension (For more

details, see Saatçi (2012)). After expansion, the unnormalised log-density becomes

log p(f ,β,ϕ|y) = log p(y|f ,β) + log p(β) + log p(f | exp(ϕ)) + log pθ(exp(ϕ)) +
∑︂
i

ϕi + const1

=
(︂
y⊤Xβ + y⊤f − exp(Xβ + f)

)︂
+ log p(β)

+

(︃
−1

2
log |Kθ| −

1

2
f⊤K−1

θ f

)︃
+ log pθ(exp(ϕ)) +

∑︂
i

ϕi + const1, (A.10)

The gradients of the log posterior density w.r.t. quantities of interest are

∇f log p(f ,β,ϕ|y) = (y − exp(Xβ + f)) +
(︁
−K−1

θ f
)︁

(A.11)

∇β log p(f ,β,ϕ|y) =
(︂
X⊤y −X⊤ exp(Xβ + f)

)︂
+∇β log p(β) (A.12)

∇ϕi log p(f ,β,ϕ|y) =
1

2
f⊤K−1

θ

∂Kθ

∂θi
K−1

θ f − 1

2
tr

(︃
K−1

θ

∂Kθ

∂θi

)︃
+∇ϕi log pθ(exp(ϕ)) + 1. (A.13)

The expansion of un-normalised log-density of β and the gradients are derived in (A.15)

and (A.16) below.

All operations involving Kθ can be sped up using Kronecker product factorisation. Given

n2 is the number of elements in the full matrix Kθ, operations in (A.11) and (A.13) can

be computed in O
(︂
n

3
2

)︂
time by utilising the Kronecker structure in matrix inversion

and matrix-vector multiplication. For full details, see Saatçi (2012).

Lastly, we note that the restriction of performing inference on a grid-based domain has

been relaxed by non-grid approaches based on SPDEs proposed (Simpson et al. 2016,

Lindgren et al. 2011).
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A.3 Model Derivations

A.3.1 Beta Prior

Given a vector of J independent random variables β, of which each component is dis-

tributed as follows

βj ∼ N (0, σ2j ),

σ2j ∼ InvGamma(a, b).

Let Ψ =
(︁
σ21, . . . , σ

2
J

)︁⊤, then the prior for the coefficients is given by integrating out the

nuisance parameter Ψ

p(β) =
∏︂
j

p(βj)

=
∏︂
j

∫︂
p(βj |Ψj)p(Ψj)dΨj

=
∏︂
j

∫︂
1√
2π

Ψ
−1/2
j exp

(︃
− 1

2Ψj
β2j

)︃
ba

Γ(a)
Ψ−a−1
j exp

(︃
− b

Ψj

)︃
dΨj

=
∏︂
j

ba√
2πΓ(a)

∫︂
Ψ

−a− 1
2
−1

j exp

(︄
−

1
2β

2
j + b

Ψj

)︄
dΨj

=
∏︂
j

ba√
2πΓ(a)

Γ
(︁
1
2 + a

)︁(︂
1
2β

2
j + b

)︂ 1
2
+a

(A.14)

For the purposes of HMC, we derive both log-density and the gradient of log-density

w.r.t. the each individual components. Log-density is given as

log p(β) =
∑︂
i

−
(︃
1

2
+ a

)︃
log

(︃
1

2
β2i + b

)︃
, (A.15)

from which the gradient is equal to

∂ log p(β)

∂βi
=

(−1
2 − a)βi

1
2β

2
i + b

. (A.16)
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A.3.2 Conditional Densities for SAM-GLM Inference

The derivations below use the properties of the density function of the Dirichlet distri-

bution and the following property of the Gamma function, Γ(a+ 1) = aΓ(a).

A.3.2.1 Regression Coefficients Update

p(β|α,X,y, z) ∝ p(y|β,X, z)p(β)

∝

⎧⎨⎩
K∏︂
k=1

J∏︂
j=1

p(βk,j)

⎫⎬⎭
{︄

N∏︂
n=1

p(yn|β,X, zn)

}︄

∝

⎧⎨⎩
K∏︂
k=1

J∏︂
j=1

p(βk,j)

⎫⎬⎭
{︄

N∏︂
n=1

K∏︂
k=1

p(yn|βk,X)I(zn=k)

}︄

∝

⎧⎨⎩
K∏︂
k=1

J∏︂
j=1

p(βk,j)

⎫⎬⎭
⎧⎨⎩

N∏︂
n=1

K∏︂
k=1

(︄
exp(X⊤

n βk)
yne− exp(X⊤

n βk)

yn!

)︄I(zn=k)⎫⎬⎭ ,

(A.17)

where p(β) is expanded according to (A.14). For the purposes of Hamiltonian Monte

Carlo, the gradient of the posterior distribution is analytically available.

A.3.2.2 GPs Updates

The unnormalised joint posterior density of the K GPs and their hyperparameters is

given as

p(F ,θ|y, z) ∝ p(z|F )p(F |θ)p(θ)

∝
N∏︂
n=1

p(zn|F )

K∏︂
k=1

p(fk|θk)p(θk)

∝
N∏︂
n=1

K∏︂
k=1

(︄
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

)︄I(zn=k) K∏︂
k=1

p(fk|θk)p(θk),

where p(fk|θk) is the density function of the zero-mean multivariate Gaussian distribu-

tion with covariance matrix parameterised by θ, and p(θk) is a suitable prior for the

hyperparamers. The gradient of the joint posterior with respect to F and θ are analyti-

cally available.
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A.3.2.3 Mixture Allocation Update for Spatially-dependent Blocks

p(zn = k|zn̄,Xn,β,y,F ) = p(yn|zn = k,Xn,βk)p(zn|F )

∝ p(yn|zn = k,Xn,βk)
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

=
K∏︂
k=1

(︄
exp(X⊤

n βk)
yne− exp(X⊤

n βk)

yn!

)︄I(zn=k)
exp(fk,b[n])∑︁K
l=1 exp(fl,b[n])

A.3.2.4 Mixture Allocation Update for Independent Blocks

p(zn = k|zn̄, α,Xn,β,y) ∝ p(yn|zn = k,Xn,β)

∫︂
p(zn|πb[n])p(πb[n]|α, zn̄)dπb[n]

∝ p(yn|zn = k,Xn,β)

∫︂ ∏︂
k

π
I(zn=k)
b[n],k

Γ(
∑︁K

j=1Bb[n],j)∏︁K
j=1 Γ(Bb[n],j)

K∏︂
j=1

π
Bb[n],j−1

b[n],j dπb[n]

∝ p(yn|zn = k,Xn,β)
Γ(
∑︁K

j=1Bb[n],j)∏︁K
j=1 Γ(Bb[n],j)

∏︁K
j=1 Γ(Bb[n],j + I(j = k))

Γ(
∑︁K

j=1Bb[n],j + I(j = k))

∝ p(yn|zn = k,Xn,β)
Bb[n],k∑︁K
j=1Bb[n],j

∝
K∏︂
k=1

(︄
exp(X⊤

n βk)
yne− exp(X⊤

n βk)

yn!

)︄I(zn=k) cn̄b[n]k + α

Kα+
∑︁K

j=1 c
n̄
b[n]j

,

(A.18)

where Bb,k = cn̄b,k + α, and cn̄b,k is the number of cells in block b other than cell n that

are assigned to component k.

A.4 Dependence of Blocks – Extra Plots

This section includes two plots related to the discussion of dependence of blocks in

the paper. We compare the independent blocks version of our model with the variant

that addresses the dependence via Gaussian random fields. The plots below show that

considering dependence between the blocks can improve model predictions in some cases

but it requires sampling from a high-dimensional distribution (K ×B), resulting in slow

mixing.
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Figure A.3: Smoothed histograms of log likelihood computed on in-sample counts
(left), and out-of-sample counts (right) using the proposed model with dependent blocks
( ), and independent blocks ( ) when K = 3. Blocking: MSOA, training data:

2015, test data: 2016, model specification 4.

Figure A.3 compares smoothed histograms for samples of in-sample log-likelihood p(y|ϕ)
for both variants of the model when K = 3, with their out-of-sample counterpart using

samples from p(ỹ|ϕ). While independent-blocks model performs better in-sample, the

dependent-blocks model generalises better to out-of-sample data. However, for K = 2

and K = 4, the model with independent blocks has lower RMSE on out-of-sample data

as reported in the paper.

Figure A.4 shows the autocorrelation plot for the in-sample log-likelihood obtained from

50 000 samples that were thinned to 5000 for both variants to assess mixing performance.

It is clear that successive samples obtained from the complex dependent-blocks model are

more correlated to each other than for the case of independent blocks indicating slower

mixing. Further, the inferences made using a Markov chain with high autocorrelation

may lead to biased results.
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Figure A.4: Autocorrelation plots for the samples of in-sample log-likelihood when
K = 3. Blocking: MSOA, training data: 2015, model specification 4.
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B.1 Short Length-scale Results

0.1 0.2 0.3
Prior k

0.0

0.5

1.0

1.5

2.0

2.5

HMC
pCN
MFVB
FCVB
PMVB

Mean  error norm
true = 0.1

0.1 0.2 0.3
Prior k

0.00

0.01

0.02

0.03
HMC
pCN
MFVB
FCVB
PMVB

Expected u( ) error norm
true = 0.1

Figure B.1: Mean κ error norm for the Poisson 1D problem (left), as defined in (6.31),
and expected solution error norm (right), as defined in (6.32). Both quantities are es-
timated using 10,000 samples from the inferred posterior distribution of κ. Quantita-
tively, the sampling methods (HMC and pCN) and VB produce comparable results in
both metrics, except MFVB parametrisation which captures the mean of κ very well,
but fails to account for the uncertainty as manifested in high error norm in the solution
space. For a qualitative comparison, see Fig. 6.4 where each row of results corresponds

to a different value of the true prior length-scale ℓκ.
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Figure B.2: Top row in each of the three panels show true values of κ(x) (red),
posterior means (black) and ±2 standard deviations (blue shaded regions) for HMC
and VB variants for different values of prior length-scales ℓκ. The bottom rows show
the data (black), true solution u (green), solutions for different samples of κ (blue). For

the PMVB estimate, the bandwidth is set to 10.
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Figure B.3: One-dimensional truss discretised using three elements (shown in the left
panel). The middle panel shows the likelihood surface for varying stiffness of the first
and the third element. The right panel shows the posterior inference of the stiffness

after displacements have been observed.

B.2 Bimodal Example

One of the advantages of VB over Laplace approximation is the flexibility of the approx-

imating distribution. To illustrate this, we consider an example with a one-dimensional

truss which is fixed at one node and contains three degrees of freedom that correspond

to the horizontal motion of the three nodes as shown in the left panel of Fig. B.3. We

assume that the stiffness bi of each member i is constant within each member and, fur-

thermore, the stiffness of the member 1 is the average of the stiffness of the members at

the ends, i.e. b1 = (b0+ b2)/2. The inverse problem is then defined as follows. Given the

displacement vector d and boundary conditions, find the unknown stiffness parameters

b0 and b1. To prevent negative or small stiffness, constraints are imposed on the stiffness

of each member, bi > 0.1, and Neumann boundary conditions are set to f = (0, 1, 0.05)T .

Due to the constraint on the stiffness of member 1, the image of the forward problem is

a manifold with dimension 2 embedded in displacement space R3. Due to the symmetry

in this problem, the likelihood function, shown in centre panel of Fig. B.3, is bimodal.

We place a multivariate Gaussian as prior on the stiffness parameters, and use a bimodal

trial distribution to infer the posterior distribution of the parameters b0 and b2 given

observed displacement d = (0.1, 0.17, 0.23)T . Specifically, we consider a mixture of two

multivariate Gaussians with equal fixed mixture weights. As there is no closed form

expression for the KL divergence between a mixture of Gaussians and a single Gaussian,

we estimate the KL divergence term in the ELBO using Monte Carlo sampling. As

shown in the right panel of Fig. B.3, the resulting posterior distribution is bimodal and
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recovers the two modes present in the likelihood function. This illustrative example

shows that when a proposed model exhibits multi-modality, the flexibility of variational

Bayes methodology allows for specifying a family of trial distributions that can capture

that property of the model.
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